#ifndef _LINUX_F2FS_H
#define _LINUX_F2FS_H
#include <linux/uio.h>
#include <linux/types.h>
#include <linux/page-flags.h>
#include <linux/buffer_head.h>
#include <linux/slab.h>
#include <linux/crc32.h>
#include <linux/magic.h>
#include <linux/kobject.h>
#include <linux/sched.h>
#include <linux/cred.h>
#include <linux/sched/mm.h>
#include <linux/vmalloc.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/quotaops.h>
#include <linux/part_stat.h>
#include <crypto/hash.h>
#include <linux/fscrypt.h>
#include <linux/fsverity.h>
struct pagevec;
#ifdef CONFIG_F2FS_CHECK_FS
#define f2fs_bug_on(sbi, condition) BUG_ON(condition)
#else
#define f2fs_bug_on(sbi, condition) \
do { \
if (WARN_ON(condition)) \
set_sbi_flag(sbi, SBI_NEED_FSCK); \
} while (0)
#endif
enum {
FAULT_KMALLOC,
FAULT_KVMALLOC,
FAULT_PAGE_ALLOC,
FAULT_PAGE_GET,
FAULT_ALLOC_BIO,
FAULT_ALLOC_NID,
FAULT_ORPHAN,
FAULT_BLOCK,
FAULT_DIR_DEPTH,
FAULT_EVICT_INODE,
FAULT_TRUNCATE,
FAULT_READ_IO,
FAULT_CHECKPOINT,
FAULT_DISCARD,
FAULT_WRITE_IO,
FAULT_SLAB_ALLOC,
FAULT_DQUOT_INIT,
FAULT_LOCK_OP,
FAULT_BLKADDR,
FAULT_MAX,
};
#ifdef CONFIG_F2FS_FAULT_INJECTION
#define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0))
struct f2fs_fault_info {
atomic_t inject_ops;
unsigned int inject_rate;
unsigned int inject_type;
};
extern const char *f2fs_fault_name[FAULT_MAX];
#define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
#endif
#define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
#define F2FS_MOUNT_DISCARD 0x00000002
#define F2FS_MOUNT_NOHEAP 0x00000004
#define F2FS_MOUNT_XATTR_USER 0x00000008
#define F2FS_MOUNT_POSIX_ACL 0x00000010
#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
#define F2FS_MOUNT_INLINE_XATTR 0x00000040
#define F2FS_MOUNT_INLINE_DATA 0x00000080
#define F2FS_MOUNT_INLINE_DENTRY 0x00000100
#define F2FS_MOUNT_FLUSH_MERGE 0x00000200
#define F2FS_MOUNT_NOBARRIER 0x00000400
#define F2FS_MOUNT_FASTBOOT 0x00000800
#define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
#define F2FS_MOUNT_DATA_FLUSH 0x00002000
#define F2FS_MOUNT_FAULT_INJECTION 0x00004000
#define F2FS_MOUNT_USRQUOTA 0x00008000
#define F2FS_MOUNT_GRPQUOTA 0x00010000
#define F2FS_MOUNT_PRJQUOTA 0x00020000
#define F2FS_MOUNT_QUOTA 0x00040000
#define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
#define F2FS_MOUNT_RESERVE_ROOT 0x00100000
#define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
#define F2FS_MOUNT_NORECOVERY 0x00400000
#define F2FS_MOUNT_ATGC 0x00800000
#define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
#define F2FS_MOUNT_GC_MERGE 0x02000000
#define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
#define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
#define F2FS_OPTION(sbi) ((sbi)->mount_opt)
#define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
#define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
#define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
#define ver_after(a, b) (typecheck(unsigned long long, a) && \
typecheck(unsigned long long, b) && \
((long long)((a) - (b)) > 0))
typedef u32 block_t;
typedef u32 nid_t;
#define COMPRESS_EXT_NUM 16
struct f2fs_rwsem {
struct rw_semaphore internal_rwsem;
#ifdef CONFIG_F2FS_UNFAIR_RWSEM
wait_queue_head_t read_waiters;
#endif
};
struct f2fs_mount_info {
unsigned int opt;
int write_io_size_bits;
block_t root_reserved_blocks;
kuid_t s_resuid;
kgid_t s_resgid;
int active_logs;
int inline_xattr_size;
#ifdef CONFIG_F2FS_FAULT_INJECTION
struct f2fs_fault_info fault_info;
#endif
#ifdef CONFIG_QUOTA
char *s_qf_names[MAXQUOTAS];
int s_jquota_fmt;
#endif
int alloc_mode;
int fsync_mode;
int fs_mode;
int bggc_mode;
int memory_mode;
int errors;
int discard_unit;
struct fscrypt_dummy_policy dummy_enc_policy;
block_t unusable_cap_perc;
block_t unusable_cap;
unsigned char compress_algorithm;
unsigned char compress_log_size;
unsigned char compress_level;
bool compress_chksum;
unsigned char compress_ext_cnt;
unsigned char nocompress_ext_cnt;
int compress_mode;
unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];
unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];
};
#define F2FS_FEATURE_ENCRYPT 0x00000001
#define F2FS_FEATURE_BLKZONED 0x00000002
#define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
#define F2FS_FEATURE_EXTRA_ATTR 0x00000008
#define F2FS_FEATURE_PRJQUOTA 0x00000010
#define F2FS_FEATURE_INODE_CHKSUM 0x00000020
#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
#define F2FS_FEATURE_QUOTA_INO 0x00000080
#define F2FS_FEATURE_INODE_CRTIME 0x00000100
#define F2FS_FEATURE_LOST_FOUND 0x00000200
#define F2FS_FEATURE_VERITY 0x00000400
#define F2FS_FEATURE_SB_CHKSUM 0x00000800
#define F2FS_FEATURE_CASEFOLD 0x00001000
#define F2FS_FEATURE_COMPRESSION 0x00002000
#define F2FS_FEATURE_RO 0x00004000
#define __F2FS_HAS_FEATURE(raw_super, mask) \
((raw_super->feature & cpu_to_le32(mask)) != 0)
#define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
#define F2FS_DEF_RESUID 0
#define F2FS_DEF_RESGID 0
enum {
NAT_BITMAP,
SIT_BITMAP
};
#define CP_UMOUNT 0x00000001
#define CP_FASTBOOT 0x00000002
#define CP_SYNC 0x00000004
#define CP_RECOVERY 0x00000008
#define CP_DISCARD 0x00000010
#define CP_TRIMMED 0x00000020
#define CP_PAUSE 0x00000040
#define CP_RESIZE 0x00000080
#define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
#define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
#define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
#define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
#define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
#define DEF_CP_INTERVAL 60 /* 60 secs */
#define DEF_IDLE_INTERVAL 5 /* 5 secs */
#define DEF_DISABLE_INTERVAL 5 /* 5 secs */
#define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
#define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
struct cp_control {
int reason;
__u64 trim_start;
__u64 trim_end;
__u64 trim_minlen;
};
enum {
META_CP,
META_NAT,
META_SIT,
META_SSA,
META_MAX,
META_POR,
DATA_GENERIC,
DATA_GENERIC_ENHANCE,
DATA_GENERIC_ENHANCE_READ,
DATA_GENERIC_ENHANCE_UPDATE,
META_GENERIC,
};
enum {
ORPHAN_INO,
APPEND_INO,
UPDATE_INO,
TRANS_DIR_INO,
FLUSH_INO,
MAX_INO_ENTRY,
};
struct ino_entry {
struct list_head list;
nid_t ino;
unsigned int dirty_device;
};
struct inode_entry {
struct list_head list;
struct inode *inode;
};
struct fsync_node_entry {
struct list_head list;
struct page *page;
unsigned int seq_id;
};
struct ckpt_req {
struct completion wait;
struct llist_node llnode;
int ret;
ktime_t queue_time;
};
struct ckpt_req_control {
struct task_struct *f2fs_issue_ckpt;
int ckpt_thread_ioprio;
wait_queue_head_t ckpt_wait_queue;
atomic_t issued_ckpt;
atomic_t total_ckpt;
atomic_t queued_ckpt;
struct llist_head issue_list;
spinlock_t stat_lock;
unsigned int cur_time;
unsigned int peak_time;
};
struct discard_entry {
struct list_head list;
block_t start_blkaddr;
unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];
};
#define MIN_DISCARD_GRANULARITY 1
#define DEFAULT_DISCARD_GRANULARITY 16
#define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
#define MAX_PLIST_NUM 512
#define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
enum {
D_PREP,
D_PARTIAL,
D_SUBMIT,
D_DONE,
};
struct discard_info {
block_t lstart;
block_t len;
block_t start;
};
struct discard_cmd {
struct rb_node rb_node;
struct discard_info di;
struct list_head list;
struct completion wait;
struct block_device *bdev;
unsigned short ref;
unsigned char state;
unsigned char queued;
int error;
spinlock_t lock;
unsigned short bio_ref;
};
enum {
DPOLICY_BG,
DPOLICY_FORCE,
DPOLICY_FSTRIM,
DPOLICY_UMOUNT,
MAX_DPOLICY,
};
struct discard_policy {
int type;
unsigned int min_interval;
unsigned int mid_interval;
unsigned int max_interval;
unsigned int max_requests;
unsigned int io_aware_gran;
bool io_aware;
bool sync;
bool ordered;
bool timeout;
unsigned int granularity;
};
struct discard_cmd_control {
struct task_struct *f2fs_issue_discard;
struct list_head entry_list;
struct list_head pend_list[MAX_PLIST_NUM];
struct list_head wait_list;
struct list_head fstrim_list;
wait_queue_head_t discard_wait_queue;
struct mutex cmd_lock;
unsigned int nr_discards;
unsigned int max_discards;
unsigned int max_discard_request;
unsigned int min_discard_issue_time;
unsigned int mid_discard_issue_time;
unsigned int max_discard_issue_time;
unsigned int discard_io_aware_gran;
unsigned int discard_urgent_util;
unsigned int discard_granularity;
unsigned int max_ordered_discard;
unsigned int undiscard_blks;
unsigned int next_pos;
atomic_t issued_discard;
atomic_t queued_discard;
atomic_t discard_cmd_cnt;
struct rb_root_cached root;
bool rbtree_check;
bool discard_wake;
};
struct fsync_inode_entry {
struct list_head list;
struct inode *inode;
block_t blkaddr;
block_t last_dentry;
};
#define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
#define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
#define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
#define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
#define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
#define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
#define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
#define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
{
int before = nats_in_cursum(journal);
journal->n_nats = cpu_to_le16(before + i);
return before;
}
static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
{
int before = sits_in_cursum(journal);
journal->n_sits = cpu_to_le16(before + i);
return before;
}
static inline bool __has_cursum_space(struct f2fs_journal *journal,
int size, int type)
{
if (type == NAT_JOURNAL)
return size <= MAX_NAT_JENTRIES(journal);
return size <= MAX_SIT_JENTRIES(journal);
}
#define DEF_INLINE_RESERVED_SIZE 1
static inline int get_extra_isize(struct inode *inode);
static inline int get_inline_xattr_addrs(struct inode *inode);
#define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
(CUR_ADDRS_PER_INODE(inode) - \
get_inline_xattr_addrs(inode) - \
DEF_INLINE_RESERVED_SIZE))
#define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
BITS_PER_BYTE + 1))
#define INLINE_DENTRY_BITMAP_SIZE(inode) \
DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
#define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
NR_INLINE_DENTRY(inode) + \
INLINE_DENTRY_BITMAP_SIZE(inode)))
struct f2fs_filename {
const struct qstr *usr_fname;
struct fscrypt_str disk_name;
f2fs_hash_t hash;
#ifdef CONFIG_FS_ENCRYPTION
struct fscrypt_str crypto_buf;
#endif
#if IS_ENABLED(CONFIG_UNICODE)
struct fscrypt_str cf_name;
#endif
};
struct f2fs_dentry_ptr {
struct inode *inode;
void *bitmap;
struct f2fs_dir_entry *dentry;
__u8 (*filename)[F2FS_SLOT_LEN];
int max;
int nr_bitmap;
};
static inline void make_dentry_ptr_block(struct inode *inode,
struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
{
d->inode = inode;
d->max = NR_DENTRY_IN_BLOCK;
d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
d->bitmap = t->dentry_bitmap;
d->dentry = t->dentry;
d->filename = t->filename;
}
static inline void make_dentry_ptr_inline(struct inode *inode,
struct f2fs_dentry_ptr *d, void *t)
{
int entry_cnt = NR_INLINE_DENTRY(inode);
int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
int reserved_size = INLINE_RESERVED_SIZE(inode);
d->inode = inode;
d->max = entry_cnt;
d->nr_bitmap = bitmap_size;
d->bitmap = t;
d->dentry = t + bitmap_size + reserved_size;
d->filename = t + bitmap_size + reserved_size +
SIZE_OF_DIR_ENTRY * entry_cnt;
}
#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
>> OFFSET_BIT_SHIFT)
enum {
ALLOC_NODE,
LOOKUP_NODE,
LOOKUP_NODE_RA,
};
#define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
#define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
#define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
#define MAX_RETRY_PAGE_EIO 100
#define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
#define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
#define DEFAULT_DIRTY_THRESHOLD 4
#define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
#define RECOVERY_MIN_RA_BLOCKS 1
#define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
#define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
#define READ_EXTENT_CACHE_SHRINK_NUMBER 128
#define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
#define LAST_AGE_WEIGHT 30
#define SAME_AGE_REGION 1024
#define DEF_HOT_DATA_AGE_THRESHOLD 262144
#define DEF_WARM_DATA_AGE_THRESHOLD 2621440
enum extent_type {
EX_READ,
EX_BLOCK_AGE,
NR_EXTENT_CACHES,
};
struct extent_info {
unsigned int fofs;
unsigned int len;
union {
struct {
block_t blk;
#ifdef CONFIG_F2FS_FS_COMPRESSION
unsigned int c_len;
#endif
};
struct {
unsigned long long age;
unsigned long long last_blocks;
};
};
};
struct extent_node {
struct rb_node rb_node;
struct extent_info ei;
struct list_head list;
struct extent_tree *et;
};
struct extent_tree {
nid_t ino;
enum extent_type type;
struct rb_root_cached root;
struct extent_node *cached_en;
struct list_head list;
rwlock_t lock;
atomic_t node_cnt;
bool largest_updated;
struct extent_info largest;
};
struct extent_tree_info {
struct radix_tree_root extent_tree_root;
struct mutex extent_tree_lock;
struct list_head extent_list;
spinlock_t extent_lock;
atomic_t total_ext_tree;
struct list_head zombie_list;
atomic_t total_zombie_tree;
atomic_t total_ext_node;
};
#define F2FS_MAP_NEW (1U << 0)
#define F2FS_MAP_MAPPED (1U << 1)
#define F2FS_MAP_DELALLOC (1U << 2)
#define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
F2FS_MAP_DELALLOC)
struct f2fs_map_blocks {
struct block_device *m_bdev;
block_t m_pblk;
block_t m_lblk;
unsigned int m_len;
unsigned int m_flags;
pgoff_t *m_next_pgofs;
pgoff_t *m_next_extent;
int m_seg_type;
bool m_may_create;
bool m_multidev_dio;
};
enum {
F2FS_GET_BLOCK_DEFAULT,
F2FS_GET_BLOCK_FIEMAP,
F2FS_GET_BLOCK_BMAP,
F2FS_GET_BLOCK_DIO,
F2FS_GET_BLOCK_PRE_DIO,
F2FS_GET_BLOCK_PRE_AIO,
F2FS_GET_BLOCK_PRECACHE,
};
#define FADVISE_COLD_BIT 0x01
#define FADVISE_LOST_PINO_BIT 0x02
#define FADVISE_ENCRYPT_BIT 0x04
#define FADVISE_ENC_NAME_BIT 0x08
#define FADVISE_KEEP_SIZE_BIT 0x10
#define FADVISE_HOT_BIT 0x20
#define FADVISE_VERITY_BIT 0x40
#define FADVISE_TRUNC_BIT 0x80
#define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
#define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
#define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
#define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
#define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
#define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
#define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
#define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
#define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
#define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
#define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
#define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
#define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
#define DEF_DIR_LEVEL 0
enum {
GC_FAILURE_PIN,
MAX_GC_FAILURE
};
enum {
FI_NEW_INODE,
FI_DIRTY_INODE,
FI_AUTO_RECOVER,
FI_DIRTY_DIR,
FI_INC_LINK,
FI_ACL_MODE,
FI_NO_ALLOC,
FI_FREE_NID,
FI_NO_EXTENT,
FI_INLINE_XATTR,
FI_INLINE_DATA,
FI_INLINE_DENTRY,
FI_APPEND_WRITE,
FI_UPDATE_WRITE,
FI_NEED_IPU,
FI_ATOMIC_FILE,
FI_FIRST_BLOCK_WRITTEN,
FI_DROP_CACHE,
FI_DATA_EXIST,
FI_INLINE_DOTS,
FI_SKIP_WRITES,
FI_OPU_WRITE,
FI_DIRTY_FILE,
FI_PREALLOCATED_ALL,
FI_HOT_DATA,
FI_EXTRA_ATTR,
FI_PROJ_INHERIT,
FI_PIN_FILE,
FI_VERITY_IN_PROGRESS,
FI_COMPRESSED_FILE,
FI_COMPRESS_CORRUPT,
FI_MMAP_FILE,
FI_ENABLE_COMPRESS,
FI_COMPRESS_RELEASED,
FI_ALIGNED_WRITE,
FI_COW_FILE,
FI_ATOMIC_COMMITTED,
FI_ATOMIC_REPLACE,
FI_MAX,
};
struct f2fs_inode_info {
struct inode vfs_inode;
unsigned long i_flags;
unsigned char i_advise;
unsigned char i_dir_level;
unsigned int i_current_depth;
unsigned int i_gc_failures[MAX_GC_FAILURE];
unsigned int i_pino;
umode_t i_acl_mode;
unsigned long flags[BITS_TO_LONGS(FI_MAX)];
struct f2fs_rwsem i_sem;
atomic_t dirty_pages;
f2fs_hash_t chash;
unsigned int clevel;
struct task_struct *task;
struct task_struct *cp_task;
struct task_struct *wb_task;
nid_t i_xattr_nid;
loff_t last_disk_size;
spinlock_t i_size_lock;
#ifdef CONFIG_QUOTA
struct dquot *i_dquot[MAXQUOTAS];
qsize_t i_reserved_quota;
#endif
struct list_head dirty_list;
struct list_head gdirty_list;
struct task_struct *atomic_write_task;
struct extent_tree *extent_tree[NR_EXTENT_CACHES];
struct inode *cow_inode;
struct f2fs_rwsem i_gc_rwsem[2];
struct f2fs_rwsem i_xattr_sem;
int i_extra_isize;
kprojid_t i_projid;
int i_inline_xattr_size;
struct timespec64 i_crtime;
struct timespec64 i_disk_time[3];
atomic_t i_compr_blocks;
unsigned char i_compress_algorithm;
unsigned char i_log_cluster_size;
unsigned char i_compress_level;
unsigned char i_compress_flag;
unsigned int i_cluster_size;
unsigned int atomic_write_cnt;
loff_t original_i_size;
};
static inline void get_read_extent_info(struct extent_info *ext,
struct f2fs_extent *i_ext)
{
ext->fofs = le32_to_cpu(i_ext->fofs);
ext->blk = le32_to_cpu(i_ext->blk);
ext->len = le32_to_cpu(i_ext->len);
}
static inline void set_raw_read_extent(struct extent_info *ext,
struct f2fs_extent *i_ext)
{
i_ext->fofs = cpu_to_le32(ext->fofs);
i_ext->blk = cpu_to_le32(ext->blk);
i_ext->len = cpu_to_le32(ext->len);
}
static inline bool __is_discard_mergeable(struct discard_info *back,
struct discard_info *front, unsigned int max_len)
{
return (back->lstart + back->len == front->lstart) &&
(back->len + front->len <= max_len);
}
static inline bool __is_discard_back_mergeable(struct discard_info *cur,
struct discard_info *back, unsigned int max_len)
{
return __is_discard_mergeable(back, cur, max_len);
}
static inline bool __is_discard_front_mergeable(struct discard_info *cur,
struct discard_info *front, unsigned int max_len)
{
return __is_discard_mergeable(cur, front, max_len);
}
enum nid_state {
FREE_NID,
PREALLOC_NID,
MAX_NID_STATE,
};
enum nat_state {
TOTAL_NAT,
DIRTY_NAT,
RECLAIMABLE_NAT,
MAX_NAT_STATE,
};
struct f2fs_nm_info {
block_t nat_blkaddr;
nid_t max_nid;
nid_t available_nids;
nid_t next_scan_nid;
nid_t max_rf_node_blocks;
unsigned int ram_thresh;
unsigned int ra_nid_pages;
unsigned int dirty_nats_ratio;
struct radix_tree_root nat_root;
struct radix_tree_root nat_set_root;
struct f2fs_rwsem nat_tree_lock;
struct list_head nat_entries;
spinlock_t nat_list_lock;
unsigned int nat_cnt[MAX_NAT_STATE];
unsigned int nat_blocks;
struct radix_tree_root free_nid_root;
struct list_head free_nid_list;
unsigned int nid_cnt[MAX_NID_STATE];
spinlock_t nid_list_lock;
struct mutex build_lock;
unsigned char **free_nid_bitmap;
unsigned char *nat_block_bitmap;
unsigned short *free_nid_count;
char *nat_bitmap;
unsigned int nat_bits_blocks;
unsigned char *nat_bits;
unsigned char *full_nat_bits;
unsigned char *empty_nat_bits;
#ifdef CONFIG_F2FS_CHECK_FS
char *nat_bitmap_mir;
#endif
int bitmap_size;
};
struct dnode_of_data {
struct inode *inode;
struct page *inode_page;
struct page *node_page;
nid_t nid;
unsigned int ofs_in_node;
bool inode_page_locked;
bool node_changed;
char cur_level;
char max_level;
block_t data_blkaddr;
};
static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
struct page *ipage, struct page *npage, nid_t nid)
{
memset(dn, 0, sizeof(*dn));
dn->inode = inode;
dn->inode_page = ipage;
dn->node_page = npage;
dn->nid = nid;
}
#define NR_CURSEG_DATA_TYPE (3)
#define NR_CURSEG_NODE_TYPE (3)
#define NR_CURSEG_INMEM_TYPE (2)
#define NR_CURSEG_RO_TYPE (2)
#define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
#define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
enum {
CURSEG_HOT_DATA = 0,
CURSEG_WARM_DATA,
CURSEG_COLD_DATA,
CURSEG_HOT_NODE,
CURSEG_WARM_NODE,
CURSEG_COLD_NODE,
NR_PERSISTENT_LOG,
CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
CURSEG_ALL_DATA_ATGC,
NO_CHECK_TYPE,
};
struct flush_cmd {
struct completion wait;
struct llist_node llnode;
nid_t ino;
int ret;
};
struct flush_cmd_control {
struct task_struct *f2fs_issue_flush;
wait_queue_head_t flush_wait_queue;
atomic_t issued_flush;
atomic_t queued_flush;
struct llist_head issue_list;
struct llist_node *dispatch_list;
};
struct f2fs_sm_info {
struct sit_info *sit_info;
struct free_segmap_info *free_info;
struct dirty_seglist_info *dirty_info;
struct curseg_info *curseg_array;
struct f2fs_rwsem curseg_lock;
block_t seg0_blkaddr;
block_t main_blkaddr;
block_t ssa_blkaddr;
unsigned int segment_count;
unsigned int main_segments;
unsigned int reserved_segments;
unsigned int additional_reserved_segments;
unsigned int ovp_segments;
unsigned int rec_prefree_segments;
struct list_head sit_entry_set;
unsigned int ipu_policy;
unsigned int min_ipu_util;
unsigned int min_fsync_blocks;
unsigned int min_seq_blocks;
unsigned int min_hot_blocks;
unsigned int min_ssr_sections;
struct flush_cmd_control *fcc_info;
struct discard_cmd_control *dcc_info;
};
#define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
enum count_type {
F2FS_DIRTY_DENTS,
F2FS_DIRTY_DATA,
F2FS_DIRTY_QDATA,
F2FS_DIRTY_NODES,
F2FS_DIRTY_META,
F2FS_DIRTY_IMETA,
F2FS_WB_CP_DATA,
F2FS_WB_DATA,
F2FS_RD_DATA,
F2FS_RD_NODE,
F2FS_RD_META,
F2FS_DIO_WRITE,
F2FS_DIO_READ,
NR_COUNT_TYPE,
};
#define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
enum page_type {
DATA = 0,
NODE = 1,
META,
NR_PAGE_TYPE,
META_FLUSH,
IPU,
OPU,
};
enum temp_type {
HOT = 0,
WARM,
COLD,
NR_TEMP_TYPE,
};
enum need_lock_type {
LOCK_REQ = 0,
LOCK_DONE,
LOCK_RETRY,
};
enum cp_reason_type {
CP_NO_NEEDED,
CP_NON_REGULAR,
CP_COMPRESSED,
CP_HARDLINK,
CP_SB_NEED_CP,
CP_WRONG_PINO,
CP_NO_SPC_ROLL,
CP_NODE_NEED_CP,
CP_FASTBOOT_MODE,
CP_SPEC_LOG_NUM,
CP_RECOVER_DIR,
};
enum iostat_type {
APP_DIRECT_IO,
APP_BUFFERED_IO,
APP_WRITE_IO,
APP_MAPPED_IO,
APP_BUFFERED_CDATA_IO,
APP_MAPPED_CDATA_IO,
FS_DATA_IO,
FS_CDATA_IO,
FS_NODE_IO,
FS_META_IO,
FS_GC_DATA_IO,
FS_GC_NODE_IO,
FS_CP_DATA_IO,
FS_CP_NODE_IO,
FS_CP_META_IO,
APP_DIRECT_READ_IO,
APP_BUFFERED_READ_IO,
APP_READ_IO,
APP_MAPPED_READ_IO,
APP_BUFFERED_CDATA_READ_IO,
APP_MAPPED_CDATA_READ_IO,
FS_DATA_READ_IO,
FS_GDATA_READ_IO,
FS_CDATA_READ_IO,
FS_NODE_READ_IO,
FS_META_READ_IO,
FS_DISCARD_IO,
FS_FLUSH_IO,
FS_ZONE_RESET_IO,
NR_IO_TYPE,
};
struct f2fs_io_info {
struct f2fs_sb_info *sbi;
nid_t ino;
enum page_type type;
enum temp_type temp;
enum req_op op;
blk_opf_t op_flags;
block_t new_blkaddr;
block_t old_blkaddr;
struct page *page;
struct page *encrypted_page;
struct page *compressed_page;
struct list_head list;
unsigned int compr_blocks;
unsigned int need_lock:8;
unsigned int version:8;
unsigned int submitted:1;
unsigned int in_list:1;
unsigned int is_por:1;
unsigned int retry:1;
unsigned int encrypted:1;
unsigned int post_read:1;
enum iostat_type io_type;
struct writeback_control *io_wbc;
struct bio **bio;
sector_t *last_block;
};
struct bio_entry {
struct bio *bio;
struct list_head list;
};
#define is_read_io(rw) ((rw) == READ)
struct f2fs_bio_info {
struct f2fs_sb_info *sbi;
struct bio *bio;
sector_t last_block_in_bio;
struct f2fs_io_info fio;
#ifdef CONFIG_BLK_DEV_ZONED
struct completion zone_wait;
struct bio *zone_pending_bio;
void *bi_private;
#endif
struct f2fs_rwsem io_rwsem;
spinlock_t io_lock;
struct list_head io_list;
struct list_head bio_list;
struct f2fs_rwsem bio_list_lock;
};
#define FDEV(i) (sbi->devs[i])
#define RDEV(i) (raw_super->devs[i])
struct f2fs_dev_info {
struct block_device *bdev;
char path[MAX_PATH_LEN];
unsigned int total_segments;
block_t start_blk;
block_t end_blk;
#ifdef CONFIG_BLK_DEV_ZONED
unsigned int nr_blkz;
unsigned long *blkz_seq;
#endif
};
enum inode_type {
DIR_INODE,
FILE_INODE,
DIRTY_META,
NR_INODE_TYPE,
};
struct inode_management {
struct radix_tree_root ino_root;
spinlock_t ino_lock;
struct list_head ino_list;
unsigned long ino_num;
};
struct atgc_management {
bool atgc_enabled;
struct rb_root_cached root;
struct list_head victim_list;
unsigned int victim_count;
unsigned int candidate_ratio;
unsigned int max_candidate_count;
unsigned int age_weight;
unsigned long long age_threshold;
};
struct f2fs_gc_control {
unsigned int victim_segno;
int init_gc_type;
bool no_bg_gc;
bool should_migrate_blocks;
bool err_gc_skipped;
unsigned int nr_free_secs;
};
enum {
SBI_IS_DIRTY,
SBI_IS_CLOSE,
SBI_NEED_FSCK,
SBI_POR_DOING,
SBI_NEED_SB_WRITE,
SBI_NEED_CP,
SBI_IS_SHUTDOWN,
SBI_IS_RECOVERED,
SBI_CP_DISABLED,
SBI_CP_DISABLED_QUICK,
SBI_QUOTA_NEED_FLUSH,
SBI_QUOTA_SKIP_FLUSH,
SBI_QUOTA_NEED_REPAIR,
SBI_IS_RESIZEFS,
SBI_IS_FREEZING,
SBI_IS_WRITABLE,
MAX_SBI_FLAG,
};
enum {
CP_TIME,
REQ_TIME,
DISCARD_TIME,
GC_TIME,
DISABLE_TIME,
UMOUNT_DISCARD_TIMEOUT,
MAX_TIME,
};
enum {
GC_NORMAL,
GC_IDLE_CB,
GC_IDLE_GREEDY,
GC_IDLE_AT,
GC_URGENT_HIGH,
GC_URGENT_LOW,
GC_URGENT_MID,
MAX_GC_MODE,
};
enum {
BGGC_MODE_ON,
BGGC_MODE_OFF,
BGGC_MODE_SYNC,
};
enum {
FS_MODE_ADAPTIVE,
FS_MODE_LFS,
FS_MODE_FRAGMENT_SEG,
FS_MODE_FRAGMENT_BLK,
};
enum {
ALLOC_MODE_DEFAULT,
ALLOC_MODE_REUSE,
};
enum fsync_mode {
FSYNC_MODE_POSIX,
FSYNC_MODE_STRICT,
FSYNC_MODE_NOBARRIER,
};
enum {
COMPR_MODE_FS,
COMPR_MODE_USER,
};
enum {
DISCARD_UNIT_BLOCK,
DISCARD_UNIT_SEGMENT,
DISCARD_UNIT_SECTION,
};
enum {
MEMORY_MODE_NORMAL,
MEMORY_MODE_LOW,
};
enum errors_option {
MOUNT_ERRORS_READONLY,
MOUNT_ERRORS_CONTINUE,
MOUNT_ERRORS_PANIC,
};
enum {
BACKGROUND,
FOREGROUND,
MAX_CALL_TYPE,
TOTAL_CALL = FOREGROUND,
};
static inline int f2fs_test_bit(unsigned int nr, char *addr);
static inline void f2fs_set_bit(unsigned int nr, char *addr);
static inline void f2fs_clear_bit(unsigned int nr, char *addr);
enum {
PAGE_PRIVATE_NOT_POINTER,
PAGE_PRIVATE_DUMMY_WRITE,
PAGE_PRIVATE_ONGOING_MIGRATION,
PAGE_PRIVATE_INLINE_INODE,
PAGE_PRIVATE_REF_RESOURCE,
PAGE_PRIVATE_MAX
};
enum compress_algorithm_type {
COMPRESS_LZO,
COMPRESS_LZ4,
COMPRESS_ZSTD,
COMPRESS_LZORLE,
COMPRESS_MAX,
};
enum compress_flag {
COMPRESS_CHKSUM,
COMPRESS_MAX_FLAG,
};
#define COMPRESS_WATERMARK 20
#define COMPRESS_PERCENT 20
#define COMPRESS_DATA_RESERVED_SIZE 4
struct compress_data {
__le32 clen;
__le32 chksum;
__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];
u8 cdata[];
};
#define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
#define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
#define F2FS_ZSTD_DEFAULT_CLEVEL 1
#define COMPRESS_LEVEL_OFFSET 8
struct compress_ctx {
struct inode *inode;
pgoff_t cluster_idx;
unsigned int cluster_size;
unsigned int log_cluster_size;
struct page **rpages;
unsigned int nr_rpages;
struct page **cpages;
unsigned int nr_cpages;
unsigned int valid_nr_cpages;
void *rbuf;
struct compress_data *cbuf;
size_t rlen;
size_t clen;
void *private;
void *private2;
};
struct compress_io_ctx {
u32 magic;
struct inode *inode;
struct page **rpages;
unsigned int nr_rpages;
atomic_t pending_pages;
};
struct decompress_io_ctx {
u32 magic;
struct inode *inode;
pgoff_t cluster_idx;
unsigned int cluster_size;
unsigned int log_cluster_size;
struct page **rpages;
unsigned int nr_rpages;
struct page **cpages;
unsigned int nr_cpages;
struct page **tpages;
void *rbuf;
struct compress_data *cbuf;
size_t rlen;
size_t clen;
atomic_t remaining_pages;
refcount_t refcnt;
bool failed;
bool need_verity;
void *private;
void *private2;
struct work_struct verity_work;
struct work_struct free_work;
};
#define NULL_CLUSTER ((unsigned int)(~0))
#define MIN_COMPRESS_LOG_SIZE 2
#define MAX_COMPRESS_LOG_SIZE 8
#define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
struct f2fs_sb_info {
struct super_block *sb;
struct proc_dir_entry *s_proc;
struct f2fs_super_block *raw_super;
struct f2fs_rwsem sb_lock;
int valid_super_block;
unsigned long s_flag;
struct mutex writepages;
#ifdef CONFIG_BLK_DEV_ZONED
unsigned int blocks_per_blkz;
#endif
struct f2fs_nm_info *nm_info;
struct inode *node_inode;
struct f2fs_sm_info *sm_info;
struct f2fs_bio_info *write_io[NR_PAGE_TYPE];
struct f2fs_rwsem io_order_lock;
mempool_t *write_io_dummy;
pgoff_t page_eio_ofs[NR_PAGE_TYPE];
int page_eio_cnt[NR_PAGE_TYPE];
struct f2fs_checkpoint *ckpt;
int cur_cp_pack;
spinlock_t cp_lock;
struct inode *meta_inode;
struct f2fs_rwsem cp_global_sem;
struct f2fs_rwsem cp_rwsem;
struct f2fs_rwsem node_write;
struct f2fs_rwsem node_change;
wait_queue_head_t cp_wait;
unsigned long last_time[MAX_TIME];
long interval_time[MAX_TIME];
struct ckpt_req_control cprc_info;
struct inode_management im[MAX_INO_ENTRY];
spinlock_t fsync_node_lock;
struct list_head fsync_node_list;
unsigned int fsync_seg_id;
unsigned int fsync_node_num;
unsigned int max_orphans;
struct list_head inode_list[NR_INODE_TYPE];
spinlock_t inode_lock[NR_INODE_TYPE];
struct mutex flush_lock;
struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
atomic64_t allocated_data_blocks;
unsigned int hot_data_age_threshold;
unsigned int warm_data_age_threshold;
unsigned int last_age_weight;
unsigned int log_sectors_per_block;
unsigned int log_blocksize;
unsigned int blocksize;
unsigned int root_ino_num;
unsigned int node_ino_num;
unsigned int meta_ino_num;
unsigned int log_blocks_per_seg;
unsigned int blocks_per_seg;
unsigned int unusable_blocks_per_sec;
unsigned int segs_per_sec;
unsigned int secs_per_zone;
unsigned int total_sections;
unsigned int total_node_count;
unsigned int total_valid_node_count;
int dir_level;
bool readdir_ra;
u64 max_io_bytes;
block_t user_block_count;
block_t total_valid_block_count;
block_t discard_blks;
block_t last_valid_block_count;
block_t reserved_blocks;
block_t current_reserved_blocks;
block_t unusable_block_count;
unsigned int nquota_files;
struct f2fs_rwsem quota_sem;
atomic_t nr_pages[NR_COUNT_TYPE];
struct percpu_counter alloc_valid_block_count;
struct percpu_counter rf_node_block_count;
atomic_t wb_sync_req[META];
struct percpu_counter total_valid_inode_count;
struct f2fs_mount_info mount_opt;
struct f2fs_rwsem gc_lock;
struct f2fs_gc_kthread *gc_thread;
struct atgc_management am;
unsigned int cur_victim_sec;
unsigned int gc_mode;
unsigned int next_victim_seg[2];
spinlock_t gc_remaining_trials_lock;
unsigned int gc_remaining_trials;
unsigned long long skipped_gc_rwsem;
u64 gc_pin_file_threshold;
struct f2fs_rwsem pin_sem;
unsigned int max_victim_search;
unsigned int migration_granularity;
#ifdef CONFIG_F2FS_STAT_FS
struct f2fs_stat_info *stat_info;
atomic_t meta_count[META_MAX];
unsigned int segment_count[2];
unsigned int block_count[2];
atomic_t inplace_count;
atomic64_t total_hit_ext[NR_EXTENT_CACHES];
atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
atomic64_t read_hit_cached[NR_EXTENT_CACHES];
atomic64_t read_hit_largest;
atomic_t inline_xattr;
atomic_t inline_inode;
atomic_t inline_dir;
atomic_t compr_inode;
atomic64_t compr_blocks;
atomic_t swapfile_inode;
atomic_t atomic_files;
atomic_t max_aw_cnt;
unsigned int io_skip_bggc;
unsigned int other_skip_bggc;
unsigned int ndirty_inode[NR_INODE_TYPE];
atomic_t cp_call_count[MAX_CALL_TYPE];
#endif
spinlock_t stat_lock;
unsigned int data_io_flag;
unsigned int node_io_flag;
struct kobject s_kobj;
struct completion s_kobj_unregister;
struct kobject s_stat_kobj;
struct completion s_stat_kobj_unregister;
struct kobject s_feature_list_kobj;
struct completion s_feature_list_kobj_unregister;
struct list_head s_list;
struct mutex umount_mutex;
unsigned int shrinker_run_no;
int s_ndevs;
struct f2fs_dev_info *devs;
unsigned int dirty_device;
spinlock_t dev_lock;
bool aligned_blksize;
u64 sectors_written_start;
u64 kbytes_written;
struct crypto_shash *s_chksum_driver;
__u32 s_chksum_seed;
struct workqueue_struct *post_read_wq;
struct work_struct s_error_work;
unsigned char errors[MAX_F2FS_ERRORS];
unsigned char stop_reason[MAX_STOP_REASON];
spinlock_t error_lock;
bool error_dirty;
struct kmem_cache *inline_xattr_slab;
unsigned int inline_xattr_slab_size;
unsigned int gc_segment_mode;
unsigned int gc_reclaimed_segs[MAX_GC_MODE];
unsigned long seq_file_ra_mul;
int max_fragment_chunk;
int max_fragment_hole;
atomic64_t current_atomic_write;
s64 peak_atomic_write;
u64 committed_atomic_block;
u64 revoked_atomic_block;
#ifdef CONFIG_F2FS_FS_COMPRESSION
struct kmem_cache *page_array_slab;
unsigned int page_array_slab_size;
u64 compr_written_block;
u64 compr_saved_block;
u32 compr_new_inode;
struct inode *compress_inode;
unsigned int compress_percent;
unsigned int compress_watermark;
atomic_t compress_page_hit;
#endif
#ifdef CONFIG_F2FS_IOSTAT
spinlock_t iostat_lock;
unsigned long long iostat_count[NR_IO_TYPE];
unsigned long long iostat_bytes[NR_IO_TYPE];
unsigned long long prev_iostat_bytes[NR_IO_TYPE];
bool iostat_enable;
unsigned long iostat_next_period;
unsigned int iostat_period_ms;
spinlock_t iostat_lat_lock;
struct iostat_lat_info *iostat_io_lat;
#endif
};
#ifdef CONFIG_F2FS_FAULT_INJECTION
#define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
__builtin_return_address(0))
static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
const char *func, const char *parent_func)
{
struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
if (!ffi->inject_rate)
return false;
if (!IS_FAULT_SET(ffi, type))
return false;
atomic_inc(&ffi->inject_ops);
if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
atomic_set(&ffi->inject_ops, 0);
printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",
KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type],
func, parent_func);
return true;
}
return false;
}
#else
static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
{
return false;
}
#endif
static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
{
return sbi->s_ndevs > 1;
}
static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
{
unsigned long now = jiffies;
sbi->last_time[type] = now;
if (type == REQ_TIME) {
sbi->last_time[DISCARD_TIME] = now;
sbi->last_time[GC_TIME] = now;
}
}
static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
{
unsigned long interval = sbi->interval_time[type] * HZ;
return time_after(jiffies, sbi->last_time[type] + interval);
}
static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
int type)
{
unsigned long interval = sbi->interval_time[type] * HZ;
unsigned int wait_ms = 0;
long delta;
delta = (sbi->last_time[type] + interval) - jiffies;
if (delta > 0)
wait_ms = jiffies_to_msecs(delta);
return wait_ms;
}
static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
const void *address, unsigned int length)
{
struct {
struct shash_desc shash;
char ctx[4];
} desc;
int err;
BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
desc.shash.tfm = sbi->s_chksum_driver;
*(u32 *)desc.ctx = crc;
err = crypto_shash_update(&desc.shash, address, length);
BUG_ON(err);
return *(u32 *)desc.ctx;
}
static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
unsigned int length)
{
return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
}
static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
void *buf, size_t buf_size)
{
return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
}
static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
const void *address, unsigned int length)
{
return __f2fs_crc32(sbi, crc, address, length);
}
static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
{
return container_of(inode, struct f2fs_inode_info, vfs_inode);
}
static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
{
return sb->s_fs_info;
}
static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
{
return F2FS_SB(inode->i_sb);
}
static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
{
return F2FS_I_SB(mapping->host);
}
static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
{
return F2FS_M_SB(page_file_mapping(page));
}
static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
{
return (struct f2fs_super_block *)(sbi->raw_super);
}
static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
{
return (struct f2fs_checkpoint *)(sbi->ckpt);
}
static inline struct f2fs_node *F2FS_NODE(struct page *page)
{
return (struct f2fs_node *)page_address(page);
}
static inline struct f2fs_inode *F2FS_INODE(struct page *page)
{
return &((struct f2fs_node *)page_address(page))->i;
}
static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
{
return (struct f2fs_nm_info *)(sbi->nm_info);
}
static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
{
return (struct f2fs_sm_info *)(sbi->sm_info);
}
static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
{
return (struct sit_info *)(SM_I(sbi)->sit_info);
}
static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
{
return (struct free_segmap_info *)(SM_I(sbi)->free_info);
}
static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
{
return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
}
static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
{
return sbi->meta_inode->i_mapping;
}
static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
{
return sbi->node_inode->i_mapping;
}
static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
{
return test_bit(type, &sbi->s_flag);
}
static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
{
set_bit(type, &sbi->s_flag);
}
static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
{
clear_bit(type, &sbi->s_flag);
}
static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
{
return le64_to_cpu(cp->checkpoint_ver);
}
static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
{
if (type < F2FS_MAX_QUOTAS)
return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
return 0;
}
static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
{
size_t crc_offset = le32_to_cpu(cp->checksum_offset);
return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
}
static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
return ckpt_flags & f;
}
static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
{
return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
}
static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
unsigned int ckpt_flags;
ckpt_flags = le32_to_cpu(cp->ckpt_flags);
ckpt_flags |= f;
cp->ckpt_flags = cpu_to_le32(ckpt_flags);
}
static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
{
unsigned long flags;
spin_lock_irqsave(&sbi->cp_lock, flags);
__set_ckpt_flags(F2FS_CKPT(sbi), f);
spin_unlock_irqrestore(&sbi->cp_lock, flags);
}
static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
unsigned int ckpt_flags;
ckpt_flags = le32_to_cpu(cp->ckpt_flags);
ckpt_flags &= (~f);
cp->ckpt_flags = cpu_to_le32(ckpt_flags);
}
static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
{
unsigned long flags;
spin_lock_irqsave(&sbi->cp_lock, flags);
__clear_ckpt_flags(F2FS_CKPT(sbi), f);
spin_unlock_irqrestore(&sbi->cp_lock, flags);
}
#define init_f2fs_rwsem(sem) \
do { \
static struct lock_class_key __key; \
\
__init_f2fs_rwsem((sem), #sem, &__key); \
} while (0)
static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
const char *sem_name, struct lock_class_key *key)
{
__init_rwsem(&sem->internal_rwsem, sem_name, key);
#ifdef CONFIG_F2FS_UNFAIR_RWSEM
init_waitqueue_head(&sem->read_waiters);
#endif
}
static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
{
return rwsem_is_locked(&sem->internal_rwsem);
}
static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
{
return rwsem_is_contended(&sem->internal_rwsem);
}
static inline void f2fs_down_read(struct f2fs_rwsem *sem)
{
#ifdef CONFIG_F2FS_UNFAIR_RWSEM
wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
#else
down_read(&sem->internal_rwsem);
#endif
}
static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
{
return down_read_trylock(&sem->internal_rwsem);
}
static inline void f2fs_up_read(struct f2fs_rwsem *sem)
{
up_read(&sem->internal_rwsem);
}
static inline void f2fs_down_write(struct f2fs_rwsem *sem)
{
down_write(&sem->internal_rwsem);
}
#ifdef CONFIG_DEBUG_LOCK_ALLOC
static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
{
down_read_nested(&sem->internal_rwsem, subclass);
}
static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
{
down_write_nested(&sem->internal_rwsem, subclass);
}
#else
#define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
#define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
#endif
static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
{
return down_write_trylock(&sem->internal_rwsem);
}
static inline void f2fs_up_write(struct f2fs_rwsem *sem)
{
up_write(&sem->internal_rwsem);
#ifdef CONFIG_F2FS_UNFAIR_RWSEM
wake_up_all(&sem->read_waiters);
#endif
}
static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
{
f2fs_down_read(&sbi->cp_rwsem);
}
static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
{
if (time_to_inject(sbi, FAULT_LOCK_OP))
return 0;
return f2fs_down_read_trylock(&sbi->cp_rwsem);
}
static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
{
f2fs_up_read(&sbi->cp_rwsem);
}
static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
{
f2fs_down_write(&sbi->cp_rwsem);
}
static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
{
f2fs_up_write(&sbi->cp_rwsem);
}
static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
{
int reason = CP_SYNC;
if (test_opt(sbi, FASTBOOT))
reason = CP_FASTBOOT;
if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
reason = CP_UMOUNT;
return reason;
}
static inline bool __remain_node_summaries(int reason)
{
return (reason & (CP_UMOUNT | CP_FASTBOOT));
}
static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
{
return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
}
static inline int F2FS_HAS_BLOCKS(struct inode *inode)
{
block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
}
static inline bool f2fs_has_xattr_block(unsigned int ofs)
{
return ofs == XATTR_NODE_OFFSET;
}
static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
struct inode *inode, bool cap)
{
if (!inode)
return true;
if (!test_opt(sbi, RESERVE_ROOT))
return false;
if (IS_NOQUOTA(inode))
return true;
if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
return true;
if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
in_group_p(F2FS_OPTION(sbi).s_resgid))
return true;
if (cap && capable(CAP_SYS_RESOURCE))
return true;
return false;
}
static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
struct inode *inode, blkcnt_t *count)
{
blkcnt_t diff = 0, release = 0;
block_t avail_user_block_count;
int ret;
ret = dquot_reserve_block(inode, *count);
if (ret)
return ret;
if (time_to_inject(sbi, FAULT_BLOCK)) {
release = *count;
goto release_quota;
}
percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
spin_lock(&sbi->stat_lock);
sbi->total_valid_block_count += (block_t)(*count);
avail_user_block_count = sbi->user_block_count -
sbi->current_reserved_blocks;
if (!__allow_reserved_blocks(sbi, inode, true))
avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
if (F2FS_IO_ALIGNED(sbi))
avail_user_block_count -= sbi->blocks_per_seg *
SM_I(sbi)->additional_reserved_segments;
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
if (avail_user_block_count > sbi->unusable_block_count)
avail_user_block_count -= sbi->unusable_block_count;
else
avail_user_block_count = 0;
}
if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
diff = sbi->total_valid_block_count - avail_user_block_count;
if (diff > *count)
diff = *count;
*count -= diff;
release = diff;
sbi->total_valid_block_count -= diff;
if (!*count) {
spin_unlock(&sbi->stat_lock);
goto enospc;
}
}
spin_unlock(&sbi->stat_lock);
if (unlikely(release)) {
percpu_counter_sub(&sbi->alloc_valid_block_count, release);
dquot_release_reservation_block(inode, release);
}
f2fs_i_blocks_write(inode, *count, true, true);
return 0;
enospc:
percpu_counter_sub(&sbi->alloc_valid_block_count, release);
release_quota:
dquot_release_reservation_block(inode, release);
return -ENOSPC;
}
__printf(2, 3)
void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
#define f2fs_err(sbi, fmt, ...) \
f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
#define f2fs_warn(sbi, fmt, ...) \
f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
#define f2fs_notice(sbi, fmt, ...) \
f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
#define f2fs_info(sbi, fmt, ...) \
f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
#define f2fs_debug(sbi, fmt, ...) \
f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
#define PAGE_PRIVATE_GET_FUNC(name, flagname) \
static inline bool page_private_##name(struct page *page) \
{ \
return PagePrivate(page) && \
test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
}
#define PAGE_PRIVATE_SET_FUNC(name, flagname) \
static inline void set_page_private_##name(struct page *page) \
{ \
if (!PagePrivate(page)) \
attach_page_private(page, (void *)0); \
set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
}
#define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
static inline void clear_page_private_##name(struct page *page) \
{ \
clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
detach_page_private(page); \
}
PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
static inline unsigned long get_page_private_data(struct page *page)
{
unsigned long data = page_private(page);
if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
return 0;
return data >> PAGE_PRIVATE_MAX;
}
static inline void set_page_private_data(struct page *page, unsigned long data)
{
if (!PagePrivate(page))
attach_page_private(page, (void *)0);
set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
page_private(page) |= data << PAGE_PRIVATE_MAX;
}
static inline void clear_page_private_data(struct page *page)
{
page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
detach_page_private(page);
}
static inline void clear_page_private_all(struct page *page)
{
clear_page_private_data(page);
clear_page_private_reference(page);
clear_page_private_gcing(page);
clear_page_private_inline(page);
f2fs_bug_on(F2FS_P_SB(page), page_private(page));
}
static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
struct inode *inode,
block_t count)
{
blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
spin_lock(&sbi->stat_lock);
f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
sbi->total_valid_block_count -= (block_t)count;
if (sbi->reserved_blocks &&
sbi->current_reserved_blocks < sbi->reserved_blocks)
sbi->current_reserved_blocks = min(sbi->reserved_blocks,
sbi->current_reserved_blocks + count);
spin_unlock(&sbi->stat_lock);
if (unlikely(inode->i_blocks < sectors)) {
f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
inode->i_ino,
(unsigned long long)inode->i_blocks,
(unsigned long long)sectors);
set_sbi_flag(sbi, SBI_NEED_FSCK);
return;
}
f2fs_i_blocks_write(inode, count, false, true);
}
static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
{
atomic_inc(&sbi->nr_pages[count_type]);
if (count_type == F2FS_DIRTY_DENTS ||
count_type == F2FS_DIRTY_NODES ||
count_type == F2FS_DIRTY_META ||
count_type == F2FS_DIRTY_QDATA ||
count_type == F2FS_DIRTY_IMETA)
set_sbi_flag(sbi, SBI_IS_DIRTY);
}
static inline void inode_inc_dirty_pages(struct inode *inode)
{
atomic_inc(&F2FS_I(inode)->dirty_pages);
inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
if (IS_NOQUOTA(inode))
inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
}
static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
{
atomic_dec(&sbi->nr_pages[count_type]);
}
static inline void inode_dec_dirty_pages(struct inode *inode)
{
if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
!S_ISLNK(inode->i_mode))
return;
atomic_dec(&F2FS_I(inode)->dirty_pages);
dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
if (IS_NOQUOTA(inode))
dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
}
static inline void inc_atomic_write_cnt(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
u64 current_write;
fi->atomic_write_cnt++;
atomic64_inc(&sbi->current_atomic_write);
current_write = atomic64_read(&sbi->current_atomic_write);
if (current_write > sbi->peak_atomic_write)
sbi->peak_atomic_write = current_write;
}
static inline void release_atomic_write_cnt(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
fi->atomic_write_cnt = 0;
}
static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
{
return atomic_read(&sbi->nr_pages[count_type]);
}
static inline int get_dirty_pages(struct inode *inode)
{
return atomic_read(&F2FS_I(inode)->dirty_pages);
}
static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
{
unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
sbi->log_blocks_per_seg;
return segs / sbi->segs_per_sec;
}
static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
{
return sbi->total_valid_block_count;
}
static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
{
return sbi->discard_blks;
}
static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
if (flag == NAT_BITMAP)
return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
else if (flag == SIT_BITMAP)
return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
return 0;
}
static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
{
return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
}
static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
int offset;
if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
offset = (flag == SIT_BITMAP) ?
le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
return tmp_ptr + offset + sizeof(__le32);
}
if (__cp_payload(sbi) > 0) {
if (flag == NAT_BITMAP)
return tmp_ptr;
else
return (unsigned char *)ckpt + F2FS_BLKSIZE;
} else {
offset = (flag == NAT_BITMAP) ?
le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
return tmp_ptr + offset;
}
}
static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
{
block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
if (sbi->cur_cp_pack == 2)
start_addr += sbi->blocks_per_seg;
return start_addr;
}
static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
{
block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
if (sbi->cur_cp_pack == 1)
start_addr += sbi->blocks_per_seg;
return start_addr;
}
static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
{
sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
}
static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
{
return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}
extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
struct inode *inode, bool is_inode)
{
block_t valid_block_count;
unsigned int valid_node_count, user_block_count;
int err;
if (is_inode) {
if (inode) {
err = dquot_alloc_inode(inode);
if (err)
return err;
}
} else {
err = dquot_reserve_block(inode, 1);
if (err)
return err;
}
if (time_to_inject(sbi, FAULT_BLOCK))
goto enospc;
spin_lock(&sbi->stat_lock);
valid_block_count = sbi->total_valid_block_count +
sbi->current_reserved_blocks + 1;
if (!__allow_reserved_blocks(sbi, inode, false))
valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
if (F2FS_IO_ALIGNED(sbi))
valid_block_count += sbi->blocks_per_seg *
SM_I(sbi)->additional_reserved_segments;
user_block_count = sbi->user_block_count;
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
user_block_count -= sbi->unusable_block_count;
if (unlikely(valid_block_count > user_block_count)) {
spin_unlock(&sbi->stat_lock);
goto enospc;
}
valid_node_count = sbi->total_valid_node_count + 1;
if (unlikely(valid_node_count > sbi->total_node_count)) {
spin_unlock(&sbi->stat_lock);
goto enospc;
}
sbi->total_valid_node_count++;
sbi->total_valid_block_count++;
spin_unlock(&sbi->stat_lock);
if (inode) {
if (is_inode)
f2fs_mark_inode_dirty_sync(inode, true);
else
f2fs_i_blocks_write(inode, 1, true, true);
}
percpu_counter_inc(&sbi->alloc_valid_block_count);
return 0;
enospc:
if (is_inode) {
if (inode)
dquot_free_inode(inode);
} else {
dquot_release_reservation_block(inode, 1);
}
return -ENOSPC;
}
static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
struct inode *inode, bool is_inode)
{
spin_lock(&sbi->stat_lock);
if (unlikely(!sbi->total_valid_block_count ||
!sbi->total_valid_node_count)) {
f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
sbi->total_valid_block_count,
sbi->total_valid_node_count);
set_sbi_flag(sbi, SBI_NEED_FSCK);
} else {
sbi->total_valid_block_count--;
sbi->total_valid_node_count--;
}
if (sbi->reserved_blocks &&
sbi->current_reserved_blocks < sbi->reserved_blocks)
sbi->current_reserved_blocks++;
spin_unlock(&sbi->stat_lock);
if (is_inode) {
dquot_free_inode(inode);
} else {
if (unlikely(inode->i_blocks == 0)) {
f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
inode->i_ino,
(unsigned long long)inode->i_blocks);
set_sbi_flag(sbi, SBI_NEED_FSCK);
return;
}
f2fs_i_blocks_write(inode, 1, false, true);
}
}
static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
{
return sbi->total_valid_node_count;
}
static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
{
percpu_counter_inc(&sbi->total_valid_inode_count);
}
static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
{
percpu_counter_dec(&sbi->total_valid_inode_count);
}
static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
{
return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
}
static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
pgoff_t index, bool for_write)
{
struct page *page;
unsigned int flags;
if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
if (!for_write)
page = find_get_page_flags(mapping, index,
FGP_LOCK | FGP_ACCESSED);
else
page = find_lock_page(mapping, index);
if (page)
return page;
if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
return NULL;
}
if (!for_write)
return grab_cache_page(mapping, index);
flags = memalloc_nofs_save();
page = grab_cache_page_write_begin(mapping, index);
memalloc_nofs_restore(flags);
return page;
}
static inline struct page *f2fs_pagecache_get_page(
struct address_space *mapping, pgoff_t index,
fgf_t fgp_flags, gfp_t gfp_mask)
{
if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
return NULL;
return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
}
static inline void f2fs_put_page(struct page *page, int unlock)
{
if (!page)
return;
if (unlock) {
f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
unlock_page(page);
}
put_page(page);
}
static inline void f2fs_put_dnode(struct dnode_of_data *dn)
{
if (dn->node_page)
f2fs_put_page(dn->node_page, 1);
if (dn->inode_page && dn->node_page != dn->inode_page)
f2fs_put_page(dn->inode_page, 0);
dn->node_page = NULL;
dn->inode_page = NULL;
}
static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
size_t size)
{
return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
}
static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
gfp_t flags)
{
void *entry;
entry = kmem_cache_alloc(cachep, flags);
if (!entry)
entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
return entry;
}
static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
{
if (nofail)
return f2fs_kmem_cache_alloc_nofail(cachep, flags);
if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
return NULL;
return kmem_cache_alloc(cachep, flags);
}
static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
{
if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
get_pages(sbi, F2FS_WB_CP_DATA) ||
get_pages(sbi, F2FS_DIO_READ) ||
get_pages(sbi, F2FS_DIO_WRITE))
return true;
if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
return true;
if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
return true;
return false;
}
static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
{
if (sbi->gc_mode == GC_URGENT_HIGH)
return true;
if (is_inflight_io(sbi, type))
return false;
if (sbi->gc_mode == GC_URGENT_MID)
return true;
if (sbi->gc_mode == GC_URGENT_LOW &&
(type == DISCARD_TIME || type == GC_TIME))
return true;
return f2fs_time_over(sbi, type);
}
static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
unsigned long index, void *item)
{
while (radix_tree_insert(root, index, item))
cond_resched();
}
#define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
static inline bool IS_INODE(struct page *page)
{
struct f2fs_node *p = F2FS_NODE(page);
return RAW_IS_INODE(p);
}
static inline int offset_in_addr(struct f2fs_inode *i)
{
return (i->i_inline & F2FS_EXTRA_ATTR) ?
(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
}
static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
{
return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
}
static inline int f2fs_has_extra_attr(struct inode *inode);
static inline block_t data_blkaddr(struct inode *inode,
struct page *node_page, unsigned int offset)
{
struct f2fs_node *raw_node;
__le32 *addr_array;
int base = 0;
bool is_inode = IS_INODE(node_page);
raw_node = F2FS_NODE(node_page);
if (is_inode) {
if (!inode)
base = offset_in_addr(&raw_node->i);
else if (f2fs_has_extra_attr(inode))
base = get_extra_isize(inode);
}
addr_array = blkaddr_in_node(raw_node);
return le32_to_cpu(addr_array[base + offset]);
}
static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
{
return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
}
static inline int f2fs_test_bit(unsigned int nr, char *addr)
{
int mask;
addr += (nr >> 3);
mask = BIT(7 - (nr & 0x07));
return mask & *addr;
}
static inline void f2fs_set_bit(unsigned int nr, char *addr)
{
int mask;
addr += (nr >> 3);
mask = BIT(7 - (nr & 0x07));
*addr |= mask;
}
static inline void f2fs_clear_bit(unsigned int nr, char *addr)
{
int mask;
addr += (nr >> 3);
mask = BIT(7 - (nr & 0x07));
*addr &= ~mask;
}
static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
{
int mask;
int ret;
addr += (nr >> 3);
mask = BIT(7 - (nr & 0x07));
ret = mask & *addr;
*addr |= mask;
return ret;
}
static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
{
int mask;
int ret;
addr += (nr >> 3);
mask = BIT(7 - (nr & 0x07));
ret = mask & *addr;
*addr &= ~mask;
return ret;
}
static inline void f2fs_change_bit(unsigned int nr, char *addr)
{
int mask;
addr += (nr >> 3);
mask = BIT(7 - (nr & 0x07));
*addr ^= mask;
}
#define F2FS_COMPR_FL 0x00000004 /* Compress file */
#define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
#define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
#define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
#define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
#define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
#define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
#define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
#define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
#define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
#define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
#define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
#define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
F2FS_CASEFOLD_FL)
#define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
F2FS_CASEFOLD_FL))
#define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
{
if (S_ISDIR(mode))
return flags;
else if (S_ISREG(mode))
return flags & F2FS_REG_FLMASK;
else
return flags & F2FS_OTHER_FLMASK;
}
static inline void __mark_inode_dirty_flag(struct inode *inode,
int flag, bool set)
{
switch (flag) {
case FI_INLINE_XATTR:
case FI_INLINE_DATA:
case FI_INLINE_DENTRY:
case FI_NEW_INODE:
if (set)
return;
fallthrough;
case FI_DATA_EXIST:
case FI_INLINE_DOTS:
case FI_PIN_FILE:
case FI_COMPRESS_RELEASED:
f2fs_mark_inode_dirty_sync(inode, true);
}
}
static inline void set_inode_flag(struct inode *inode, int flag)
{
set_bit(flag, F2FS_I(inode)->flags);
__mark_inode_dirty_flag(inode, flag, true);
}
static inline int is_inode_flag_set(struct inode *inode, int flag)
{
return test_bit(flag, F2FS_I(inode)->flags);
}
static inline void clear_inode_flag(struct inode *inode, int flag)
{
clear_bit(flag, F2FS_I(inode)->flags);
__mark_inode_dirty_flag(inode, flag, false);
}
static inline bool f2fs_verity_in_progress(struct inode *inode)
{
return IS_ENABLED(CONFIG_FS_VERITY) &&
is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
}
static inline void set_acl_inode(struct inode *inode, umode_t mode)
{
F2FS_I(inode)->i_acl_mode = mode;
set_inode_flag(inode, FI_ACL_MODE);
f2fs_mark_inode_dirty_sync(inode, false);
}
static inline void f2fs_i_links_write(struct inode *inode, bool inc)
{
if (inc)
inc_nlink(inode);
else
drop_nlink(inode);
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline void f2fs_i_blocks_write(struct inode *inode,
block_t diff, bool add, bool claim)
{
bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
if (add) {
if (claim)
dquot_claim_block(inode, diff);
else
dquot_alloc_block_nofail(inode, diff);
} else {
dquot_free_block(inode, diff);
}
f2fs_mark_inode_dirty_sync(inode, true);
if (clean || recover)
set_inode_flag(inode, FI_AUTO_RECOVER);
}
static inline bool f2fs_is_atomic_file(struct inode *inode);
static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
{
bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
if (i_size_read(inode) == i_size)
return;
i_size_write(inode, i_size);
if (f2fs_is_atomic_file(inode))
return;
f2fs_mark_inode_dirty_sync(inode, true);
if (clean || recover)
set_inode_flag(inode, FI_AUTO_RECOVER);
}
static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
{
F2FS_I(inode)->i_current_depth = depth;
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline void f2fs_i_gc_failures_write(struct inode *inode,
unsigned int count)
{
F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
{
F2FS_I(inode)->i_xattr_nid = xnid;
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
{
F2FS_I(inode)->i_pino = pino;
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
if (ri->i_inline & F2FS_INLINE_XATTR)
set_bit(FI_INLINE_XATTR, fi->flags);
if (ri->i_inline & F2FS_INLINE_DATA)
set_bit(FI_INLINE_DATA, fi->flags);
if (ri->i_inline & F2FS_INLINE_DENTRY)
set_bit(FI_INLINE_DENTRY, fi->flags);
if (ri->i_inline & F2FS_DATA_EXIST)
set_bit(FI_DATA_EXIST, fi->flags);
if (ri->i_inline & F2FS_INLINE_DOTS)
set_bit(FI_INLINE_DOTS, fi->flags);
if (ri->i_inline & F2FS_EXTRA_ATTR)
set_bit(FI_EXTRA_ATTR, fi->flags);
if (ri->i_inline & F2FS_PIN_FILE)
set_bit(FI_PIN_FILE, fi->flags);
if (ri->i_inline & F2FS_COMPRESS_RELEASED)
set_bit(FI_COMPRESS_RELEASED, fi->flags);
}
static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
{
ri->i_inline = 0;
if (is_inode_flag_set(inode, FI_INLINE_XATTR))
ri->i_inline |= F2FS_INLINE_XATTR;
if (is_inode_flag_set(inode, FI_INLINE_DATA))
ri->i_inline |= F2FS_INLINE_DATA;
if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
ri->i_inline |= F2FS_INLINE_DENTRY;
if (is_inode_flag_set(inode, FI_DATA_EXIST))
ri->i_inline |= F2FS_DATA_EXIST;
if (is_inode_flag_set(inode, FI_INLINE_DOTS))
ri->i_inline |= F2FS_INLINE_DOTS;
if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
ri->i_inline |= F2FS_EXTRA_ATTR;
if (is_inode_flag_set(inode, FI_PIN_FILE))
ri->i_inline |= F2FS_PIN_FILE;
if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
ri->i_inline |= F2FS_COMPRESS_RELEASED;
}
static inline int f2fs_has_extra_attr(struct inode *inode)
{
return is_inode_flag_set(inode, FI_EXTRA_ATTR);
}
static inline int f2fs_has_inline_xattr(struct inode *inode)
{
return is_inode_flag_set(inode, FI_INLINE_XATTR);
}
static inline int f2fs_compressed_file(struct inode *inode)
{
return S_ISREG(inode->i_mode) &&
is_inode_flag_set(inode, FI_COMPRESSED_FILE);
}
static inline bool f2fs_need_compress_data(struct inode *inode)
{
int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
if (!f2fs_compressed_file(inode))
return false;
if (compress_mode == COMPR_MODE_FS)
return true;
else if (compress_mode == COMPR_MODE_USER &&
is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
return true;
return false;
}
static inline unsigned int addrs_per_inode(struct inode *inode)
{
unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
get_inline_xattr_addrs(inode);
if (!f2fs_compressed_file(inode))
return addrs;
return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
}
static inline unsigned int addrs_per_block(struct inode *inode)
{
if (!f2fs_compressed_file(inode))
return DEF_ADDRS_PER_BLOCK;
return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
}
static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
{
struct f2fs_inode *ri = F2FS_INODE(page);
return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
get_inline_xattr_addrs(inode)]);
}
static inline int inline_xattr_size(struct inode *inode)
{
if (f2fs_has_inline_xattr(inode))
return get_inline_xattr_addrs(inode) * sizeof(__le32);
return 0;
}
static inline int f2fs_has_inline_data(struct inode *inode)
{
return is_inode_flag_set(inode, FI_INLINE_DATA);
}
static inline int f2fs_exist_data(struct inode *inode)
{
return is_inode_flag_set(inode, FI_DATA_EXIST);
}
static inline int f2fs_has_inline_dots(struct inode *inode)
{
return is_inode_flag_set(inode, FI_INLINE_DOTS);
}
static inline int f2fs_is_mmap_file(struct inode *inode)
{
return is_inode_flag_set(inode, FI_MMAP_FILE);
}
static inline bool f2fs_is_pinned_file(struct inode *inode)
{
return is_inode_flag_set(inode, FI_PIN_FILE);
}
static inline bool f2fs_is_atomic_file(struct inode *inode)
{
return is_inode_flag_set(inode, FI_ATOMIC_FILE);
}
static inline bool f2fs_is_cow_file(struct inode *inode)
{
return is_inode_flag_set(inode, FI_COW_FILE);
}
static inline bool f2fs_is_first_block_written(struct inode *inode)
{
return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
}
static inline bool f2fs_is_drop_cache(struct inode *inode)
{
return is_inode_flag_set(inode, FI_DROP_CACHE);
}
static inline void *inline_data_addr(struct inode *inode, struct page *page)
{
struct f2fs_inode *ri = F2FS_INODE(page);
int extra_size = get_extra_isize(inode);
return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
}
static inline int f2fs_has_inline_dentry(struct inode *inode)
{
return is_inode_flag_set(inode, FI_INLINE_DENTRY);
}
static inline int is_file(struct inode *inode, int type)
{
return F2FS_I(inode)->i_advise & type;
}
static inline void set_file(struct inode *inode, int type)
{
if (is_file(inode, type))
return;
F2FS_I(inode)->i_advise |= type;
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline void clear_file(struct inode *inode, int type)
{
if (!is_file(inode, type))
return;
F2FS_I(inode)->i_advise &= ~type;
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline bool f2fs_is_time_consistent(struct inode *inode)
{
struct timespec64 ctime = inode_get_ctime(inode);
if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
return false;
if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ctime))
return false;
if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
return false;
return true;
}
static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
{
bool ret;
if (dsync) {
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
spin_lock(&sbi->inode_lock[DIRTY_META]);
ret = list_empty(&F2FS_I(inode)->gdirty_list);
spin_unlock(&sbi->inode_lock[DIRTY_META]);
return ret;
}
if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
file_keep_isize(inode) ||
i_size_read(inode) & ~PAGE_MASK)
return false;
if (!f2fs_is_time_consistent(inode))
return false;
spin_lock(&F2FS_I(inode)->i_size_lock);
ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
spin_unlock(&F2FS_I(inode)->i_size_lock);
return ret;
}
static inline bool f2fs_readonly(struct super_block *sb)
{
return sb_rdonly(sb);
}
static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
{
return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
}
static inline bool is_dot_dotdot(const u8 *name, size_t len)
{
if (len == 1 && name[0] == '.')
return true;
if (len == 2 && name[0] == '.' && name[1] == '.')
return true;
return false;
}
static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
size_t size, gfp_t flags)
{
if (time_to_inject(sbi, FAULT_KMALLOC))
return NULL;
return kmalloc(size, flags);
}
static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
{
if (time_to_inject(sbi, FAULT_KMALLOC))
return NULL;
return __getname();
}
static inline void f2fs_putname(char *buf)
{
__putname(buf);
}
static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
size_t size, gfp_t flags)
{
return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
}
static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
size_t size, gfp_t flags)
{
if (time_to_inject(sbi, FAULT_KVMALLOC))
return NULL;
return kvmalloc(size, flags);
}
static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
size_t size, gfp_t flags)
{
return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
}
static inline int get_extra_isize(struct inode *inode)
{
return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
}
static inline int get_inline_xattr_addrs(struct inode *inode)
{
return F2FS_I(inode)->i_inline_xattr_size;
}
#define f2fs_get_inode_mode(i) \
((is_inode_flag_set(i, FI_ACL_MODE)) ? \
(F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
#define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
#define F2FS_TOTAL_EXTRA_ATTR_SIZE \
(offsetof(struct f2fs_inode, i_extra_end) - \
offsetof(struct f2fs_inode, i_extra_isize)) \
#define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
((offsetof(typeof(*(f2fs_inode)), field) + \
sizeof((f2fs_inode)->field)) \
<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
#define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
#define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
block_t blkaddr, int type);
static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
block_t blkaddr, int type)
{
if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
blkaddr, type);
f2fs_bug_on(sbi, 1);
}
}
static inline bool __is_valid_data_blkaddr(block_t blkaddr)
{
if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
blkaddr == COMPRESS_ADDR)
return false;
return true;
}
int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
int f2fs_truncate(struct inode *inode);
int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
struct kstat *stat, u32 request_mask, unsigned int flags);
int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct iattr *attr);
int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
int f2fs_precache_extents(struct inode *inode);
int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
int f2fs_fileattr_set(struct mnt_idmap *idmap,
struct dentry *dentry, struct fileattr *fa);
long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
int f2fs_pin_file_control(struct inode *inode, bool inc);
void f2fs_set_inode_flags(struct inode *inode);
bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
void f2fs_update_inode(struct inode *inode, struct page *node_page);
void f2fs_update_inode_page(struct inode *inode);
int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
void f2fs_evict_inode(struct inode *inode);
void f2fs_handle_failed_inode(struct inode *inode);
int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
bool hot, bool set);
struct dentry *f2fs_get_parent(struct dentry *child);
int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
struct inode **new_inode);
int f2fs_init_casefolded_name(const struct inode *dir,
struct f2fs_filename *fname);
int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
int lookup, struct f2fs_filename *fname);
int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
struct f2fs_filename *fname);
void f2fs_free_filename(struct f2fs_filename *fname);
struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
const struct f2fs_filename *fname, int *max_slots);
int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
unsigned int start_pos, struct fscrypt_str *fstr);
void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
struct f2fs_dentry_ptr *d);
struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
const struct f2fs_filename *fname, struct page *dpage);
void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
unsigned int current_depth);
int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
const struct f2fs_filename *fname,
struct page **res_page);
struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
const struct qstr *child, struct page **res_page);
struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
struct page **page);
void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
struct page *page, struct inode *inode);
bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
const struct f2fs_filename *fname);
void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
const struct fscrypt_str *name, f2fs_hash_t name_hash,
unsigned int bit_pos);
int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
struct inode *inode, nid_t ino, umode_t mode);
int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
struct inode *inode, nid_t ino, umode_t mode);
int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
struct inode *inode, nid_t ino, umode_t mode);
void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
struct inode *dir, struct inode *inode);
int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
bool f2fs_empty_dir(struct inode *dir);
static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
{
if (fscrypt_is_nokey_name(dentry))
return -ENOKEY;
return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
inode, inode->i_ino, inode->i_mode);
}
int f2fs_inode_dirtied(struct inode *inode, bool sync);
void f2fs_inode_synced(struct inode *inode);
int f2fs_dquot_initialize(struct inode *inode);
int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
int f2fs_quota_sync(struct super_block *sb, int type);
loff_t max_file_blocks(struct inode *inode);
void f2fs_quota_off_umount(struct super_block *sb);
void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
bool irq_context);
void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
int f2fs_sync_fs(struct super_block *sb, int sync);
int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
struct node_info;
int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
struct node_info *ni, bool checkpoint_context);
pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
int f2fs_truncate_xattr_node(struct inode *inode);
int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
unsigned int seq_id);
bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
int f2fs_remove_inode_page(struct inode *inode);
struct page *f2fs_new_inode_page(struct inode *inode);
struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
struct page *f2fs_get_node_page_ra(struct page *parent, int start);
int f2fs_move_node_page(struct page *node_page, int gc_type);
void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
struct writeback_control *wbc, bool atomic,
unsigned int *seq_id);
int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
struct writeback_control *wbc,
bool do_balance, enum iostat_type io_type);
int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
unsigned int segno, struct f2fs_summary_block *sum);
void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
int __init f2fs_create_node_manager_caches(void);
void f2fs_destroy_node_manager_caches(void);
bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
int f2fs_commit_atomic_write(struct inode *inode);
void f2fs_abort_atomic_write(struct inode *inode, bool clean);
void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
struct cp_control *cpc);
void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
unsigned int *newseg, bool new_sec, int dir);
void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
unsigned int start, unsigned int end);
void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
struct cp_control *cpc);
struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
block_t blk_addr);
void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
enum iostat_type io_type);
void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
void f2fs_outplace_write_data(struct dnode_of_data *dn,
struct f2fs_io_info *fio);
int f2fs_inplace_write_data(struct f2fs_io_info *fio);
void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
block_t old_blkaddr, block_t new_blkaddr,
bool recover_curseg, bool recover_newaddr,
bool from_gc);
void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
block_t old_addr, block_t new_addr,
unsigned char version, bool recover_curseg,
bool recover_newaddr);
void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
block_t old_blkaddr, block_t *new_blkaddr,
struct f2fs_summary *sum, int type,
struct f2fs_io_info *fio);
void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
block_t blkaddr, unsigned int blkcnt);
void f2fs_wait_on_page_writeback(struct page *page,
enum page_type type, bool ordered, bool locked);
void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
block_t len);
void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
unsigned int val, int alloc);
void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
int __init f2fs_create_segment_manager_caches(void);
void f2fs_destroy_segment_manager_caches(void);
int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
unsigned int segno);
unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
unsigned int segno);
#define DEF_FRAGMENT_SIZE 4
#define MIN_FRAGMENT_SIZE 1
#define MAX_FRAGMENT_SIZE 512
static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
{
return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
}
void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
unsigned char reason);
void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
block_t blkaddr, int type);
int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
int type, bool sync);
void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
unsigned int ra_blocks);
long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
long nr_to_write, enum iostat_type io_type);
void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
unsigned int devidx, int type);
bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
unsigned int devidx, int type);
int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
void f2fs_add_orphan_inode(struct inode *inode);
void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
void f2fs_remove_dirty_inode(struct inode *inode);
int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
bool from_cp);
void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
int __init f2fs_create_checkpoint_caches(void);
void f2fs_destroy_checkpoint_caches(void);
int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
int __init f2fs_init_bioset(void);
void f2fs_destroy_bioset(void);
int f2fs_init_bio_entry_cache(void);
void f2fs_destroy_bio_entry_cache(void);
void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
enum page_type type);
int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
struct inode *inode, struct page *page,
nid_t ino, enum page_type type);
void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
struct bio **bio, struct page *page);
void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
int f2fs_submit_page_bio(struct f2fs_io_info *fio);
int f2fs_merge_page_bio(struct f2fs_io_info *fio);
void f2fs_submit_page_write(struct f2fs_io_info *fio);
struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
block_t blk_addr, sector_t *sector);
int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
int f2fs_reserve_new_block(struct dnode_of_data *dn);
int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
pgoff_t *next_pgofs);
struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
bool for_write);
struct page *f2fs_get_new_data_page(struct inode *inode,
struct page *ipage, pgoff_t index, bool new_i_size);
int f2fs_do_write_data_page(struct f2fs_io_info *fio);
int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
u64 start, u64 len);
int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
int f2fs_write_single_data_page(struct page *page, int *submitted,
struct bio **bio, sector_t *last_block,
struct writeback_control *wbc,
enum iostat_type io_type,
int compr_blocks, bool allow_balance);
void f2fs_write_failed(struct inode *inode, loff_t to);
void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
bool f2fs_release_folio(struct folio *folio, gfp_t wait);
bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
void f2fs_clear_page_cache_dirty_tag(struct page *page);
int f2fs_init_post_read_processing(void);
void f2fs_destroy_post_read_processing(void);
int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
extern const struct iomap_ops f2fs_iomap_ops;
int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
int f2fs_resize_fs(struct file *filp, __u64 block_count);
int __init f2fs_create_garbage_collection_cache(void);
void f2fs_destroy_garbage_collection_cache(void);
int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
int gc_type, int type, char alloc_mode,
unsigned long long age);
int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
int __init f2fs_create_recovery_cache(void);
void f2fs_destroy_recovery_cache(void);
#ifdef CONFIG_F2FS_STAT_FS
struct f2fs_stat_info {
struct list_head stat_list;
struct f2fs_sb_info *sbi;
int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
int main_area_segs, main_area_sections, main_area_zones;
unsigned long long hit_cached[NR_EXTENT_CACHES];
unsigned long long hit_rbtree[NR_EXTENT_CACHES];
unsigned long long total_ext[NR_EXTENT_CACHES];
unsigned long long hit_total[NR_EXTENT_CACHES];
int ext_tree[NR_EXTENT_CACHES];
int zombie_tree[NR_EXTENT_CACHES];
int ext_node[NR_EXTENT_CACHES];
unsigned long long ext_mem[NR_EXTENT_CACHES];
unsigned long long hit_largest;
unsigned long long allocated_data_blocks;
int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
int ndirty_data, ndirty_qdata;
unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
int nats, dirty_nats, sits, dirty_sits;
int free_nids, avail_nids, alloc_nids;
int total_count, utilization;
int nr_wb_cp_data, nr_wb_data;
int nr_rd_data, nr_rd_node, nr_rd_meta;
int nr_dio_read, nr_dio_write;
unsigned int io_skip_bggc, other_skip_bggc;
int nr_flushing, nr_flushed, flush_list_empty;
int nr_discarding, nr_discarded;
int nr_discard_cmd;
unsigned int undiscard_blks;
int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
unsigned int cur_ckpt_time, peak_ckpt_time;
int inline_xattr, inline_inode, inline_dir, append, update, orphans;
int compr_inode, swapfile_inode;
unsigned long long compr_blocks;
int aw_cnt, max_aw_cnt;
unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
unsigned int bimodal, avg_vblocks;
int util_free, util_valid, util_invalid;
int rsvd_segs, overp_segs;
int dirty_count, node_pages, meta_pages, compress_pages;
int compress_page_hit;
int prefree_count, free_segs, free_secs;
int cp_call_count[MAX_CALL_TYPE], cp_count;
int gc_call_count[MAX_CALL_TYPE];
int gc_segs[2][2];
int gc_secs[2][2];
int tot_blks, data_blks, node_blks;
int bg_data_blks, bg_node_blks;
int curseg[NR_CURSEG_TYPE];
int cursec[NR_CURSEG_TYPE];
int curzone[NR_CURSEG_TYPE];
unsigned int dirty_seg[NR_CURSEG_TYPE];
unsigned int full_seg[NR_CURSEG_TYPE];
unsigned int valid_blks[NR_CURSEG_TYPE];
unsigned int meta_count[META_MAX];
unsigned int segment_count[2];
unsigned int block_count[2];
unsigned int inplace_count;
unsigned long long base_mem, cache_mem, page_mem;
};
static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
{
return (struct f2fs_stat_info *)sbi->stat_info;
}
#define stat_inc_cp_call_count(sbi, foreground) \
atomic_inc(&sbi->cp_call_count[(foreground)])
#define stat_inc_cp_count(si) (F2FS_STAT(sbi)->cp_count++)
#define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
#define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
#define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
#define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
#define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
#define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
#define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
#define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
#define stat_inc_inline_xattr(inode) \
do { \
if (f2fs_has_inline_xattr(inode)) \
(atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
} while (0)
#define stat_dec_inline_xattr(inode) \
do { \
if (f2fs_has_inline_xattr(inode)) \
(atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
} while (0)
#define stat_inc_inline_inode(inode) \
do { \
if (f2fs_has_inline_data(inode)) \
(atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
} while (0)
#define stat_dec_inline_inode(inode) \
do { \
if (f2fs_has_inline_data(inode)) \
(atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
} while (0)
#define stat_inc_inline_dir(inode) \
do { \
if (f2fs_has_inline_dentry(inode)) \
(atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
} while (0)
#define stat_dec_inline_dir(inode) \
do { \
if (f2fs_has_inline_dentry(inode)) \
(atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
} while (0)
#define stat_inc_compr_inode(inode) \
do { \
if (f2fs_compressed_file(inode)) \
(atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
} while (0)
#define stat_dec_compr_inode(inode) \
do { \
if (f2fs_compressed_file(inode)) \
(atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
} while (0)
#define stat_add_compr_blocks(inode, blocks) \
(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
#define stat_sub_compr_blocks(inode, blocks) \
(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
#define stat_inc_swapfile_inode(inode) \
(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
#define stat_dec_swapfile_inode(inode) \
(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
#define stat_inc_atomic_inode(inode) \
(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
#define stat_dec_atomic_inode(inode) \
(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
#define stat_inc_meta_count(sbi, blkaddr) \
do { \
if (blkaddr < SIT_I(sbi)->sit_base_addr) \
atomic_inc(&(sbi)->meta_count[META_CP]); \
else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
atomic_inc(&(sbi)->meta_count[META_SIT]); \
else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
atomic_inc(&(sbi)->meta_count[META_NAT]); \
else if (blkaddr < SM_I(sbi)->main_blkaddr) \
atomic_inc(&(sbi)->meta_count[META_SSA]); \
} while (0)
#define stat_inc_seg_type(sbi, curseg) \
((sbi)->segment_count[(curseg)->alloc_type]++)
#define stat_inc_block_count(sbi, curseg) \
((sbi)->block_count[(curseg)->alloc_type]++)
#define stat_inc_inplace_blocks(sbi) \
(atomic_inc(&(sbi)->inplace_count))
#define stat_update_max_atomic_write(inode) \
do { \
int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
if (cur > max) \
atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
} while (0)
#define stat_inc_gc_call_count(sbi, foreground) \
(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
#define stat_inc_gc_sec_count(sbi, type, gc_type) \
(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
#define stat_inc_gc_seg_count(sbi, type, gc_type) \
(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
#define stat_inc_tot_blk_count(si, blks) \
((si)->tot_blks += (blks))
#define stat_inc_data_blk_count(sbi, blks, gc_type) \
do { \
struct f2fs_stat_info *si = F2FS_STAT(sbi); \
stat_inc_tot_blk_count(si, blks); \
si->data_blks += (blks); \
si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
} while (0)
#define stat_inc_node_blk_count(sbi, blks, gc_type) \
do { \
struct f2fs_stat_info *si = F2FS_STAT(sbi); \
stat_inc_tot_blk_count(si, blks); \
si->node_blks += (blks); \
si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
} while (0)
int f2fs_build_stats(struct f2fs_sb_info *sbi);
void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
void __init f2fs_create_root_stats(void);
void f2fs_destroy_root_stats(void);
void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
#else
#define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
#define stat_inc_cp_count(sbi) do { } while (0)
#define stat_io_skip_bggc_count(sbi) do { } while (0)
#define stat_other_skip_bggc_count(sbi) do { } while (0)
#define stat_inc_dirty_inode(sbi, type) do { } while (0)
#define stat_dec_dirty_inode(sbi, type) do { } while (0)
#define stat_inc_total_hit(sbi, type) do { } while (0)
#define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
#define stat_inc_largest_node_hit(sbi) do { } while (0)
#define stat_inc_cached_node_hit(sbi, type) do { } while (0)
#define stat_inc_inline_xattr(inode) do { } while (0)
#define stat_dec_inline_xattr(inode) do { } while (0)
#define stat_inc_inline_inode(inode) do { } while (0)
#define stat_dec_inline_inode(inode) do { } while (0)
#define stat_inc_inline_dir(inode) do { } while (0)
#define stat_dec_inline_dir(inode) do { } while (0)
#define stat_inc_compr_inode(inode) do { } while (0)
#define stat_dec_compr_inode(inode) do { } while (0)
#define stat_add_compr_blocks(inode, blocks) do { } while (0)
#define stat_sub_compr_blocks(inode, blocks) do { } while (0)
#define stat_inc_swapfile_inode(inode) do { } while (0)
#define stat_dec_swapfile_inode(inode) do { } while (0)
#define stat_inc_atomic_inode(inode) do { } while (0)
#define stat_dec_atomic_inode(inode) do { } while (0)
#define stat_update_max_atomic_write(inode) do { } while (0)
#define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
#define stat_inc_seg_type(sbi, curseg) do { } while (0)
#define stat_inc_block_count(sbi, curseg) do { } while (0)
#define stat_inc_inplace_blocks(sbi) do { } while (0)
#define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
#define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
#define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
#define stat_inc_tot_blk_count(si, blks) do { } while (0)
#define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
#define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
static inline void __init f2fs_create_root_stats(void) { }
static inline void f2fs_destroy_root_stats(void) { }
static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
#endif
extern const struct file_operations f2fs_dir_operations;
extern const struct file_operations f2fs_file_operations;
extern const struct inode_operations f2fs_file_inode_operations;
extern const struct address_space_operations f2fs_dblock_aops;
extern const struct address_space_operations f2fs_node_aops;
extern const struct address_space_operations f2fs_meta_aops;
extern const struct inode_operations f2fs_dir_inode_operations;
extern const struct inode_operations f2fs_symlink_inode_operations;
extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
extern const struct inode_operations f2fs_special_inode_operations;
extern struct kmem_cache *f2fs_inode_entry_slab;
bool f2fs_may_inline_data(struct inode *inode);
bool f2fs_sanity_check_inline_data(struct inode *inode);
bool f2fs_may_inline_dentry(struct inode *inode);
void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
void f2fs_truncate_inline_inode(struct inode *inode,
struct page *ipage, u64 from);
int f2fs_read_inline_data(struct inode *inode, struct page *page);
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
int f2fs_convert_inline_inode(struct inode *inode);
int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
int f2fs_write_inline_data(struct inode *inode, struct page *page);
int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
const struct f2fs_filename *fname,
struct page **res_page);
int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
struct page *ipage);
int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
struct inode *inode, nid_t ino, umode_t mode);
void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
struct page *page, struct inode *dir,
struct inode *inode);
bool f2fs_empty_inline_dir(struct inode *dir);
int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
struct fscrypt_str *fstr);
int f2fs_inline_data_fiemap(struct inode *inode,
struct fiemap_extent_info *fieinfo,
__u64 start, __u64 len);
unsigned long f2fs_shrink_count(struct shrinker *shrink,
struct shrink_control *sc);
unsigned long f2fs_shrink_scan(struct shrinker *shrink,
struct shrink_control *sc);
void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
bool sanity_check_extent_cache(struct inode *inode);
void f2fs_init_extent_tree(struct inode *inode);
void f2fs_drop_extent_tree(struct inode *inode);
void f2fs_destroy_extent_node(struct inode *inode);
void f2fs_destroy_extent_tree(struct inode *inode);
void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
int __init f2fs_create_extent_cache(void);
void f2fs_destroy_extent_cache(void);
void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei);
bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
block_t *blkaddr);
void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
pgoff_t fofs, block_t blkaddr, unsigned int len);
unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
int nr_shrink);
void f2fs_init_age_extent_tree(struct inode *inode);
bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei);
void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
pgoff_t fofs, unsigned int len);
unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
int nr_shrink);
#define MIN_RA_MUL 2
#define MAX_RA_MUL 256
int __init f2fs_init_sysfs(void);
void f2fs_exit_sysfs(void);
int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
extern const struct fsverity_operations f2fs_verityops;
static inline bool f2fs_encrypted_file(struct inode *inode)
{
return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
}
static inline void f2fs_set_encrypted_inode(struct inode *inode)
{
#ifdef CONFIG_FS_ENCRYPTION
file_set_encrypt(inode);
f2fs_set_inode_flags(inode);
#endif
}
static inline bool f2fs_post_read_required(struct inode *inode)
{
return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
f2fs_compressed_file(inode);
}
#ifdef CONFIG_F2FS_FS_COMPRESSION
bool f2fs_is_compressed_page(struct page *page);
struct page *f2fs_compress_control_page(struct page *page);
int f2fs_prepare_compress_overwrite(struct inode *inode,
struct page **pagep, pgoff_t index, void **fsdata);
bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
pgoff_t index, unsigned copied);
int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
bool f2fs_is_compress_backend_ready(struct inode *inode);
bool f2fs_is_compress_level_valid(int alg, int lvl);
int __init f2fs_init_compress_mempool(void);
void f2fs_destroy_compress_mempool(void);
void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
void f2fs_end_read_compressed_page(struct page *page, bool failed,
block_t blkaddr, bool in_task);
bool f2fs_cluster_is_empty(struct compress_ctx *cc);
bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
int index, int nr_pages, bool uptodate);
bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
int f2fs_write_multi_pages(struct compress_ctx *cc,
int *submitted,
struct writeback_control *wbc,
enum iostat_type io_type);
int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
pgoff_t fofs, block_t blkaddr,
unsigned int llen, unsigned int c_len);
int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
unsigned nr_pages, sector_t *last_block_in_bio,
bool is_readahead, bool for_write);
struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
bool in_task);
void f2fs_put_page_dic(struct page *page, bool in_task);
unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
int f2fs_init_compress_ctx(struct compress_ctx *cc);
void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
int __init f2fs_init_compress_cache(void);
void f2fs_destroy_compress_cache(void);
struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
nid_t ino, block_t blkaddr);
bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
block_t blkaddr);
void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
#define inc_compr_inode_stat(inode) \
do { \
struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
sbi->compr_new_inode++; \
} while (0)
#define add_compr_block_stat(inode, blocks) \
do { \
struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
int diff = F2FS_I(inode)->i_cluster_size - blocks; \
sbi->compr_written_block += blocks; \
sbi->compr_saved_block += diff; \
} while (0)
#else
static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
{
if (!f2fs_compressed_file(inode))
return true;
return false;
}
static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
static inline struct page *f2fs_compress_control_page(struct page *page)
{
WARN_ON_ONCE(1);
return ERR_PTR(-EINVAL);
}
static inline int __init f2fs_init_compress_mempool(void) { return 0; }
static inline void f2fs_destroy_compress_mempool(void) { }
static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
bool in_task) { }
static inline void f2fs_end_read_compressed_page(struct page *page,
bool failed, block_t blkaddr, bool in_task)
{
WARN_ON_ONCE(1);
}
static inline void f2fs_put_page_dic(struct page *page, bool in_task)
{
WARN_ON_ONCE(1);
}
static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
static inline int __init f2fs_init_compress_cache(void) { return 0; }
static inline void f2fs_destroy_compress_cache(void) { }
static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
block_t blkaddr) { }
static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
struct page *page, nid_t ino, block_t blkaddr) { }
static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
struct page *page, block_t blkaddr) { return false; }
static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
nid_t ino) { }
#define inc_compr_inode_stat(inode) do { } while (0)
static inline void f2fs_update_read_extent_tree_range_compressed(
struct inode *inode,
pgoff_t fofs, block_t blkaddr,
unsigned int llen, unsigned int c_len) { }
#endif
static inline int set_compress_context(struct inode *inode)
{
#ifdef CONFIG_F2FS_FS_COMPRESSION
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
F2FS_I(inode)->i_compress_algorithm =
F2FS_OPTION(sbi).compress_algorithm;
F2FS_I(inode)->i_log_cluster_size =
F2FS_OPTION(sbi).compress_log_size;
F2FS_I(inode)->i_compress_flag =
F2FS_OPTION(sbi).compress_chksum ?
BIT(COMPRESS_CHKSUM) : 0;
F2FS_I(inode)->i_cluster_size =
BIT(F2FS_I(inode)->i_log_cluster_size);
if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
F2FS_OPTION(sbi).compress_level)
F2FS_I(inode)->i_compress_level =
F2FS_OPTION(sbi).compress_level;
F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
set_inode_flag(inode, FI_COMPRESSED_FILE);
stat_inc_compr_inode(inode);
inc_compr_inode_stat(inode);
f2fs_mark_inode_dirty_sync(inode, true);
return 0;
#else
return -EOPNOTSUPP;
#endif
}
static inline bool f2fs_disable_compressed_file(struct inode *inode)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
if (!f2fs_compressed_file(inode))
return true;
if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
return false;
fi->i_flags &= ~F2FS_COMPR_FL;
stat_dec_compr_inode(inode);
clear_inode_flag(inode, FI_COMPRESSED_FILE);
f2fs_mark_inode_dirty_sync(inode, true);
return true;
}
#define F2FS_FEATURE_FUNCS(name, flagname) \
static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
{ \
return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
}
F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
F2FS_FEATURE_FUNCS(verity, VERITY);
F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
F2FS_FEATURE_FUNCS(compression, COMPRESSION);
F2FS_FEATURE_FUNCS(readonly, RO);
#ifdef CONFIG_BLK_DEV_ZONED
static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
block_t blkaddr)
{
unsigned int zno = blkaddr / sbi->blocks_per_blkz;
return test_bit(zno, FDEV(devi).blkz_seq);
}
#endif
static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
struct block_device *bdev)
{
int i;
if (!f2fs_is_multi_device(sbi))
return 0;
for (i = 0; i < sbi->s_ndevs; i++)
if (FDEV(i).bdev == bdev)
return i;
WARN_ON(1);
return -1;
}
static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
{
return f2fs_sb_has_blkzoned(sbi);
}
static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
{
return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
}
static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
{
int i;
if (!f2fs_is_multi_device(sbi))
return f2fs_bdev_support_discard(sbi->sb->s_bdev);
for (i = 0; i < sbi->s_ndevs; i++)
if (f2fs_bdev_support_discard(FDEV(i).bdev))
return true;
return false;
}
static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
{
return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
f2fs_hw_should_discard(sbi);
}
static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
{
int i;
if (!f2fs_is_multi_device(sbi))
return bdev_read_only(sbi->sb->s_bdev);
for (i = 0; i < sbi->s_ndevs; i++)
if (bdev_read_only(FDEV(i).bdev))
return true;
return false;
}
static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
{
return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
}
static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
{
return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
}
static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
{
return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
}
static inline bool f2fs_may_compress(struct inode *inode)
{
if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
f2fs_is_mmap_file(inode))
return false;
return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
}
static inline void f2fs_i_compr_blocks_update(struct inode *inode,
u64 blocks, bool add)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
int diff = fi->i_cluster_size - blocks;
if (!add && !atomic_read(&fi->i_compr_blocks))
return;
if (add) {
atomic_add(diff, &fi->i_compr_blocks);
stat_add_compr_blocks(inode, diff);
} else {
atomic_sub(diff, &fi->i_compr_blocks);
stat_sub_compr_blocks(inode, diff);
}
f2fs_mark_inode_dirty_sync(inode, true);
}
static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
int flag)
{
if (!f2fs_is_multi_device(sbi))
return false;
if (flag != F2FS_GET_BLOCK_DIO)
return false;
return sbi->aligned_blksize;
}
static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
{
return fsverity_active(inode) &&
idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
}
#ifdef CONFIG_F2FS_FAULT_INJECTION
extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
unsigned int type);
#else
#define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
#endif
static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
{
#ifdef CONFIG_QUOTA
if (f2fs_sb_has_quota_ino(sbi))
return true;
if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
return true;
#endif
return false;
}
static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
{
return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
}
static inline void f2fs_io_schedule_timeout(long timeout)
{
set_current_state(TASK_UNINTERRUPTIBLE);
io_schedule_timeout(timeout);
}
static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
enum page_type type)
{
if (unlikely(f2fs_cp_error(sbi)))
return;
if (ofs == sbi->page_eio_ofs[type]) {
if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
set_ckpt_flags(sbi, CP_ERROR_FLAG);
} else {
sbi->page_eio_ofs[type] = ofs;
sbi->page_eio_cnt[type] = 0;
}
}
static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
{
return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
}
#define EFSBADCRC EBADMSG /* Bad CRC detected */
#define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
#endif /* _LINUX_F2FS_H */