/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MATH_H #define _LINUX_MATH_H #include <linux/types.h> #include <asm/div64.h> #include <uapi/linux/kernel.h> /* * This looks more complex than it should be. But we need to * get the type for the ~ right in round_down (it needs to be * as wide as the result!), and we want to evaluate the macro * arguments just once each. */ #define __round_mask(x, y) ((__typeof__(x))((y)-1)) /** * round_up - round up to next specified power of 2 * @x: the value to round * @y: multiple to round up to (must be a power of 2) * * Rounds @x up to next multiple of @y (which must be a power of 2). * To perform arbitrary rounding up, use roundup() below. */ #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) /** * round_down - round down to next specified power of 2 * @x: the value to round * @y: multiple to round down to (must be a power of 2) * * Rounds @x down to next multiple of @y (which must be a power of 2). * To perform arbitrary rounding down, use rounddown() below. */ #define round_down(x, y) ((x) & ~__round_mask(x, y)) #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP #define DIV_ROUND_DOWN_ULL(ll, d) \ ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) #define DIV_ROUND_UP_ULL(ll, d) \ DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d)) #if BITS_PER_LONG == 32 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) #else # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) #endif /** * roundup - round up to the next specified multiple * @x: the value to up * @y: multiple to round up to * * Rounds @x up to next multiple of @y. If @y will always be a power * of 2, consider using the faster round_up(). */ #define roundup(x, y) ( \ { \ typeof(y) __y = y; \ (((x) + (__y - 1)) / __y) * __y; \ } \ ) /** * rounddown - round down to next specified multiple * @x: the value to round * @y: multiple to round down to * * Rounds @x down to next multiple of @y. If @y will always be a power * of 2, consider using the faster round_down(). */ #define rounddown(x, y) ( \ { \ typeof(x) __x = (x); \ __x - (__x % (y)); \ } \ ) /* * Divide positive or negative dividend by positive or negative divisor * and round to closest integer. Result is undefined for negative * divisors if the dividend variable type is unsigned and for negative * dividends if the divisor variable type is unsigned. */ #define DIV_ROUND_CLOSEST(x, divisor)( \ { \ typeof(x) __x = x; \ typeof(divisor) __d = divisor; \ (((typeof(x))-1) > 0 || \ ((typeof(divisor))-1) > 0 || \ (((__x) > 0) == ((__d) > 0))) ? \ (((__x) + ((__d) / 2)) / (__d)) : \ (((__x) - ((__d) / 2)) / (__d)); \ } \ ) /* * Same as above but for u64 dividends. divisor must be a 32-bit * number. */ #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ { \ typeof(divisor) __d = divisor; \ unsigned long long _tmp = (x) + (__d) / 2; \ do_div(_tmp, __d); \ _tmp; \ } \ ) #define __STRUCT_FRACT(type) \ struct type##_fract { \ __##type numerator; \ __##type denominator; \ }; __STRUCT_FRACT(s16) __STRUCT_FRACT(u16) __STRUCT_FRACT(s32) __STRUCT_FRACT(u32) #undef __STRUCT_FRACT /* Calculate "x * n / d" without unnecessary overflow or loss of precision. */ #define mult_frac(x, n, d) \ ({ \ typeof(x) x_ = (x); \ typeof(n) n_ = (n); \ typeof(d) d_ = (d); \ \ typeof(x_) q = x_ / d_; \ typeof(x_) r = x_ % d_; \ q * n_ + r * n_ / d_; \ }) #define sector_div(a, b) do_div(a, b) /** * abs - return absolute value of an argument * @x: the value. If it is unsigned type, it is converted to signed type first. * char is treated as if it was signed (regardless of whether it really is) * but the macro's return type is preserved as char. * * Return: an absolute value of x. */ #define abs(x) __abs_choose_expr(x, long long, \ __abs_choose_expr(x, long, \ __abs_choose_expr(x, int, \ __abs_choose_expr(x, short, \ __abs_choose_expr(x, char, \ __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(x), char), \ (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ ((void)0))))))) #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(x), signed type) || \ __builtin_types_compatible_p(typeof(x), unsigned type), \ ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) /** * abs_diff - return absolute value of the difference between the arguments * @a: the first argument * @b: the second argument * * @a and @b have to be of the same type. With this restriction we compare * signed to signed and unsigned to unsigned. The result is the subtraction * the smaller of the two from the bigger, hence result is always a positive * value. * * Return: an absolute value of the difference between the @a and @b. */ #define abs_diff(a, b) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ (void)(&__a == &__b); \ __a > __b ? (__a - __b) : (__b - __a); \ }) /** * reciprocal_scale - "scale" a value into range [0, ep_ro) * @val: value * @ep_ro: right open interval endpoint * * Perform a "reciprocal multiplication" in order to "scale" a value into * range [0, @ep_ro), where the upper interval endpoint is right-open. * This is useful, e.g. for accessing a index of an array containing * @ep_ro elements, for example. Think of it as sort of modulus, only that * the result isn't that of modulo. ;) Note that if initial input is a * small value, then result will return 0. * * Return: a result based on @val in interval [0, @ep_ro). */ static inline u32 reciprocal_scale(u32 val, u32 ep_ro) { return (u32)(((u64) val * ep_ro) >> 32); } u64 int_pow(u64 base, unsigned int exp); unsigned long int_sqrt(unsigned long); #if BITS_PER_LONG < 64 u32 int_sqrt64(u64 x); #else static inline u32 int_sqrt64(u64 x) { return (u32)int_sqrt(x); } #endif #endif /* _LINUX_MATH_H */