#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/mutex.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/regmap.h>
#include <asm/unaligned.h>
#include <linux/iio/common/st_sensors.h>
#include "st_sensors_core.h"
int st_sensors_write_data_with_mask(struct iio_dev *indio_dev,
u8 reg_addr, u8 mask, u8 data)
{
struct st_sensor_data *sdata = iio_priv(indio_dev);
return regmap_update_bits(sdata->regmap,
reg_addr, mask, data << __ffs(mask));
}
int st_sensors_debugfs_reg_access(struct iio_dev *indio_dev,
unsigned reg, unsigned writeval,
unsigned *readval)
{
struct st_sensor_data *sdata = iio_priv(indio_dev);
int err;
if (!readval)
return regmap_write(sdata->regmap, reg, writeval);
err = regmap_read(sdata->regmap, reg, readval);
if (err < 0)
return err;
return 0;
}
EXPORT_SYMBOL_NS(st_sensors_debugfs_reg_access, IIO_ST_SENSORS);
static int st_sensors_match_odr(struct st_sensor_settings *sensor_settings,
unsigned int odr, struct st_sensor_odr_avl *odr_out)
{
int i, ret = -EINVAL;
for (i = 0; i < ST_SENSORS_ODR_LIST_MAX; i++) {
if (sensor_settings->odr.odr_avl[i].hz == 0)
goto st_sensors_match_odr_error;
if (sensor_settings->odr.odr_avl[i].hz == odr) {
odr_out->hz = sensor_settings->odr.odr_avl[i].hz;
odr_out->value = sensor_settings->odr.odr_avl[i].value;
ret = 0;
break;
}
}
st_sensors_match_odr_error:
return ret;
}
int st_sensors_set_odr(struct iio_dev *indio_dev, unsigned int odr)
{
int err = 0;
struct st_sensor_odr_avl odr_out = {0, 0};
struct st_sensor_data *sdata = iio_priv(indio_dev);
mutex_lock(&sdata->odr_lock);
if (!sdata->sensor_settings->odr.mask)
goto unlock_mutex;
err = st_sensors_match_odr(sdata->sensor_settings, odr, &odr_out);
if (err < 0)
goto unlock_mutex;
if ((sdata->sensor_settings->odr.addr ==
sdata->sensor_settings->pw.addr) &&
(sdata->sensor_settings->odr.mask ==
sdata->sensor_settings->pw.mask)) {
if (sdata->enabled == true) {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->odr.addr,
sdata->sensor_settings->odr.mask,
odr_out.value);
} else {
err = 0;
}
} else {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->odr.addr,
sdata->sensor_settings->odr.mask,
odr_out.value);
}
if (err >= 0)
sdata->odr = odr_out.hz;
unlock_mutex:
mutex_unlock(&sdata->odr_lock);
return err;
}
EXPORT_SYMBOL_NS(st_sensors_set_odr, IIO_ST_SENSORS);
static int st_sensors_match_fs(struct st_sensor_settings *sensor_settings,
unsigned int fs, int *index_fs_avl)
{
int i, ret = -EINVAL;
for (i = 0; i < ST_SENSORS_FULLSCALE_AVL_MAX; i++) {
if (sensor_settings->fs.fs_avl[i].num == 0)
return ret;
if (sensor_settings->fs.fs_avl[i].num == fs) {
*index_fs_avl = i;
ret = 0;
break;
}
}
return ret;
}
static int st_sensors_set_fullscale(struct iio_dev *indio_dev, unsigned int fs)
{
int err, i = 0;
struct st_sensor_data *sdata = iio_priv(indio_dev);
if (sdata->sensor_settings->fs.addr == 0)
return 0;
err = st_sensors_match_fs(sdata->sensor_settings, fs, &i);
if (err < 0)
goto st_accel_set_fullscale_error;
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->fs.addr,
sdata->sensor_settings->fs.mask,
sdata->sensor_settings->fs.fs_avl[i].value);
if (err < 0)
goto st_accel_set_fullscale_error;
sdata->current_fullscale = &sdata->sensor_settings->fs.fs_avl[i];
return err;
st_accel_set_fullscale_error:
dev_err(&indio_dev->dev, "failed to set new fullscale.\n");
return err;
}
int st_sensors_set_enable(struct iio_dev *indio_dev, bool enable)
{
u8 tmp_value;
int err = -EINVAL;
bool found = false;
struct st_sensor_odr_avl odr_out = {0, 0};
struct st_sensor_data *sdata = iio_priv(indio_dev);
if (enable) {
tmp_value = sdata->sensor_settings->pw.value_on;
if ((sdata->sensor_settings->odr.addr ==
sdata->sensor_settings->pw.addr) &&
(sdata->sensor_settings->odr.mask ==
sdata->sensor_settings->pw.mask)) {
err = st_sensors_match_odr(sdata->sensor_settings,
sdata->odr, &odr_out);
if (err < 0)
goto set_enable_error;
tmp_value = odr_out.value;
found = true;
}
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->pw.addr,
sdata->sensor_settings->pw.mask, tmp_value);
if (err < 0)
goto set_enable_error;
sdata->enabled = true;
if (found)
sdata->odr = odr_out.hz;
} else {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->pw.addr,
sdata->sensor_settings->pw.mask,
sdata->sensor_settings->pw.value_off);
if (err < 0)
goto set_enable_error;
sdata->enabled = false;
}
set_enable_error:
return err;
}
EXPORT_SYMBOL_NS(st_sensors_set_enable, IIO_ST_SENSORS);
int st_sensors_set_axis_enable(struct iio_dev *indio_dev, u8 axis_enable)
{
struct st_sensor_data *sdata = iio_priv(indio_dev);
int err = 0;
if (sdata->sensor_settings->enable_axis.addr)
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->enable_axis.addr,
sdata->sensor_settings->enable_axis.mask,
axis_enable);
return err;
}
EXPORT_SYMBOL_NS(st_sensors_set_axis_enable, IIO_ST_SENSORS);
int st_sensors_power_enable(struct iio_dev *indio_dev)
{
static const char * const regulator_names[] = { "vdd", "vddio" };
struct device *parent = indio_dev->dev.parent;
int err;
err = devm_regulator_bulk_get_enable(parent,
ARRAY_SIZE(regulator_names),
regulator_names);
if (err)
return dev_err_probe(&indio_dev->dev, err,
"unable to enable supplies\n");
return 0;
}
EXPORT_SYMBOL_NS(st_sensors_power_enable, IIO_ST_SENSORS);
static int st_sensors_set_drdy_int_pin(struct iio_dev *indio_dev,
struct st_sensors_platform_data *pdata)
{
struct st_sensor_data *sdata = iio_priv(indio_dev);
if (!sdata->sensor_settings->drdy_irq.int1.addr &&
!sdata->sensor_settings->drdy_irq.int2.addr) {
if (pdata->drdy_int_pin)
dev_info(&indio_dev->dev,
"DRDY on pin INT%d specified, but sensor does not support interrupts\n",
pdata->drdy_int_pin);
return 0;
}
switch (pdata->drdy_int_pin) {
case 1:
if (!sdata->sensor_settings->drdy_irq.int1.mask) {
dev_err(&indio_dev->dev,
"DRDY on INT1 not available.\n");
return -EINVAL;
}
sdata->drdy_int_pin = 1;
break;
case 2:
if (!sdata->sensor_settings->drdy_irq.int2.mask) {
dev_err(&indio_dev->dev,
"DRDY on INT2 not available.\n");
return -EINVAL;
}
sdata->drdy_int_pin = 2;
break;
default:
dev_err(&indio_dev->dev, "DRDY on pdata not valid.\n");
return -EINVAL;
}
if (pdata->open_drain) {
if (!sdata->sensor_settings->drdy_irq.int1.addr_od &&
!sdata->sensor_settings->drdy_irq.int2.addr_od)
dev_err(&indio_dev->dev,
"open drain requested but unsupported.\n");
else
sdata->int_pin_open_drain = true;
}
return 0;
}
static struct st_sensors_platform_data *st_sensors_dev_probe(struct device *dev,
struct st_sensors_platform_data *defdata)
{
struct st_sensors_platform_data *pdata;
u32 val;
if (!dev_fwnode(dev))
return NULL;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return ERR_PTR(-ENOMEM);
if (!device_property_read_u32(dev, "st,drdy-int-pin", &val) && (val <= 2))
pdata->drdy_int_pin = (u8) val;
else
pdata->drdy_int_pin = defdata ? defdata->drdy_int_pin : 0;
pdata->open_drain = device_property_read_bool(dev, "drive-open-drain");
return pdata;
}
void st_sensors_dev_name_probe(struct device *dev, char *name, int len)
{
const void *match;
match = device_get_match_data(dev);
if (!match)
return;
strscpy(name, match, len);
}
EXPORT_SYMBOL_NS(st_sensors_dev_name_probe, IIO_ST_SENSORS);
int st_sensors_init_sensor(struct iio_dev *indio_dev,
struct st_sensors_platform_data *pdata)
{
struct st_sensor_data *sdata = iio_priv(indio_dev);
struct st_sensors_platform_data *of_pdata;
int err = 0;
mutex_init(&sdata->odr_lock);
of_pdata = st_sensors_dev_probe(indio_dev->dev.parent, pdata);
if (IS_ERR(of_pdata))
return PTR_ERR(of_pdata);
if (of_pdata)
pdata = of_pdata;
if (pdata) {
err = st_sensors_set_drdy_int_pin(indio_dev, pdata);
if (err < 0)
return err;
}
err = st_sensors_set_enable(indio_dev, false);
if (err < 0)
return err;
err = st_sensors_set_dataready_irq(indio_dev, false);
if (err < 0)
return err;
if (sdata->current_fullscale) {
err = st_sensors_set_fullscale(indio_dev,
sdata->current_fullscale->num);
if (err < 0)
return err;
} else
dev_info(&indio_dev->dev, "Full-scale not possible\n");
err = st_sensors_set_odr(indio_dev, sdata->odr);
if (err < 0)
return err;
if (sdata->sensor_settings->bdu.addr) {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->bdu.addr,
sdata->sensor_settings->bdu.mask, true);
if (err < 0)
return err;
}
if (sdata->sensor_settings->das.addr) {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->das.addr,
sdata->sensor_settings->das.mask, 1);
if (err < 0)
return err;
}
if (sdata->int_pin_open_drain) {
u8 addr, mask;
if (sdata->drdy_int_pin == 1) {
addr = sdata->sensor_settings->drdy_irq.int1.addr_od;
mask = sdata->sensor_settings->drdy_irq.int1.mask_od;
} else {
addr = sdata->sensor_settings->drdy_irq.int2.addr_od;
mask = sdata->sensor_settings->drdy_irq.int2.mask_od;
}
dev_info(&indio_dev->dev,
"set interrupt line to open drain mode on pin %d\n",
sdata->drdy_int_pin);
err = st_sensors_write_data_with_mask(indio_dev, addr,
mask, 1);
if (err < 0)
return err;
}
err = st_sensors_set_axis_enable(indio_dev, ST_SENSORS_ENABLE_ALL_AXIS);
return err;
}
EXPORT_SYMBOL_NS(st_sensors_init_sensor, IIO_ST_SENSORS);
int st_sensors_set_dataready_irq(struct iio_dev *indio_dev, bool enable)
{
int err;
u8 drdy_addr, drdy_mask;
struct st_sensor_data *sdata = iio_priv(indio_dev);
if (!sdata->sensor_settings->drdy_irq.int1.addr &&
!sdata->sensor_settings->drdy_irq.int2.addr) {
if (sdata->sensor_settings->drdy_irq.stat_drdy.addr)
sdata->hw_irq_trigger = enable;
return 0;
}
if (sdata->sensor_settings->drdy_irq.ig1.en_addr > 0) {
err = st_sensors_write_data_with_mask(indio_dev,
sdata->sensor_settings->drdy_irq.ig1.en_addr,
sdata->sensor_settings->drdy_irq.ig1.en_mask,
(int)enable);
if (err < 0)
goto st_accel_set_dataready_irq_error;
}
if (sdata->drdy_int_pin == 1) {
drdy_addr = sdata->sensor_settings->drdy_irq.int1.addr;
drdy_mask = sdata->sensor_settings->drdy_irq.int1.mask;
} else {
drdy_addr = sdata->sensor_settings->drdy_irq.int2.addr;
drdy_mask = sdata->sensor_settings->drdy_irq.int2.mask;
}
sdata->hw_irq_trigger = enable;
err = st_sensors_write_data_with_mask(indio_dev, drdy_addr,
drdy_mask, (int)enable);
st_accel_set_dataready_irq_error:
return err;
}
EXPORT_SYMBOL_NS(st_sensors_set_dataready_irq, IIO_ST_SENSORS);
int st_sensors_set_fullscale_by_gain(struct iio_dev *indio_dev, int scale)
{
int err = -EINVAL, i;
struct st_sensor_data *sdata = iio_priv(indio_dev);
for (i = 0; i < ST_SENSORS_FULLSCALE_AVL_MAX; i++) {
if ((sdata->sensor_settings->fs.fs_avl[i].gain == scale) &&
(sdata->sensor_settings->fs.fs_avl[i].gain != 0)) {
err = 0;
break;
}
}
if (err < 0)
goto st_sensors_match_scale_error;
err = st_sensors_set_fullscale(indio_dev,
sdata->sensor_settings->fs.fs_avl[i].num);
st_sensors_match_scale_error:
return err;
}
EXPORT_SYMBOL_NS(st_sensors_set_fullscale_by_gain, IIO_ST_SENSORS);
static int st_sensors_read_axis_data(struct iio_dev *indio_dev,
struct iio_chan_spec const *ch, int *data)
{
int err;
u8 *outdata;
struct st_sensor_data *sdata = iio_priv(indio_dev);
unsigned int byte_for_channel;
byte_for_channel = DIV_ROUND_UP(ch->scan_type.realbits +
ch->scan_type.shift, 8);
outdata = kmalloc(byte_for_channel, GFP_DMA | GFP_KERNEL);
if (!outdata)
return -ENOMEM;
err = regmap_bulk_read(sdata->regmap, ch->address,
outdata, byte_for_channel);
if (err < 0)
goto st_sensors_free_memory;
if (byte_for_channel == 1)
*data = (s8)*outdata;
else if (byte_for_channel == 2)
*data = (s16)get_unaligned_le16(outdata);
else if (byte_for_channel == 3)
*data = (s32)sign_extend32(get_unaligned_le24(outdata), 23);
st_sensors_free_memory:
kfree(outdata);
return err;
}
int st_sensors_read_info_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *ch, int *val)
{
int err;
struct st_sensor_data *sdata = iio_priv(indio_dev);
err = iio_device_claim_direct_mode(indio_dev);
if (err)
return err;
mutex_lock(&sdata->odr_lock);
err = st_sensors_set_enable(indio_dev, true);
if (err < 0)
goto out;
msleep((sdata->sensor_settings->bootime * 1000) / sdata->odr);
err = st_sensors_read_axis_data(indio_dev, ch, val);
if (err < 0)
goto out;
*val = *val >> ch->scan_type.shift;
err = st_sensors_set_enable(indio_dev, false);
out:
mutex_unlock(&sdata->odr_lock);
iio_device_release_direct_mode(indio_dev);
return err;
}
EXPORT_SYMBOL_NS(st_sensors_read_info_raw, IIO_ST_SENSORS);
int st_sensors_get_settings_index(const char *name,
const struct st_sensor_settings *list,
const int list_length)
{
int i, n;
for (i = 0; i < list_length; i++) {
for (n = 0; n < ST_SENSORS_MAX_4WAI; n++) {
if (strcmp(name, list[i].sensors_supported[n]) == 0)
return i;
}
}
return -ENODEV;
}
EXPORT_SYMBOL_NS(st_sensors_get_settings_index, IIO_ST_SENSORS);
int st_sensors_verify_id(struct iio_dev *indio_dev)
{
struct st_sensor_data *sdata = iio_priv(indio_dev);
int wai, err;
if (sdata->sensor_settings->wai_addr) {
err = regmap_read(sdata->regmap,
sdata->sensor_settings->wai_addr, &wai);
if (err < 0) {
dev_err(&indio_dev->dev,
"failed to read Who-Am-I register.\n");
return err;
}
if (sdata->sensor_settings->wai != wai) {
dev_err(&indio_dev->dev,
"%s: WhoAmI mismatch (0x%x).\n",
indio_dev->name, wai);
return -EINVAL;
}
}
return 0;
}
EXPORT_SYMBOL_NS(st_sensors_verify_id, IIO_ST_SENSORS);
ssize_t st_sensors_sysfs_sampling_frequency_avail(struct device *dev,
struct device_attribute *attr, char *buf)
{
int i, len = 0;
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct st_sensor_data *sdata = iio_priv(indio_dev);
for (i = 0; i < ST_SENSORS_ODR_LIST_MAX; i++) {
if (sdata->sensor_settings->odr.odr_avl[i].hz == 0)
break;
len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
sdata->sensor_settings->odr.odr_avl[i].hz);
}
buf[len - 1] = '\n';
return len;
}
EXPORT_SYMBOL_NS(st_sensors_sysfs_sampling_frequency_avail, IIO_ST_SENSORS);
ssize_t st_sensors_sysfs_scale_avail(struct device *dev,
struct device_attribute *attr, char *buf)
{
int i, len = 0, q, r;
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct st_sensor_data *sdata = iio_priv(indio_dev);
for (i = 0; i < ST_SENSORS_FULLSCALE_AVL_MAX; i++) {
if (sdata->sensor_settings->fs.fs_avl[i].num == 0)
break;
q = sdata->sensor_settings->fs.fs_avl[i].gain / 1000000;
r = sdata->sensor_settings->fs.fs_avl[i].gain % 1000000;
len += scnprintf(buf + len, PAGE_SIZE - len, "%u.%06u ", q, r);
}
buf[len - 1] = '\n';
return len;
}
EXPORT_SYMBOL_NS(st_sensors_sysfs_scale_avail, IIO_ST_SENSORS);
MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
MODULE_DESCRIPTION("STMicroelectronics ST-sensors core");
MODULE_LICENSE("GPL v2"