// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * lm63.c - driver for the National Semiconductor LM63 temperature sensor
 *          with integrated fan control
 * Copyright (C) 2004-2008  Jean Delvare <jdelvare@suse.de>
 * Based on the lm90 driver.
 *
 * The LM63 is a sensor chip made by National Semiconductor. It measures
 * two temperatures (its own and one external one) and the speed of one
 * fan, those speed it can additionally control. Complete datasheet can be
 * obtained from National's website at:
 *   http://www.national.com/pf/LM/LM63.html
 *
 * The LM63 is basically an LM86 with fan speed monitoring and control
 * capabilities added. It misses some of the LM86 features though:
 *  - No low limit for local temperature.
 *  - No critical limit for local temperature.
 *  - Critical limit for remote temperature can be changed only once. We
 *    will consider that the critical limit is read-only.
 *
 * The datasheet isn't very clear about what the tachometer reading is.
 * I had a explanation from National Semiconductor though. The two lower
 * bits of the read value have to be masked out. The value is still 16 bit
 * in width.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/of_device.h>
#include <linux/sysfs.h>
#include <linux/types.h>

/*
 * Addresses to scan
 * Address is fully defined internally and cannot be changed except for
 * LM64 which has one pin dedicated to address selection.
 * LM63 and LM96163 have address 0x4c.
 * LM64 can have address 0x18 or 0x4e.
 */

static const unsigned short normal_i2c[] = { 0x18, 0x4c, 0x4e, I2C_CLIENT_END };

/*
 * The LM63 registers
 */

#define LM63_REG_CONFIG1		0x03
#define LM63_REG_CONVRATE		0x04
#define LM63_REG_CONFIG2		0xBF
#define LM63_REG_CONFIG_FAN		0x4A

#define LM63_REG_TACH_COUNT_MSB		0x47
#define LM63_REG_TACH_COUNT_LSB		0x46
#define LM63_REG_TACH_LIMIT_MSB		0x49
#define LM63_REG_TACH_LIMIT_LSB		0x48

#define LM63_REG_PWM_VALUE		0x4C
#define LM63_REG_PWM_FREQ		0x4D
#define LM63_REG_LUT_TEMP_HYST		0x4F
#define LM63_REG_LUT_TEMP(nr)		(0x50 + 2 * (nr))
#define LM63_REG_LUT_PWM(nr)		(0x51 + 2 * (nr))

#define LM63_REG_LOCAL_TEMP		0x00
#define LM63_REG_LOCAL_HIGH		0x05

#define LM63_REG_REMOTE_TEMP_MSB	0x01
#define LM63_REG_REMOTE_TEMP_LSB	0x10
#define LM63_REG_REMOTE_OFFSET_MSB	0x11
#define LM63_REG_REMOTE_OFFSET_LSB	0x12
#define LM63_REG_REMOTE_HIGH_MSB	0x07
#define LM63_REG_REMOTE_HIGH_LSB	0x13
#define LM63_REG_REMOTE_LOW_MSB		0x08
#define LM63_REG_REMOTE_LOW_LSB		0x14
#define LM63_REG_REMOTE_TCRIT		0x19
#define LM63_REG_REMOTE_TCRIT_HYST	0x21

#define LM63_REG_ALERT_STATUS		0x02
#define LM63_REG_ALERT_MASK		0x16

#define LM63_REG_MAN_ID			0xFE
#define LM63_REG_CHIP_ID		0xFF

#define LM96163_REG_TRUTHERM		0x30
#define LM96163_REG_REMOTE_TEMP_U_MSB	0x31
#define LM96163_REG_REMOTE_TEMP_U_LSB	0x32
#define LM96163_REG_CONFIG_ENHANCED	0x45

#define LM63_MAX_CONVRATE		9

#define LM63_MAX_CONVRATE_HZ		32
#define LM96163_MAX_CONVRATE_HZ		26

/*
 * Conversions and various macros
 * For tachometer counts, the LM63 uses 16-bit values.
 * For local temperature and high limit, remote critical limit and hysteresis
 * value, it uses signed 8-bit values with LSB = 1 degree Celsius.
 * For remote temperature, low and high limits, it uses signed 11-bit values
 * with LSB = 0.125 degree Celsius, left-justified in 16-bit registers.
 * For LM64 the actual remote diode temperature is 16 degree Celsius higher
 * than the register reading. Remote temperature setpoints have to be
 * adapted accordingly.
 */

#define FAN_FROM_REG(reg)	((reg) == 0xFFFC || (reg) == 0 ? 0 : \
				 5400000 / (reg))
#define FAN_TO_REG(val)		((val) <= 82 ? 0xFFFC : \
				 (5400000 / (val)) & 0xFFFC)
#define TEMP8_FROM_REG(reg)	((reg) * 1000)
#define TEMP8_TO_REG(val)	DIV_ROUND_CLOSEST(clamp_val((val), -128000, \
							    127000), 1000)
#define TEMP8U_TO_REG(val)	DIV_ROUND_CLOSEST(clamp_val((val), 0, \
							    255000), 1000)
#define TEMP11_FROM_REG(reg)	((reg) / 32 * 125)
#define TEMP11_TO_REG(val)	(DIV_ROUND_CLOSEST(clamp_val((val), -128000, \
							     127875), 125) * 32)
#define TEMP11U_TO_REG(val)	(DIV_ROUND_CLOSEST(clamp_val((val), 0, \
							     255875), 125) * 32)
#define HYST_TO_REG(val)	DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \
						  1000)

#define UPDATE_INTERVAL(max, rate) \
			((1000 << (LM63_MAX_CONVRATE - (rate))) / (max))

enum chips { lm63, lm64, lm96163 };

/*
 * Client data (each client gets its own)
 */

struct lm63_data {
	struct i2c_client *client;
	struct mutex update_lock;
	const struct attribute_group *groups[5];
	bool valid; /* false until following fields are valid */
	char lut_valid; /* zero until lut fields are valid */
	unsigned long last_updated; /* in jiffies */
	unsigned long lut_last_updated; /* in jiffies */
	enum chips kind;
	int temp2_offset;

	int update_interval;	/* in milliseconds */
	int max_convrate_hz;
	int lut_size;		/* 8 or 12 */

	/* registers values */
	u8 config, config_fan;
	u16 fan[2];	/* 0: input
			   1: low limit */
	u8 pwm1_freq;
	u8 pwm1[13];	/* 0: current output
			   1-12: lookup table */
	s8 temp8[15];	/* 0: local input
			   1: local high limit
			   2: remote critical limit
			   3-14: lookup table */
	s16 temp11[4];	/* 0: remote input
			   1: remote low limit
			   2: remote high limit
			   3: remote offset */
	u16 temp11u;	/* remote input (unsigned) */
	u8 temp2_crit_hyst;
	u8 lut_temp_hyst;
	u8 alarms;
	bool pwm_highres;
	bool lut_temp_highres;
	bool remote_unsigned; /* true if unsigned remote upper limits */
	bool trutherm;
};

static inline int temp8_from_reg(struct lm63_data *data, int nr)
{
	if (data->remote_unsigned)
		return TEMP8_FROM_REG((u8)data->temp8[nr]);
	return TEMP8_FROM_REG(data->temp8[nr]);
}

static inline int lut_temp_from_reg(struct lm63_data *data, int nr)
{
	return data->temp8[nr] * (data->lut_temp_highres ? 500 : 1000);
}

static inline int lut_temp_to_reg(struct lm63_data *data, long val)
{
	val -= data->temp2_offset;
	if (data->lut_temp_highres)
		return DIV_ROUND_CLOSEST(clamp_val(val, 0, 127500), 500);
	else
		return DIV_ROUND_CLOSEST(clamp_val(val, 0, 127000), 1000);
}

/*
 * Update the lookup table register cache.
 * client->update_lock must be held when calling this function.
 */
static void lm63_update_lut(struct lm63_data *data)
{
	struct i2c_client *client = data->client;
	int i;

	if (time_after(jiffies, data->lut_last_updated + 5 * HZ) ||
	    !data->lut_valid) {
		for (i = 0; i < data->lut_size; i++) {
			data->pwm1[1 + i] = i2c_smbus_read_byte_data(client,
					    LM63_REG_LUT_PWM(i));
			data->temp8[3 + i] = i2c_smbus_read_byte_data(client,
					     LM63_REG_LUT_TEMP(i));
		}
		data->lut_temp_hyst = i2c_smbus_read_byte_data(client,
				      LM63_REG_LUT_TEMP_HYST);

		data->lut_last_updated = jiffies;
		data->lut_valid = 1;
	}
}

static struct lm63_data *lm63_update_device(struct device *dev)
{
	struct lm63_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	unsigned long next_update;

	mutex_lock(&data->update_lock);

	next_update = data->last_updated +
		      msecs_to_jiffies(data->update_interval);
	if (time_after(jiffies, next_update) || !data->valid) {
		if (data->config & 0x04) { /* tachometer enabled  */
			/* order matters for fan1_input */
			data->fan[0] = i2c_smbus_read_byte_data(client,
				       LM63_REG_TACH_COUNT_LSB) & 0xFC;
			data->fan[0] |= i2c_smbus_read_byte_data(client,
					LM63_REG_TACH_COUNT_MSB) << 8;
			data->fan[1] = (i2c_smbus_read_byte_data(client,
					LM63_REG_TACH_LIMIT_LSB) & 0xFC)
				     | (i2c_smbus_read_byte_data(client,
					LM63_REG_TACH_LIMIT_MSB) << 8);
		}

		data->pwm1_freq = i2c_smbus_read_byte_data(client,
				  LM63_REG_PWM_FREQ);
		if (data->pwm1_freq == 0)
			data->pwm1_freq = 1;
		data->pwm1[0] = i2c_smbus_read_byte_data(client,
				LM63_REG_PWM_VALUE);

		data->temp8[0] = i2c_smbus_read_byte_data(client,
				 LM63_REG_LOCAL_TEMP);
		data->temp8[1] = i2c_smbus_read_byte_data(client,
				 LM63_REG_LOCAL_HIGH);

		/* order matters for temp2_input */
		data->temp11[0] = i2c_smbus_read_byte_data(client,
				  LM63_REG_REMOTE_TEMP_MSB) << 8;
		data->temp11[0] |= i2c_smbus_read_byte_data(client,
				   LM63_REG_REMOTE_TEMP_LSB);
		data->temp11[1] = (i2c_smbus_read_byte_data(client,
				  LM63_REG_REMOTE_LOW_MSB) << 8)
				| i2c_smbus_read_byte_data(client,
				  LM63_REG_REMOTE_LOW_LSB);
		data->temp11[2] = (i2c_smbus_read_byte_data(client,
				  LM63_REG_REMOTE_HIGH_MSB) << 8)
				| i2c_smbus_read_byte_data(client,
				  LM63_REG_REMOTE_HIGH_LSB);
		data->temp11[3] = (i2c_smbus_read_byte_data(client,
				  LM63_REG_REMOTE_OFFSET_MSB) << 8)
				| i2c_smbus_read_byte_data(client,
				  LM63_REG_REMOTE_OFFSET_LSB);

		if (data->kind == lm96163)
			data->temp11u = (i2c_smbus_read_byte_data(client,
					LM96163_REG_REMOTE_TEMP_U_MSB) << 8)
				      | i2c_smbus_read_byte_data(client,
					LM96163_REG_REMOTE_TEMP_U_LSB);

		data->temp8[2] = i2c_smbus_read_byte_data(client,
				 LM63_REG_REMOTE_TCRIT);
		data->temp2_crit_hyst = i2c_smbus_read_byte_data(client,
					LM63_REG_REMOTE_TCRIT_HYST);

		data->alarms = i2c_smbus_read_byte_data(client,
			       LM63_REG_ALERT_STATUS) & 0x7F;

		data->last_updated = jiffies;
		data->valid = true;
	}

	lm63_update_lut(data);

	mutex_unlock(&data->update_lock);

	return data;
}

/*
 * Trip points in the lookup table should be in ascending order for both
 * temperatures and PWM output values.
 */
static int lm63_lut_looks_bad(struct device *dev, struct lm63_data *data)
{
	int i;

	mutex_lock(&data->update_lock);
	lm63_update_lut(data);

	for (i = 1; i < data->lut_size; i++) {
		if (data->pwm1[1 + i - 1] > data->pwm1[1 + i]
		 || data->temp8[3 + i - 1] > data->temp8[3 + i]) {
			dev_warn(dev,
				 "Lookup table doesn't look sane (check entries %d and %d)\n",
				 i, i + 1);
			break;
		}
	}
	mutex_unlock(&data->update_lock);

	return i == data->lut_size ? 0 : 1;
}

/*
 * Sysfs callback functions and files
 */

static ssize_t show_fan(struct device *dev, struct device_attribute *devattr,
			char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct lm63_data *data = lm63_update_device(dev);
	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[attr->index]));
}

static ssize_t set_fan(struct device *dev, struct device_attribute *dummy,
		       const char *buf, size_t count)
{
	struct lm63_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	unsigned long val;
	int err;

	err = kstrtoul(buf, 10, &val);
	if (err)
		return err;

	mutex_lock(&data->update_lock);
	data->fan[1] = FAN_TO_REG(val);
	i2c_smbus_write_byte_data(client, LM63_REG_TACH_LIMIT_LSB,
				  data->fan[1] & 0xFF);
	i2c_smbus_write_byte_data(client, LM63_REG_TACH_LIMIT_MSB,
				  data->fan[1] >> 8);
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t show_pwm1(struct device *dev, struct device_attribute *devattr,
			 char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct lm63_data *data = lm63_update_device(dev);
	int nr = attr->index;
	int pwm;

	if (data->pwm_highres)
		pwm = data->pwm1[nr];
	else
		pwm = data->pwm1[nr] >= 2 * data->pwm1_freq ?
		       255 : (data->pwm1[nr] * 255 + data->pwm1_freq) /
		       (2 * data->pwm1_freq);

	return sprintf(buf, "%d\n", pwm);
}

static ssize_t set_pwm1(struct device *dev, struct device_attribute *devattr,
			const char *buf, size_t count)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct lm63_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int nr = attr->index;
	unsigned long val;
	int err;
	u8 reg;

	if (!(data->config_fan & 0x20)) /* register is read-only */
		return -EPERM;

	err = kstrtoul(buf, 10, &val);
	if (err)
		return err;

	reg = nr ? LM63_REG_LUT_PWM(nr - 1) : LM63_REG_PWM_VALUE;
	val = clamp_val(val, 0, 255);

	mutex_lock(&data->update_lock);
	data->pwm1[nr] = data->pwm_highres ? val :
			(val * data->pwm1_freq * 2 + 127) / 255;
	i2c_smbus_write_byte_data(client, reg, data->pwm1[nr]);
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t pwm1_enable_show(struct device *dev,
				struct device_attribute *dummy, char *buf)
{
	struct lm63_data *data = lm63_update_device(dev);
	return sprintf(buf, "%d\n", data->config_fan & 0x20 ? 1 : 2);
}

static ssize_t pwm1_enable_store(struct device *dev,
				 struct device_attribute *dummy,
				 const char *buf, size_t count)
{
	struct lm63_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	unsigned long val;
	int err;

	err = kstrtoul(buf, 10, &val);
	if (err)
		return err;
	if (val < 1 || val > 2)
		return -EINVAL;

	/*
	 * Only let the user switch to automatic mode if the lookup table
	 * looks sane.
	 */
	if (val == 2 && lm63_lut_looks_bad(dev, data))
		return -EPERM;

	mutex_lock(&data->update_lock);
	data->config_fan = i2c_smbus_read_byte_data(client,
						    LM63_REG_CONFIG_FAN);
	if (val == 1)
		data->config_fan |= 0x20;
	else
		data->config_fan &= ~0x20;
	i2c_smbus_write_byte_data(client, LM63_REG_CONFIG_FAN,
				  data->config_fan);
	mutex_unlock(&data->update_lock);
	return count;
}

/*
 * There are 8bit registers for both local(temp1) and remote(temp2) sensor.
 * For remote sensor registers temp2_offset has to be considered,
 * for local sensor it must not.
 * So we need separate 8bit accessors for local and remote sensor.
 */
static ssize_t show_local_temp8(struct device *dev,
				struct device_attribute *devattr,
				char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct lm63_data *data = lm63_update_device(dev);
	return sprintf(buf, "%d\n", TEMP8_FROM_REG(data->temp8[attr->index]));
}

static ssize_t show_remote_temp8(struct device *dev,
				 struct device_attribute *devattr,
				 char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct lm63_data *data = lm63_update_device(dev);
	return sprintf(buf, "%d\n", temp8_from_reg(data, attr->index)
		       + data->temp2_offset);
}

static ssize_t show_lut_temp(struct device *dev,
			      struct device_attribute *devattr,
			      char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct lm63_data *data = lm63_update_device(dev);
	return sprintf(buf, "%d\n", lut_temp_from_reg(data, attr->index)
		       + data->temp2_offset);
}

static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
			 const char *buf, size_t count)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct lm63_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int nr = attr->index;
	long val;
	int err;
	int temp;
	u8 reg;

	err = kstrtol(buf, 10, &val);
	if (err)
		return err;

	mutex_lock(&data->update_lock);
	switch (nr) {
	case 2:
		reg = LM63_REG_REMOTE_TCRIT;
		if (data->remote_unsigned)
			temp = TEMP8U_TO_REG(val - data->temp2_offset);
		else
			temp = TEMP8_TO_REG(val - data->temp2_offset);
		break;
	case 1:
		reg = LM63_REG_LOCAL_HIGH;
		temp = TEMP8_TO_REG(val);
		break;
	default:	/* lookup table */
		reg = LM63_REG_LUT_TEMP(nr - 3);
		temp = lut_temp_to_reg(data, val);
	}
	data->temp8[nr] = temp;
	i2c_smbus_write_byte_data(client, reg, temp);
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
			   char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct lm63_data *data = lm63_update_device(dev);
	int nr = attr->index;
	int temp;

	if (!nr) {
		/*
		 * Use unsigned temperature unless its value is zero.
		 * If it is zero, use signed temperature.
		 */
		if (data->temp11u)
			temp = TEMP11_FROM_REG(data->temp11u);
		else
			temp = TEMP11_FROM_REG(data->temp11[nr]);
	} else {
		if (data->remote_unsigned && nr == 2)
			temp = TEMP11_FROM_REG((u16)data->temp11[nr]);
		else
			temp = TEMP11_FROM_REG(data->temp11[nr]);
	}
	return sprintf(buf, "%d\n", temp + data->temp2_offset);
}

static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
			  const char *buf, size_t count)
{
	static const u8 reg[6] = {
		LM63_REG_REMOTE_LOW_MSB,
		LM63_REG_REMOTE_LOW_LSB,
		LM63_REG_REMOTE_HIGH_MSB,
		LM63_REG_REMOTE_HIGH_LSB,
		LM63_REG_REMOTE_OFFSET_MSB,
		LM63_REG_REMOTE_OFFSET_LSB,
	};

	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct lm63_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long val;
	int err;
	int nr = attr->index;

	err = kstrtol(buf, 10, &val);
	if (err)
		return err;

	mutex_lock(&data->update_lock);
	if (data->remote_unsigned && nr == 2)
		data->temp11[nr] = TEMP11U_TO_REG(val - data->temp2_offset);
	else
		data->temp11[nr] = TEMP11_TO_REG(val - data->temp2_offset);

	i2c_smbus_write_byte_data(client, reg[(nr - 1) * 2],
				  data->temp11[nr] >> 8);
	i2c_smbus_write_byte_data(client, reg[(nr - 1) * 2 + 1],
				  data->temp11[nr] & 0xff);
	mutex_unlock(&data->update_lock);
	return count;
}

/*
 * Hysteresis register holds a relative value, while we want to present
 * an absolute to user-space
 */
static ssize_t temp2_crit_hyst_show(struct device *dev,
				    struct device_attribute *dummy, char *buf)
{
	struct lm63_data *data = lm63_update_device(dev);
	return sprintf(buf, "%d\n", temp8_from_reg(data, 2)
		       + data->temp2_offset
		       - TEMP8_FROM_REG(data->temp2_crit_hyst));
}

static ssize_t show_lut_temp_hyst(struct device *dev,
				  struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct lm63_data *data = lm63_update_device(dev);

	return sprintf(buf, "%d\n", lut_temp_from_reg(data, attr->index)
		       + data->temp2_offset
		       - TEMP8_FROM_REG(data->lut_temp_hyst));
}

/*
 * And now the other way around, user-space provides an absolute
 * hysteresis value and we have to store a relative one
 */
static ssize_t temp2_crit_hyst_store(struct device *dev,
				     struct device_attribute *dummy,
				     const char *buf, size_t count)
{
	struct lm63_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long val;
	int err;
	long hyst;

	err = kstrtol(buf, 10, &val);
	if (err)
		return err;

	mutex_lock(&data->update_lock);
	hyst = temp8_from_reg(data, 2) + data->temp2_offset - val;
	i2c_smbus_write_byte_data(client, LM63_REG_REMOTE_TCRIT_HYST,
				  HYST_TO_REG(hyst));
	mutex_unlock(&data->update_lock);
	return count;
}

/*
 * Set conversion rate.
 * client->update_lock must be held when calling this function.
 */
static void lm63_set_convrate(struct lm63_data *data, unsigned int interval)
{
	struct i2c_client *client = data->client;
	unsigned int update_interval;
	int i;

	/* Shift calculations to avoid rounding errors */
	interval <<= 6;

	/* find the nearest update rate */
	update_interval = (1 << (LM63_MAX_CONVRATE + 6)) * 1000
	  / data->max_convrate_hz;
	for (i = 0; i < LM63_MAX_CONVRATE; i++, update_interval >>= 1)
		if (interval >= update_interval * 3 / 4)
			break;

	i2c_smbus_write_byte_data(client, LM63_REG_CONVRATE, i);
	data->update_interval = UPDATE_INTERVAL(data->max_convrate_hz, i);
}

static ssize_t update_interval_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct lm63_data *data = dev_get_drvdata(dev);

	return sprintf(buf, "%u\n", data->update_interval);
}

static ssize_t update_interval_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct lm63_data *data = dev_get_drvdata(dev);
	unsigned long val;
	int err;

	err = kstrtoul(buf, 10, &val);
	if (err)
		return err;

	mutex_lock(&data->update_lock);
	lm63_set_convrate(data, clamp_val(val, 0, 100000));
	mutex_unlock(&data->update_lock);

	return count;
}

static ssize_t temp2_type_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct lm63_data *data = dev_get_drvdata(dev);

	return sprintf(buf, data->trutherm ? "1\n" : "2\n");
}

static ssize_t temp2_type_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct lm63_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	unsigned long val;
	int ret;
	u8 reg;

	ret = kstrtoul(buf, 10, &val);
	if (ret < 0)
		return ret;
	if (val != 1 && val != 2)
		return -EINVAL;

	mutex_lock(&data->update_lock);
	data->trutherm = val == 1;
	reg = i2c_smbus_read_byte_data(client, LM96163_REG_TRUTHERM) & ~0x02;
	i2c_smbus_write_byte_data(client, LM96163_REG_TRUTHERM,
				  reg | (data->trutherm ? 0x02 : 0x00));
	data->valid = false;
	mutex_unlock(&data->update_lock);

	return count;
}

static ssize_t alarms_show(struct device *dev, struct device_attribute *dummy,
			   char *buf)
{
	struct lm63_data *data = lm63_update_device(dev);
	return sprintf(buf, "%u\n", data->alarms);
}

static ssize_t show_alarm(struct device *dev, struct device_attribute *devattr,
			  char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct lm63_data *data = lm63_update_device(dev);
	int bitnr = attr->index;

	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
}

static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan,
	set_fan, 1);

static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm1, set_pwm1, 0);
static DEVICE_ATTR_RW(pwm1_enable);
static SENSOR_DEVICE_ATTR(pwm1_auto_point1_pwm, S_IWUSR | S_IRUGO,
	show_pwm1, set_pwm1, 1);
static SENSOR_DEVICE_ATTR(pwm1_auto_point1_temp, S_IWUSR | S_IRUGO,
	show_lut_temp, set_temp8, 3);
static SENSOR_DEVICE_ATTR(pwm1_auto_point1_temp_hyst, S_IRUGO,
	show_lut_temp_hyst, NULL, 3);
static SENSOR_DEVICE_ATTR(pwm1_auto_point2_pwm, S_IWUSR | S_IRUGO,
	show_pwm1, set_pwm1, 2);
static SENSOR_DEVICE_ATTR(pwm1_auto_point2_temp, S_IWUSR | S_IRUGO,
	show_lut_temp, set_temp8, 4);
static SENSOR_DEVICE_ATTR(pwm1_auto_point2_temp_hyst, S_IRUGO,
	show_lut_temp_hyst, NULL, 4);
static SENSOR_DEVICE_ATTR(pwm1_auto_point3_pwm, S_IWUSR | S_IRUGO,
	show_pwm1, set_pwm1, 3);
static SENSOR_DEVICE_ATTR(pwm1_auto_point3_temp, S_IWUSR | S_IRUGO,
	show_lut_temp, set_temp8, 5);
static SENSOR_DEVICE_ATTR(pwm1_auto_point3_temp_hyst, S_IRUGO,
	show_lut_temp_hyst, NULL, 5);
static SENSOR_DEVICE_ATTR(pwm1_auto_point4_pwm, S_IWUSR | S_IRUGO,
	show_pwm1, set_pwm1, 4);
static SENSOR_DEVICE_ATTR(pwm1_auto_point4_temp, S_IWUSR | S_IRUGO,
	show_lut_temp, set_temp8, 6);
static SENSOR_DEVICE_ATTR(pwm1_auto_point4_temp_hyst, S_IRUGO,
	show_lut_temp_hyst, NULL, 6);
static SENSOR_DEVICE_ATTR(pwm1_auto_point5_pwm, S_IWUSR | S_IRUGO,
	show_pwm1, set_pwm1, 5);
static SENSOR_DEVICE_ATTR(pwm1_auto_point5_temp, S_IWUSR | S_IRUGO,
	show_lut_temp, set_temp8, 7);
static SENSOR_DEVICE_ATTR(pwm1_auto_point5_temp_hyst, S_IRUGO,
	show_lut_temp_hyst, NULL, 7);
static SENSOR_DEVICE_ATTR(pwm1_auto_point6_pwm, S_IWUSR | S_IRUGO,
	show_pwm1, set_pwm1, 6);
static SENSOR_DEVICE_ATTR(pwm1_auto_point6_temp, S_IWUSR | S_IRUGO,
	show_lut_temp, set_temp8, 8);
static SENSOR_DEVICE_ATTR(pwm1_auto_point6_temp_hyst, S_IRUGO,
	show_lut_temp_hyst, NULL, 8);
static SENSOR_DEVICE_ATTR(pwm1_auto_point7_pwm, S_IWUSR | S_IRUGO,
	show_pwm1, set_pwm1, 7);
static SENSOR_DEVICE_ATTR(pwm1_auto_point7_temp, S_IWUSR | S_IRUGO,
	show_lut_temp, set_temp8, 9);
static SENSOR_DEVICE_ATTR(pwm1_auto_point7_temp_hyst, S_IRUGO,
	show_lut_temp_hyst, NULL, 9);
static SENSOR_DEVICE_ATTR(pwm1_auto_point8_pwm, S_IWUSR | S_IRUGO,
	show_pwm1, set_pwm1, 8);
static SENSOR_DEVICE_ATTR(pwm1_auto_point8_temp, S_IWUSR | S_IRUGO,
	show_lut_temp, set_temp8, 10);
static SENSOR_DEVICE_ATTR(pwm1_auto_point8_temp_hyst, S_IRUGO,
	show_lut_temp_hyst, NULL, 10);
static SENSOR_DEVICE_ATTR(pwm1_auto_point9_pwm, S_IWUSR | S_IRUGO,
	show_pwm1, set_pwm1, 9);
static SENSOR_DEVICE_ATTR(pwm1_auto_point9_temp, S_IWUSR | S_IRUGO,
	show_lut_temp, set_temp8, 11);
static SENSOR_DEVICE_ATTR(pwm1_auto_point9_temp_hyst, S_IRUGO,
	show_lut_temp_hyst, NULL, 11);
static SENSOR_DEVICE_ATTR(pwm1_auto_point10_pwm, S_IWUSR | S_IRUGO,
	show_pwm1, set_pwm1, 10);
static SENSOR_DEVICE_ATTR(pwm1_auto_point10_temp, S_IWUSR | S_IRUGO,
	show_lut_temp, set_temp8, 12);
static SENSOR_DEVICE_ATTR(pwm1_auto_point10_temp_hyst, S_IRUGO,
	show_lut_temp_hyst, NULL, 12);
static SENSOR_DEVICE_ATTR(pwm1_auto_point11_pwm, S_IWUSR | S_IRUGO,
	show_pwm1, set_pwm1, 11);
static SENSOR_DEVICE_ATTR(pwm1_auto_point11_temp, S_IWUSR | S_IRUGO,
	show_lut_temp, set_temp8, 13);
static SENSOR_DEVICE_ATTR(pwm1_auto_point11_temp_hyst, S_IRUGO,
	show_lut_temp_hyst, NULL, 13);
static SENSOR_DEVICE_ATTR(pwm1_auto_point12_pwm, S_IWUSR | S_IRUGO,
	show_pwm1, set_pwm1, 12);
static SENSOR_DEVICE_ATTR(pwm1_auto_point12_temp, S_IWUSR | S_IRUGO,
	show_lut_temp, set_temp8, 14);
static SENSOR_DEVICE_ATTR(pwm1_auto_point12_temp_hyst, S_IRUGO,
	show_lut_temp_hyst, NULL, 14);

static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_local_temp8, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_local_temp8,
	set_temp8, 1);

static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp11, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
	set_temp11, 1);
static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
	set_temp11, 2);
static SENSOR_DEVICE_ATTR(temp2_offset, S_IWUSR | S_IRUGO, show_temp11,
	set_temp11, 3);
static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO, show_remote_temp8,
	set_temp8, 2);
static DEVICE_ATTR_RW(temp2_crit_hyst);

static DEVICE_ATTR_RW(temp2_type);

/* Individual alarm files */
static SENSOR_DEVICE_ATTR(fan1_min_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
/* Raw alarm file for compatibility */
static DEVICE_ATTR_RO(alarms);

static DEVICE_ATTR_RW(update_interval);

static struct attribute *lm63_attributes[] = {
	&sensor_dev_attr_pwm1.dev_attr.attr,
	&dev_attr_pwm1_enable.attr,
	&sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point1_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point1_temp_hyst.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point2_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point2_temp_hyst.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point3_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point3_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point3_temp_hyst.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point4_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point4_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point4_temp_hyst.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point5_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point5_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point5_temp_hyst.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point6_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point6_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point6_temp_hyst.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point7_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point7_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point7_temp_hyst.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point8_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point8_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point8_temp_hyst.dev_attr.attr,

	&sensor_dev_attr_temp1_input.dev_attr.attr,
	&sensor_dev_attr_temp2_input.dev_attr.attr,
	&sensor_dev_attr_temp2_min.dev_attr.attr,
	&sensor_dev_attr_temp1_max.dev_attr.attr,
	&sensor_dev_attr_temp2_max.dev_attr.attr,
	&sensor_dev_attr_temp2_offset.dev_attr.attr,
	&sensor_dev_attr_temp2_crit.dev_attr.attr,
	&dev_attr_temp2_crit_hyst.attr,

	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_fault.dev_attr.attr,
	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
	&dev_attr_alarms.attr,
	&dev_attr_update_interval.attr,
	NULL
};

static struct attribute *lm63_attributes_temp2_type[] = {
	&dev_attr_temp2_type.attr,
	NULL
};

static const struct attribute_group lm63_group_temp2_type = {
	.attrs = lm63_attributes_temp2_type,
};

static struct attribute *lm63_attributes_extra_lut[] = {
	&sensor_dev_attr_pwm1_auto_point9_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point9_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point9_temp_hyst.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point10_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point10_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point10_temp_hyst.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point11_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point11_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point11_temp_hyst.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point12_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point12_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point12_temp_hyst.dev_attr.attr,
	NULL
};

static const struct attribute_group lm63_group_extra_lut = {
	.attrs = lm63_attributes_extra_lut,
};

/*
 * On LM63, temp2_crit can be set only once, which should be job
 * of the bootloader.
 * On LM64, temp2_crit can always be set.
 * On LM96163, temp2_crit can be set if bit 1 of the configuration
 * register is true.
 */
static umode_t lm63_attribute_mode(struct kobject *kobj,
				   struct attribute *attr, int index)
{
	struct device *dev = kobj_to_dev(kobj);
	struct lm63_data *data = dev_get_drvdata(dev);

	if (attr == &sensor_dev_attr_temp2_crit.dev_attr.attr
	    && (data->kind == lm64 ||
		(data->kind == lm96163 && (data->config & 0x02))))
		return attr->mode | S_IWUSR;

	return attr->mode;
}

static const struct attribute_group lm63_group = {
	.is_visible = lm63_attribute_mode,
	.attrs = lm63_attributes,
};

static struct attribute *lm63_attributes_fan1[] = {
	&sensor_dev_attr_fan1_input.dev_attr.attr,
	&sensor_dev_attr_fan1_min.dev_attr.attr,

	&sensor_dev_attr_fan1_min_alarm.dev_attr.attr,
	NULL
};

static const struct attribute_group lm63_group_fan1 = {
	.attrs = lm63_attributes_fan1,
};

/*
 * Real code
 */

/* Return 0 if detection is successful, -ENODEV otherwise */
static int lm63_detect(struct i2c_client *client,
		       struct i2c_board_info *info)
{
	struct i2c_adapter *adapter = client->adapter;
	u8 man_id, chip_id, reg_config1, reg_config2;
	u8 reg_alert_status, reg_alert_mask;
	int address = client->addr;

	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
		return -ENODEV;

	man_id = i2c_smbus_read_byte_data(client, LM63_REG_MAN_ID);
	chip_id = i2c_smbus_read_byte_data(client, LM63_REG_CHIP_ID);

	reg_config1 = i2c_smbus_read_byte_data(client, LM63_REG_CONFIG1);
	reg_config2 = i2c_smbus_read_byte_data(client, LM63_REG_CONFIG2);
	reg_alert_status = i2c_smbus_read_byte_data(client,
			   LM63_REG_ALERT_STATUS);
	reg_alert_mask = i2c_smbus_read_byte_data(client, LM63_REG_ALERT_MASK);

	if (man_id != 0x01 /* National Semiconductor */
	 || (reg_config1 & 0x18) != 0x00
	 || (reg_config2 & 0xF8) != 0x00
	 || (reg_alert_status & 0x20) != 0x00
	 || (reg_alert_mask & 0xA4) != 0xA4) {
		dev_dbg(&adapter->dev,
			"Unsupported chip (man_id=0x%02X, chip_id=0x%02X)\n",
			man_id, chip_id);
		return -ENODEV;
	}

	if (chip_id == 0x41 && address == 0x4c)
		strscpy(info->type, "lm63", I2C_NAME_SIZE);
	else if (chip_id == 0x51 && (address == 0x18 || address == 0x4e))
		strscpy(info->type, "lm64", I2C_NAME_SIZE);
	else if (chip_id == 0x49 && address == 0x4c)
		strscpy(info->type, "lm96163", I2C_NAME_SIZE);
	else
		return -ENODEV;

	return 0;
}

/*
 * Ideally we shouldn't have to initialize anything, since the BIOS
 * should have taken care of everything
 */
static void lm63_init_client(struct lm63_data *data)
{
	struct i2c_client *client = data->client;
	struct device *dev = &client->dev;
	u8 convrate;

	data->config = i2c_smbus_read_byte_data(client, LM63_REG_CONFIG1);
	data->config_fan = i2c_smbus_read_byte_data(client,
						    LM63_REG_CONFIG_FAN);

	/* Start converting if needed */
	if (data->config & 0x40) { /* standby */
		dev_dbg(dev, "Switching to operational mode\n");
		data->config &= 0xA7;
		i2c_smbus_write_byte_data(client, LM63_REG_CONFIG1,
					  data->config);
	}
	/* Tachometer is always enabled on LM64 */
	if (data->kind == lm64)
		data->config |= 0x04;

	/* We may need pwm1_freq before ever updating the client data */
	data->pwm1_freq = i2c_smbus_read_byte_data(client, LM63_REG_PWM_FREQ);
	if (data->pwm1_freq == 0)
		data->pwm1_freq = 1;

	switch (data->kind) {
	case lm63:
	case lm64:
		data->max_convrate_hz = LM63_MAX_CONVRATE_HZ;
		data->lut_size = 8;
		break;
	case lm96163:
		data->max_convrate_hz = LM96163_MAX_CONVRATE_HZ;
		data->lut_size = 12;
		data->trutherm
		  = i2c_smbus_read_byte_data(client,
					     LM96163_REG_TRUTHERM) & 0x02;
		break;
	}
	convrate = i2c_smbus_read_byte_data(client, LM63_REG_CONVRATE);
	if (unlikely(convrate > LM63_MAX_CONVRATE))
		convrate = LM63_MAX_CONVRATE;
	data->update_interval = UPDATE_INTERVAL(data->max_convrate_hz,
						convrate);

	/*
	 * For LM96163, check if high resolution PWM
	 * and unsigned temperature format is enabled.
	 */
	if (data->kind == lm96163) {
		u8 config_enhanced
		  = i2c_smbus_read_byte_data(client,
					     LM96163_REG_CONFIG_ENHANCED);
		if (config_enhanced & 0x20)
			data->lut_temp_highres = true;
		if ((config_enhanced & 0x10)
		    && !(data->config_fan & 0x08) && data->pwm1_freq == 8)
			data->pwm_highres = true;
		if (config_enhanced & 0x08)
			data->remote_unsigned = true;
	}

	/* Show some debug info about the LM63 configuration */
	if (data->kind == lm63)
		dev_dbg(dev, "Alert/tach pin configured for %s\n",
			(data->config & 0x04) ? "tachometer input" :
			"alert output");
	dev_dbg(dev, "PWM clock %s kHz, output frequency %u Hz\n",
		(data->config_fan & 0x08) ? "1.4" : "360",
		((data->config_fan & 0x08) ? 700 : 180000) / data->pwm1_freq);
	dev_dbg(dev, "PWM output active %s, %s mode\n",
		(data->config_fan & 0x10) ? "low" : "high",
		(data->config_fan & 0x20) ? "manual" : "auto");
}

static const struct i2c_device_id lm63_id[];

static int lm63_probe(struct i2c_client *client)
{
	struct device *dev = &client->dev;
	struct device *hwmon_dev;
	struct lm63_data *data;
	int groups = 0;

	data = devm_kzalloc(dev, sizeof(struct lm63_data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->client = client;
	mutex_init(&data->update_lock);

	/* Set the device type */
	if (client->dev.of_node)
		data->kind = (enum chips)of_device_get_match_data(&client->dev);
	else
		data->kind = i2c_match_id(lm63_id, client)->driver_data;
	if (data->kind == lm64)
		data->temp2_offset = 16000;

	/* Initialize chip */
	lm63_init_client(data);

	/* Register sysfs hooks */
	data->groups[groups++] = &lm63_group;
	if (data->config & 0x04)	/* tachometer enabled */
		data->groups[groups++] = &lm63_group_fan1;

	if (data->kind == lm96163) {
		data->groups[groups++] = &lm63_group_temp2_type;
		data->groups[groups++] = &lm63_group_extra_lut;
	}

	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
							   data, data->groups);
	return PTR_ERR_OR_ZERO(hwmon_dev);
}

/*
 * Driver data (common to all clients)
 */

static const struct i2c_device_id lm63_id[] = {
	{ "lm63", lm63 },
	{ "lm64", lm64 },
	{ "lm96163", lm96163 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, lm63_id);

static const struct of_device_id __maybe_unused lm63_of_match[] = {
	{
		.compatible = "national,lm63",
		.data = (void *)lm63
	},
	{
		.compatible = "national,lm64",
		.data = (void *)lm64
	},
	{
		.compatible = "national,lm96163",
		.data = (void *)lm96163
	},
	{ },
};
MODULE_DEVICE_TABLE(of, lm63_of_match);

static struct i2c_driver lm63_driver = {
	.class		= I2C_CLASS_HWMON,
	.driver = {
		.name	= "lm63",
		.of_match_table = of_match_ptr(lm63_of_match),
	},
	.probe_new	= lm63_probe,
	.id_table	= lm63_id,
	.detect		= lm63_detect,
	.address_list	= normal_i2c,
};

module_i2c_driver(lm63_driver);

MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
MODULE_DESCRIPTION("LM63 driver");
MODULE_LICENSE("GPL"