#ifndef _LINUX_SCHED_MM_H
#define _LINUX_SCHED_MM_H
#include <linux/kernel.h>
#include <linux/atomic.h>
#include <linux/sched.h>
#include <linux/mm_types.h>
#include <linux/gfp.h>
#include <linux/sync_core.h>
extern struct mm_struct *mm_alloc(void);
static inline void mmgrab(struct mm_struct *mm)
{
atomic_inc(&mm->mm_count);
}
static inline void smp_mb__after_mmgrab(void)
{
smp_mb__after_atomic();
}
extern void __mmdrop(struct mm_struct *mm);
static inline void mmdrop(struct mm_struct *mm)
{
if (unlikely(atomic_dec_and_test(&mm->mm_count)))
__mmdrop(mm);
}
#ifdef CONFIG_PREEMPT_RT
static inline void __mmdrop_delayed(struct rcu_head *rhp)
{
struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop);
__mmdrop(mm);
}
static inline void mmdrop_sched(struct mm_struct *mm)
{
if (atomic_dec_and_test(&mm->mm_count))
call_rcu(&mm->delayed_drop, __mmdrop_delayed);
}
#else
static inline void mmdrop_sched(struct mm_struct *mm)
{
mmdrop(mm);
}
#endif
static inline void mmgrab_lazy_tlb(struct mm_struct *mm)
{
if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT))
mmgrab(mm);
}
static inline void mmdrop_lazy_tlb(struct mm_struct *mm)
{
if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) {
mmdrop(mm);
} else {
smp_mb();
}
}
static inline void mmdrop_lazy_tlb_sched(struct mm_struct *mm)
{
if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT))
mmdrop_sched(mm);
else
smp_mb();
}
static inline void mmget(struct mm_struct *mm)
{
atomic_inc(&mm->mm_users);
}
static inline bool mmget_not_zero(struct mm_struct *mm)
{
return atomic_inc_not_zero(&mm->mm_users);
}
extern void mmput(struct mm_struct *);
#ifdef CONFIG_MMU
void mmput_async(struct mm_struct *);
#endif
extern struct mm_struct *get_task_mm(struct task_struct *task);
extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
extern void exit_mm_release(struct task_struct *, struct mm_struct *);
extern void exec_mm_release(struct task_struct *, struct mm_struct *);
#ifdef CONFIG_MEMCG
extern void mm_update_next_owner(struct mm_struct *mm);
#else
static inline void mm_update_next_owner(struct mm_struct *mm)
{
}
#endif /* CONFIG_MEMCG */
#ifdef CONFIG_MMU
#ifndef arch_get_mmap_end
#define arch_get_mmap_end(addr, len, flags) (TASK_SIZE)
#endif
#ifndef arch_get_mmap_base
#define arch_get_mmap_base(addr, base) (base)
#endif
extern void arch_pick_mmap_layout(struct mm_struct *mm,
struct rlimit *rlim_stack);
extern unsigned long
arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
unsigned long, unsigned long);
extern unsigned long
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags);
unsigned long
generic_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags);
unsigned long
generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags);
#else
static inline void arch_pick_mmap_layout(struct mm_struct *mm,
struct rlimit *rlim_stack) {}
#endif
static inline bool in_vfork(struct task_struct *tsk)
{
bool ret;
rcu_read_lock();
ret = tsk->vfork_done &&
rcu_dereference(tsk->real_parent)->mm == tsk->mm;
rcu_read_unlock();
return ret;
}
static inline gfp_t current_gfp_context(gfp_t flags)
{
unsigned int pflags = READ_ONCE(current->flags);
if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_PIN))) {
if (pflags & PF_MEMALLOC_NOIO)
flags &= ~(__GFP_IO | __GFP_FS);
else if (pflags & PF_MEMALLOC_NOFS)
flags &= ~__GFP_FS;
if (pflags & PF_MEMALLOC_PIN)
flags &= ~__GFP_MOVABLE;
}
return flags;
}
#ifdef CONFIG_LOCKDEP
extern void __fs_reclaim_acquire(unsigned long ip);
extern void __fs_reclaim_release(unsigned long ip);
extern void fs_reclaim_acquire(gfp_t gfp_mask);
extern void fs_reclaim_release(gfp_t gfp_mask);
#else
static inline void __fs_reclaim_acquire(unsigned long ip) { }
static inline void __fs_reclaim_release(unsigned long ip) { }
static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
static inline void fs_reclaim_release(gfp_t gfp_mask) { }
#endif
static inline void memalloc_retry_wait(gfp_t gfp_flags)
{
__set_current_state(TASK_UNINTERRUPTIBLE);
gfp_flags = current_gfp_context(gfp_flags);
if (gfpflags_allow_blocking(gfp_flags) &&
!(gfp_flags & __GFP_NORETRY))
io_schedule_timeout(1);
else
io_schedule_timeout(HZ/50);
}
static inline void might_alloc(gfp_t gfp_mask)
{
fs_reclaim_acquire(gfp_mask);
fs_reclaim_release(gfp_mask);
might_sleep_if(gfpflags_allow_blocking(gfp_mask));
}
static inline unsigned int memalloc_noio_save(void)
{
unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
current->flags |= PF_MEMALLOC_NOIO;
return flags;
}
static inline void memalloc_noio_restore(unsigned int flags)
{
current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
}
static inline unsigned int memalloc_nofs_save(void)
{
unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
current->flags |= PF_MEMALLOC_NOFS;
return flags;
}
static inline void memalloc_nofs_restore(unsigned int flags)
{
current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
}
static inline unsigned int memalloc_noreclaim_save(void)
{
unsigned int flags = current->flags & PF_MEMALLOC;
current->flags |= PF_MEMALLOC;
return flags;
}
static inline void memalloc_noreclaim_restore(unsigned int flags)
{
current->flags = (current->flags & ~PF_MEMALLOC) | flags;
}
static inline unsigned int memalloc_pin_save(void)
{
unsigned int flags = current->flags & PF_MEMALLOC_PIN;
current->flags |= PF_MEMALLOC_PIN;
return flags;
}
static inline void memalloc_pin_restore(unsigned int flags)
{
current->flags = (current->flags & ~PF_MEMALLOC_PIN) | flags;
}
#ifdef CONFIG_MEMCG
DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg);
static inline struct mem_cgroup *
set_active_memcg(struct mem_cgroup *memcg)
{
struct mem_cgroup *old;
if (!in_task()) {
old = this_cpu_read(int_active_memcg);
this_cpu_write(int_active_memcg, memcg);
} else {
old = current->active_memcg;
current->active_memcg = memcg;
}
return old;
}
#else
static inline struct mem_cgroup *
set_active_memcg(struct mem_cgroup *memcg)
{
return NULL;
}
#endif
#ifdef CONFIG_MEMBARRIER
enum {
MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0),
MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1),
MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2),
MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3),
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4),
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5),
MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY = (1U << 6),
MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ = (1U << 7),
};
enum {
MEMBARRIER_FLAG_SYNC_CORE = (1U << 0),
MEMBARRIER_FLAG_RSEQ = (1U << 1),
};
#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
#include <asm/membarrier.h>
#endif
static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
{
if (current->mm != mm)
return;
if (likely(!(atomic_read(&mm->membarrier_state) &
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
return;
sync_core_before_usermode();
}
extern void membarrier_exec_mmap(struct mm_struct *mm);
extern void membarrier_update_current_mm(struct mm_struct *next_mm);
#else
#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
struct mm_struct *next,
struct task_struct *tsk)
{
}
#endif
static inline void membarrier_exec_mmap(struct mm_struct *mm)
{
}
static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
{
}
static inline void membarrier_update_current_mm(struct mm_struct *next_mm)
{
}
#endif
#endif /* _LINUX_SCHED_MM_H */