#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/sched/task_stack.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/dma/mxs-dma.h>
#include "gpmi-nand.h"
#include "gpmi-regs.h"
#include "bch-regs.h"
#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
#define MXS_SET_ADDR 0x4
#define MXS_CLR_ADDR 0x8
static int clear_poll_bit(void __iomem *addr, u32 mask)
{
int timeout = 0x400;
writel(mask, addr + MXS_CLR_ADDR);
udelay(1);
while ((readl(addr) & mask) && --timeout)
;
return !timeout;
}
#define MODULE_CLKGATE (1 << 30)
#define MODULE_SFTRST (1 << 31)
static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
{
int ret;
int timeout = 0x400;
ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
if (unlikely(ret))
goto error;
writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
if (!just_enable) {
writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
udelay(1);
while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
;
if (unlikely(!timeout))
goto error;
}
ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
if (unlikely(ret))
goto error;
ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
if (unlikely(ret))
goto error;
return 0;
error:
pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
return -ETIMEDOUT;
}
static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
{
struct clk *clk;
int ret;
int i;
for (i = 0; i < GPMI_CLK_MAX; i++) {
clk = this->resources.clock[i];
if (!clk)
break;
if (v) {
ret = clk_prepare_enable(clk);
if (ret)
goto err_clk;
} else {
clk_disable_unprepare(clk);
}
}
return 0;
err_clk:
for (; i > 0; i--)
clk_disable_unprepare(this->resources.clock[i - 1]);
return ret;
}
static int gpmi_init(struct gpmi_nand_data *this)
{
struct resources *r = &this->resources;
int ret;
ret = pm_runtime_resume_and_get(this->dev);
if (ret < 0)
return ret;
ret = gpmi_reset_block(r->gpmi_regs, false);
if (ret)
goto err_out;
ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
if (ret)
goto err_out;
writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
r->gpmi_regs + HW_GPMI_CTRL1_SET);
writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY,
r->gpmi_regs + HW_GPMI_CTRL1_SET);
err_out:
pm_runtime_mark_last_busy(this->dev);
pm_runtime_put_autosuspend(this->dev);
return ret;
}
static void gpmi_dump_info(struct gpmi_nand_data *this)
{
struct resources *r = &this->resources;
struct bch_geometry *geo = &this->bch_geometry;
u32 reg;
int i;
dev_err(this->dev, "Show GPMI registers :\n");
for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
reg = readl(r->gpmi_regs + i * 0x10);
dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
}
dev_err(this->dev, "Show BCH registers :\n");
for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
reg = readl(r->bch_regs + i * 0x10);
dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
}
dev_err(this->dev, "BCH Geometry :\n"
"GF length : %u\n"
"ECC Strength : %u\n"
"Page Size in Bytes : %u\n"
"Metadata Size in Bytes : %u\n"
"ECC0 Chunk Size in Bytes: %u\n"
"ECCn Chunk Size in Bytes: %u\n"
"ECC Chunk Count : %u\n"
"Payload Size in Bytes : %u\n"
"Auxiliary Size in Bytes: %u\n"
"Auxiliary Status Offset: %u\n"
"Block Mark Byte Offset : %u\n"
"Block Mark Bit Offset : %u\n",
geo->gf_len,
geo->ecc_strength,
geo->page_size,
geo->metadata_size,
geo->ecc0_chunk_size,
geo->eccn_chunk_size,
geo->ecc_chunk_count,
geo->payload_size,
geo->auxiliary_size,
geo->auxiliary_status_offset,
geo->block_mark_byte_offset,
geo->block_mark_bit_offset);
}
static bool gpmi_check_ecc(struct gpmi_nand_data *this)
{
struct nand_chip *chip = &this->nand;
struct bch_geometry *geo = &this->bch_geometry;
struct nand_device *nand = &chip->base;
struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
conf->step_size = geo->eccn_chunk_size;
conf->strength = geo->ecc_strength;
if (GPMI_IS_MXS(this)) {
if (geo->gf_len == 14)
return false;
}
if (geo->ecc_strength > this->devdata->bch_max_ecc_strength)
return false;
if (!nand_ecc_is_strong_enough(nand))
return false;
return true;
}
static bool bbm_in_data_chunk(struct gpmi_nand_data *this,
unsigned int *chunk_num)
{
struct bch_geometry *geo = &this->bch_geometry;
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int i, j;
if (geo->ecc0_chunk_size != geo->eccn_chunk_size) {
dev_err(this->dev,
"The size of ecc0_chunk must equal to eccn_chunk\n");
return false;
}
i = (mtd->writesize * 8 - geo->metadata_size * 8) /
(geo->gf_len * geo->ecc_strength +
geo->eccn_chunk_size * 8);
j = (mtd->writesize * 8 - geo->metadata_size * 8) -
(geo->gf_len * geo->ecc_strength +
geo->eccn_chunk_size * 8) * i;
if (j < geo->eccn_chunk_size * 8) {
*chunk_num = i+1;
dev_dbg(this->dev, "Set ecc to %d and bbm in chunk %d\n",
geo->ecc_strength, *chunk_num);
return true;
}
return false;
}
static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
unsigned int ecc_strength,
unsigned int ecc_step)
{
struct bch_geometry *geo = &this->bch_geometry;
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int block_mark_bit_offset;
switch (ecc_step) {
case SZ_512:
geo->gf_len = 13;
break;
case SZ_1K:
geo->gf_len = 14;
break;
default:
dev_err(this->dev,
"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
nanddev_get_ecc_requirements(&chip->base)->strength,
nanddev_get_ecc_requirements(&chip->base)->step_size);
return -EINVAL;
}
geo->ecc0_chunk_size = ecc_step;
geo->eccn_chunk_size = ecc_step;
geo->ecc_strength = round_up(ecc_strength, 2);
if (!gpmi_check_ecc(this))
return -EINVAL;
if (geo->eccn_chunk_size < mtd->oobsize) {
dev_err(this->dev,
"unsupported nand chip. ecc size: %d, oob size : %d\n",
ecc_step, mtd->oobsize);
return -EINVAL;
}
geo->metadata_size = 10;
geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
geo->page_size = mtd->writesize + geo->metadata_size +
(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
geo->payload_size = mtd->writesize;
geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
+ ALIGN(geo->ecc_chunk_count, 4);
if (!this->swap_block_mark)
return 0;
block_mark_bit_offset = mtd->writesize * 8 -
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
+ geo->metadata_size * 8);
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
return 0;
}
static inline int get_ecc_strength(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
struct mtd_info *mtd = nand_to_mtd(&this->nand);
int ecc_strength;
ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
/ (geo->gf_len * geo->ecc_chunk_count);
return round_down(ecc_strength, 2);
}
static int set_geometry_for_large_oob(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
const struct nand_ecc_props *requirements =
nanddev_get_ecc_requirements(&chip->base);
unsigned int block_mark_bit_offset;
unsigned int max_ecc;
unsigned int bbm_chunk;
unsigned int i;
if (!(requirements->strength > 0 &&
requirements->step_size > 0))
return -EINVAL;
geo->ecc_strength = requirements->strength;
if (!gpmi_check_ecc(this)) {
dev_err(this->dev,
"unsupported NAND chip, minimum ecc required %d\n",
geo->ecc_strength);
return -EINVAL;
}
geo->metadata_size = 10;
geo->gf_len = 14;
geo->ecc0_chunk_size = 1024;
geo->eccn_chunk_size = 1024;
geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
max_ecc = min(get_ecc_strength(this),
this->devdata->bch_max_ecc_strength);
geo->ecc_strength = max_ecc;
while (!(geo->ecc_strength < requirements->strength)) {
if (bbm_in_data_chunk(this, &bbm_chunk))
goto geo_setting;
geo->ecc_strength -= 2;
}
geo->ecc_strength = requirements->strength;
geo->ecc0_chunk_size = 0;
geo->ecc_chunk_count = (mtd->writesize / geo->eccn_chunk_size) + 1;
geo->ecc_for_meta = 1;
if (mtd->oobsize * 8 < geo->metadata_size * 8 +
geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) {
dev_err(this->dev, "unsupported NAND chip with new layout\n");
return -EINVAL;
}
bbm_chunk = (mtd->writesize * 8 - geo->metadata_size * 8 -
geo->gf_len * geo->ecc_strength) /
(geo->gf_len * geo->ecc_strength +
geo->eccn_chunk_size * 8) + 1;
geo_setting:
geo->page_size = mtd->writesize + geo->metadata_size +
(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
geo->payload_size = mtd->writesize;
geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
+ ALIGN(geo->ecc_chunk_count, 4);
if (!this->swap_block_mark)
return 0;
i = (mtd->writesize / geo->eccn_chunk_size) - bbm_chunk + 1;
block_mark_bit_offset = mtd->writesize * 8 -
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i)
+ geo->metadata_size * 8);
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
dev_dbg(this->dev, "BCH Geometry :\n"
"GF length : %u\n"
"ECC Strength : %u\n"
"Page Size in Bytes : %u\n"
"Metadata Size in Bytes : %u\n"
"ECC0 Chunk Size in Bytes: %u\n"
"ECCn Chunk Size in Bytes: %u\n"
"ECC Chunk Count : %u\n"
"Payload Size in Bytes : %u\n"
"Auxiliary Size in Bytes: %u\n"
"Auxiliary Status Offset: %u\n"
"Block Mark Byte Offset : %u\n"
"Block Mark Bit Offset : %u\n"
"Block Mark in chunk : %u\n"
"Ecc for Meta data : %u\n",
geo->gf_len,
geo->ecc_strength,
geo->page_size,
geo->metadata_size,
geo->ecc0_chunk_size,
geo->eccn_chunk_size,
geo->ecc_chunk_count,
geo->payload_size,
geo->auxiliary_size,
geo->auxiliary_status_offset,
geo->block_mark_byte_offset,
geo->block_mark_bit_offset,
bbm_chunk,
geo->ecc_for_meta);
return 0;
}
static int legacy_set_geometry(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
struct mtd_info *mtd = nand_to_mtd(&this->nand);
unsigned int metadata_size;
unsigned int status_size;
unsigned int block_mark_bit_offset;
geo->metadata_size = 10;
geo->gf_len = 13;
geo->ecc0_chunk_size = 512;
geo->eccn_chunk_size = 512;
while (geo->eccn_chunk_size < mtd->oobsize) {
geo->ecc0_chunk_size *= 2;
geo->eccn_chunk_size *= 2;
geo->gf_len = 14;
}
geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
geo->ecc_strength = get_ecc_strength(this);
if (!gpmi_check_ecc(this)) {
dev_err(this->dev,
"ecc strength: %d cannot be supported by the controller (%d)\n"
"try to use minimum ecc strength that NAND chip required\n",
geo->ecc_strength,
this->devdata->bch_max_ecc_strength);
return -EINVAL;
}
geo->page_size = mtd->writesize + geo->metadata_size +
(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
geo->payload_size = mtd->writesize;
metadata_size = ALIGN(geo->metadata_size, 4);
status_size = ALIGN(geo->ecc_chunk_count, 4);
geo->auxiliary_size = metadata_size + status_size;
geo->auxiliary_status_offset = metadata_size;
if (!this->swap_block_mark)
return 0;
block_mark_bit_offset = mtd->writesize * 8 -
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
+ geo->metadata_size * 8);
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
return 0;
}
static int common_nfc_set_geometry(struct gpmi_nand_data *this)
{
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(&this->nand);
const struct nand_ecc_props *requirements =
nanddev_get_ecc_requirements(&chip->base);
bool use_minimun_ecc;
int err;
use_minimun_ecc = of_property_read_bool(this->dev->of_node,
"fsl,use-minimum-ecc");
if ((!use_minimun_ecc && mtd->oobsize < 1024) ||
!(requirements->strength > 0 && requirements->step_size > 0)) {
dev_dbg(this->dev, "use legacy bch geometry\n");
err = legacy_set_geometry(this);
if (!err)
return 0;
}
if (mtd->oobsize > 1024) {
dev_dbg(this->dev, "use large oob bch geometry\n");
err = set_geometry_for_large_oob(this);
if (!err)
return 0;
}
dev_dbg(this->dev, "use minimum ecc bch geometry\n");
err = set_geometry_by_ecc_info(this, requirements->strength,
requirements->step_size);
if (err)
dev_err(this->dev, "none of the bch geometry setting works\n");
return err;
}
static int bch_set_geometry(struct gpmi_nand_data *this)
{
struct resources *r = &this->resources;
int ret;
ret = common_nfc_set_geometry(this);
if (ret)
return ret;
ret = pm_runtime_get_sync(this->dev);
if (ret < 0) {
pm_runtime_put_autosuspend(this->dev);
return ret;
}
ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
if (ret)
goto err_out;
writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
ret = 0;
err_out:
pm_runtime_mark_last_busy(this->dev);
pm_runtime_put_autosuspend(this->dev);
return ret;
}
static int gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
const struct nand_sdr_timings *sdr)
{
struct gpmi_nfc_hardware_timing *hw = &this->hw;
struct resources *r = &this->resources;
unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
unsigned int period_ps, reference_period_ps;
unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
unsigned int tRP_ps;
bool use_half_period;
int sample_delay_ps, sample_delay_factor;
unsigned int busy_timeout_cycles;
u8 wrn_dly_sel;
unsigned long clk_rate, min_rate;
u64 busy_timeout_ps;
if (sdr->tRC_min >= 30000) {
hw->clk_rate = 22000000;
min_rate = 0;
wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
} else if (sdr->tRC_min >= 25000) {
hw->clk_rate = 80000000;
min_rate = 22000000;
wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
} else {
hw->clk_rate = 100000000;
min_rate = 80000000;
wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
}
clk_rate = clk_round_rate(r->clock[0], hw->clk_rate);
if (clk_rate <= min_rate) {
dev_err(this->dev, "clock setting: expected %ld, got %ld\n",
hw->clk_rate, clk_rate);
return -ENOTSUPP;
}
hw->clk_rate = clk_rate;
period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
busy_timeout_ps = max(sdr->tBERS_max, sdr->tPROG_max);
busy_timeout_cycles = TO_CYCLES(busy_timeout_ps, period_ps);
hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(DIV_ROUND_UP(busy_timeout_cycles, 4096));
if (period_ps > dll_threshold_ps) {
use_half_period = true;
reference_period_ps = period_ps / 2;
} else {
use_half_period = false;
reference_period_ps = period_ps;
}
tRP_ps = data_setup_cycles * period_ps;
sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
if (sample_delay_ps > 0)
sample_delay_factor = sample_delay_ps / reference_period_ps;
else
sample_delay_factor = 0;
hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
if (sample_delay_factor)
hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
BM_GPMI_CTRL1_DLL_ENABLE |
(use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
return 0;
}
static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
{
struct gpmi_nfc_hardware_timing *hw = &this->hw;
struct resources *r = &this->resources;
void __iomem *gpmi_regs = r->gpmi_regs;
unsigned int dll_wait_time_us;
int ret;
if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this))
clk_disable_unprepare(r->clock[0]);
ret = clk_set_rate(r->clock[0], hw->clk_rate);
if (ret) {
dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret);
return ret;
}
if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) {
ret = clk_prepare_enable(r->clock[0]);
if (ret)
return ret;
}
writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
if (!dll_wait_time_us)
dll_wait_time_us = 1;
udelay(dll_wait_time_us);
return 0;
}
static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
const struct nand_interface_config *conf)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
const struct nand_sdr_timings *sdr;
int ret;
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
if (sdr->tRC_min <= 25000 && !GPMI_IS_MX28(this) && !GPMI_IS_MX6(this))
return -ENOTSUPP;
if (chipnr < 0)
return 0;
ret = gpmi_nfc_compute_timings(this, sdr);
if (ret)
return ret;
this->hw.must_apply_timings = true;
return 0;
}
static void gpmi_clear_bch(struct gpmi_nand_data *this)
{
struct resources *r = &this->resources;
writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
}
static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
{
return this->dma_chans[0];
}
static void dma_irq_callback(void *param)
{
struct gpmi_nand_data *this = param;
struct completion *dma_c = &this->dma_done;
complete(dma_c);
}
static irqreturn_t bch_irq(int irq, void *cookie)
{
struct gpmi_nand_data *this = cookie;
gpmi_clear_bch(this);
complete(&this->bch_done);
return IRQ_HANDLED;
}
static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
{
if (this->bch)
return ALIGN_DOWN(raw_len, this->bch_geometry.eccn_chunk_size);
else
return raw_len;
}
static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
int raw_len, struct scatterlist *sgl,
enum dma_data_direction dr)
{
int ret;
int len = gpmi_raw_len_to_len(this, raw_len);
if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
sg_init_one(sgl, buf, len);
ret = dma_map_sg(this->dev, sgl, 1, dr);
if (ret == 0)
goto map_fail;
return true;
}
map_fail:
sg_init_one(sgl, this->data_buffer_dma, len);
if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
memcpy(this->data_buffer_dma, buf, len);
dma_map_sg(this->dev, sgl, 1, dr);
return false;
}
static uint8_t scan_ff_pattern[] = { 0xff };
static struct nand_bbt_descr gpmi_bbt_descr = {
.options = 0,
.offs = 0,
.len = 1,
.pattern = scan_ff_pattern
};
static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *geo = &this->bch_geometry;
if (section)
return -ERANGE;
oobregion->offset = 0;
oobregion->length = geo->page_size - mtd->writesize;
return 0;
}
static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *geo = &this->bch_geometry;
if (section)
return -ERANGE;
if (geo->page_size < mtd->writesize + mtd->oobsize) {
oobregion->offset = geo->page_size - mtd->writesize;
oobregion->length = mtd->oobsize - oobregion->offset;
}
return 0;
}
static const char * const gpmi_clks_for_mx2x[] = {
"gpmi_io",
};
static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
.ecc = gpmi_ooblayout_ecc,
.free = gpmi_ooblayout_free,
};
static const struct gpmi_devdata gpmi_devdata_imx23 = {
.type = IS_MX23,
.bch_max_ecc_strength = 20,
.max_chain_delay = 16000,
.clks = gpmi_clks_for_mx2x,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
};
static const struct gpmi_devdata gpmi_devdata_imx28 = {
.type = IS_MX28,
.bch_max_ecc_strength = 20,
.max_chain_delay = 16000,
.clks = gpmi_clks_for_mx2x,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
};
static const char * const gpmi_clks_for_mx6[] = {
"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
};
static const struct gpmi_devdata gpmi_devdata_imx6q = {
.type = IS_MX6Q,
.bch_max_ecc_strength = 40,
.max_chain_delay = 12000,
.clks = gpmi_clks_for_mx6,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
};
static const struct gpmi_devdata gpmi_devdata_imx6sx = {
.type = IS_MX6SX,
.bch_max_ecc_strength = 62,
.max_chain_delay = 12000,
.clks = gpmi_clks_for_mx6,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
};
static const char * const gpmi_clks_for_mx7d[] = {
"gpmi_io", "gpmi_bch_apb",
};
static const struct gpmi_devdata gpmi_devdata_imx7d = {
.type = IS_MX7D,
.bch_max_ecc_strength = 62,
.max_chain_delay = 12000,
.clks = gpmi_clks_for_mx7d,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
};
static int acquire_register_block(struct gpmi_nand_data *this,
const char *res_name)
{
struct platform_device *pdev = this->pdev;
struct resources *res = &this->resources;
void __iomem *p;
p = devm_platform_ioremap_resource_byname(pdev, res_name);
if (IS_ERR(p))
return PTR_ERR(p);
if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
res->gpmi_regs = p;
else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
res->bch_regs = p;
else
dev_err(this->dev, "unknown resource name : %s\n", res_name);
return 0;
}
static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
{
struct platform_device *pdev = this->pdev;
const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
int err;
err = platform_get_irq_byname(pdev, res_name);
if (err < 0)
return err;
err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this);
if (err)
dev_err(this->dev, "error requesting BCH IRQ\n");
return err;
}
static void release_dma_channels(struct gpmi_nand_data *this)
{
unsigned int i;
for (i = 0; i < DMA_CHANS; i++)
if (this->dma_chans[i]) {
dma_release_channel(this->dma_chans[i]);
this->dma_chans[i] = NULL;
}
}
static int acquire_dma_channels(struct gpmi_nand_data *this)
{
struct platform_device *pdev = this->pdev;
struct dma_chan *dma_chan;
int ret = 0;
dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
if (IS_ERR(dma_chan)) {
ret = dev_err_probe(this->dev, PTR_ERR(dma_chan),
"DMA channel request failed\n");
release_dma_channels(this);
} else {
this->dma_chans[0] = dma_chan;
}
return ret;
}
static int gpmi_get_clks(struct gpmi_nand_data *this)
{
struct resources *r = &this->resources;
struct clk *clk;
int err, i;
for (i = 0; i < this->devdata->clks_count; i++) {
clk = devm_clk_get(this->dev, this->devdata->clks[i]);
if (IS_ERR(clk)) {
err = PTR_ERR(clk);
goto err_clock;
}
r->clock[i] = clk;
}
return 0;
err_clock:
dev_dbg(this->dev, "failed in finding the clocks.\n");
return err;
}
static int acquire_resources(struct gpmi_nand_data *this)
{
int ret;
ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
if (ret)
goto exit_regs;
ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
if (ret)
goto exit_regs;
ret = acquire_bch_irq(this, bch_irq);
if (ret)
goto exit_regs;
ret = acquire_dma_channels(this);
if (ret)
goto exit_regs;
ret = gpmi_get_clks(this);
if (ret)
goto exit_clock;
return 0;
exit_clock:
release_dma_channels(this);
exit_regs:
return ret;
}
static void release_resources(struct gpmi_nand_data *this)
{
release_dma_channels(this);
}
static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
{
struct device *dev = this->dev;
struct bch_geometry *geo = &this->bch_geometry;
if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
dma_free_coherent(dev, geo->auxiliary_size,
this->auxiliary_virt,
this->auxiliary_phys);
kfree(this->data_buffer_dma);
kfree(this->raw_buffer);
this->data_buffer_dma = NULL;
this->raw_buffer = NULL;
}
static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
struct device *dev = this->dev;
struct mtd_info *mtd = nand_to_mtd(&this->nand);
this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
GFP_DMA | GFP_KERNEL);
if (this->data_buffer_dma == NULL)
goto error_alloc;
this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
&this->auxiliary_phys, GFP_DMA);
if (!this->auxiliary_virt)
goto error_alloc;
this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
if (!this->raw_buffer)
goto error_alloc;
return 0;
error_alloc:
gpmi_free_dma_buffer(this);
return -ENOMEM;
}
static void block_mark_swapping(struct gpmi_nand_data *this,
void *payload, void *auxiliary)
{
struct bch_geometry *nfc_geo = &this->bch_geometry;
unsigned char *p;
unsigned char *a;
unsigned int bit;
unsigned char mask;
unsigned char from_data;
unsigned char from_oob;
if (!this->swap_block_mark)
return;
bit = nfc_geo->block_mark_bit_offset;
p = payload + nfc_geo->block_mark_byte_offset;
a = auxiliary;
from_data = (p[0] >> bit) | (p[1] << (8 - bit));
from_oob = a[0];
a[0] = from_data;
mask = (0x1 << bit) - 1;
p[0] = (p[0] & mask) | (from_oob << bit);
mask = ~0 << bit;
p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
}
static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
int last, int meta)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
struct mtd_info *mtd = nand_to_mtd(chip);
int i;
unsigned char *status;
unsigned int max_bitflips = 0;
status = this->auxiliary_virt + ALIGN(meta, 4);
for (i = first; i < last; i++, status++) {
if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
continue;
if (*status == STATUS_UNCORRECTABLE) {
int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
u8 *eccbuf = this->raw_buffer;
int offset, bitoffset;
int eccbytes;
int flips;
offset = nfc_geo->metadata_size * 8;
offset += ((8 * nfc_geo->eccn_chunk_size) + eccbits) * (i + 1);
offset -= eccbits;
bitoffset = offset % 8;
eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
offset /= 8;
eccbytes -= offset;
nand_change_read_column_op(chip, offset, eccbuf,
eccbytes, false);
if (bitoffset)
eccbuf[0] |= GENMASK(bitoffset - 1, 0);
bitoffset = (bitoffset + eccbits) % 8;
if (bitoffset)
eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
if (i == 0) {
flips = nand_check_erased_ecc_chunk(
buf + i * nfc_geo->eccn_chunk_size,
nfc_geo->eccn_chunk_size,
eccbuf, eccbytes,
this->auxiliary_virt,
nfc_geo->metadata_size,
nfc_geo->ecc_strength);
} else {
flips = nand_check_erased_ecc_chunk(
buf + i * nfc_geo->eccn_chunk_size,
nfc_geo->eccn_chunk_size,
eccbuf, eccbytes,
NULL, 0,
nfc_geo->ecc_strength);
}
if (flips > 0) {
max_bitflips = max_t(unsigned int, max_bitflips,
flips);
mtd->ecc_stats.corrected += flips;
continue;
}
mtd->ecc_stats.failed++;
continue;
}
mtd->ecc_stats.corrected += *status;
max_bitflips = max_t(unsigned int, max_bitflips, *status);
}
return max_bitflips;
}
static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
unsigned int ecc_strength = geo->ecc_strength >> 1;
unsigned int gf_len = geo->gf_len;
unsigned int block0_size = geo->ecc0_chunk_size;
unsigned int blockn_size = geo->eccn_chunk_size;
this->bch_flashlayout0 =
BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block0_size, this);
this->bch_flashlayout1 =
BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(blockn_size, this);
}
static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct bch_geometry *geo = &this->bch_geometry;
unsigned int max_bitflips;
int ret;
gpmi_bch_layout_std(this);
this->bch = true;
ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
if (ret)
return ret;
max_bitflips = gpmi_count_bitflips(chip, buf, 0,
geo->ecc_chunk_count,
geo->auxiliary_status_offset);
block_mark_swapping(this, buf, this->auxiliary_virt);
if (oob_required) {
memset(chip->oob_poi, ~0, mtd->oobsize);
chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
}
return max_bitflips;
}
static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
uint32_t len, uint8_t *buf, int page)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *geo = &this->bch_geometry;
int size = chip->ecc.size;
int meta, n, page_size;
unsigned int max_bitflips;
unsigned int ecc_strength;
int first, last, marker_pos;
int ecc_parity_size;
int col = 0;
int ret;
ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
first = offs / size;
last = (offs + len - 1) / size;
if (this->swap_block_mark) {
marker_pos = geo->block_mark_byte_offset / size;
if (last >= marker_pos && first <= marker_pos) {
dev_dbg(this->dev,
"page:%d, first:%d, last:%d, marker at:%d\n",
page, first, last, marker_pos);
return gpmi_ecc_read_page(chip, buf, 0, page);
}
}
meta = geo->metadata_size;
if (first) {
if (geo->ecc_for_meta)
col = meta + ecc_parity_size
+ (size + ecc_parity_size) * first;
else
col = meta + (size + ecc_parity_size) * first;
meta = 0;
buf = buf + first * size;
}
ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
n = last - first + 1;
if (geo->ecc_for_meta && meta)
page_size = meta + ecc_parity_size
+ (size + ecc_parity_size) * n;
else
page_size = meta + (size + ecc_parity_size) * n;
ecc_strength = geo->ecc_strength >> 1;
this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(
(geo->ecc_for_meta ? n : n - 1)) |
BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
BF_BCH_FLASH0LAYOUT0_DATA0_SIZE((geo->ecc_for_meta ?
0 : geo->ecc0_chunk_size), this);
this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->eccn_chunk_size, this);
this->bch = true;
ret = nand_read_page_op(chip, page, col, buf, page_size);
if (ret)
return ret;
dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
page, offs, len, col, first, n, page_size);
max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
return max_bitflips;
}
static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
dev_dbg(this->dev, "ecc write page.\n");
gpmi_bch_layout_std(this);
this->bch = true;
memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
if (this->swap_block_mark) {
memcpy(this->data_buffer_dma, buf, mtd->writesize);
buf = this->data_buffer_dma;
block_mark_swapping(this, this->data_buffer_dma,
this->auxiliary_virt);
}
return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
}
static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
int ret;
memset(chip->oob_poi, ~0, mtd->oobsize);
ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
mtd->oobsize);
if (ret)
return ret;
if (GPMI_IS_MX23(this)) {
ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
if (ret)
return ret;
}
return 0;
}
static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct mtd_oob_region of = { };
mtd_ooblayout_free(mtd, 0, &of);
if (!of.length)
return -EPERM;
if (!nand_is_slc(chip))
return -EPERM;
return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
chip->oob_poi + of.offset, of.length);
}
static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
int eccsize = nfc_geo->eccn_chunk_size;
int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
u8 *tmp_buf = this->raw_buffer;
size_t src_bit_off;
size_t oob_bit_off;
size_t oob_byte_off;
uint8_t *oob = chip->oob_poi;
int step;
int ret;
ret = nand_read_page_op(chip, page, 0, tmp_buf,
mtd->writesize + mtd->oobsize);
if (ret)
return ret;
if (this->swap_block_mark)
swap(tmp_buf[0], tmp_buf[mtd->writesize]);
if (oob_required)
memcpy(oob, tmp_buf, nfc_geo->metadata_size);
oob_bit_off = nfc_geo->metadata_size * 8;
src_bit_off = oob_bit_off;
for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
if (buf)
nand_extract_bits(buf, step * eccsize * 8, tmp_buf,
src_bit_off, eccsize * 8);
src_bit_off += eccsize * 8;
if (step == nfc_geo->ecc_chunk_count - 1 &&
(oob_bit_off + eccbits) % 8)
eccbits += 8 - ((oob_bit_off + eccbits) % 8);
if (oob_required)
nand_extract_bits(oob, oob_bit_off, tmp_buf,
src_bit_off, eccbits);
src_bit_off += eccbits;
oob_bit_off += eccbits;
}
if (oob_required) {
oob_byte_off = oob_bit_off / 8;
if (oob_byte_off < mtd->oobsize)
memcpy(oob + oob_byte_off,
tmp_buf + mtd->writesize + oob_byte_off,
mtd->oobsize - oob_byte_off);
}
return 0;
}
static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
int eccsize = nfc_geo->eccn_chunk_size;
int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
u8 *tmp_buf = this->raw_buffer;
uint8_t *oob = chip->oob_poi;
size_t dst_bit_off;
size_t oob_bit_off;
size_t oob_byte_off;
int step;
if (!buf || !oob_required)
memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
memcpy(tmp_buf, oob, nfc_geo->metadata_size);
oob_bit_off = nfc_geo->metadata_size * 8;
dst_bit_off = oob_bit_off;
for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
if (buf)
nand_extract_bits(tmp_buf, dst_bit_off, buf,
step * eccsize * 8, eccsize * 8);
dst_bit_off += eccsize * 8;
if (step == nfc_geo->ecc_chunk_count - 1 &&
(oob_bit_off + eccbits) % 8)
eccbits += 8 - ((oob_bit_off + eccbits) % 8);
if (oob_required)
nand_extract_bits(tmp_buf, dst_bit_off, oob,
oob_bit_off, eccbits);
dst_bit_off += eccbits;
oob_bit_off += eccbits;
}
oob_byte_off = oob_bit_off / 8;
if (oob_required && oob_byte_off < mtd->oobsize)
memcpy(tmp_buf + mtd->writesize + oob_byte_off,
oob + oob_byte_off, mtd->oobsize - oob_byte_off);
if (this->swap_block_mark)
swap(tmp_buf[0], tmp_buf[mtd->writesize]);
return nand_prog_page_op(chip, page, 0, tmp_buf,
mtd->writesize + mtd->oobsize);
}
static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
{
return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
}
static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
{
return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
}
static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
int ret = 0;
uint8_t *block_mark;
int column, page, chipnr;
chipnr = (int)(ofs >> chip->chip_shift);
nand_select_target(chip, chipnr);
column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
block_mark = this->data_buffer_dma;
block_mark[0] = 0;
page = (int)(ofs >> chip->page_shift);
ret = nand_prog_page_op(chip, page, column, block_mark, 1);
nand_deselect_target(chip);
return ret;
}
static int nand_boot_set_geometry(struct gpmi_nand_data *this)
{
struct boot_rom_geometry *geometry = &this->rom_geometry;
geometry->stride_size_in_pages = 64;
geometry->search_area_stride_exponent = 2;
return 0;
}
static const char *fingerprint = "STMP";
static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
{
struct boot_rom_geometry *rom_geo = &this->rom_geometry;
struct device *dev = this->dev;
struct nand_chip *chip = &this->nand;
unsigned int search_area_size_in_strides;
unsigned int stride;
unsigned int page;
u8 *buffer = nand_get_data_buf(chip);
int found_an_ncb_fingerprint = false;
int ret;
search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
nand_select_target(chip, 0);
dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
for (stride = 0; stride < search_area_size_in_strides; stride++) {
page = stride * rom_geo->stride_size_in_pages;
dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
ret = nand_read_page_op(chip, page, 12, buffer,
strlen(fingerprint));
if (ret)
continue;
if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
found_an_ncb_fingerprint = true;
break;
}
}
nand_deselect_target(chip);
if (found_an_ncb_fingerprint)
dev_dbg(dev, "\tFound a fingerprint\n");
else
dev_dbg(dev, "\tNo fingerprint found\n");
return found_an_ncb_fingerprint;
}
static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
{
struct device *dev = this->dev;
struct boot_rom_geometry *rom_geo = &this->rom_geometry;
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int block_size_in_pages;
unsigned int search_area_size_in_strides;
unsigned int search_area_size_in_pages;
unsigned int search_area_size_in_blocks;
unsigned int block;
unsigned int stride;
unsigned int page;
u8 *buffer = nand_get_data_buf(chip);
int status;
block_size_in_pages = mtd->erasesize / mtd->writesize;
search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
search_area_size_in_pages = search_area_size_in_strides *
rom_geo->stride_size_in_pages;
search_area_size_in_blocks =
(search_area_size_in_pages + (block_size_in_pages - 1)) /
block_size_in_pages;
dev_dbg(dev, "Search Area Geometry :\n");
dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
nand_select_target(chip, 0);
dev_dbg(dev, "Erasing the search area...\n");
for (block = 0; block < search_area_size_in_blocks; block++) {
dev_dbg(dev, "\tErasing block 0x%x\n", block);
status = nand_erase_op(chip, block);
if (status)
dev_err(dev, "[%s] Erase failed.\n", __func__);
}
memset(buffer, ~0, mtd->writesize);
memcpy(buffer + 12, fingerprint, strlen(fingerprint));
dev_dbg(dev, "Writing NCB fingerprints...\n");
for (stride = 0; stride < search_area_size_in_strides; stride++) {
page = stride * rom_geo->stride_size_in_pages;
dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
status = chip->ecc.write_page_raw(chip, buffer, 0, page);
if (status)
dev_err(dev, "[%s] Write failed.\n", __func__);
}
nand_deselect_target(chip);
return 0;
}
static int mx23_boot_init(struct gpmi_nand_data *this)
{
struct device *dev = this->dev;
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int block_count;
unsigned int block;
int chipnr;
int page;
loff_t byte;
uint8_t block_mark;
int ret = 0;
if (mx23_check_transcription_stamp(this))
return 0;
dev_dbg(dev, "Transcribing bad block marks...\n");
block_count = nanddev_eraseblocks_per_target(&chip->base);
for (block = 0; block < block_count; block++) {
chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
page = block << (chip->phys_erase_shift - chip->page_shift);
byte = block << chip->phys_erase_shift;
nand_select_target(chip, chipnr);
ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
1);
nand_deselect_target(chip);
if (ret)
continue;
if (block_mark != 0xff) {
dev_dbg(dev, "Transcribing mark in block %u\n", block);
ret = chip->legacy.block_markbad(chip, byte);
if (ret)
dev_err(dev,
"Failed to mark block bad with ret %d\n",
ret);
}
}
mx23_write_transcription_stamp(this);
return 0;
}
static int nand_boot_init(struct gpmi_nand_data *this)
{
nand_boot_set_geometry(this);
if (GPMI_IS_MX23(this))
return mx23_boot_init(this);
return 0;
}
static int gpmi_set_geometry(struct gpmi_nand_data *this)
{
int ret;
gpmi_free_dma_buffer(this);
ret = bch_set_geometry(this);
if (ret) {
dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
return ret;
}
return gpmi_alloc_dma_buffer(this);
}
static int gpmi_init_last(struct gpmi_nand_data *this)
{
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
struct bch_geometry *bch_geo = &this->bch_geometry;
int ret;
ret = gpmi_set_geometry(this);
if (ret)
return ret;
ecc->read_page = gpmi_ecc_read_page;
ecc->write_page = gpmi_ecc_write_page;
ecc->read_oob = gpmi_ecc_read_oob;
ecc->write_oob = gpmi_ecc_write_oob;
ecc->read_page_raw = gpmi_ecc_read_page_raw;
ecc->write_page_raw = gpmi_ecc_write_page_raw;
ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
ecc->size = bch_geo->eccn_chunk_size;
ecc->strength = bch_geo->ecc_strength;
mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
if (GPMI_IS_MX6(this) &&
((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
ecc->read_subpage = gpmi_ecc_read_subpage;
chip->options |= NAND_SUBPAGE_READ;
}
return 0;
}
static int gpmi_nand_attach_chip(struct nand_chip *chip)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
int ret;
if (chip->bbt_options & NAND_BBT_USE_FLASH) {
chip->bbt_options |= NAND_BBT_NO_OOB;
if (of_property_read_bool(this->dev->of_node,
"fsl,no-blockmark-swap"))
this->swap_block_mark = false;
}
dev_dbg(this->dev, "Blockmark swapping %sabled\n",
this->swap_block_mark ? "en" : "dis");
ret = gpmi_init_last(this);
if (ret)
return ret;
chip->options |= NAND_SKIP_BBTSCAN;
return 0;
}
static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
{
struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
this->ntransfers++;
if (this->ntransfers == GPMI_MAX_TRANSFERS)
return NULL;
return transfer;
}
static struct dma_async_tx_descriptor *gpmi_chain_command(
struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
{
struct dma_chan *channel = get_dma_chan(this);
struct dma_async_tx_descriptor *desc;
struct gpmi_transfer *transfer;
int chip = this->nand.cur_cs;
u32 pio[3];
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
| BM_GPMI_CTRL0_WORD_LENGTH
| BF_GPMI_CTRL0_CS(chip, this)
| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
| BM_GPMI_CTRL0_ADDRESS_INCREMENT
| BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
pio[1] = 0;
pio[2] = 0;
desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
DMA_TRANS_NONE, 0);
if (!desc)
return NULL;
transfer = get_next_transfer(this);
if (!transfer)
return NULL;
transfer->cmdbuf[0] = cmd;
if (naddr)
memcpy(&transfer->cmdbuf[1], addr, naddr);
sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
transfer->direction = DMA_TO_DEVICE;
desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
MXS_DMA_CTRL_WAIT4END);
return desc;
}
static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
struct gpmi_nand_data *this)
{
struct dma_chan *channel = get_dma_chan(this);
u32 pio[2];
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
| BM_GPMI_CTRL0_WORD_LENGTH
| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
| BF_GPMI_CTRL0_XFER_COUNT(0);
pio[1] = 0;
return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
}
static struct dma_async_tx_descriptor *gpmi_chain_data_read(
struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
{
struct dma_async_tx_descriptor *desc;
struct dma_chan *channel = get_dma_chan(this);
struct gpmi_transfer *transfer;
u32 pio[6] = {};
transfer = get_next_transfer(this);
if (!transfer)
return NULL;
transfer->direction = DMA_FROM_DEVICE;
*direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
DMA_FROM_DEVICE);
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
| BM_GPMI_CTRL0_WORD_LENGTH
| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
if (this->bch) {
pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
pio[3] = raw_len;
pio[4] = transfer->sgl.dma_address;
pio[5] = this->auxiliary_phys;
}
desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
DMA_TRANS_NONE, 0);
if (!desc)
return NULL;
if (!this->bch)
desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
DMA_DEV_TO_MEM,
MXS_DMA_CTRL_WAIT4END);
return desc;
}
static struct dma_async_tx_descriptor *gpmi_chain_data_write(
struct gpmi_nand_data *this, const void *buf, int raw_len)
{
struct dma_chan *channel = get_dma_chan(this);
struct dma_async_tx_descriptor *desc;
struct gpmi_transfer *transfer;
u32 pio[6] = {};
transfer = get_next_transfer(this);
if (!transfer)
return NULL;
transfer->direction = DMA_TO_DEVICE;
prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
| BM_GPMI_CTRL0_WORD_LENGTH
| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
if (this->bch) {
pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
pio[3] = raw_len;
pio[4] = transfer->sgl.dma_address;
pio[5] = this->auxiliary_phys;
}
desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
DMA_TRANS_NONE,
(this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
if (!desc)
return NULL;
if (!this->bch)
desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
DMA_MEM_TO_DEV,
MXS_DMA_CTRL_WAIT4END);
return desc;
}
static int gpmi_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
const struct nand_op_instr *instr;
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct dma_async_tx_descriptor *desc = NULL;
int i, ret, buf_len = 0, nbufs = 0;
u8 cmd = 0;
void *buf_read = NULL;
const void *buf_write = NULL;
bool direct = false;
struct completion *dma_completion, *bch_completion;
unsigned long to;
if (check_only)
return 0;
this->ntransfers = 0;
for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
this->transfers[i].direction = DMA_NONE;
ret = pm_runtime_resume_and_get(this->dev);
if (ret < 0)
return ret;
if (this->hw.must_apply_timings) {
this->hw.must_apply_timings = false;
ret = gpmi_nfc_apply_timings(this);
if (ret)
goto out_pm;
}
dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
for (i = 0; i < op->ninstrs; i++) {
instr = &op->instrs[i];
nand_op_trace(" ", instr);
switch (instr->type) {
case NAND_OP_WAITRDY_INSTR:
desc = gpmi_chain_wait_ready(this);
break;
case NAND_OP_CMD_INSTR:
cmd = instr->ctx.cmd.opcode;
if (i + 1 != op->ninstrs &&
op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
continue;
desc = gpmi_chain_command(this, cmd, NULL, 0);
break;
case NAND_OP_ADDR_INSTR:
desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
instr->ctx.addr.naddrs);
break;
case NAND_OP_DATA_OUT_INSTR:
buf_write = instr->ctx.data.buf.out;
buf_len = instr->ctx.data.len;
nbufs++;
desc = gpmi_chain_data_write(this, buf_write, buf_len);
break;
case NAND_OP_DATA_IN_INSTR:
if (!instr->ctx.data.len)
break;
buf_read = instr->ctx.data.buf.in;
buf_len = instr->ctx.data.len;
nbufs++;
desc = gpmi_chain_data_read(this, buf_read, buf_len,
&direct);
break;
}
if (!desc) {
ret = -ENXIO;
goto unmap;
}
}
dev_dbg(this->dev, "%s setup done\n", __func__);
if (nbufs > 1) {
dev_err(this->dev, "Multiple data instructions not supported\n");
ret = -EINVAL;
goto unmap;
}
if (this->bch) {
writel(this->bch_flashlayout0,
this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
writel(this->bch_flashlayout1,
this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
}
desc->callback = dma_irq_callback;
desc->callback_param = this;
dma_completion = &this->dma_done;
bch_completion = NULL;
init_completion(dma_completion);
if (this->bch && buf_read) {
writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
this->resources.bch_regs + HW_BCH_CTRL_SET);
bch_completion = &this->bch_done;
init_completion(bch_completion);
}
dmaengine_submit(desc);
dma_async_issue_pending(get_dma_chan(this));
to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
if (!to) {
dev_err(this->dev, "DMA timeout, last DMA\n");
gpmi_dump_info(this);
ret = -ETIMEDOUT;
goto unmap;
}
if (this->bch && buf_read) {
to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000));
if (!to) {
dev_err(this->dev, "BCH timeout, last DMA\n");
gpmi_dump_info(this);
ret = -ETIMEDOUT;
goto unmap;
}
}
writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
this->resources.bch_regs + HW_BCH_CTRL_CLR);
gpmi_clear_bch(this);
ret = 0;
unmap:
for (i = 0; i < this->ntransfers; i++) {
struct gpmi_transfer *transfer = &this->transfers[i];
if (transfer->direction != DMA_NONE)
dma_unmap_sg(this->dev, &transfer->sgl, 1,
transfer->direction);
}
if (!ret && buf_read && !direct)
memcpy(buf_read, this->data_buffer_dma,
gpmi_raw_len_to_len(this, buf_len));
this->bch = false;
out_pm:
pm_runtime_mark_last_busy(this->dev);
pm_runtime_put_autosuspend(this->dev);
return ret;
}
static const struct nand_controller_ops gpmi_nand_controller_ops = {
.attach_chip = gpmi_nand_attach_chip,
.setup_interface = gpmi_setup_interface,
.exec_op = gpmi_nfc_exec_op,
};
static int gpmi_nand_init(struct gpmi_nand_data *this)
{
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
mtd->name = "gpmi-nand";
mtd->dev.parent = this->dev;
nand_set_controller_data(chip, this);
nand_set_flash_node(chip, this->pdev->dev.of_node);
chip->legacy.block_markbad = gpmi_block_markbad;
chip->badblock_pattern = &gpmi_bbt_descr;
chip->options |= NAND_NO_SUBPAGE_WRITE;
this->swap_block_mark = !GPMI_IS_MX23(this);
this->bch_geometry.payload_size = 1024;
this->bch_geometry.auxiliary_size = 128;
ret = gpmi_alloc_dma_buffer(this);
if (ret)
return ret;
nand_controller_init(&this->base);
this->base.ops = &gpmi_nand_controller_ops;
chip->controller = &this->base;
ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
if (ret)
goto err_out;
ret = nand_boot_init(this);
if (ret)
goto err_nand_cleanup;
ret = nand_create_bbt(chip);
if (ret)
goto err_nand_cleanup;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto err_nand_cleanup;
return 0;
err_nand_cleanup:
nand_cleanup(chip);
err_out:
gpmi_free_dma_buffer(this);
return ret;
}
static const struct of_device_id gpmi_nand_id_table[] = {
{ .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, },
{ .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, },
{ .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, },
{ .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, },
{ .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,},
{}
};
MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
static int gpmi_nand_probe(struct platform_device *pdev)
{
struct gpmi_nand_data *this;
int ret;
this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
if (!this)
return -ENOMEM;
this->devdata = of_device_get_match_data(&pdev->dev);
platform_set_drvdata(pdev, this);
this->pdev = pdev;
this->dev = &pdev->dev;
ret = acquire_resources(this);
if (ret)
goto exit_acquire_resources;
ret = __gpmi_enable_clk(this, true);
if (ret)
goto exit_acquire_resources;
pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(&pdev->dev);
ret = gpmi_init(this);
if (ret)
goto exit_nfc_init;
ret = gpmi_nand_init(this);
if (ret)
goto exit_nfc_init;
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
dev_info(this->dev, "driver registered.\n");
return 0;
exit_nfc_init:
pm_runtime_put(&pdev->dev);
pm_runtime_disable(&pdev->dev);
release_resources(this);
exit_acquire_resources:
return ret;
}
static void gpmi_nand_remove(struct platform_device *pdev)
{
struct gpmi_nand_data *this = platform_get_drvdata(pdev);
struct nand_chip *chip = &this->nand;
int ret;
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
gpmi_free_dma_buffer(this);
release_resources(this);
}
#ifdef CONFIG_PM_SLEEP
static int gpmi_pm_suspend(struct device *dev)
{
struct gpmi_nand_data *this = dev_get_drvdata(dev);
release_dma_channels(this);
return 0;
}
static int gpmi_pm_resume(struct device *dev)
{
struct gpmi_nand_data *this = dev_get_drvdata(dev);
int ret;
ret = acquire_dma_channels(this);
if (ret < 0)
return ret;
ret = gpmi_init(this);
if (ret) {
dev_err(this->dev, "Error setting GPMI : %d\n", ret);
return ret;
}
if (this->hw.clk_rate)
this->hw.must_apply_timings = true;
ret = bch_set_geometry(this);
if (ret) {
dev_err(this->dev, "Error setting BCH : %d\n", ret);
return ret;
}
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
{
struct gpmi_nand_data *this = dev_get_drvdata(dev);
return __gpmi_enable_clk(this, false);
}
static int __maybe_unused gpmi_runtime_resume(struct device *dev)
{
struct gpmi_nand_data *this = dev_get_drvdata(dev);
return __gpmi_enable_clk(this, true);
}
static const struct dev_pm_ops gpmi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
};
static struct platform_driver gpmi_nand_driver = {
.driver = {
.name = "gpmi-nand",
.pm = &gpmi_pm_ops,
.of_match_table = gpmi_nand_id_table,
},
.probe = gpmi_nand_probe,
.remove_new = gpmi_nand_remove,
};
module_platform_driver(gpmi_nand_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
MODULE_LICENSE("GPL"