// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2012, Microsoft Corporation.
 *
 * Author:
 *   K. Y. Srinivasan <kys@microsoft.com>
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/cleanup.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/mman.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kthread.h>
#include <linux/completion.h>
#include <linux/count_zeros.h>
#include <linux/memory_hotplug.h>
#include <linux/memory.h>
#include <linux/notifier.h>
#include <linux/percpu_counter.h>
#include <linux/page_reporting.h>

#include <linux/hyperv.h>
#include <asm/hyperv-tlfs.h>

#include <asm/mshyperv.h>

#define CREATE_TRACE_POINTS
#include "hv_trace_balloon.h"

/*
 * We begin with definitions supporting the Dynamic Memory protocol
 * with the host.
 *
 * Begin protocol definitions.
 */



/*
 * Protocol versions. The low word is the minor version, the high word the major
 * version.
 *
 * History:
 * Initial version 1.0
 * Changed to 0.1 on 2009/03/25
 * Changes to 0.2 on 2009/05/14
 * Changes to 0.3 on 2009/12/03
 * Changed to 1.0 on 2011/04/05
 */

#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)

enum {
	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),

	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,

	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
};



/*
 * Message Types
 */

enum dm_message_type {
	/*
	 * Version 0.3
	 */
	DM_ERROR			= 0,
	DM_VERSION_REQUEST		= 1,
	DM_VERSION_RESPONSE		= 2,
	DM_CAPABILITIES_REPORT		= 3,
	DM_CAPABILITIES_RESPONSE	= 4,
	DM_STATUS_REPORT		= 5,
	DM_BALLOON_REQUEST		= 6,
	DM_BALLOON_RESPONSE		= 7,
	DM_UNBALLOON_REQUEST		= 8,
	DM_UNBALLOON_RESPONSE		= 9,
	DM_MEM_HOT_ADD_REQUEST		= 10,
	DM_MEM_HOT_ADD_RESPONSE		= 11,
	DM_VERSION_03_MAX		= 11,
	/*
	 * Version 1.0.
	 */
	DM_INFO_MESSAGE			= 12,
	DM_VERSION_1_MAX		= 12
};


/*
 * Structures defining the dynamic memory management
 * protocol.
 */

union dm_version {
	struct {
		__u16 minor_version;
		__u16 major_version;
	};
	__u32 version;
} __packed;


union dm_caps {
	struct {
		__u64 balloon:1;
		__u64 hot_add:1;
		/*
		 * To support guests that may have alignment
		 * limitations on hot-add, the guest can specify
		 * its alignment requirements; a value of n
		 * represents an alignment of 2^n in mega bytes.
		 */
		__u64 hot_add_alignment:4;
		__u64 reservedz:58;
	} cap_bits;
	__u64 caps;
} __packed;

union dm_mem_page_range {
	struct  {
		/*
		 * The PFN number of the first page in the range.
		 * 40 bits is the architectural limit of a PFN
		 * number for AMD64.
		 */
		__u64 start_page:40;
		/*
		 * The number of pages in the range.
		 */
		__u64 page_cnt:24;
	} finfo;
	__u64  page_range;
} __packed;



/*
 * The header for all dynamic memory messages:
 *
 * type: Type of the message.
 * size: Size of the message in bytes; including the header.
 * trans_id: The guest is responsible for manufacturing this ID.
 */

struct dm_header {
	__u16 type;
	__u16 size;
	__u32 trans_id;
} __packed;

/*
 * A generic message format for dynamic memory.
 * Specific message formats are defined later in the file.
 */

struct dm_message {
	struct dm_header hdr;
	__u8 data[]; /* enclosed message */
} __packed;


/*
 * Specific message types supporting the dynamic memory protocol.
 */

/*
 * Version negotiation message. Sent from the guest to the host.
 * The guest is free to try different versions until the host
 * accepts the version.
 *
 * dm_version: The protocol version requested.
 * is_last_attempt: If TRUE, this is the last version guest will request.
 * reservedz: Reserved field, set to zero.
 */

struct dm_version_request {
	struct dm_header hdr;
	union dm_version version;
	__u32 is_last_attempt:1;
	__u32 reservedz:31;
} __packed;

/*
 * Version response message; Host to Guest and indicates
 * if the host has accepted the version sent by the guest.
 *
 * is_accepted: If TRUE, host has accepted the version and the guest
 * should proceed to the next stage of the protocol. FALSE indicates that
 * guest should re-try with a different version.
 *
 * reservedz: Reserved field, set to zero.
 */

struct dm_version_response {
	struct dm_header hdr;
	__u64 is_accepted:1;
	__u64 reservedz:63;
} __packed;

/*
 * Message reporting capabilities. This is sent from the guest to the
 * host.
 */

struct dm_capabilities {
	struct dm_header hdr;
	union dm_caps caps;
	__u64 min_page_cnt;
	__u64 max_page_number;
} __packed;

/*
 * Response to the capabilities message. This is sent from the host to the
 * guest. This message notifies if the host has accepted the guest's
 * capabilities. If the host has not accepted, the guest must shutdown
 * the service.
 *
 * is_accepted: Indicates if the host has accepted guest's capabilities.
 * reservedz: Must be 0.
 */

struct dm_capabilities_resp_msg {
	struct dm_header hdr;
	__u64 is_accepted:1;
	__u64 reservedz:63;
} __packed;

/*
 * This message is used to report memory pressure from the guest.
 * This message is not part of any transaction and there is no
 * response to this message.
 *
 * num_avail: Available memory in pages.
 * num_committed: Committed memory in pages.
 * page_file_size: The accumulated size of all page files
 *		   in the system in pages.
 * zero_free: The number of zero and free pages.
 * page_file_writes: The writes to the page file in pages.
 * io_diff: An indicator of file cache efficiency or page file activity,
 *	    calculated as File Cache Page Fault Count - Page Read Count.
 *	    This value is in pages.
 *
 * Some of these metrics are Windows specific and fortunately
 * the algorithm on the host side that computes the guest memory
 * pressure only uses num_committed value.
 */

struct dm_status {
	struct dm_header hdr;
	__u64 num_avail;
	__u64 num_committed;
	__u64 page_file_size;
	__u64 zero_free;
	__u32 page_file_writes;
	__u32 io_diff;
} __packed;


/*
 * Message to ask the guest to allocate memory - balloon up message.
 * This message is sent from the host to the guest. The guest may not be
 * able to allocate as much memory as requested.
 *
 * num_pages: number of pages to allocate.
 */

struct dm_balloon {
	struct dm_header hdr;
	__u32 num_pages;
	__u32 reservedz;
} __packed;


/*
 * Balloon response message; this message is sent from the guest
 * to the host in response to the balloon message.
 *
 * reservedz: Reserved; must be set to zero.
 * more_pages: If FALSE, this is the last message of the transaction.
 * if TRUE there will atleast one more message from the guest.
 *
 * range_count: The number of ranges in the range array.
 *
 * range_array: An array of page ranges returned to the host.
 *
 */

struct dm_balloon_response {
	struct dm_header hdr;
	__u32 reservedz;
	__u32 more_pages:1;
	__u32 range_count:31;
	union dm_mem_page_range range_array[];
} __packed;

/*
 * Un-balloon message; this message is sent from the host
 * to the guest to give guest more memory.
 *
 * more_pages: If FALSE, this is the last message of the transaction.
 * if TRUE there will atleast one more message from the guest.
 *
 * reservedz: Reserved; must be set to zero.
 *
 * range_count: The number of ranges in the range array.
 *
 * range_array: An array of page ranges returned to the host.
 *
 */

struct dm_unballoon_request {
	struct dm_header hdr;
	__u32 more_pages:1;
	__u32 reservedz:31;
	__u32 range_count;
	union dm_mem_page_range range_array[];
} __packed;

/*
 * Un-balloon response message; this message is sent from the guest
 * to the host in response to an unballoon request.
 *
 */

struct dm_unballoon_response {
	struct dm_header hdr;
} __packed;


/*
 * Hot add request message. Message sent from the host to the guest.
 *
 * mem_range: Memory range to hot add.
 *
 */

struct dm_hot_add {
	struct dm_header hdr;
	union dm_mem_page_range range;
} __packed;

/*
 * Hot add response message.
 * This message is sent by the guest to report the status of a hot add request.
 * If page_count is less than the requested page count, then the host should
 * assume all further hot add requests will fail, since this indicates that
 * the guest has hit an upper physical memory barrier.
 *
 * Hot adds may also fail due to low resources; in this case, the guest must
 * not complete this message until the hot add can succeed, and the host must
 * not send a new hot add request until the response is sent.
 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
 * times it fails the request.
 *
 *
 * page_count: number of pages that were successfully hot added.
 *
 * result: result of the operation 1: success, 0: failure.
 *
 */

struct dm_hot_add_response {
	struct dm_header hdr;
	__u32 page_count;
	__u32 result;
} __packed;

/*
 * Types of information sent from host to the guest.
 */

enum dm_info_type {
	INFO_TYPE_MAX_PAGE_CNT = 0,
	MAX_INFO_TYPE
};


/*
 * Header for the information message.
 */

struct dm_info_header {
	enum dm_info_type type;
	__u32 data_size;
} __packed;

/*
 * This message is sent from the host to the guest to pass
 * some relevant information (win8 addition).
 *
 * reserved: no used.
 * info_size: size of the information blob.
 * info: information blob.
 */

struct dm_info_msg {
	struct dm_header hdr;
	__u32 reserved;
	__u32 info_size;
	__u8  info[];
};

/*
 * End protocol definitions.
 */

/*
 * State to manage hot adding memory into the guest.
 * The range start_pfn : end_pfn specifies the range
 * that the host has asked us to hot add. The range
 * start_pfn : ha_end_pfn specifies the range that we have
 * currently hot added. We hot add in multiples of 128M
 * chunks; it is possible that we may not be able to bring
 * online all the pages in the region. The range
 * covered_start_pfn:covered_end_pfn defines the pages that can
 * be brough online.
 */

struct hv_hotadd_state {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long covered_start_pfn;
	unsigned long covered_end_pfn;
	unsigned long ha_end_pfn;
	unsigned long end_pfn;
	/*
	 * A list of gaps.
	 */
	struct list_head gap_list;
};

struct hv_hotadd_gap {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

struct balloon_state {
	__u32 num_pages;
	struct work_struct wrk;
};

struct hot_add_wrk {
	union dm_mem_page_range ha_page_range;
	union dm_mem_page_range ha_region_range;
	struct work_struct wrk;
};

static bool allow_hibernation;
static bool hot_add = true;
static bool do_hot_add;
/*
 * Delay reporting memory pressure by
 * the specified number of seconds.
 */
static uint pressure_report_delay = 45;
extern unsigned int page_reporting_order;
#define HV_MAX_FAILURES	2

/*
 * The last time we posted a pressure report to host.
 */
static unsigned long last_post_time;

static int hv_hypercall_multi_failure;

module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");

module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
static atomic_t trans_id = ATOMIC_INIT(0);

static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);

/*
 * Driver specific state.
 */

enum hv_dm_state {
	DM_INITIALIZING = 0,
	DM_INITIALIZED,
	DM_BALLOON_UP,
	DM_BALLOON_DOWN,
	DM_HOT_ADD,
	DM_INIT_ERROR
};


static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
#define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
#define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)

struct hv_dynmem_device {
	struct hv_device *dev;
	enum hv_dm_state state;
	struct completion host_event;
	struct completion config_event;

	/*
	 * Number of pages we have currently ballooned out.
	 */
	unsigned int num_pages_ballooned;
	unsigned int num_pages_onlined;
	unsigned int num_pages_added;

	/*
	 * State to manage the ballooning (up) operation.
	 */
	struct balloon_state balloon_wrk;

	/*
	 * State to execute the "hot-add" operation.
	 */
	struct hot_add_wrk ha_wrk;

	/*
	 * This state tracks if the host has specified a hot-add
	 * region.
	 */
	bool host_specified_ha_region;

	/*
	 * State to synchronize hot-add.
	 */
	struct completion  ol_waitevent;
	/*
	 * This thread handles hot-add
	 * requests from the host as well as notifying
	 * the host with regards to memory pressure in
	 * the guest.
	 */
	struct task_struct *thread;

	/*
	 * Protects ha_region_list, num_pages_onlined counter and individual
	 * regions from ha_region_list.
	 */
	spinlock_t ha_lock;

	/*
	 * A list of hot-add regions.
	 */
	struct list_head ha_region_list;

	/*
	 * We start with the highest version we can support
	 * and downgrade based on the host; we save here the
	 * next version to try.
	 */
	__u32 next_version;

	/*
	 * The negotiated version agreed by host.
	 */
	__u32 version;

	struct page_reporting_dev_info pr_dev_info;

	/*
	 * Maximum number of pages that can be hot_add-ed
	 */
	__u64 max_dynamic_page_count;
};

static struct hv_dynmem_device dm_device;

static void post_status(struct hv_dynmem_device *dm);

static void enable_page_reporting(void);

static void disable_page_reporting(void);

#ifdef CONFIG_MEMORY_HOTPLUG
static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
				     unsigned long pfn)
{
	struct hv_hotadd_gap *gap;

	/* The page is not backed. */
	if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
		return false;

	/* Check for gaps. */
	list_for_each_entry(gap, &has->gap_list, list) {
		if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
			return false;
	}

	return true;
}

static unsigned long hv_page_offline_check(unsigned long start_pfn,
					   unsigned long nr_pages)
{
	unsigned long pfn = start_pfn, count = 0;
	struct hv_hotadd_state *has;
	bool found;

	while (pfn < start_pfn + nr_pages) {
		/*
		 * Search for HAS which covers the pfn and when we find one
		 * count how many consequitive PFNs are covered.
		 */
		found = false;
		list_for_each_entry(has, &dm_device.ha_region_list, list) {
			while ((pfn >= has->start_pfn) &&
			       (pfn < has->end_pfn) &&
			       (pfn < start_pfn + nr_pages)) {
				found = true;
				if (has_pfn_is_backed(has, pfn))
					count++;
				pfn++;
			}
		}

		/*
		 * This PFN is not in any HAS (e.g. we're offlining a region
		 * which was present at boot), no need to account for it. Go
		 * to the next one.
		 */
		if (!found)
			pfn++;
	}

	return count;
}

static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
			      void *v)
{
	struct memory_notify *mem = (struct memory_notify *)v;
	unsigned long pfn_count;

	switch (val) {
	case MEM_ONLINE:
	case MEM_CANCEL_ONLINE:
		complete(&dm_device.ol_waitevent);
		break;

	case MEM_OFFLINE:
		scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
			pfn_count = hv_page_offline_check(mem->start_pfn,
							  mem->nr_pages);
			if (pfn_count <= dm_device.num_pages_onlined) {
				dm_device.num_pages_onlined -= pfn_count;
			} else {
				/*
				 * We're offlining more pages than we
				 * managed to online. This is
				 * unexpected. In any case don't let
				 * num_pages_onlined wrap around zero.
				 */
				WARN_ON_ONCE(1);
				dm_device.num_pages_onlined = 0;
			}
		}
		break;
	case MEM_GOING_ONLINE:
	case MEM_GOING_OFFLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block hv_memory_nb = {
	.notifier_call = hv_memory_notifier,
	.priority = 0
};

/* Check if the particular page is backed and can be onlined and online it. */
static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
{
	if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
		if (!PageOffline(pg))
			__SetPageOffline(pg);
		return;
	}
	if (PageOffline(pg))
		__ClearPageOffline(pg);

	/* This frame is currently backed; online the page. */
	generic_online_page(pg, 0);

	lockdep_assert_held(&dm_device.ha_lock);
	dm_device.num_pages_onlined++;
}

static void hv_bring_pgs_online(struct hv_hotadd_state *has,
				unsigned long start_pfn, unsigned long size)
{
	int i;

	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
	for (i = 0; i < size; i++)
		hv_page_online_one(has, pfn_to_page(start_pfn + i));
}

static void hv_mem_hot_add(unsigned long start, unsigned long size,
				unsigned long pfn_count,
				struct hv_hotadd_state *has)
{
	int ret = 0;
	int i, nid;
	unsigned long start_pfn;
	unsigned long processed_pfn;
	unsigned long total_pfn = pfn_count;

	for (i = 0; i < (size/HA_CHUNK); i++) {
		start_pfn = start + (i * HA_CHUNK);

		scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
			has->ha_end_pfn +=  HA_CHUNK;

			if (total_pfn > HA_CHUNK) {
				processed_pfn = HA_CHUNK;
				total_pfn -= HA_CHUNK;
			} else {
				processed_pfn = total_pfn;
				total_pfn = 0;
			}

			has->covered_end_pfn +=  processed_pfn;
		}

		reinit_completion(&dm_device.ol_waitevent);

		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
		ret = add_memory(nid, PFN_PHYS((start_pfn)),
				(HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);

		if (ret) {
			pr_err("hot_add memory failed error is %d\n", ret);
			if (ret == -EEXIST) {
				/*
				 * This error indicates that the error
				 * is not a transient failure. This is the
				 * case where the guest's physical address map
				 * precludes hot adding memory. Stop all further
				 * memory hot-add.
				 */
				do_hot_add = false;
			}
			scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
				has->ha_end_pfn -= HA_CHUNK;
				has->covered_end_pfn -=  processed_pfn;
			}
			break;
		}

		/*
		 * Wait for memory to get onlined. If the kernel onlined the
		 * memory when adding it, this will return directly. Otherwise,
		 * it will wait for user space to online the memory. This helps
		 * to avoid adding memory faster than it is getting onlined. As
		 * adding succeeded, it is ok to proceed even if the memory was
		 * not onlined in time.
		 */
		wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
		post_status(&dm_device);
	}
}

static void hv_online_page(struct page *pg, unsigned int order)
{
	struct hv_hotadd_state *has;
	unsigned long pfn = page_to_pfn(pg);

	guard(spinlock_irqsave)(&dm_device.ha_lock);
	list_for_each_entry(has, &dm_device.ha_region_list, list) {
		/* The page belongs to a different HAS. */
		if ((pfn < has->start_pfn) ||
				(pfn + (1UL << order) > has->end_pfn))
			continue;

		hv_bring_pgs_online(has, pfn, 1UL << order);
		break;
	}
}

static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
{
	struct hv_hotadd_state *has;
	struct hv_hotadd_gap *gap;
	unsigned long residual, new_inc;
	int ret = 0;

	guard(spinlock_irqsave)(&dm_device.ha_lock);
	list_for_each_entry(has, &dm_device.ha_region_list, list) {
		/*
		 * If the pfn range we are dealing with is not in the current
		 * "hot add block", move on.
		 */
		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
			continue;

		/*
		 * If the current start pfn is not where the covered_end
		 * is, create a gap and update covered_end_pfn.
		 */
		if (has->covered_end_pfn != start_pfn) {
			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
			if (!gap) {
				ret = -ENOMEM;
				break;
			}

			INIT_LIST_HEAD(&gap->list);
			gap->start_pfn = has->covered_end_pfn;
			gap->end_pfn = start_pfn;
			list_add_tail(&gap->list, &has->gap_list);

			has->covered_end_pfn = start_pfn;
		}

		/*
		 * If the current hot add-request extends beyond
		 * our current limit; extend it.
		 */
		if ((start_pfn + pfn_cnt) > has->end_pfn) {
			residual = (start_pfn + pfn_cnt - has->end_pfn);
			/*
			 * Extend the region by multiples of HA_CHUNK.
			 */
			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
			if (residual % HA_CHUNK)
				new_inc += HA_CHUNK;

			has->end_pfn += new_inc;
		}

		ret = 1;
		break;
	}

	return ret;
}

static unsigned long handle_pg_range(unsigned long pg_start,
					unsigned long pg_count)
{
	unsigned long start_pfn = pg_start;
	unsigned long pfn_cnt = pg_count;
	unsigned long size;
	struct hv_hotadd_state *has;
	unsigned long pgs_ol = 0;
	unsigned long old_covered_state;
	unsigned long res = 0, flags;

	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
		pg_start);

	spin_lock_irqsave(&dm_device.ha_lock, flags);
	list_for_each_entry(has, &dm_device.ha_region_list, list) {
		/*
		 * If the pfn range we are dealing with is not in the current
		 * "hot add block", move on.
		 */
		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
			continue;

		old_covered_state = has->covered_end_pfn;

		if (start_pfn < has->ha_end_pfn) {
			/*
			 * This is the case where we are backing pages
			 * in an already hot added region. Bring
			 * these pages online first.
			 */
			pgs_ol = has->ha_end_pfn - start_pfn;
			if (pgs_ol > pfn_cnt)
				pgs_ol = pfn_cnt;

			has->covered_end_pfn +=  pgs_ol;
			pfn_cnt -= pgs_ol;
			/*
			 * Check if the corresponding memory block is already
			 * online. It is possible to observe struct pages still
			 * being uninitialized here so check section instead.
			 * In case the section is online we need to bring the
			 * rest of pfns (which were not backed previously)
			 * online too.
			 */
			if (start_pfn > has->start_pfn &&
			    online_section_nr(pfn_to_section_nr(start_pfn)))
				hv_bring_pgs_online(has, start_pfn, pgs_ol);

		}

		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
			/*
			 * We have some residual hot add range
			 * that needs to be hot added; hot add
			 * it now. Hot add a multiple of
			 * HA_CHUNK that fully covers the pages
			 * we have.
			 */
			size = (has->end_pfn - has->ha_end_pfn);
			if (pfn_cnt <= size) {
				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
				if (pfn_cnt % HA_CHUNK)
					size += HA_CHUNK;
			} else {
				pfn_cnt = size;
			}
			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
			spin_lock_irqsave(&dm_device.ha_lock, flags);
		}
		/*
		 * If we managed to online any pages that were given to us,
		 * we declare success.
		 */
		res = has->covered_end_pfn - old_covered_state;
		break;
	}
	spin_unlock_irqrestore(&dm_device.ha_lock, flags);

	return res;
}

static unsigned long process_hot_add(unsigned long pg_start,
					unsigned long pfn_cnt,
					unsigned long rg_start,
					unsigned long rg_size)
{
	struct hv_hotadd_state *ha_region = NULL;
	int covered;

	if (pfn_cnt == 0)
		return 0;

	if (!dm_device.host_specified_ha_region) {
		covered = pfn_covered(pg_start, pfn_cnt);
		if (covered < 0)
			return 0;

		if (covered)
			goto do_pg_range;
	}

	/*
	 * If the host has specified a hot-add range; deal with it first.
	 */

	if (rg_size != 0) {
		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
		if (!ha_region)
			return 0;

		INIT_LIST_HEAD(&ha_region->list);
		INIT_LIST_HEAD(&ha_region->gap_list);

		ha_region->start_pfn = rg_start;
		ha_region->ha_end_pfn = rg_start;
		ha_region->covered_start_pfn = pg_start;
		ha_region->covered_end_pfn = pg_start;
		ha_region->end_pfn = rg_start + rg_size;

		scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
			list_add_tail(&ha_region->list, &dm_device.ha_region_list);
		}
	}

do_pg_range:
	/*
	 * Process the page range specified; bringing them
	 * online if possible.
	 */
	return handle_pg_range(pg_start, pfn_cnt);
}

#endif

static void hot_add_req(struct work_struct *dummy)
{
	struct dm_hot_add_response resp;
#ifdef CONFIG_MEMORY_HOTPLUG
	unsigned long pg_start, pfn_cnt;
	unsigned long rg_start, rg_sz;
#endif
	struct hv_dynmem_device *dm = &dm_device;

	memset(&resp, 0, sizeof(struct dm_hot_add_response));
	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
	resp.hdr.size = sizeof(struct dm_hot_add_response);

#ifdef CONFIG_MEMORY_HOTPLUG
	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;

	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;

	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
		unsigned long region_size;
		unsigned long region_start;

		/*
		 * The host has not specified the hot-add region.
		 * Based on the hot-add page range being specified,
		 * compute a hot-add region that can cover the pages
		 * that need to be hot-added while ensuring the alignment
		 * and size requirements of Linux as it relates to hot-add.
		 */
		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
		if (pfn_cnt % HA_CHUNK)
			region_size += HA_CHUNK;

		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;

		rg_start = region_start;
		rg_sz = region_size;
	}

	if (do_hot_add)
		resp.page_count = process_hot_add(pg_start, pfn_cnt,
						rg_start, rg_sz);

	dm->num_pages_added += resp.page_count;
#endif
	/*
	 * The result field of the response structure has the
	 * following semantics:
	 *
	 * 1. If all or some pages hot-added: Guest should return success.
	 *
	 * 2. If no pages could be hot-added:
	 *
	 * If the guest returns success, then the host
	 * will not attempt any further hot-add operations. This
	 * signifies a permanent failure.
	 *
	 * If the guest returns failure, then this failure will be
	 * treated as a transient failure and the host may retry the
	 * hot-add operation after some delay.
	 */
	if (resp.page_count > 0)
		resp.result = 1;
	else if (!do_hot_add)
		resp.result = 1;
	else
		resp.result = 0;

	if (!do_hot_add || resp.page_count == 0) {
		if (!allow_hibernation)
			pr_err("Memory hot add failed\n");
		else
			pr_info("Ignore hot-add request!\n");
	}

	dm->state = DM_INITIALIZED;
	resp.hdr.trans_id = atomic_inc_return(&trans_id);
	vmbus_sendpacket(dm->dev->channel, &resp,
			sizeof(struct dm_hot_add_response),
			(unsigned long)NULL,
			VM_PKT_DATA_INBAND, 0);
}

static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
{
	struct dm_info_header *info_hdr;

	info_hdr = (struct dm_info_header *)msg->info;

	switch (info_hdr->type) {
	case INFO_TYPE_MAX_PAGE_CNT:
		if (info_hdr->data_size == sizeof(__u64)) {
			__u64 *max_page_count = (__u64 *)&info_hdr[1];

			pr_info("Max. dynamic memory size: %llu MB\n",
				(*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
			dm->max_dynamic_page_count = *max_page_count;
		}

		break;
	default:
		pr_warn("Received Unknown type: %d\n", info_hdr->type);
	}
}

static unsigned long compute_balloon_floor(void)
{
	unsigned long min_pages;
	unsigned long nr_pages = totalram_pages();
#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
	/* Simple continuous piecewiese linear function:
	 *  max MiB -> min MiB  gradient
	 *       0         0
	 *      16        16
	 *      32        24
	 *     128        72    (1/2)
	 *     512       168    (1/4)
	 *    2048       360    (1/8)
	 *    8192       744    (1/16)
	 *   32768      1512	(1/32)
	 */
	if (nr_pages < MB2PAGES(128))
		min_pages = MB2PAGES(8) + (nr_pages >> 1);
	else if (nr_pages < MB2PAGES(512))
		min_pages = MB2PAGES(40) + (nr_pages >> 2);
	else if (nr_pages < MB2PAGES(2048))
		min_pages = MB2PAGES(104) + (nr_pages >> 3);
	else if (nr_pages < MB2PAGES(8192))
		min_pages = MB2PAGES(232) + (nr_pages >> 4);
	else
		min_pages = MB2PAGES(488) + (nr_pages >> 5);
#undef MB2PAGES
	return min_pages;
}

/*
 * Compute total committed memory pages
 */

static unsigned long get_pages_committed(struct hv_dynmem_device *dm)
{
	return vm_memory_committed() +
		dm->num_pages_ballooned +
		(dm->num_pages_added > dm->num_pages_onlined ?
		 dm->num_pages_added - dm->num_pages_onlined : 0) +
		compute_balloon_floor();
}

/*
 * Post our status as it relates memory pressure to the
 * host. Host expects the guests to post this status
 * periodically at 1 second intervals.
 *
 * The metrics specified in this protocol are very Windows
 * specific and so we cook up numbers here to convey our memory
 * pressure.
 */

static void post_status(struct hv_dynmem_device *dm)
{
	struct dm_status status;
	unsigned long now = jiffies;
	unsigned long last_post = last_post_time;
	unsigned long num_pages_avail, num_pages_committed;

	if (pressure_report_delay > 0) {
		--pressure_report_delay;
		return;
	}

	if (!time_after(now, (last_post_time + HZ)))
		return;

	memset(&status, 0, sizeof(struct dm_status));
	status.hdr.type = DM_STATUS_REPORT;
	status.hdr.size = sizeof(struct dm_status);
	status.hdr.trans_id = atomic_inc_return(&trans_id);

	/*
	 * The host expects the guest to report free and committed memory.
	 * Furthermore, the host expects the pressure information to include
	 * the ballooned out pages. For a given amount of memory that we are
	 * managing we need to compute a floor below which we should not
	 * balloon. Compute this and add it to the pressure report.
	 * We also need to report all offline pages (num_pages_added -
	 * num_pages_onlined) as committed to the host, otherwise it can try
	 * asking us to balloon them out.
	 */
	num_pages_avail = si_mem_available();
	num_pages_committed = get_pages_committed(dm);

	trace_balloon_status(num_pages_avail, num_pages_committed,
			     vm_memory_committed(), dm->num_pages_ballooned,
			     dm->num_pages_added, dm->num_pages_onlined);

	/* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
	status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
	status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;

	/*
	 * If our transaction ID is no longer current, just don't
	 * send the status. This can happen if we were interrupted
	 * after we picked our transaction ID.
	 */
	if (status.hdr.trans_id != atomic_read(&trans_id))
		return;

	/*
	 * If the last post time that we sampled has changed,
	 * we have raced, don't post the status.
	 */
	if (last_post != last_post_time)
		return;

	last_post_time = jiffies;
	vmbus_sendpacket(dm->dev->channel, &status,
				sizeof(struct dm_status),
				(unsigned long)NULL,
				VM_PKT_DATA_INBAND, 0);

}

static void free_balloon_pages(struct hv_dynmem_device *dm,
			 union dm_mem_page_range *range_array)
{
	int num_pages = range_array->finfo.page_cnt;
	__u64 start_frame = range_array->finfo.start_page;
	struct page *pg;
	int i;

	for (i = 0; i < num_pages; i++) {
		pg = pfn_to_page(i + start_frame);
		__ClearPageOffline(pg);
		__free_page(pg);
		dm->num_pages_ballooned--;
		adjust_managed_page_count(pg, 1);
	}
}



static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
					unsigned int num_pages,
					struct dm_balloon_response *bl_resp,
					int alloc_unit)
{
	unsigned int i, j;
	struct page *pg;

	for (i = 0; i < num_pages / alloc_unit; i++) {
		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
			HV_HYP_PAGE_SIZE)
			return i * alloc_unit;

		/*
		 * We execute this code in a thread context. Furthermore,
		 * we don't want the kernel to try too hard.
		 */
		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
				__GFP_NOMEMALLOC | __GFP_NOWARN,
				get_order(alloc_unit << PAGE_SHIFT));

		if (!pg)
			return i * alloc_unit;

		dm->num_pages_ballooned += alloc_unit;

		/*
		 * If we allocatted 2M pages; split them so we
		 * can free them in any order we get.
		 */

		if (alloc_unit != 1)
			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));

		/* mark all pages offline */
		for (j = 0; j < alloc_unit; j++) {
			__SetPageOffline(pg + j);
			adjust_managed_page_count(pg + j, -1);
		}

		bl_resp->range_count++;
		bl_resp->range_array[i].finfo.start_page =
			page_to_pfn(pg);
		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
		bl_resp->hdr.size += sizeof(union dm_mem_page_range);

	}

	return i * alloc_unit;
}

static void balloon_up(struct work_struct *dummy)
{
	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
	unsigned int num_ballooned = 0;
	struct dm_balloon_response *bl_resp;
	int alloc_unit;
	int ret;
	bool done = false;
	int i;
	long avail_pages;
	unsigned long floor;

	/*
	 * We will attempt 2M allocations. However, if we fail to
	 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
	 */
	alloc_unit = PAGES_IN_2M;

	avail_pages = si_mem_available();
	floor = compute_balloon_floor();

	/* Refuse to balloon below the floor. */
	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
		pr_info("Balloon request will be partially fulfilled. %s\n",
			avail_pages < num_pages ? "Not enough memory." :
			"Balloon floor reached.");

		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
	}

	while (!done) {
		memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
		bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
		bl_resp->more_pages = 1;

		num_pages -= num_ballooned;
		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
						    bl_resp, alloc_unit);

		if (alloc_unit != 1 && num_ballooned == 0) {
			alloc_unit = 1;
			continue;
		}

		if (num_ballooned == 0 || num_ballooned == num_pages) {
			pr_debug("Ballooned %u out of %u requested pages.\n",
				num_pages, dm_device.balloon_wrk.num_pages);

			bl_resp->more_pages = 0;
			done = true;
			dm_device.state = DM_INITIALIZED;
		}

		/*
		 * We are pushing a lot of data through the channel;
		 * deal with transient failures caused because of the
		 * lack of space in the ring buffer.
		 */

		do {
			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
			ret = vmbus_sendpacket(dm_device.dev->channel,
						bl_resp,
						bl_resp->hdr.size,
						(unsigned long)NULL,
						VM_PKT_DATA_INBAND, 0);

			if (ret == -EAGAIN)
				msleep(20);
			post_status(&dm_device);
		} while (ret == -EAGAIN);

		if (ret) {
			/*
			 * Free up the memory we allocatted.
			 */
			pr_err("Balloon response failed\n");

			for (i = 0; i < bl_resp->range_count; i++)
				free_balloon_pages(&dm_device,
						 &bl_resp->range_array[i]);

			done = true;
		}
	}

}

static void balloon_down(struct hv_dynmem_device *dm,
			struct dm_unballoon_request *req)
{
	union dm_mem_page_range *range_array = req->range_array;
	int range_count = req->range_count;
	struct dm_unballoon_response resp;
	int i;
	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;

	for (i = 0; i < range_count; i++) {
		free_balloon_pages(dm, &range_array[i]);
		complete(&dm_device.config_event);
	}

	pr_debug("Freed %u ballooned pages.\n",
		prev_pages_ballooned - dm->num_pages_ballooned);

	if (req->more_pages == 1)
		return;

	memset(&resp, 0, sizeof(struct dm_unballoon_response));
	resp.hdr.type = DM_UNBALLOON_RESPONSE;
	resp.hdr.trans_id = atomic_inc_return(&trans_id);
	resp.hdr.size = sizeof(struct dm_unballoon_response);

	vmbus_sendpacket(dm_device.dev->channel, &resp,
				sizeof(struct dm_unballoon_response),
				(unsigned long)NULL,
				VM_PKT_DATA_INBAND, 0);

	dm->state = DM_INITIALIZED;
}

static void balloon_onchannelcallback(void *context);

static int dm_thread_func(void *dm_dev)
{
	struct hv_dynmem_device *dm = dm_dev;

	while (!kthread_should_stop()) {
		wait_for_completion_interruptible_timeout(
						&dm_device.config_event, 1*HZ);
		/*
		 * The host expects us to post information on the memory
		 * pressure every second.
		 */
		reinit_completion(&dm_device.config_event);
		post_status(dm);
		/*
		 * disable free page reporting if multiple hypercall
		 * failure flag set. It is not done in the page_reporting
		 * callback context as that causes a deadlock between
		 * page_reporting_process() and page_reporting_unregister()
		 */
		if (hv_hypercall_multi_failure >= HV_MAX_FAILURES) {
			pr_err("Multiple failures in cold memory discard hypercall, disabling page reporting\n");
			disable_page_reporting();
			/* Reset the flag after disabling reporting */
			hv_hypercall_multi_failure = 0;
		}
	}

	return 0;
}


static void version_resp(struct hv_dynmem_device *dm,
			struct dm_version_response *vresp)
{
	struct dm_version_request version_req;
	int ret;

	if (vresp->is_accepted) {
		/*
		 * We are done; wakeup the
		 * context waiting for version
		 * negotiation.
		 */
		complete(&dm->host_event);
		return;
	}
	/*
	 * If there are more versions to try, continue
	 * with negotiations; if not
	 * shutdown the service since we are not able
	 * to negotiate a suitable version number
	 * with the host.
	 */
	if (dm->next_version == 0)
		goto version_error;

	memset(&version_req, 0, sizeof(struct dm_version_request));
	version_req.hdr.type = DM_VERSION_REQUEST;
	version_req.hdr.size = sizeof(struct dm_version_request);
	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
	version_req.version.version = dm->next_version;
	dm->version = version_req.version.version;

	/*
	 * Set the next version to try in case current version fails.
	 * Win7 protocol ought to be the last one to try.
	 */
	switch (version_req.version.version) {
	case DYNMEM_PROTOCOL_VERSION_WIN8:
		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
		version_req.is_last_attempt = 0;
		break;
	default:
		dm->next_version = 0;
		version_req.is_last_attempt = 1;
	}

	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
				sizeof(struct dm_version_request),
				(unsigned long)NULL,
				VM_PKT_DATA_INBAND, 0);

	if (ret)
		goto version_error;

	return;

version_error:
	dm->state = DM_INIT_ERROR;
	complete(&dm->host_event);
}

static void cap_resp(struct hv_dynmem_device *dm,
			struct dm_capabilities_resp_msg *cap_resp)
{
	if (!cap_resp->is_accepted) {
		pr_err("Capabilities not accepted by host\n");
		dm->state = DM_INIT_ERROR;
	}
	complete(&dm->host_event);
}

static void balloon_onchannelcallback(void *context)
{
	struct hv_device *dev = context;
	u32 recvlen;
	u64 requestid;
	struct dm_message *dm_msg;
	struct dm_header *dm_hdr;
	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
	struct dm_balloon *bal_msg;
	struct dm_hot_add *ha_msg;
	union dm_mem_page_range *ha_pg_range;
	union dm_mem_page_range *ha_region;

	memset(recv_buffer, 0, sizeof(recv_buffer));
	vmbus_recvpacket(dev->channel, recv_buffer,
			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);

	if (recvlen > 0) {
		dm_msg = (struct dm_message *)recv_buffer;
		dm_hdr = &dm_msg->hdr;

		switch (dm_hdr->type) {
		case DM_VERSION_RESPONSE:
			version_resp(dm,
				 (struct dm_version_response *)dm_msg);
			break;

		case DM_CAPABILITIES_RESPONSE:
			cap_resp(dm,
				 (struct dm_capabilities_resp_msg *)dm_msg);
			break;

		case DM_BALLOON_REQUEST:
			if (allow_hibernation) {
				pr_info("Ignore balloon-up request!\n");
				break;
			}

			if (dm->state == DM_BALLOON_UP)
				pr_warn("Currently ballooning\n");
			bal_msg = (struct dm_balloon *)recv_buffer;
			dm->state = DM_BALLOON_UP;
			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
			schedule_work(&dm_device.balloon_wrk.wrk);
			break;

		case DM_UNBALLOON_REQUEST:
			if (allow_hibernation) {
				pr_info("Ignore balloon-down request!\n");
				break;
			}

			dm->state = DM_BALLOON_DOWN;
			balloon_down(dm,
				 (struct dm_unballoon_request *)recv_buffer);
			break;

		case DM_MEM_HOT_ADD_REQUEST:
			if (dm->state == DM_HOT_ADD)
				pr_warn("Currently hot-adding\n");
			dm->state = DM_HOT_ADD;
			ha_msg = (struct dm_hot_add *)recv_buffer;
			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
				/*
				 * This is a normal hot-add request specifying
				 * hot-add memory.
				 */
				dm->host_specified_ha_region = false;
				ha_pg_range = &ha_msg->range;
				dm->ha_wrk.ha_page_range = *ha_pg_range;
				dm->ha_wrk.ha_region_range.page_range = 0;
			} else {
				/*
				 * Host is specifying that we first hot-add
				 * a region and then partially populate this
				 * region.
				 */
				dm->host_specified_ha_region = true;
				ha_pg_range = &ha_msg->range;
				ha_region = &ha_pg_range[1];
				dm->ha_wrk.ha_page_range = *ha_pg_range;
				dm->ha_wrk.ha_region_range = *ha_region;
			}
			schedule_work(&dm_device.ha_wrk.wrk);
			break;

		case DM_INFO_MESSAGE:
			process_info(dm, (struct dm_info_msg *)dm_msg);
			break;

		default:
			pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);

		}
	}

}

#define HV_LARGE_REPORTING_ORDER	9
#define HV_LARGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << \
		HV_LARGE_REPORTING_ORDER)
static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
		    struct scatterlist *sgl, unsigned int nents)
{
	unsigned long flags;
	struct hv_memory_hint *hint;
	int i, order;
	u64 status;
	struct scatterlist *sg;

	WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
	WARN_ON_ONCE(sgl->length < (HV_HYP_PAGE_SIZE << page_reporting_order));
	local_irq_save(flags);
	hint = *this_cpu_ptr(hyperv_pcpu_input_arg);
	if (!hint) {
		local_irq_restore(flags);
		return -ENOSPC;
	}

	hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
	hint->reserved = 0;
	for_each_sg(sgl, sg, nents, i) {
		union hv_gpa_page_range *range;

		range = &hint->ranges[i];
		range->address_space = 0;
		order = get_order(sg->length);
		/*
		 * Hyper-V expects the additional_pages field in the units
		 * of one of these 3 sizes, 4Kbytes, 2Mbytes or 1Gbytes.
		 * This is dictated by the values of the fields page.largesize
		 * and page_size.
		 * This code however, only uses 4Kbytes and 2Mbytes units
		 * and not 1Gbytes unit.
		 */

		/* page reporting for pages 2MB or higher */
		if (order >= HV_LARGE_REPORTING_ORDER ) {
			range->page.largepage = 1;
			range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
			range->base_large_pfn = page_to_hvpfn(
					sg_page(sg)) >> HV_LARGE_REPORTING_ORDER;
			range->page.additional_pages =
				(sg->length / HV_LARGE_REPORTING_LEN) - 1;
		} else {
			/* Page reporting for pages below 2MB */
			range->page.basepfn = page_to_hvpfn(sg_page(sg));
			range->page.largepage = false;
			range->page.additional_pages =
				(sg->length / HV_HYP_PAGE_SIZE) - 1;
		}

	}

	status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
				     hint, NULL);
	local_irq_restore(flags);
	if (!hv_result_success(status)) {

		pr_err("Cold memory discard hypercall failed with status %llx\n",
				status);
		if (hv_hypercall_multi_failure > 0)
			hv_hypercall_multi_failure++;

		if (hv_result(status) == HV_STATUS_INVALID_PARAMETER) {
			pr_err("Underlying Hyper-V does not support order less than 9. Hypercall failed\n");
			pr_err("Defaulting to page_reporting_order %d\n",
					pageblock_order);
			page_reporting_order = pageblock_order;
			hv_hypercall_multi_failure++;
			return -EINVAL;
		}

		return -EINVAL;
	}

	return 0;
}

static void enable_page_reporting(void)
{
	int ret;

	if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
		pr_debug("Cold memory discard hint not supported by Hyper-V\n");
		return;
	}

	BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
	dm_device.pr_dev_info.report = hv_free_page_report;
	/*
	 * We let the page_reporting_order parameter decide the order
	 * in the page_reporting code
	 */
	dm_device.pr_dev_info.order = 0;
	ret = page_reporting_register(&dm_device.pr_dev_info);
	if (ret < 0) {
		dm_device.pr_dev_info.report = NULL;
		pr_err("Failed to enable cold memory discard: %d\n", ret);
	} else {
		pr_info("Cold memory discard hint enabled with order %d\n",
				page_reporting_order);
	}
}

static void disable_page_reporting(void)
{
	if (dm_device.pr_dev_info.report) {
		page_reporting_unregister(&dm_device.pr_dev_info);
		dm_device.pr_dev_info.report = NULL;
	}
}

static int ballooning_enabled(void)
{
	/*
	 * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
	 * since currently it's unclear to us whether an unballoon request can
	 * make sure all page ranges are guest page size aligned.
	 */
	if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
		pr_info("Ballooning disabled because page size is not 4096 bytes\n");
		return 0;
	}

	return 1;
}

static int hot_add_enabled(void)
{
	/*
	 * Disable hot add on ARM64, because we currently rely on
	 * memory_add_physaddr_to_nid() to get a node id of a hot add range,
	 * however ARM64's memory_add_physaddr_to_nid() always return 0 and
	 * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
	 * add_memory().
	 */
	if (IS_ENABLED(CONFIG_ARM64)) {
		pr_info("Memory hot add disabled on ARM64\n");
		return 0;
	}

	return 1;
}

static int balloon_connect_vsp(struct hv_device *dev)
{
	struct dm_version_request version_req;
	struct dm_capabilities cap_msg;
	unsigned long t;
	int ret;

	/*
	 * max_pkt_size should be large enough for one vmbus packet header plus
	 * our receive buffer size. Hyper-V sends messages up to
	 * HV_HYP_PAGE_SIZE bytes long on balloon channel.
	 */
	dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;

	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
			 balloon_onchannelcallback, dev);
	if (ret)
		return ret;

	/*
	 * Initiate the hand shake with the host and negotiate
	 * a version that the host can support. We start with the
	 * highest version number and go down if the host cannot
	 * support it.
	 */
	memset(&version_req, 0, sizeof(struct dm_version_request));
	version_req.hdr.type = DM_VERSION_REQUEST;
	version_req.hdr.size = sizeof(struct dm_version_request);
	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
	version_req.is_last_attempt = 0;
	dm_device.version = version_req.version.version;

	ret = vmbus_sendpacket(dev->channel, &version_req,
			       sizeof(struct dm_version_request),
			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
	if (ret)
		goto out;

	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto out;
	}

	/*
	 * If we could not negotiate a compatible version with the host
	 * fail the probe function.
	 */
	if (dm_device.state == DM_INIT_ERROR) {
		ret = -EPROTO;
		goto out;
	}

	pr_info("Using Dynamic Memory protocol version %u.%u\n",
		DYNMEM_MAJOR_VERSION(dm_device.version),
		DYNMEM_MINOR_VERSION(dm_device.version));

	/*
	 * Now submit our capabilities to the host.
	 */
	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
	cap_msg.hdr.size = sizeof(struct dm_capabilities);
	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);

	/*
	 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
	 * currently still requires the bits to be set, so we have to add code
	 * to fail the host's hot-add and balloon up/down requests, if any.
	 */
	cap_msg.caps.cap_bits.balloon = ballooning_enabled();
	cap_msg.caps.cap_bits.hot_add = hot_add_enabled();

	/*
	 * Specify our alignment requirements as it relates
	 * memory hot-add. Specify 128MB alignment.
	 */
	cap_msg.caps.cap_bits.hot_add_alignment = 7;

	/*
	 * Currently the host does not use these
	 * values and we set them to what is done in the
	 * Windows driver.
	 */
	cap_msg.min_page_cnt = 0;
	cap_msg.max_page_number = -1;

	ret = vmbus_sendpacket(dev->channel, &cap_msg,
			       sizeof(struct dm_capabilities),
			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
	if (ret)
		goto out;

	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto out;
	}

	/*
	 * If the host does not like our capabilities,
	 * fail the probe function.
	 */
	if (dm_device.state == DM_INIT_ERROR) {
		ret = -EPROTO;
		goto out;
	}

	return 0;
out:
	vmbus_close(dev->channel);
	return ret;
}

/*
 * DEBUGFS Interface
 */
#ifdef CONFIG_DEBUG_FS

/**
 * hv_balloon_debug_show - shows statistics of balloon operations.
 * @f: pointer to the &struct seq_file.
 * @offset: ignored.
 *
 * Provides the statistics that can be accessed in hv-balloon in the debugfs.
 *
 * Return: zero on success or an error code.
 */
static int hv_balloon_debug_show(struct seq_file *f, void *offset)
{
	struct hv_dynmem_device *dm = f->private;
	char *sname;

	seq_printf(f, "%-22s: %u.%u\n", "host_version",
				DYNMEM_MAJOR_VERSION(dm->version),
				DYNMEM_MINOR_VERSION(dm->version));

	seq_printf(f, "%-22s:", "capabilities");
	if (ballooning_enabled())
		seq_puts(f, " enabled");

	if (hot_add_enabled())
		seq_puts(f, " hot_add");

	seq_puts(f, "\n");

	seq_printf(f, "%-22s: %u", "state", dm->state);
	switch (dm->state) {
	case DM_INITIALIZING:
			sname = "Initializing";
			break;
	case DM_INITIALIZED:
			sname = "Initialized";
			break;
	case DM_BALLOON_UP:
			sname = "Balloon Up";
			break;
	case DM_BALLOON_DOWN:
			sname = "Balloon Down";
			break;
	case DM_HOT_ADD:
			sname = "Hot Add";
			break;
	case DM_INIT_ERROR:
			sname = "Error";
			break;
	default:
			sname = "Unknown";
	}
	seq_printf(f, " (%s)\n", sname);

	/* HV Page Size */
	seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE);

	/* Pages added with hot_add */
	seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added);

	/* pages that are "onlined"/used from pages_added */
	seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined);

	/* pages we have given back to host */
	seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned);

	seq_printf(f, "%-22s: %lu\n", "total_pages_committed",
				get_pages_committed(dm));

	seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count",
				dm->max_dynamic_page_count);

	return 0;
}

DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug);

static void  hv_balloon_debugfs_init(struct hv_dynmem_device *b)
{
	debugfs_create_file("hv-balloon", 0444, NULL, b,
			&hv_balloon_debug_fops);
}

static void  hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
{
	debugfs_lookup_and_remove("hv-balloon", NULL);
}

#else

static inline void hv_balloon_debugfs_init(struct hv_dynmem_device  *b)
{
}

static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
{
}

#endif	/* CONFIG_DEBUG_FS */

static int balloon_probe(struct hv_device *dev,
			 const struct hv_vmbus_device_id *dev_id)
{
	int ret;

	allow_hibernation = hv_is_hibernation_supported();
	if (allow_hibernation)
		hot_add = false;

#ifdef CONFIG_MEMORY_HOTPLUG
	do_hot_add = hot_add;
#else
	do_hot_add = false;
#endif
	dm_device.dev = dev;
	dm_device.state = DM_INITIALIZING;
	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
	init_completion(&dm_device.host_event);
	init_completion(&dm_device.config_event);
	INIT_LIST_HEAD(&dm_device.ha_region_list);
	spin_lock_init(&dm_device.ha_lock);
	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
	dm_device.host_specified_ha_region = false;

#ifdef CONFIG_MEMORY_HOTPLUG
	set_online_page_callback(&hv_online_page);
	init_completion(&dm_device.ol_waitevent);
	register_memory_notifier(&hv_memory_nb);
#endif

	hv_set_drvdata(dev, &dm_device);

	ret = balloon_connect_vsp(dev);
	if (ret != 0)
		goto connect_error;

	enable_page_reporting();
	dm_device.state = DM_INITIALIZED;

	dm_device.thread =
		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
	if (IS_ERR(dm_device.thread)) {
		ret = PTR_ERR(dm_device.thread);
		goto probe_error;
	}

	hv_balloon_debugfs_init(&dm_device);

	return 0;

probe_error:
	dm_device.state = DM_INIT_ERROR;
	dm_device.thread  = NULL;
	disable_page_reporting();
	vmbus_close(dev->channel);
connect_error:
#ifdef CONFIG_MEMORY_HOTPLUG
	unregister_memory_notifier(&hv_memory_nb);
	restore_online_page_callback(&hv_online_page);
#endif
	return ret;
}

static void balloon_remove(struct hv_device *dev)
{
	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
	struct hv_hotadd_state *has, *tmp;
	struct hv_hotadd_gap *gap, *tmp_gap;

	if (dm->num_pages_ballooned != 0)
		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);

	hv_balloon_debugfs_exit(dm);

	cancel_work_sync(&dm->balloon_wrk.wrk);
	cancel_work_sync(&dm->ha_wrk.wrk);

	kthread_stop(dm->thread);

	/*
	 * This is to handle the case when balloon_resume()
	 * call has failed and some cleanup has been done as
	 * a part of the error handling.
	 */
	if (dm_device.state != DM_INIT_ERROR) {
		disable_page_reporting();
		vmbus_close(dev->channel);
#ifdef CONFIG_MEMORY_HOTPLUG
		unregister_memory_notifier(&hv_memory_nb);
		restore_online_page_callback(&hv_online_page);
#endif
	}

	guard(spinlock_irqsave)(&dm_device.ha_lock);
	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
			list_del(&gap->list);
			kfree(gap);
		}
		list_del(&has->list);
		kfree(has);
	}
}

static int balloon_suspend(struct hv_device *hv_dev)
{
	struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);

	tasklet_disable(&hv_dev->channel->callback_event);

	cancel_work_sync(&dm->balloon_wrk.wrk);
	cancel_work_sync(&dm->ha_wrk.wrk);

	if (dm->thread) {
		kthread_stop(dm->thread);
		dm->thread = NULL;
		vmbus_close(hv_dev->channel);
	}

	tasklet_enable(&hv_dev->channel->callback_event);

	return 0;

}

static int balloon_resume(struct hv_device *dev)
{
	int ret;

	dm_device.state = DM_INITIALIZING;

	ret = balloon_connect_vsp(dev);

	if (ret != 0)
		goto out;

	dm_device.thread =
		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
	if (IS_ERR(dm_device.thread)) {
		ret = PTR_ERR(dm_device.thread);
		dm_device.thread = NULL;
		goto close_channel;
	}

	dm_device.state = DM_INITIALIZED;
	return 0;
close_channel:
	vmbus_close(dev->channel);
out:
	dm_device.state = DM_INIT_ERROR;
	disable_page_reporting();
#ifdef CONFIG_MEMORY_HOTPLUG
	unregister_memory_notifier(&hv_memory_nb);
	restore_online_page_callback(&hv_online_page);
#endif
	return ret;
}

static const struct hv_vmbus_device_id id_table[] = {
	/* Dynamic Memory Class ID */
	/* 525074DC-8985-46e2-8057-A307DC18A502 */
	{ HV_DM_GUID, },
	{ },
};

MODULE_DEVICE_TABLE(vmbus, id_table);

static  struct hv_driver balloon_drv = {
	.name = "hv_balloon",
	.id_table = id_table,
	.probe =  balloon_probe,
	.remove =  balloon_remove,
	.suspend = balloon_suspend,
	.resume = balloon_resume,
	.driver = {
		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
	},
};

static int __init init_balloon_drv(void)
{

	return vmbus_driver_register(&balloon_drv);
}

module_init(init_balloon_drv);

MODULE_DESCRIPTION("Hyper-V Balloon");
MODULE_LICENSE("GPL"