#include <linux/dma-resv.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/string_helpers.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_damage_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_rect.h>
#include "gem/i915_gem_lmem.h"
#include "gem/i915_gem_object.h"
#include "g4x_dp.h"
#include "g4x_hdmi.h"
#include "hsw_ips.h"
#include "i915_drv.h"
#include "i915_reg.h"
#include "i915_utils.h"
#include "i9xx_plane.h"
#include "i9xx_wm.h"
#include "intel_atomic.h"
#include "intel_atomic_plane.h"
#include "intel_audio.h"
#include "intel_bw.h"
#include "intel_cdclk.h"
#include "intel_clock_gating.h"
#include "intel_color.h"
#include "intel_crt.h"
#include "intel_crtc.h"
#include "intel_crtc_state_dump.h"
#include "intel_ddi.h"
#include "intel_de.h"
#include "intel_display_driver.h"
#include "intel_display_power.h"
#include "intel_display_types.h"
#include "intel_dmc.h"
#include "intel_dp.h"
#include "intel_dp_link_training.h"
#include "intel_dp_mst.h"
#include "intel_dpio_phy.h"
#include "intel_dpll.h"
#include "intel_dpll_mgr.h"
#include "intel_dpt.h"
#include "intel_drrs.h"
#include "intel_dsi.h"
#include "intel_dvo.h"
#include "intel_fb.h"
#include "intel_fbc.h"
#include "intel_fbdev.h"
#include "intel_fdi.h"
#include "intel_fifo_underrun.h"
#include "intel_frontbuffer.h"
#include "intel_hdmi.h"
#include "intel_hotplug.h"
#include "intel_lvds.h"
#include "intel_lvds_regs.h"
#include "intel_modeset_setup.h"
#include "intel_modeset_verify.h"
#include "intel_overlay.h"
#include "intel_panel.h"
#include "intel_pch_display.h"
#include "intel_pch_refclk.h"
#include "intel_pcode.h"
#include "intel_pipe_crc.h"
#include "intel_plane_initial.h"
#include "intel_pmdemand.h"
#include "intel_pps.h"
#include "intel_psr.h"
#include "intel_sdvo.h"
#include "intel_snps_phy.h"
#include "intel_tc.h"
#include "intel_tv.h"
#include "intel_vblank.h"
#include "intel_vdsc.h"
#include "intel_vdsc_regs.h"
#include "intel_vga.h"
#include "intel_vrr.h"
#include "intel_wm.h"
#include "skl_scaler.h"
#include "skl_universal_plane.h"
#include "skl_watermark.h"
#include "vlv_dsi.h"
#include "vlv_dsi_pll.h"
#include "vlv_dsi_regs.h"
#include "vlv_sideband.h"
static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state);
static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
static void hsw_set_transconf(const struct intel_crtc_state *crtc_state);
static void bdw_set_pipe_misc(const struct intel_crtc_state *crtc_state);
int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
{
int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
CCK_FUSE_HPLL_FREQ_MASK;
return vco_freq[hpll_freq] * 1000;
}
int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
const char *name, u32 reg, int ref_freq)
{
u32 val;
int divider;
val = vlv_cck_read(dev_priv, reg);
divider = val & CCK_FREQUENCY_VALUES;
drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) !=
(divider << CCK_FREQUENCY_STATUS_SHIFT),
"%s change in progress\n", name);
return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
}
int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
const char *name, u32 reg)
{
int hpll;
vlv_cck_get(dev_priv);
if (dev_priv->hpll_freq == 0)
dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
vlv_cck_put(dev_priv);
return hpll;
}
void intel_update_czclk(struct drm_i915_private *dev_priv)
{
if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
return;
dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
CCK_CZ_CLOCK_CONTROL);
drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n",
dev_priv->czclk_freq);
}
static bool is_hdr_mode(const struct intel_crtc_state *crtc_state)
{
return (crtc_state->active_planes &
~(icl_hdr_plane_mask() | BIT(PLANE_CURSOR))) == 0;
}
static void
skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
{
if (enable)
intel_de_rmw(dev_priv, CLKGATE_DIS_PSL(pipe),
0, DUPS1_GATING_DIS | DUPS2_GATING_DIS);
else
intel_de_rmw(dev_priv, CLKGATE_DIS_PSL(pipe),
DUPS1_GATING_DIS | DUPS2_GATING_DIS, 0);
}
static void
icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
bool enable)
{
if (enable)
intel_de_rmw(dev_priv, CLKGATE_DIS_PSL(pipe), 0, DPFR_GATING_DIS);
else
intel_de_rmw(dev_priv, CLKGATE_DIS_PSL(pipe), DPFR_GATING_DIS, 0);
}
static void
icl_wa_cursorclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
bool enable)
{
intel_de_rmw(dev_priv, CLKGATE_DIS_PSL(pipe), CURSOR_GATING_DIS,
enable ? CURSOR_GATING_DIS : 0);
}
static bool
is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state)
{
return crtc_state->master_transcoder != INVALID_TRANSCODER;
}
bool
is_trans_port_sync_master(const struct intel_crtc_state *crtc_state)
{
return crtc_state->sync_mode_slaves_mask != 0;
}
bool
is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
{
return is_trans_port_sync_master(crtc_state) ||
is_trans_port_sync_slave(crtc_state);
}
static enum pipe bigjoiner_master_pipe(const struct intel_crtc_state *crtc_state)
{
return ffs(crtc_state->bigjoiner_pipes) - 1;
}
u8 intel_crtc_bigjoiner_slave_pipes(const struct intel_crtc_state *crtc_state)
{
if (crtc_state->bigjoiner_pipes)
return crtc_state->bigjoiner_pipes & ~BIT(bigjoiner_master_pipe(crtc_state));
else
return 0;
}
bool intel_crtc_is_bigjoiner_slave(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
return crtc_state->bigjoiner_pipes &&
crtc->pipe != bigjoiner_master_pipe(crtc_state);
}
bool intel_crtc_is_bigjoiner_master(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
return crtc_state->bigjoiner_pipes &&
crtc->pipe == bigjoiner_master_pipe(crtc_state);
}
static int intel_bigjoiner_num_pipes(const struct intel_crtc_state *crtc_state)
{
return hweight8(crtc_state->bigjoiner_pipes);
}
struct intel_crtc *intel_master_crtc(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
if (intel_crtc_is_bigjoiner_slave(crtc_state))
return intel_crtc_for_pipe(i915, bigjoiner_master_pipe(crtc_state));
else
return to_intel_crtc(crtc_state->uapi.crtc);
}
static void
intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (DISPLAY_VER(dev_priv) >= 4) {
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
if (intel_de_wait_for_clear(dev_priv, TRANSCONF(cpu_transcoder),
TRANSCONF_STATE_ENABLE, 100))
drm_WARN(&dev_priv->drm, 1, "pipe_off wait timed out\n");
} else {
intel_wait_for_pipe_scanline_stopped(crtc);
}
}
void assert_transcoder(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder, bool state)
{
bool cur_state;
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
if (IS_I830(dev_priv))
state = true;
power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (wakeref) {
u32 val = intel_de_read(dev_priv, TRANSCONF(cpu_transcoder));
cur_state = !!(val & TRANSCONF_ENABLE);
intel_display_power_put(dev_priv, power_domain, wakeref);
} else {
cur_state = false;
}
I915_STATE_WARN(dev_priv, cur_state != state,
"transcoder %s assertion failure (expected %s, current %s)\n",
transcoder_name(cpu_transcoder), str_on_off(state),
str_on_off(cur_state));
}
static void assert_plane(struct intel_plane *plane, bool state)
{
struct drm_i915_private *i915 = to_i915(plane->base.dev);
enum pipe pipe;
bool cur_state;
cur_state = plane->get_hw_state(plane, &pipe);
I915_STATE_WARN(i915, cur_state != state,
"%s assertion failure (expected %s, current %s)\n",
plane->base.name, str_on_off(state),
str_on_off(cur_state));
}
#define assert_plane_enabled(p) assert_plane(p, true)
#define assert_plane_disabled(p) assert_plane(p, false)
static void assert_planes_disabled(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_plane *plane;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
assert_plane_disabled(plane);
}
void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
struct intel_digital_port *dig_port,
unsigned int expected_mask)
{
u32 port_mask;
i915_reg_t dpll_reg;
switch (dig_port->base.port) {
default:
MISSING_CASE(dig_port->base.port);
fallthrough;
case PORT_B:
port_mask = DPLL_PORTB_READY_MASK;
dpll_reg = DPLL(0);
break;
case PORT_C:
port_mask = DPLL_PORTC_READY_MASK;
dpll_reg = DPLL(0);
expected_mask <<= 4;
break;
case PORT_D:
port_mask = DPLL_PORTD_READY_MASK;
dpll_reg = DPIO_PHY_STATUS;
break;
}
if (intel_de_wait_for_register(dev_priv, dpll_reg,
port_mask, expected_mask, 1000))
drm_WARN(&dev_priv->drm, 1,
"timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
dig_port->base.base.base.id, dig_port->base.base.name,
intel_de_read(dev_priv, dpll_reg) & port_mask,
expected_mask);
}
void intel_enable_transcoder(const struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
enum pipe pipe = crtc->pipe;
i915_reg_t reg;
u32 val;
drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe));
assert_planes_disabled(crtc);
if (HAS_GMCH(dev_priv)) {
if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
assert_dsi_pll_enabled(dev_priv);
else
assert_pll_enabled(dev_priv, pipe);
} else {
if (new_crtc_state->has_pch_encoder) {
assert_fdi_rx_pll_enabled(dev_priv,
intel_crtc_pch_transcoder(crtc));
assert_fdi_tx_pll_enabled(dev_priv,
(enum pipe) cpu_transcoder);
}
}
if (DISPLAY_VER(dev_priv) == 13)
intel_de_rmw(dev_priv, PIPE_ARB_CTL(pipe),
0, PIPE_ARB_USE_PROG_SLOTS);
reg = TRANSCONF(cpu_transcoder);
val = intel_de_read(dev_priv, reg);
if (val & TRANSCONF_ENABLE) {
drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv));
return;
}
intel_de_write(dev_priv, reg, val | TRANSCONF_ENABLE);
intel_de_posting_read(dev_priv, reg);
if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
intel_wait_for_pipe_scanline_moving(crtc);
}
void intel_disable_transcoder(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
enum pipe pipe = crtc->pipe;
i915_reg_t reg;
u32 val;
drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe));
assert_planes_disabled(crtc);
reg = TRANSCONF(cpu_transcoder);
val = intel_de_read(dev_priv, reg);
if ((val & TRANSCONF_ENABLE) == 0)
return;
if (old_crtc_state->double_wide)
val &= ~TRANSCONF_DOUBLE_WIDE;
if (!IS_I830(dev_priv))
val &= ~TRANSCONF_ENABLE;
if (DISPLAY_VER(dev_priv) >= 14)
intel_de_rmw(dev_priv, MTL_CHICKEN_TRANS(cpu_transcoder),
FECSTALL_DIS_DPTSTREAM_DPTTG, 0);
else if (DISPLAY_VER(dev_priv) >= 12)
intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder),
FECSTALL_DIS_DPTSTREAM_DPTTG, 0);
intel_de_write(dev_priv, reg, val);
if ((val & TRANSCONF_ENABLE) == 0)
intel_wait_for_pipe_off(old_crtc_state);
}
unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
{
unsigned int size = 0;
int i;
for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
size += rot_info->plane[i].dst_stride * rot_info->plane[i].width;
return size;
}
unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
{
unsigned int size = 0;
int i;
for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
unsigned int plane_size;
if (rem_info->plane[i].linear)
plane_size = rem_info->plane[i].size;
else
plane_size = rem_info->plane[i].dst_stride * rem_info->plane[i].height;
if (plane_size == 0)
continue;
if (rem_info->plane_alignment)
size = ALIGN(size, rem_info->plane_alignment);
size += plane_size;
}
return size;
}
bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
return DISPLAY_VER(dev_priv) < 4 ||
(plane->fbc &&
plane_state->view.gtt.type == I915_GTT_VIEW_NORMAL);
}
u32 intel_fb_xy_to_linear(int x, int y,
const struct intel_plane_state *state,
int color_plane)
{
const struct drm_framebuffer *fb = state->hw.fb;
unsigned int cpp = fb->format->cpp[color_plane];
unsigned int pitch = state->view.color_plane[color_plane].mapping_stride;
return y * pitch + x * cpp;
}
void intel_add_fb_offsets(int *x, int *y,
const struct intel_plane_state *state,
int color_plane)
{
*x += state->view.color_plane[color_plane].x;
*y += state->view.color_plane[color_plane].y;
}
u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
u32 pixel_format, u64 modifier)
{
struct intel_crtc *crtc;
struct intel_plane *plane;
if (!HAS_DISPLAY(dev_priv))
return 0;
crtc = intel_first_crtc(dev_priv);
if (!crtc)
return 0;
plane = to_intel_plane(crtc->base.primary);
return plane->max_stride(plane, pixel_format, modifier,
DRM_MODE_ROTATE_0);
}
void intel_set_plane_visible(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state,
bool visible)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
plane_state->uapi.visible = visible;
if (visible)
crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base);
else
crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base);
}
void intel_plane_fixup_bitmasks(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
struct drm_plane *plane;
crtc_state->enabled_planes = 0;
crtc_state->active_planes = 0;
drm_for_each_plane_mask(plane, &dev_priv->drm,
crtc_state->uapi.plane_mask) {
crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id);
crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
}
}
void intel_plane_disable_noatomic(struct intel_crtc *crtc,
struct intel_plane *plane)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
struct intel_plane_state *plane_state =
to_intel_plane_state(plane->base.state);
drm_dbg_kms(&dev_priv->drm,
"Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
plane->base.base.id, plane->base.name,
crtc->base.base.id, crtc->base.name);
intel_set_plane_visible(crtc_state, plane_state, false);
intel_plane_fixup_bitmasks(crtc_state);
crtc_state->data_rate[plane->id] = 0;
crtc_state->data_rate_y[plane->id] = 0;
crtc_state->rel_data_rate[plane->id] = 0;
crtc_state->rel_data_rate_y[plane->id] = 0;
crtc_state->min_cdclk[plane->id] = 0;
if ((crtc_state->active_planes & ~BIT(PLANE_CURSOR)) == 0 &&
hsw_ips_disable(crtc_state)) {
crtc_state->ips_enabled = false;
intel_crtc_wait_for_next_vblank(crtc);
}
if (HAS_GMCH(dev_priv) &&
intel_set_memory_cxsr(dev_priv, false))
intel_crtc_wait_for_next_vblank(crtc);
if (DISPLAY_VER(dev_priv) == 2 && !crtc_state->active_planes)
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
intel_plane_disable_arm(plane, crtc_state);
intel_crtc_wait_for_next_vblank(crtc);
}
unsigned int
intel_plane_fence_y_offset(const struct intel_plane_state *plane_state)
{
int x = 0, y = 0;
intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
plane_state->view.color_plane[0].offset, 0);
return y;
}
static void icl_set_pipe_chicken(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 tmp;
tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe));
tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
if (IS_DG2(dev_priv))
tmp &= ~UNDERRUN_RECOVERY_ENABLE_DG2;
else if (DISPLAY_VER(dev_priv) >= 13)
tmp |= UNDERRUN_RECOVERY_DISABLE_ADLP;
if (IS_DG2_DISPLAY_STEP(dev_priv, STEP_B0, STEP_FOREVER))
tmp |= DG2_RENDER_CCSTAG_4_3_EN;
intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp);
}
bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
{
struct drm_crtc *crtc;
bool cleanup_done;
drm_for_each_crtc(crtc, &dev_priv->drm) {
struct drm_crtc_commit *commit;
spin_lock(&crtc->commit_lock);
commit = list_first_entry_or_null(&crtc->commit_list,
struct drm_crtc_commit, commit_entry);
cleanup_done = commit ?
try_wait_for_completion(&commit->cleanup_done) : true;
spin_unlock(&crtc->commit_lock);
if (cleanup_done)
continue;
intel_crtc_wait_for_next_vblank(to_intel_crtc(crtc));
return true;
}
return false;
}
struct intel_encoder *
intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
const struct intel_crtc_state *crtc_state)
{
const struct drm_connector_state *connector_state;
const struct drm_connector *connector;
struct intel_encoder *encoder = NULL;
struct intel_crtc *master_crtc;
int num_encoders = 0;
int i;
master_crtc = intel_master_crtc(crtc_state);
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
if (connector_state->crtc != &master_crtc->base)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
num_encoders++;
}
drm_WARN(state->base.dev, num_encoders != 1,
"%d encoders for pipe %c\n",
num_encoders, pipe_name(master_crtc->pipe));
return encoder;
}
static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
enum pipe pipe = crtc->pipe;
int width = drm_rect_width(dst);
int height = drm_rect_height(dst);
int x = dst->x1;
int y = dst->y1;
if (!crtc_state->pch_pfit.enabled)
return;
if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
intel_de_write_fw(dev_priv, PF_CTL(pipe), PF_ENABLE |
PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe));
else
intel_de_write_fw(dev_priv, PF_CTL(pipe), PF_ENABLE |
PF_FILTER_MED_3x3);
intel_de_write_fw(dev_priv, PF_WIN_POS(pipe),
PF_WIN_XPOS(x) | PF_WIN_YPOS(y));
intel_de_write_fw(dev_priv, PF_WIN_SZ(pipe),
PF_WIN_XSIZE(width) | PF_WIN_YSIZE(height));
}
static void intel_crtc_dpms_overlay_disable(struct intel_crtc *crtc)
{
if (crtc->overlay)
(void) intel_overlay_switch_off(crtc->overlay);
}
static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
if (!crtc_state->nv12_planes)
return false;
if (DISPLAY_VER(dev_priv) == 9)
return true;
return false;
}
static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
if (crtc_state->scaler_state.scaler_users > 0 && DISPLAY_VER(dev_priv) == 11)
return true;
return false;
}
static bool needs_cursorclk_wa(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
if (is_hdr_mode(crtc_state) &&
crtc_state->active_planes & BIT(PLANE_CURSOR) &&
DISPLAY_VER(dev_priv) == 11)
return true;
return false;
}
static void intel_async_flip_vtd_wa(struct drm_i915_private *i915,
enum pipe pipe, bool enable)
{
if (DISPLAY_VER(i915) == 9) {
intel_de_rmw(i915, CHICKEN_PIPESL_1(pipe),
SKL_PLANE1_STRETCH_MAX_MASK,
enable ? SKL_PLANE1_STRETCH_MAX_X1 : SKL_PLANE1_STRETCH_MAX_X8);
} else {
intel_de_rmw(i915, CHICKEN_PIPESL_1(pipe),
HSW_PRI_STRETCH_MAX_MASK,
enable ? HSW_PRI_STRETCH_MAX_X1 : HSW_PRI_STRETCH_MAX_X8);
}
}
static bool needs_async_flip_vtd_wa(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
return crtc_state->uapi.async_flip && i915_vtd_active(i915) &&
(DISPLAY_VER(i915) == 9 || IS_BROADWELL(i915) || IS_HASWELL(i915));
}
#define is_enabling(feature, old_crtc_state, new_crtc_state) \
((!(old_crtc_state)->feature || intel_crtc_needs_modeset(new_crtc_state)) && \
(new_crtc_state)->feature)
#define is_disabling(feature, old_crtc_state, new_crtc_state) \
((old_crtc_state)->feature && \
(!(new_crtc_state)->feature || intel_crtc_needs_modeset(new_crtc_state)))
static bool planes_enabling(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
return is_enabling(active_planes, old_crtc_state, new_crtc_state);
}
static bool planes_disabling(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
return is_disabling(active_planes, old_crtc_state, new_crtc_state);
}
static bool vrr_enabling(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
return is_enabling(vrr.enable, old_crtc_state, new_crtc_state);
}
static bool vrr_disabling(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
return is_disabling(vrr.enable, old_crtc_state, new_crtc_state);
}
#undef is_disabling
#undef is_enabling
static void intel_post_plane_update(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
enum pipe pipe = crtc->pipe;
intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits);
if (new_crtc_state->update_wm_post && new_crtc_state->hw.active)
intel_update_watermarks(dev_priv);
intel_fbc_post_update(state, crtc);
if (needs_async_flip_vtd_wa(old_crtc_state) &&
!needs_async_flip_vtd_wa(new_crtc_state))
intel_async_flip_vtd_wa(dev_priv, pipe, false);
if (needs_nv12_wa(old_crtc_state) &&
!needs_nv12_wa(new_crtc_state))
skl_wa_827(dev_priv, pipe, false);
if (needs_scalerclk_wa(old_crtc_state) &&
!needs_scalerclk_wa(new_crtc_state))
icl_wa_scalerclkgating(dev_priv, pipe, false);
if (needs_cursorclk_wa(old_crtc_state) &&
!needs_cursorclk_wa(new_crtc_state))
icl_wa_cursorclkgating(dev_priv, pipe, false);
if (intel_crtc_needs_color_update(new_crtc_state))
intel_color_post_update(new_crtc_state);
}
static void intel_crtc_enable_flip_done(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
u8 update_planes = crtc_state->update_planes;
const struct intel_plane_state __maybe_unused *plane_state;
struct intel_plane *plane;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
if (plane->pipe == crtc->pipe &&
update_planes & BIT(plane->id))
plane->enable_flip_done(plane);
}
}
static void intel_crtc_disable_flip_done(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
u8 update_planes = crtc_state->update_planes;
const struct intel_plane_state __maybe_unused *plane_state;
struct intel_plane *plane;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
if (plane->pipe == crtc->pipe &&
update_planes & BIT(plane->id))
plane->disable_flip_done(plane);
}
}
static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
u8 disable_async_flip_planes = old_crtc_state->async_flip_planes &
~new_crtc_state->async_flip_planes;
const struct intel_plane_state *old_plane_state;
struct intel_plane *plane;
bool need_vbl_wait = false;
int i;
for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
if (plane->need_async_flip_disable_wa &&
plane->pipe == crtc->pipe &&
disable_async_flip_planes & BIT(plane->id)) {
plane->async_flip(plane, old_crtc_state,
old_plane_state, false);
need_vbl_wait = true;
}
}
if (need_vbl_wait)
intel_crtc_wait_for_next_vblank(crtc);
}
static void intel_pre_plane_update(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
enum pipe pipe = crtc->pipe;
if (vrr_disabling(old_crtc_state, new_crtc_state)) {
intel_vrr_disable(old_crtc_state);
intel_crtc_update_active_timings(old_crtc_state, false);
}
intel_drrs_deactivate(old_crtc_state);
intel_psr_pre_plane_update(state, crtc);
if (hsw_ips_pre_update(state, crtc))
intel_crtc_wait_for_next_vblank(crtc);
if (intel_fbc_pre_update(state, crtc))
intel_crtc_wait_for_next_vblank(crtc);
if (!needs_async_flip_vtd_wa(old_crtc_state) &&
needs_async_flip_vtd_wa(new_crtc_state))
intel_async_flip_vtd_wa(dev_priv, pipe, true);
if (!needs_nv12_wa(old_crtc_state) &&
needs_nv12_wa(new_crtc_state))
skl_wa_827(dev_priv, pipe, true);
if (!needs_scalerclk_wa(old_crtc_state) &&
needs_scalerclk_wa(new_crtc_state))
icl_wa_scalerclkgating(dev_priv, pipe, true);
if (!needs_cursorclk_wa(old_crtc_state) &&
needs_cursorclk_wa(new_crtc_state))
icl_wa_cursorclkgating(dev_priv, pipe, true);
if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active &&
new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
intel_crtc_wait_for_next_vblank(crtc);
if (old_crtc_state->hw.active &&
new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv))
intel_crtc_wait_for_next_vblank(crtc);
if (!intel_crtc_needs_modeset(new_crtc_state)) {
if (!intel_initial_watermarks(state, crtc))
if (new_crtc_state->update_wm_pre)
intel_update_watermarks(dev_priv);
}
if (DISPLAY_VER(dev_priv) == 2 && planes_disabling(old_crtc_state, new_crtc_state))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
if (old_crtc_state->async_flip_planes & ~new_crtc_state->async_flip_planes)
intel_crtc_async_flip_disable_wa(state, crtc);
}
static void intel_crtc_disable_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
unsigned int update_mask = new_crtc_state->update_planes;
const struct intel_plane_state *old_plane_state;
struct intel_plane *plane;
unsigned fb_bits = 0;
int i;
intel_crtc_dpms_overlay_disable(crtc);
for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
if (crtc->pipe != plane->pipe ||
!(update_mask & BIT(plane->id)))
continue;
intel_plane_disable_arm(plane, new_crtc_state);
if (old_plane_state->uapi.visible)
fb_bits |= plane->frontbuffer_bit;
}
intel_frontbuffer_flip(dev_priv, fb_bits);
}
static void intel_encoders_update_prepare(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_crtc_state *new_crtc_state, *old_crtc_state;
struct intel_crtc *crtc;
int i;
if (i915->display.dpll.mgr) {
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
if (intel_crtc_needs_modeset(new_crtc_state))
continue;
new_crtc_state->shared_dpll = old_crtc_state->shared_dpll;
new_crtc_state->dpll_hw_state = old_crtc_state->dpll_hw_state;
}
}
}
static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != &crtc->base)
continue;
if (encoder->pre_pll_enable)
encoder->pre_pll_enable(state, encoder,
crtc_state, conn_state);
}
}
static void intel_encoders_pre_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != &crtc->base)
continue;
if (encoder->pre_enable)
encoder->pre_enable(state, encoder,
crtc_state, conn_state);
}
}
static void intel_encoders_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != &crtc->base)
continue;
if (encoder->enable)
encoder->enable(state, encoder,
crtc_state, conn_state);
intel_opregion_notify_encoder(encoder, true);
}
}
static void intel_encoders_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct drm_connector_state *old_conn_state;
struct drm_connector *conn;
int i;
for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(old_conn_state->best_encoder);
if (old_conn_state->crtc != &crtc->base)
continue;
intel_opregion_notify_encoder(encoder, false);
if (encoder->disable)
encoder->disable(state, encoder,
old_crtc_state, old_conn_state);
}
}
static void intel_encoders_post_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct drm_connector_state *old_conn_state;
struct drm_connector *conn;
int i;
for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(old_conn_state->best_encoder);
if (old_conn_state->crtc != &crtc->base)
continue;
if (encoder->post_disable)
encoder->post_disable(state, encoder,
old_crtc_state, old_conn_state);
}
}
static void intel_encoders_post_pll_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct drm_connector_state *old_conn_state;
struct drm_connector *conn;
int i;
for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(old_conn_state->best_encoder);
if (old_conn_state->crtc != &crtc->base)
continue;
if (encoder->post_pll_disable)
encoder->post_pll_disable(state, encoder,
old_crtc_state, old_conn_state);
}
}
static void intel_encoders_update_pipe(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != &crtc->base)
continue;
if (encoder->update_pipe)
encoder->update_pipe(state, encoder,
crtc_state, conn_state);
}
}
static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct intel_plane *plane = to_intel_plane(crtc->base.primary);
plane->disable_arm(plane, crtc_state);
}
static void ilk_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (crtc_state->has_pch_encoder) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->fdi_m_n);
} else if (intel_crtc_has_dp_encoder(crtc_state)) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->dp_m_n);
intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder,
&crtc_state->dp_m2_n2);
}
intel_set_transcoder_timings(crtc_state);
ilk_set_pipeconf(crtc_state);
}
static void ilk_crtc_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (drm_WARN_ON(&dev_priv->drm, crtc->active))
return;
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
ilk_configure_cpu_transcoder(new_crtc_state);
intel_set_pipe_src_size(new_crtc_state);
crtc->active = true;
intel_encoders_pre_enable(state, crtc);
if (new_crtc_state->has_pch_encoder) {
ilk_pch_pre_enable(state, crtc);
} else {
assert_fdi_tx_disabled(dev_priv, pipe);
assert_fdi_rx_disabled(dev_priv, pipe);
}
ilk_pfit_enable(new_crtc_state);
intel_color_load_luts(new_crtc_state);
intel_color_commit_noarm(new_crtc_state);
intel_color_commit_arm(new_crtc_state);
intel_disable_primary_plane(new_crtc_state);
intel_initial_watermarks(state, crtc);
intel_enable_transcoder(new_crtc_state);
if (new_crtc_state->has_pch_encoder)
ilk_pch_enable(state, crtc);
intel_crtc_vblank_on(new_crtc_state);
intel_encoders_enable(state, crtc);
if (HAS_PCH_CPT(dev_priv))
intel_wait_for_pipe_scanline_moving(crtc);
if (new_crtc_state->has_pch_encoder) {
intel_crtc_wait_for_next_vblank(crtc);
intel_crtc_wait_for_next_vblank(crtc);
}
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
}
static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
enum pipe pipe, bool apply)
{
u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe));
u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
if (apply)
val |= mask;
else
val &= ~mask;
intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val);
}
static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
intel_de_write(dev_priv, WM_LINETIME(crtc->pipe),
HSW_LINETIME(crtc_state->linetime) |
HSW_IPS_LINETIME(crtc_state->ips_linetime));
}
static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder transcoder = crtc_state->cpu_transcoder;
i915_reg_t reg = DISPLAY_VER(dev_priv) >= 14 ? MTL_CHICKEN_TRANS(transcoder) :
CHICKEN_TRANS(transcoder);
intel_de_rmw(dev_priv, reg,
HSW_FRAME_START_DELAY_MASK,
HSW_FRAME_START_DELAY(crtc_state->framestart_delay - 1));
}
static void icl_ddi_bigjoiner_pre_enable(struct intel_atomic_state *state,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *master_crtc = intel_master_crtc(crtc_state);
if (intel_crtc_is_bigjoiner_slave(crtc_state))
intel_encoders_pre_pll_enable(state, master_crtc);
if (crtc_state->shared_dpll)
intel_enable_shared_dpll(crtc_state);
if (intel_crtc_is_bigjoiner_slave(crtc_state))
intel_encoders_pre_enable(state, master_crtc);
}
static void hsw_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (crtc_state->has_pch_encoder) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->fdi_m_n);
} else if (intel_crtc_has_dp_encoder(crtc_state)) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->dp_m_n);
intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder,
&crtc_state->dp_m2_n2);
}
intel_set_transcoder_timings(crtc_state);
if (HAS_VRR(dev_priv))
intel_vrr_set_transcoder_timings(crtc_state);
if (cpu_transcoder != TRANSCODER_EDP)
intel_de_write(dev_priv, TRANS_MULT(cpu_transcoder),
crtc_state->pixel_multiplier - 1);
hsw_set_frame_start_delay(crtc_state);
hsw_set_transconf(crtc_state);
}
static void hsw_crtc_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe, hsw_workaround_pipe;
enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
bool psl_clkgate_wa;
if (drm_WARN_ON(&dev_priv->drm, crtc->active))
return;
intel_dmc_enable_pipe(dev_priv, crtc->pipe);
if (!new_crtc_state->bigjoiner_pipes) {
intel_encoders_pre_pll_enable(state, crtc);
if (new_crtc_state->shared_dpll)
intel_enable_shared_dpll(new_crtc_state);
intel_encoders_pre_enable(state, crtc);
} else {
icl_ddi_bigjoiner_pre_enable(state, new_crtc_state);
}
intel_dsc_enable(new_crtc_state);
if (DISPLAY_VER(dev_priv) >= 13)
intel_uncompressed_joiner_enable(new_crtc_state);
intel_set_pipe_src_size(new_crtc_state);
if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
bdw_set_pipe_misc(new_crtc_state);
if (!intel_crtc_is_bigjoiner_slave(new_crtc_state) &&
!transcoder_is_dsi(cpu_transcoder))
hsw_configure_cpu_transcoder(new_crtc_state);
crtc->active = true;
psl_clkgate_wa = DISPLAY_VER(dev_priv) == 10 &&
new_crtc_state->pch_pfit.enabled;
if (psl_clkgate_wa)
glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
if (DISPLAY_VER(dev_priv) >= 9)
skl_pfit_enable(new_crtc_state);
else
ilk_pfit_enable(new_crtc_state);
intel_color_load_luts(new_crtc_state);
intel_color_commit_noarm(new_crtc_state);
intel_color_commit_arm(new_crtc_state);
if (DISPLAY_VER(dev_priv) < 9)
intel_disable_primary_plane(new_crtc_state);
hsw_set_linetime_wm(new_crtc_state);
if (DISPLAY_VER(dev_priv) >= 11)
icl_set_pipe_chicken(new_crtc_state);
intel_initial_watermarks(state, crtc);
if (intel_crtc_is_bigjoiner_slave(new_crtc_state))
intel_crtc_vblank_on(new_crtc_state);
intel_encoders_enable(state, crtc);
if (psl_clkgate_wa) {
intel_crtc_wait_for_next_vblank(crtc);
glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
}
hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe;
if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
struct intel_crtc *wa_crtc;
wa_crtc = intel_crtc_for_pipe(dev_priv, hsw_workaround_pipe);
intel_crtc_wait_for_next_vblank(wa_crtc);
intel_crtc_wait_for_next_vblank(wa_crtc);
}
}
void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (!old_crtc_state->pch_pfit.enabled)
return;
intel_de_write_fw(dev_priv, PF_CTL(pipe), 0);
intel_de_write_fw(dev_priv, PF_WIN_POS(pipe), 0);
intel_de_write_fw(dev_priv, PF_WIN_SZ(pipe), 0);
}
static void ilk_crtc_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
intel_encoders_disable(state, crtc);
intel_crtc_vblank_off(old_crtc_state);
intel_disable_transcoder(old_crtc_state);
ilk_pfit_disable(old_crtc_state);
if (old_crtc_state->has_pch_encoder)
ilk_pch_disable(state, crtc);
intel_encoders_post_disable(state, crtc);
if (old_crtc_state->has_pch_encoder)
ilk_pch_post_disable(state, crtc);
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
intel_disable_shared_dpll(old_crtc_state);
}
static void hsw_crtc_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
if (!intel_crtc_is_bigjoiner_slave(old_crtc_state)) {
intel_encoders_disable(state, crtc);
intel_encoders_post_disable(state, crtc);
}
intel_disable_shared_dpll(old_crtc_state);
if (!intel_crtc_is_bigjoiner_slave(old_crtc_state)) {
struct intel_crtc *slave_crtc;
intel_encoders_post_pll_disable(state, crtc);
intel_dmc_disable_pipe(i915, crtc->pipe);
for_each_intel_crtc_in_pipe_mask(&i915->drm, slave_crtc,
intel_crtc_bigjoiner_slave_pipes(old_crtc_state))
intel_dmc_disable_pipe(i915, slave_crtc->pipe);
}
}
static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!crtc_state->gmch_pfit.control)
return;
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE);
assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
intel_de_write(dev_priv, PFIT_PGM_RATIOS,
crtc_state->gmch_pfit.pgm_ratios);
intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control);
intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0);
}
bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
{
if (phy == PHY_NONE)
return false;
else if (IS_ALDERLAKE_S(dev_priv))
return phy <= PHY_E;
else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv))
return phy <= PHY_D;
else if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv))
return phy <= PHY_C;
else if (IS_ALDERLAKE_P(dev_priv) || IS_DISPLAY_VER(dev_priv, 11, 12))
return phy <= PHY_B;
else
return false;
}
bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
{
if (IS_DG2(dev_priv))
return false;
else if (IS_ALDERLAKE_P(dev_priv) || IS_METEORLAKE(dev_priv))
return phy >= PHY_F && phy <= PHY_I;
else if (IS_TIGERLAKE(dev_priv))
return phy >= PHY_D && phy <= PHY_I;
else if (IS_ICELAKE(dev_priv))
return phy >= PHY_C && phy <= PHY_F;
else
return false;
}
bool intel_phy_is_snps(struct drm_i915_private *dev_priv, enum phy phy)
{
if (phy == PHY_NONE)
return false;
else if (IS_DG2(dev_priv))
return phy <= PHY_E;
return false;
}
enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
{
if (DISPLAY_VER(i915) >= 13 && port >= PORT_D_XELPD)
return PHY_D + port - PORT_D_XELPD;
else if (DISPLAY_VER(i915) >= 13 && port >= PORT_TC1)
return PHY_F + port - PORT_TC1;
else if (IS_ALDERLAKE_S(i915) && port >= PORT_TC1)
return PHY_B + port - PORT_TC1;
else if ((IS_DG1(i915) || IS_ROCKETLAKE(i915)) && port >= PORT_TC1)
return PHY_C + port - PORT_TC1;
else if ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
port == PORT_D)
return PHY_A;
return PHY_A + port - PORT_A;
}
enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
{
if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
return TC_PORT_NONE;
if (DISPLAY_VER(dev_priv) >= 12)
return TC_PORT_1 + port - PORT_TC1;
else
return TC_PORT_1 + port - PORT_C;
}
enum intel_display_power_domain
intel_aux_power_domain(struct intel_digital_port *dig_port)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
if (intel_tc_port_in_tbt_alt_mode(dig_port))
return intel_display_power_tbt_aux_domain(i915, dig_port->aux_ch);
return intel_display_power_legacy_aux_domain(i915, dig_port->aux_ch);
}
static void get_crtc_power_domains(struct intel_crtc_state *crtc_state,
struct intel_power_domain_mask *mask)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
struct drm_encoder *encoder;
enum pipe pipe = crtc->pipe;
bitmap_zero(mask->bits, POWER_DOMAIN_NUM);
if (!crtc_state->hw.active)
return;
set_bit(POWER_DOMAIN_PIPE(pipe), mask->bits);
set_bit(POWER_DOMAIN_TRANSCODER(cpu_transcoder), mask->bits);
if (crtc_state->pch_pfit.enabled ||
crtc_state->pch_pfit.force_thru)
set_bit(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe), mask->bits);
drm_for_each_encoder_mask(encoder, &dev_priv->drm,
crtc_state->uapi.encoder_mask) {
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
set_bit(intel_encoder->power_domain, mask->bits);
}
if (HAS_DDI(dev_priv) && crtc_state->has_audio)
set_bit(POWER_DOMAIN_AUDIO_MMIO, mask->bits);
if (crtc_state->shared_dpll)
set_bit(POWER_DOMAIN_DISPLAY_CORE, mask->bits);
if (crtc_state->dsc.compression_enable)
set_bit(intel_dsc_power_domain(crtc, cpu_transcoder), mask->bits);
}
void intel_modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state,
struct intel_power_domain_mask *old_domains)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum intel_display_power_domain domain;
struct intel_power_domain_mask domains, new_domains;
get_crtc_power_domains(crtc_state, &domains);
bitmap_andnot(new_domains.bits,
domains.bits,
crtc->enabled_power_domains.mask.bits,
POWER_DOMAIN_NUM);
bitmap_andnot(old_domains->bits,
crtc->enabled_power_domains.mask.bits,
domains.bits,
POWER_DOMAIN_NUM);
for_each_power_domain(domain, &new_domains)
intel_display_power_get_in_set(dev_priv,
&crtc->enabled_power_domains,
domain);
}
void intel_modeset_put_crtc_power_domains(struct intel_crtc *crtc,
struct intel_power_domain_mask *domains)
{
intel_display_power_put_mask_in_set(to_i915(crtc->base.dev),
&crtc->enabled_power_domains,
domains);
}
static void i9xx_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (intel_crtc_has_dp_encoder(crtc_state)) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->dp_m_n);
intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder,
&crtc_state->dp_m2_n2);
}
intel_set_transcoder_timings(crtc_state);
i9xx_set_pipeconf(crtc_state);
}
static void valleyview_crtc_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (drm_WARN_ON(&dev_priv->drm, crtc->active))
return;
i9xx_configure_cpu_transcoder(new_crtc_state);
intel_set_pipe_src_size(new_crtc_state);
intel_de_write(dev_priv, VLV_PIPE_MSA_MISC(pipe), 0);
if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY);
intel_de_write(dev_priv, CHV_CANVAS(pipe), 0);
}
crtc->active = true;
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
intel_encoders_pre_pll_enable(state, crtc);
if (IS_CHERRYVIEW(dev_priv))
chv_enable_pll(new_crtc_state);
else
vlv_enable_pll(new_crtc_state);
intel_encoders_pre_enable(state, crtc);
i9xx_pfit_enable(new_crtc_state);
intel_color_load_luts(new_crtc_state);
intel_color_commit_noarm(new_crtc_state);
intel_color_commit_arm(new_crtc_state);
intel_disable_primary_plane(new_crtc_state);
intel_initial_watermarks(state, crtc);
intel_enable_transcoder(new_crtc_state);
intel_crtc_vblank_on(new_crtc_state);
intel_encoders_enable(state, crtc);
}
static void i9xx_crtc_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (drm_WARN_ON(&dev_priv->drm, crtc->active))
return;
i9xx_configure_cpu_transcoder(new_crtc_state);
intel_set_pipe_src_size(new_crtc_state);
crtc->active = true;
if (DISPLAY_VER(dev_priv) != 2)
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
intel_encoders_pre_enable(state, crtc);
i9xx_enable_pll(new_crtc_state);
i9xx_pfit_enable(new_crtc_state);
intel_color_load_luts(new_crtc_state);
intel_color_commit_noarm(new_crtc_state);
intel_color_commit_arm(new_crtc_state);
intel_disable_primary_plane(new_crtc_state);
if (!intel_initial_watermarks(state, crtc))
intel_update_watermarks(dev_priv);
intel_enable_transcoder(new_crtc_state);
intel_crtc_vblank_on(new_crtc_state);
intel_encoders_enable(state, crtc);
if (DISPLAY_VER(dev_priv) == 2)
intel_crtc_wait_for_next_vblank(crtc);
}
static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!old_crtc_state->gmch_pfit.control)
return;
assert_transcoder_disabled(dev_priv, old_crtc_state->cpu_transcoder);
drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n",
intel_de_read(dev_priv, PFIT_CONTROL));
intel_de_write(dev_priv, PFIT_CONTROL, 0);
}
static void i9xx_crtc_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (DISPLAY_VER(dev_priv) == 2)
intel_crtc_wait_for_next_vblank(crtc);
intel_encoders_disable(state, crtc);
intel_crtc_vblank_off(old_crtc_state);
intel_disable_transcoder(old_crtc_state);
i9xx_pfit_disable(old_crtc_state);
intel_encoders_post_disable(state, crtc);
if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
if (IS_CHERRYVIEW(dev_priv))
chv_disable_pll(dev_priv, pipe);
else if (IS_VALLEYVIEW(dev_priv))
vlv_disable_pll(dev_priv, pipe);
else
i9xx_disable_pll(old_crtc_state);
}
intel_encoders_post_pll_disable(state, crtc);
if (DISPLAY_VER(dev_priv) != 2)
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
if (!dev_priv->display.funcs.wm->initial_watermarks)
intel_update_watermarks(dev_priv);
if (IS_I830(dev_priv))
i830_enable_pipe(dev_priv, pipe);
}
void intel_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
drm_encoder_cleanup(encoder);
kfree(intel_encoder);
}
static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
{
const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
return DISPLAY_VER(dev_priv) < 4 &&
(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
}
static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state)
{
u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock;
struct drm_rect src;
if (!crtc_state->pch_pfit.enabled)
return pixel_rate;
drm_rect_init(&src, 0, 0,
drm_rect_width(&crtc_state->pipe_src) << 16,
drm_rect_height(&crtc_state->pipe_src) << 16);
return intel_adjusted_rate(&src, &crtc_state->pch_pfit.dst,
pixel_rate);
}
static void intel_mode_from_crtc_timings(struct drm_display_mode *mode,
const struct drm_display_mode *timings)
{
mode->hdisplay = timings->crtc_hdisplay;
mode->htotal = timings->crtc_htotal;
mode->hsync_start = timings->crtc_hsync_start;
mode->hsync_end = timings->crtc_hsync_end;
mode->vdisplay = timings->crtc_vdisplay;
mode->vtotal = timings->crtc_vtotal;
mode->vsync_start = timings->crtc_vsync_start;
mode->vsync_end = timings->crtc_vsync_end;
mode->flags = timings->flags;
mode->type = DRM_MODE_TYPE_DRIVER;
mode->clock = timings->crtc_clock;
drm_mode_set_name(mode);
}
static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
if (HAS_GMCH(dev_priv))
crtc_state->pixel_rate =
crtc_state->hw.pipe_mode.crtc_clock;
else
crtc_state->pixel_rate =
ilk_pipe_pixel_rate(crtc_state);
}
static void intel_bigjoiner_adjust_timings(const struct intel_crtc_state *crtc_state,
struct drm_display_mode *mode)
{
int num_pipes = intel_bigjoiner_num_pipes(crtc_state);
if (num_pipes < 2)
return;
mode->crtc_clock /= num_pipes;
mode->crtc_hdisplay /= num_pipes;
mode->crtc_hblank_start /= num_pipes;
mode->crtc_hblank_end /= num_pipes;
mode->crtc_hsync_start /= num_pipes;
mode->crtc_hsync_end /= num_pipes;
mode->crtc_htotal /= num_pipes;
}
static void intel_splitter_adjust_timings(const struct intel_crtc_state *crtc_state,
struct drm_display_mode *mode)
{
int overlap = crtc_state->splitter.pixel_overlap;
int n = crtc_state->splitter.link_count;
if (!crtc_state->splitter.enable)
return;
mode->crtc_hdisplay = (mode->crtc_hdisplay - overlap) * n;
mode->crtc_hblank_start = (mode->crtc_hblank_start - overlap) * n;
mode->crtc_hblank_end = (mode->crtc_hblank_end - overlap) * n;
mode->crtc_hsync_start = (mode->crtc_hsync_start - overlap) * n;
mode->crtc_hsync_end = (mode->crtc_hsync_end - overlap) * n;
mode->crtc_htotal = (mode->crtc_htotal - overlap) * n;
mode->crtc_clock *= n;
}
static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state)
{
struct drm_display_mode *mode = &crtc_state->hw.mode;
struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
drm_mode_copy(pipe_mode, adjusted_mode);
intel_splitter_adjust_timings(crtc_state, pipe_mode);
intel_mode_from_crtc_timings(adjusted_mode, pipe_mode);
drm_mode_copy(mode, pipe_mode);
intel_mode_from_crtc_timings(mode, mode);
mode->hdisplay = drm_rect_width(&crtc_state->pipe_src) *
(intel_bigjoiner_num_pipes(crtc_state) ?: 1);
mode->vdisplay = drm_rect_height(&crtc_state->pipe_src);
intel_bigjoiner_adjust_timings(crtc_state, pipe_mode);
intel_mode_from_crtc_timings(pipe_mode, pipe_mode);
intel_crtc_compute_pixel_rate(crtc_state);
}
void intel_encoder_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
encoder->get_config(encoder, crtc_state);
intel_crtc_readout_derived_state(crtc_state);
}
static void intel_bigjoiner_compute_pipe_src(struct intel_crtc_state *crtc_state)
{
int num_pipes = intel_bigjoiner_num_pipes(crtc_state);
int width, height;
if (num_pipes < 2)
return;
width = drm_rect_width(&crtc_state->pipe_src);
height = drm_rect_height(&crtc_state->pipe_src);
drm_rect_init(&crtc_state->pipe_src, 0, 0,
width / num_pipes, height);
}
static int intel_crtc_compute_pipe_src(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
intel_bigjoiner_compute_pipe_src(crtc_state);
if (drm_rect_width(&crtc_state->pipe_src) & 1) {
if (crtc_state->double_wide) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] Odd pipe source width not supported with double wide pipe\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_is_dual_link_lvds(i915)) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] Odd pipe source width not supported with dual link LVDS\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
}
return 0;
}
static int intel_crtc_compute_pipe_mode(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
int clock_limit = i915->max_dotclk_freq;
drm_mode_copy(pipe_mode, adjusted_mode);
intel_splitter_adjust_timings(crtc_state, pipe_mode);
intel_bigjoiner_adjust_timings(crtc_state, pipe_mode);
intel_mode_from_crtc_timings(pipe_mode, pipe_mode);
if (DISPLAY_VER(i915) < 4) {
clock_limit = i915->display.cdclk.max_cdclk_freq * 9 / 10;
if (intel_crtc_supports_double_wide(crtc) &&
pipe_mode->crtc_clock > clock_limit) {
clock_limit = i915->max_dotclk_freq;
crtc_state->double_wide = true;
}
}
if (pipe_mode->crtc_clock > clock_limit) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
crtc->base.base.id, crtc->base.name,
pipe_mode->crtc_clock, clock_limit,
str_yes_no(crtc_state->double_wide));
return -EINVAL;
}
return 0;
}
static int intel_crtc_compute_config(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
int ret;
ret = intel_dpll_crtc_compute_clock(state, crtc);
if (ret)
return ret;
ret = intel_crtc_compute_pipe_src(crtc_state);
if (ret)
return ret;
ret = intel_crtc_compute_pipe_mode(crtc_state);
if (ret)
return ret;
intel_crtc_compute_pixel_rate(crtc_state);
if (crtc_state->has_pch_encoder)
return ilk_fdi_compute_config(crtc, crtc_state);
return 0;
}
static void
intel_reduce_m_n_ratio(u32 *num, u32 *den)
{
while (*num > DATA_LINK_M_N_MASK ||
*den > DATA_LINK_M_N_MASK) {
*num >>= 1;
*den >>= 1;
}
}
static void compute_m_n(u32 *ret_m, u32 *ret_n,
u32 m, u32 n, u32 constant_n)
{
if (constant_n)
*ret_n = constant_n;
else
*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
*ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
intel_reduce_m_n_ratio(ret_m, ret_n);
}
void
intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
int pixel_clock, int link_clock,
struct intel_link_m_n *m_n,
bool fec_enable)
{
u32 data_clock = bits_per_pixel * pixel_clock;
if (fec_enable)
data_clock = intel_dp_mode_to_fec_clock(data_clock);
m_n->tu = 64;
compute_m_n(&m_n->data_m, &m_n->data_n,
data_clock, link_clock * nlanes * 8,
0x8000000);
compute_m_n(&m_n->link_m, &m_n->link_n,
pixel_clock, link_clock,
0x80000);
}
void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
{
if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
bool bios_lvds_use_ssc = intel_de_read(dev_priv,
PCH_DREF_CONTROL) &
DREF_SSC1_ENABLE;
if (dev_priv->display.vbt.lvds_use_ssc != bios_lvds_use_ssc) {
drm_dbg_kms(&dev_priv->drm,
"SSC %s by BIOS, overriding VBT which says %s\n",
str_enabled_disabled(bios_lvds_use_ssc),
str_enabled_disabled(dev_priv->display.vbt.lvds_use_ssc));
dev_priv->display.vbt.lvds_use_ssc = bios_lvds_use_ssc;
}
}
}
void intel_zero_m_n(struct intel_link_m_n *m_n)
{
memset(m_n, 0, sizeof(*m_n));
m_n->tu = 1;
}
void intel_set_m_n(struct drm_i915_private *i915,
const struct intel_link_m_n *m_n,
i915_reg_t data_m_reg, i915_reg_t data_n_reg,
i915_reg_t link_m_reg, i915_reg_t link_n_reg)
{
intel_de_write(i915, data_m_reg, TU_SIZE(m_n->tu) | m_n->data_m);
intel_de_write(i915, data_n_reg, m_n->data_n);
intel_de_write(i915, link_m_reg, m_n->link_m);
intel_de_write(i915, link_n_reg, m_n->link_n);
}
bool intel_cpu_transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
enum transcoder transcoder)
{
if (IS_HASWELL(dev_priv))
return transcoder == TRANSCODER_EDP;
return IS_DISPLAY_VER(dev_priv, 5, 7) || IS_CHERRYVIEW(dev_priv);
}
void intel_cpu_transcoder_set_m1_n1(struct intel_crtc *crtc,
enum transcoder transcoder,
const struct intel_link_m_n *m_n)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (DISPLAY_VER(dev_priv) >= 5)
intel_set_m_n(dev_priv, m_n,
PIPE_DATA_M1(transcoder), PIPE_DATA_N1(transcoder),
PIPE_LINK_M1(transcoder), PIPE_LINK_N1(transcoder));
else
intel_set_m_n(dev_priv, m_n,
PIPE_DATA_M_G4X(pipe), PIPE_DATA_N_G4X(pipe),
PIPE_LINK_M_G4X(pipe), PIPE_LINK_N_G4X(pipe));
}
void intel_cpu_transcoder_set_m2_n2(struct intel_crtc *crtc,
enum transcoder transcoder,
const struct intel_link_m_n *m_n)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!intel_cpu_transcoder_has_m2_n2(dev_priv, transcoder))
return;
intel_set_m_n(dev_priv, m_n,
PIPE_DATA_M2(transcoder), PIPE_DATA_N2(transcoder),
PIPE_LINK_M2(transcoder), PIPE_LINK_N2(transcoder));
}
static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
u32 crtc_vdisplay, crtc_vtotal, crtc_vblank_start, crtc_vblank_end;
int vsyncshift = 0;
crtc_vdisplay = adjusted_mode->crtc_vdisplay;
crtc_vtotal = adjusted_mode->crtc_vtotal;
crtc_vblank_start = adjusted_mode->crtc_vblank_start;
crtc_vblank_end = adjusted_mode->crtc_vblank_end;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
crtc_vtotal -= 1;
crtc_vblank_end -= 1;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
else
vsyncshift = adjusted_mode->crtc_hsync_start -
adjusted_mode->crtc_htotal / 2;
if (vsyncshift < 0)
vsyncshift += adjusted_mode->crtc_htotal;
}
if (DISPLAY_VER(dev_priv) >= 13) {
intel_de_write(dev_priv, TRANS_SET_CONTEXT_LATENCY(cpu_transcoder),
crtc_vblank_start - crtc_vdisplay);
crtc_vblank_start = 1;
}
if (DISPLAY_VER(dev_priv) > 3)
intel_de_write(dev_priv, TRANS_VSYNCSHIFT(cpu_transcoder),
vsyncshift);
intel_de_write(dev_priv, TRANS_HTOTAL(cpu_transcoder),
HACTIVE(adjusted_mode->crtc_hdisplay - 1) |
HTOTAL(adjusted_mode->crtc_htotal - 1));
intel_de_write(dev_priv, TRANS_HBLANK(cpu_transcoder),
HBLANK_START(adjusted_mode->crtc_hblank_start - 1) |
HBLANK_END(adjusted_mode->crtc_hblank_end - 1));
intel_de_write(dev_priv, TRANS_HSYNC(cpu_transcoder),
HSYNC_START(adjusted_mode->crtc_hsync_start - 1) |
HSYNC_END(adjusted_mode->crtc_hsync_end - 1));
intel_de_write(dev_priv, TRANS_VTOTAL(cpu_transcoder),
VACTIVE(crtc_vdisplay - 1) |
VTOTAL(crtc_vtotal - 1));
intel_de_write(dev_priv, TRANS_VBLANK(cpu_transcoder),
VBLANK_START(crtc_vblank_start - 1) |
VBLANK_END(crtc_vblank_end - 1));
intel_de_write(dev_priv, TRANS_VSYNC(cpu_transcoder),
VSYNC_START(adjusted_mode->crtc_vsync_start - 1) |
VSYNC_END(adjusted_mode->crtc_vsync_end - 1));
if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
(pipe == PIPE_B || pipe == PIPE_C))
intel_de_write(dev_priv, TRANS_VTOTAL(pipe),
VACTIVE(crtc_vdisplay - 1) |
VTOTAL(crtc_vtotal - 1));
}
static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
int width = drm_rect_width(&crtc_state->pipe_src);
int height = drm_rect_height(&crtc_state->pipe_src);
enum pipe pipe = crtc->pipe;
intel_de_write(dev_priv, PIPESRC(pipe),
PIPESRC_WIDTH(width - 1) | PIPESRC_HEIGHT(height - 1));
}
static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (DISPLAY_VER(dev_priv) == 2)
return false;
if (DISPLAY_VER(dev_priv) >= 9 ||
IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
return intel_de_read(dev_priv, TRANSCONF(cpu_transcoder)) & TRANSCONF_INTERLACE_MASK_HSW;
else
return intel_de_read(dev_priv, TRANSCONF(cpu_transcoder)) & TRANSCONF_INTERLACE_MASK;
}
static void intel_get_transcoder_timings(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
u32 tmp;
tmp = intel_de_read(dev_priv, TRANS_HTOTAL(cpu_transcoder));
adjusted_mode->crtc_hdisplay = REG_FIELD_GET(HACTIVE_MASK, tmp) + 1;
adjusted_mode->crtc_htotal = REG_FIELD_GET(HTOTAL_MASK, tmp) + 1;
if (!transcoder_is_dsi(cpu_transcoder)) {
tmp = intel_de_read(dev_priv, TRANS_HBLANK(cpu_transcoder));
adjusted_mode->crtc_hblank_start = REG_FIELD_GET(HBLANK_START_MASK, tmp) + 1;
adjusted_mode->crtc_hblank_end = REG_FIELD_GET(HBLANK_END_MASK, tmp) + 1;
}
tmp = intel_de_read(dev_priv, TRANS_HSYNC(cpu_transcoder));
adjusted_mode->crtc_hsync_start = REG_FIELD_GET(HSYNC_START_MASK, tmp) + 1;
adjusted_mode->crtc_hsync_end = REG_FIELD_GET(HSYNC_END_MASK, tmp) + 1;
tmp = intel_de_read(dev_priv, TRANS_VTOTAL(cpu_transcoder));
adjusted_mode->crtc_vdisplay = REG_FIELD_GET(VACTIVE_MASK, tmp) + 1;
adjusted_mode->crtc_vtotal = REG_FIELD_GET(VTOTAL_MASK, tmp) + 1;
if (!transcoder_is_dsi(cpu_transcoder)) {
tmp = intel_de_read(dev_priv, TRANS_VBLANK(cpu_transcoder));
adjusted_mode->crtc_vblank_start = REG_FIELD_GET(VBLANK_START_MASK, tmp) + 1;
adjusted_mode->crtc_vblank_end = REG_FIELD_GET(VBLANK_END_MASK, tmp) + 1;
}
tmp = intel_de_read(dev_priv, TRANS_VSYNC(cpu_transcoder));
adjusted_mode->crtc_vsync_start = REG_FIELD_GET(VSYNC_START_MASK, tmp) + 1;
adjusted_mode->crtc_vsync_end = REG_FIELD_GET(VSYNC_END_MASK, tmp) + 1;
if (intel_pipe_is_interlaced(pipe_config)) {
adjusted_mode->flags |= DRM_MODE_FLAG_INTERLACE;
adjusted_mode->crtc_vtotal += 1;
adjusted_mode->crtc_vblank_end += 1;
}
if (DISPLAY_VER(dev_priv) >= 13 && !transcoder_is_dsi(cpu_transcoder))
adjusted_mode->crtc_vblank_start =
adjusted_mode->crtc_vdisplay +
intel_de_read(dev_priv, TRANS_SET_CONTEXT_LATENCY(cpu_transcoder));
}
static void intel_bigjoiner_adjust_pipe_src(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
int num_pipes = intel_bigjoiner_num_pipes(crtc_state);
enum pipe master_pipe, pipe = crtc->pipe;
int width;
if (num_pipes < 2)
return;
master_pipe = bigjoiner_master_pipe(crtc_state);
width = drm_rect_width(&crtc_state->pipe_src);
drm_rect_translate_to(&crtc_state->pipe_src,
(pipe - master_pipe) * width, 0);
}
static void intel_get_pipe_src_size(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 tmp;
tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe));
drm_rect_init(&pipe_config->pipe_src, 0, 0,
REG_FIELD_GET(PIPESRC_WIDTH_MASK, tmp) + 1,
REG_FIELD_GET(PIPESRC_HEIGHT_MASK, tmp) + 1);
intel_bigjoiner_adjust_pipe_src(pipe_config);
}
void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 val = 0;
if (IS_I830(dev_priv) || !intel_crtc_needs_modeset(crtc_state))
val |= TRANSCONF_ENABLE;
if (crtc_state->double_wide)
val |= TRANSCONF_DOUBLE_WIDE;
if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv)) {
if (crtc_state->dither && crtc_state->pipe_bpp != 30)
val |= TRANSCONF_DITHER_EN |
TRANSCONF_DITHER_TYPE_SP;
switch (crtc_state->pipe_bpp) {
default:
MISSING_CASE(crtc_state->pipe_bpp);
fallthrough;
case 18:
val |= TRANSCONF_BPC_6;
break;
case 24:
val |= TRANSCONF_BPC_8;
break;
case 30:
val |= TRANSCONF_BPC_10;
break;
}
}
if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
if (DISPLAY_VER(dev_priv) < 4 ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
val |= TRANSCONF_INTERLACE_W_FIELD_INDICATION;
else
val |= TRANSCONF_INTERLACE_W_SYNC_SHIFT;
} else {
val |= TRANSCONF_INTERLACE_PROGRESSIVE;
}
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
crtc_state->limited_color_range)
val |= TRANSCONF_COLOR_RANGE_SELECT;
val |= TRANSCONF_GAMMA_MODE(crtc_state->gamma_mode);
if (crtc_state->wgc_enable)
val |= TRANSCONF_WGC_ENABLE;
val |= TRANSCONF_FRAME_START_DELAY(crtc_state->framestart_delay - 1);
intel_de_write(dev_priv, TRANSCONF(cpu_transcoder), val);
intel_de_posting_read(dev_priv, TRANSCONF(cpu_transcoder));
}
static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
{
if (IS_I830(dev_priv))
return false;
return DISPLAY_VER(dev_priv) >= 4 ||
IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
}
static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe;
u32 tmp;
if (!i9xx_has_pfit(dev_priv))
return;
tmp = intel_de_read(dev_priv, PFIT_CONTROL);
if (!(tmp & PFIT_ENABLE))
return;
if (DISPLAY_VER(dev_priv) >= 4)
pipe = REG_FIELD_GET(PFIT_PIPE_MASK, tmp);
else
pipe = PIPE_B;
if (pipe != crtc->pipe)
return;
crtc_state->gmch_pfit.control = tmp;
crtc_state->gmch_pfit.pgm_ratios =
intel_de_read(dev_priv, PFIT_PGM_RATIOS);
}
static void vlv_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe = crtc->pipe;
struct dpll clock;
u32 mdiv;
int refclk = 100000;
if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
return;
vlv_dpio_get(dev_priv);
mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
vlv_dpio_put(dev_priv);
clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
clock.m2 = mdiv & DPIO_M2DIV_MASK;
clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
}
static void chv_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe = crtc->pipe;
enum dpio_channel port = vlv_pipe_to_channel(pipe);
struct dpll clock;
u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
int refclk = 100000;
if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
return;
vlv_dpio_get(dev_priv);
cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
vlv_dpio_put(dev_priv);
clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
clock.m2 = (pll_dw0 & 0xff) << 22;
if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
clock.m2 |= pll_dw2 & 0x3fffff;
clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
}
static enum intel_output_format
bdw_get_pipe_misc_output_format(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 tmp;
tmp = intel_de_read(dev_priv, PIPE_MISC(crtc->pipe));
if (tmp & PIPE_MISC_YUV420_ENABLE) {
drm_WARN_ON(&dev_priv->drm,
(tmp & PIPE_MISC_YUV420_MODE_FULL_BLEND) == 0);
return INTEL_OUTPUT_FORMAT_YCBCR420;
} else if (tmp & PIPE_MISC_OUTPUT_COLORSPACE_YUV) {
return INTEL_OUTPUT_FORMAT_YCBCR444;
} else {
return INTEL_OUTPUT_FORMAT_RGB;
}
}
static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct intel_plane *plane = to_intel_plane(crtc->base.primary);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
u32 tmp;
tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
if (tmp & DISP_PIPE_GAMMA_ENABLE)
crtc_state->gamma_enable = true;
if (!HAS_GMCH(dev_priv) &&
tmp & DISP_PIPE_CSC_ENABLE)
crtc_state->csc_enable = true;
}
static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
u32 tmp;
bool ret;
power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (!wakeref)
return false;
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
pipe_config->sink_format = pipe_config->output_format;
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
pipe_config->shared_dpll = NULL;
ret = false;
tmp = intel_de_read(dev_priv, TRANSCONF(pipe_config->cpu_transcoder));
if (!(tmp & TRANSCONF_ENABLE))
goto out;
if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv)) {
switch (tmp & TRANSCONF_BPC_MASK) {
case TRANSCONF_BPC_6:
pipe_config->pipe_bpp = 18;
break;
case TRANSCONF_BPC_8:
pipe_config->pipe_bpp = 24;
break;
case TRANSCONF_BPC_10:
pipe_config->pipe_bpp = 30;
break;
default:
MISSING_CASE(tmp);
break;
}
}
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
(tmp & TRANSCONF_COLOR_RANGE_SELECT))
pipe_config->limited_color_range = true;
pipe_config->gamma_mode = REG_FIELD_GET(TRANSCONF_GAMMA_MODE_MASK_I9XX, tmp);
pipe_config->framestart_delay = REG_FIELD_GET(TRANSCONF_FRAME_START_DELAY_MASK, tmp) + 1;
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
(tmp & TRANSCONF_WGC_ENABLE))
pipe_config->wgc_enable = true;
if (IS_CHERRYVIEW(dev_priv))
pipe_config->cgm_mode = intel_de_read(dev_priv,
CGM_PIPE_MODE(crtc->pipe));
i9xx_get_pipe_color_config(pipe_config);
intel_color_get_config(pipe_config);
if (DISPLAY_VER(dev_priv) < 4)
pipe_config->double_wide = tmp & TRANSCONF_DOUBLE_WIDE;
intel_get_transcoder_timings(crtc, pipe_config);
intel_get_pipe_src_size(crtc, pipe_config);
i9xx_get_pfit_config(pipe_config);
if (DISPLAY_VER(dev_priv) >= 4) {
if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
tmp = dev_priv->display.state.chv_dpll_md[crtc->pipe];
else
tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe));
pipe_config->pixel_multiplier =
((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
>> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
pipe_config->dpll_hw_state.dpll_md = tmp;
} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
tmp = intel_de_read(dev_priv, DPLL(crtc->pipe));
pipe_config->pixel_multiplier =
((tmp & SDVO_MULTIPLIER_MASK)
>> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
} else {
pipe_config->pixel_multiplier = 1;
}
pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv,
DPLL(crtc->pipe));
if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv,
FP0(crtc->pipe));
pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv,
FP1(crtc->pipe));
} else {
pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
DPLL_PORTC_READY_MASK |
DPLL_PORTB_READY_MASK);
}
if (IS_CHERRYVIEW(dev_priv))
chv_crtc_clock_get(crtc, pipe_config);
else if (IS_VALLEYVIEW(dev_priv))
vlv_crtc_clock_get(crtc, pipe_config);
else
i9xx_crtc_clock_get(crtc, pipe_config);
pipe_config->hw.adjusted_mode.crtc_clock =
pipe_config->port_clock / pipe_config->pixel_multiplier;
ret = true;
out:
intel_display_power_put(dev_priv, power_domain, wakeref);
return ret;
}
void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 val = 0;
if (!intel_crtc_needs_modeset(crtc_state))
val |= TRANSCONF_ENABLE;
switch (crtc_state->pipe_bpp) {
default:
MISSING_CASE(crtc_state->pipe_bpp);
fallthrough;
case 18:
val |= TRANSCONF_BPC_6;
break;
case 24:
val |= TRANSCONF_BPC_8;
break;
case 30:
val |= TRANSCONF_BPC_10;
break;
case 36:
val |= TRANSCONF_BPC_12;
break;
}
if (crtc_state->dither)
val |= TRANSCONF_DITHER_EN | TRANSCONF_DITHER_TYPE_SP;
if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
val |= TRANSCONF_INTERLACE_IF_ID_ILK;
else
val |= TRANSCONF_INTERLACE_PF_PD_ILK;
drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range &&
crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
if (crtc_state->limited_color_range &&
!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
val |= TRANSCONF_COLOR_RANGE_SELECT;
if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
val |= TRANSCONF_OUTPUT_COLORSPACE_YUV709;
val |= TRANSCONF_GAMMA_MODE(crtc_state->gamma_mode);
val |= TRANSCONF_FRAME_START_DELAY(crtc_state->framestart_delay - 1);
val |= TRANSCONF_MSA_TIMING_DELAY(crtc_state->msa_timing_delay);
intel_de_write(dev_priv, TRANSCONF(cpu_transcoder), val);
intel_de_posting_read(dev_priv, TRANSCONF(cpu_transcoder));
}
static void hsw_set_transconf(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 val = 0;
if (!intel_crtc_needs_modeset(crtc_state))
val |= TRANSCONF_ENABLE;
if (IS_HASWELL(dev_priv) && crtc_state->dither)
val |= TRANSCONF_DITHER_EN | TRANSCONF_DITHER_TYPE_SP;
if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
val |= TRANSCONF_INTERLACE_IF_ID_ILK;
else
val |= TRANSCONF_INTERLACE_PF_PD_ILK;
if (IS_HASWELL(dev_priv) &&
crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
val |= TRANSCONF_OUTPUT_COLORSPACE_YUV_HSW;
intel_de_write(dev_priv, TRANSCONF(cpu_transcoder), val);
intel_de_posting_read(dev_priv, TRANSCONF(cpu_transcoder));
}
static void bdw_set_pipe_misc(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 val = 0;
switch (crtc_state->pipe_bpp) {
case 18:
val |= PIPE_MISC_BPC_6;
break;
case 24:
val |= PIPE_MISC_BPC_8;
break;
case 30:
val |= PIPE_MISC_BPC_10;
break;
case 36:
if (DISPLAY_VER(dev_priv) > 12)
val |= PIPE_MISC_BPC_12_ADLP;
break;
default:
MISSING_CASE(crtc_state->pipe_bpp);
break;
}
if (crtc_state->dither)
val |= PIPE_MISC_DITHER_ENABLE | PIPE_MISC_DITHER_TYPE_SP;
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
val |= PIPE_MISC_OUTPUT_COLORSPACE_YUV;
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
val |= PIPE_MISC_YUV420_ENABLE |
PIPE_MISC_YUV420_MODE_FULL_BLEND;
if (DISPLAY_VER(dev_priv) >= 11 && is_hdr_mode(crtc_state))
val |= PIPE_MISC_HDR_MODE_PRECISION;
if (DISPLAY_VER(dev_priv) >= 12)
val |= PIPE_MISC_PIXEL_ROUNDING_TRUNC;
if (IS_BROADWELL(dev_priv))
val |= PIPE_MISC_PSR_MASK_SPRITE_ENABLE;
intel_de_write(dev_priv, PIPE_MISC(crtc->pipe), val);
}
int bdw_get_pipe_misc_bpp(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 tmp;
tmp = intel_de_read(dev_priv, PIPE_MISC(crtc->pipe));
switch (tmp & PIPE_MISC_BPC_MASK) {
case PIPE_MISC_BPC_6:
return 18;
case PIPE_MISC_BPC_8:
return 24;
case PIPE_MISC_BPC_10:
return 30;
case PIPE_MISC_BPC_12_ADLP:
if (DISPLAY_VER(dev_priv) > 12)
return 36;
fallthrough;
default:
MISSING_CASE(tmp);
return 0;
}
}
int ilk_get_lanes_required(int target_clock, int link_bw, int bpp)
{
u32 bps = target_clock * bpp * 21 / 20;
return DIV_ROUND_UP(bps, link_bw * 8);
}
void intel_get_m_n(struct drm_i915_private *i915,
struct intel_link_m_n *m_n,
i915_reg_t data_m_reg, i915_reg_t data_n_reg,
i915_reg_t link_m_reg, i915_reg_t link_n_reg)
{
m_n->link_m = intel_de_read(i915, link_m_reg) & DATA_LINK_M_N_MASK;
m_n->link_n = intel_de_read(i915, link_n_reg) & DATA_LINK_M_N_MASK;
m_n->data_m = intel_de_read(i915, data_m_reg) & DATA_LINK_M_N_MASK;
m_n->data_n = intel_de_read(i915, data_n_reg) & DATA_LINK_M_N_MASK;
m_n->tu = REG_FIELD_GET(TU_SIZE_MASK, intel_de_read(i915, data_m_reg)) + 1;
}
void intel_cpu_transcoder_get_m1_n1(struct intel_crtc *crtc,
enum transcoder transcoder,
struct intel_link_m_n *m_n)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (DISPLAY_VER(dev_priv) >= 5)
intel_get_m_n(dev_priv, m_n,
PIPE_DATA_M1(transcoder), PIPE_DATA_N1(transcoder),
PIPE_LINK_M1(transcoder), PIPE_LINK_N1(transcoder));
else
intel_get_m_n(dev_priv, m_n,
PIPE_DATA_M_G4X(pipe), PIPE_DATA_N_G4X(pipe),
PIPE_LINK_M_G4X(pipe), PIPE_LINK_N_G4X(pipe));
}
void intel_cpu_transcoder_get_m2_n2(struct intel_crtc *crtc,
enum transcoder transcoder,
struct intel_link_m_n *m_n)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!intel_cpu_transcoder_has_m2_n2(dev_priv, transcoder))
return;
intel_get_m_n(dev_priv, m_n,
PIPE_DATA_M2(transcoder), PIPE_DATA_N2(transcoder),
PIPE_LINK_M2(transcoder), PIPE_LINK_N2(transcoder));
}
static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 ctl, pos, size;
enum pipe pipe;
ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe));
if ((ctl & PF_ENABLE) == 0)
return;
if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
pipe = REG_FIELD_GET(PF_PIPE_SEL_MASK_IVB, ctl);
else
pipe = crtc->pipe;
crtc_state->pch_pfit.enabled = true;
pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe));
size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe));
drm_rect_init(&crtc_state->pch_pfit.dst,
REG_FIELD_GET(PF_WIN_XPOS_MASK, pos),
REG_FIELD_GET(PF_WIN_YPOS_MASK, pos),
REG_FIELD_GET(PF_WIN_XSIZE_MASK, size),
REG_FIELD_GET(PF_WIN_YSIZE_MASK, size));
drm_WARN_ON(&dev_priv->drm, pipe != crtc->pipe);
}
static bool ilk_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
u32 tmp;
bool ret;
power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (!wakeref)
return false;
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
pipe_config->shared_dpll = NULL;
ret = false;
tmp = intel_de_read(dev_priv, TRANSCONF(pipe_config->cpu_transcoder));
if (!(tmp & TRANSCONF_ENABLE))
goto out;
switch (tmp & TRANSCONF_BPC_MASK) {
case TRANSCONF_BPC_6:
pipe_config->pipe_bpp = 18;
break;
case TRANSCONF_BPC_8:
pipe_config->pipe_bpp = 24;
break;
case TRANSCONF_BPC_10:
pipe_config->pipe_bpp = 30;
break;
case TRANSCONF_BPC_12:
pipe_config->pipe_bpp = 36;
break;
default:
break;
}
if (tmp & TRANSCONF_COLOR_RANGE_SELECT)
pipe_config->limited_color_range = true;
switch (tmp & TRANSCONF_OUTPUT_COLORSPACE_MASK) {
case TRANSCONF_OUTPUT_COLORSPACE_YUV601:
case TRANSCONF_OUTPUT_COLORSPACE_YUV709:
pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
break;
default:
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
break;
}
pipe_config->sink_format = pipe_config->output_format;
pipe_config->gamma_mode = REG_FIELD_GET(TRANSCONF_GAMMA_MODE_MASK_ILK, tmp);
pipe_config->framestart_delay = REG_FIELD_GET(TRANSCONF_FRAME_START_DELAY_MASK, tmp) + 1;
pipe_config->msa_timing_delay = REG_FIELD_GET(TRANSCONF_MSA_TIMING_DELAY_MASK, tmp);
pipe_config->csc_mode = intel_de_read(dev_priv,
PIPE_CSC_MODE(crtc->pipe));
i9xx_get_pipe_color_config(pipe_config);
intel_color_get_config(pipe_config);
pipe_config->pixel_multiplier = 1;
ilk_pch_get_config(pipe_config);
intel_get_transcoder_timings(crtc, pipe_config);
intel_get_pipe_src_size(crtc, pipe_config);
ilk_get_pfit_config(pipe_config);
ret = true;
out:
intel_display_power_put(dev_priv, power_domain, wakeref);
return ret;
}
static u8 bigjoiner_pipes(struct drm_i915_private *i915)
{
u8 pipes;
if (DISPLAY_VER(i915) >= 12)
pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D);
else if (DISPLAY_VER(i915) >= 11)
pipes = BIT(PIPE_B) | BIT(PIPE_C);
else
pipes = 0;
return pipes & DISPLAY_RUNTIME_INFO(i915)->pipe_mask;
}
static bool transcoder_ddi_func_is_enabled(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
u32 tmp = 0;
power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
with_intel_display_power_if_enabled(dev_priv, power_domain, wakeref)
tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder));
return tmp & TRANS_DDI_FUNC_ENABLE;
}
static void enabled_bigjoiner_pipes(struct drm_i915_private *dev_priv,
u8 *master_pipes, u8 *slave_pipes)
{
struct intel_crtc *crtc;
*master_pipes = 0;
*slave_pipes = 0;
for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc,
bigjoiner_pipes(dev_priv)) {
enum intel_display_power_domain power_domain;
enum pipe pipe = crtc->pipe;
intel_wakeref_t wakeref;
power_domain = intel_dsc_power_domain(crtc, (enum transcoder) pipe);
with_intel_display_power_if_enabled(dev_priv, power_domain, wakeref) {
u32 tmp = intel_de_read(dev_priv, ICL_PIPE_DSS_CTL1(pipe));
if (!(tmp & BIG_JOINER_ENABLE))
continue;
if (tmp & MASTER_BIG_JOINER_ENABLE)
*master_pipes |= BIT(pipe);
else
*slave_pipes |= BIT(pipe);
}
if (DISPLAY_VER(dev_priv) < 13)
continue;
power_domain = POWER_DOMAIN_PIPE(pipe);
with_intel_display_power_if_enabled(dev_priv, power_domain, wakeref) {
u32 tmp = intel_de_read(dev_priv, ICL_PIPE_DSS_CTL1(pipe));
if (tmp & UNCOMPRESSED_JOINER_MASTER)
*master_pipes |= BIT(pipe);
if (tmp & UNCOMPRESSED_JOINER_SLAVE)
*slave_pipes |= BIT(pipe);
}
}
drm_WARN(&dev_priv->drm, *slave_pipes != *master_pipes << 1,
"Bigjoiner misconfigured (master pipes 0x%x, slave pipes 0x%x)\n",
*master_pipes, *slave_pipes);
}
static enum pipe get_bigjoiner_master_pipe(enum pipe pipe, u8 master_pipes, u8 slave_pipes)
{
if ((slave_pipes & BIT(pipe)) == 0)
return pipe;
master_pipes &= ~GENMASK(7, pipe);
return fls(master_pipes) - 1;
}
static u8 get_bigjoiner_slave_pipes(enum pipe pipe, u8 master_pipes, u8 slave_pipes)
{
enum pipe master_pipe, next_master_pipe;
master_pipe = get_bigjoiner_master_pipe(pipe, master_pipes, slave_pipes);
if ((master_pipes & BIT(master_pipe)) == 0)
return 0;
master_pipes &= ~GENMASK(master_pipe, 0);
master_pipes |= BIT(7);
next_master_pipe = ffs(master_pipes) - 1;
return slave_pipes & GENMASK(next_master_pipe - 1, master_pipe);
}
static u8 hsw_panel_transcoders(struct drm_i915_private *i915)
{
u8 panel_transcoder_mask = BIT(TRANSCODER_EDP);
if (DISPLAY_VER(i915) >= 11)
panel_transcoder_mask |= BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
return panel_transcoder_mask;
}
static u8 hsw_enabled_transcoders(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u8 panel_transcoder_mask = hsw_panel_transcoders(dev_priv);
enum transcoder cpu_transcoder;
u8 master_pipes, slave_pipes;
u8 enabled_transcoders = 0;
for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder,
panel_transcoder_mask) {
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
enum pipe trans_pipe;
u32 tmp = 0;
power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
with_intel_display_power_if_enabled(dev_priv, power_domain, wakeref)
tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (!(tmp & TRANS_DDI_FUNC_ENABLE))
continue;
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
default:
drm_WARN(dev, 1,
"unknown pipe linked to transcoder %s\n",
transcoder_name(cpu_transcoder));
fallthrough;
case TRANS_DDI_EDP_INPUT_A_ONOFF:
case TRANS_DDI_EDP_INPUT_A_ON:
trans_pipe = PIPE_A;
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
trans_pipe = PIPE_B;
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
trans_pipe = PIPE_C;
break;
case TRANS_DDI_EDP_INPUT_D_ONOFF:
trans_pipe = PIPE_D;
break;
}
if (trans_pipe == crtc->pipe)
enabled_transcoders |= BIT(cpu_transcoder);
}
cpu_transcoder = (enum transcoder) crtc->pipe;
if (transcoder_ddi_func_is_enabled(dev_priv, cpu_transcoder))
enabled_transcoders |= BIT(cpu_transcoder);
enabled_bigjoiner_pipes(dev_priv, &master_pipes, &slave_pipes);
if (slave_pipes & BIT(crtc->pipe)) {
cpu_transcoder = (enum transcoder)
get_bigjoiner_master_pipe(crtc->pipe, master_pipes, slave_pipes);
if (transcoder_ddi_func_is_enabled(dev_priv, cpu_transcoder))
enabled_transcoders |= BIT(cpu_transcoder);
}
return enabled_transcoders;
}
static bool has_edp_transcoders(u8 enabled_transcoders)
{
return enabled_transcoders & BIT(TRANSCODER_EDP);
}
static bool has_dsi_transcoders(u8 enabled_transcoders)
{
return enabled_transcoders & (BIT(TRANSCODER_DSI_0) |
BIT(TRANSCODER_DSI_1));
}
static bool has_pipe_transcoders(u8 enabled_transcoders)
{
return enabled_transcoders & ~(BIT(TRANSCODER_EDP) |
BIT(TRANSCODER_DSI_0) |
BIT(TRANSCODER_DSI_1));
}
static void assert_enabled_transcoders(struct drm_i915_private *i915,
u8 enabled_transcoders)
{
drm_WARN_ON(&i915->drm,
has_edp_transcoders(enabled_transcoders) +
has_dsi_transcoders(enabled_transcoders) +
has_pipe_transcoders(enabled_transcoders) > 1);
drm_WARN_ON(&i915->drm,
!has_dsi_transcoders(enabled_transcoders) &&
!is_power_of_2(enabled_transcoders));
}
static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config,
struct intel_display_power_domain_set *power_domain_set)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long enabled_transcoders;
u32 tmp;
enabled_transcoders = hsw_enabled_transcoders(crtc);
if (!enabled_transcoders)
return false;
assert_enabled_transcoders(dev_priv, enabled_transcoders);
pipe_config->cpu_transcoder = ffs(enabled_transcoders) - 1;
if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set,
POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
return false;
if (hsw_panel_transcoders(dev_priv) & BIT(pipe_config->cpu_transcoder)) {
tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
if ((tmp & TRANS_DDI_EDP_INPUT_MASK) == TRANS_DDI_EDP_INPUT_A_ONOFF)
pipe_config->pch_pfit.force_thru = true;
}
tmp = intel_de_read(dev_priv, TRANSCONF(pipe_config->cpu_transcoder));
return tmp & TRANSCONF_ENABLE;
}
static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config,
struct intel_display_power_domain_set *power_domain_set)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum transcoder cpu_transcoder;
enum port port;
u32 tmp;
for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
if (port == PORT_A)
cpu_transcoder = TRANSCODER_DSI_A;
else
cpu_transcoder = TRANSCODER_DSI_C;
if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set,
POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
continue;
if (!bxt_dsi_pll_is_enabled(dev_priv))
break;
tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port));
if (!(tmp & DPI_ENABLE))
continue;
tmp = intel_de_read(dev_priv, MIPI_CTRL(port));
if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
continue;
pipe_config->cpu_transcoder = cpu_transcoder;
break;
}
return transcoder_is_dsi(pipe_config->cpu_transcoder);
}
static void intel_bigjoiner_get_config(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
u8 master_pipes, slave_pipes;
enum pipe pipe = crtc->pipe;
enabled_bigjoiner_pipes(i915, &master_pipes, &slave_pipes);
if (((master_pipes | slave_pipes) & BIT(pipe)) == 0)
return;
crtc_state->bigjoiner_pipes =
BIT(get_bigjoiner_master_pipe(pipe, master_pipes, slave_pipes)) |
get_bigjoiner_slave_pipes(pipe, master_pipes, slave_pipes);
}
static bool hsw_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
bool active;
u32 tmp;
if (!intel_display_power_get_in_set_if_enabled(dev_priv, &crtc->hw_readout_power_domains,
POWER_DOMAIN_PIPE(crtc->pipe)))
return false;
pipe_config->shared_dpll = NULL;
active = hsw_get_transcoder_state(crtc, pipe_config, &crtc->hw_readout_power_domains);
if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
bxt_get_dsi_transcoder_state(crtc, pipe_config, &crtc->hw_readout_power_domains)) {
drm_WARN_ON(&dev_priv->drm, active);
active = true;
}
if (!active)
goto out;
intel_dsc_get_config(pipe_config);
intel_bigjoiner_get_config(pipe_config);
if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
DISPLAY_VER(dev_priv) >= 11)
intel_get_transcoder_timings(crtc, pipe_config);
if (HAS_VRR(dev_priv) && !transcoder_is_dsi(pipe_config->cpu_transcoder))
intel_vrr_get_config(pipe_config);
intel_get_pipe_src_size(crtc, pipe_config);
if (IS_HASWELL(dev_priv)) {
u32 tmp = intel_de_read(dev_priv,
TRANSCONF(pipe_config->cpu_transcoder));
if (tmp & TRANSCONF_OUTPUT_COLORSPACE_YUV_HSW)
pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
else
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
} else {
pipe_config->output_format =
bdw_get_pipe_misc_output_format(crtc);
}
pipe_config->sink_format = pipe_config->output_format;
pipe_config->gamma_mode = intel_de_read(dev_priv,
GAMMA_MODE(crtc->pipe));
pipe_config->csc_mode = intel_de_read(dev_priv,
PIPE_CSC_MODE(crtc->pipe));
if (DISPLAY_VER(dev_priv) >= 9) {
tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe));
if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
pipe_config->gamma_enable = true;
if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
pipe_config->csc_enable = true;
} else {
i9xx_get_pipe_color_config(pipe_config);
}
intel_color_get_config(pipe_config);
tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe));
pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp);
if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
pipe_config->ips_linetime =
REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp);
if (intel_display_power_get_in_set_if_enabled(dev_priv, &crtc->hw_readout_power_domains,
POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) {
if (DISPLAY_VER(dev_priv) >= 9)
skl_scaler_get_config(pipe_config);
else
ilk_get_pfit_config(pipe_config);
}
hsw_ips_get_config(pipe_config);
if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
pipe_config->pixel_multiplier =
intel_de_read(dev_priv,
TRANS_MULT(pipe_config->cpu_transcoder)) + 1;
} else {
pipe_config->pixel_multiplier = 1;
}
if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
tmp = intel_de_read(dev_priv, DISPLAY_VER(dev_priv) >= 14 ?
MTL_CHICKEN_TRANS(pipe_config->cpu_transcoder) :
CHICKEN_TRANS(pipe_config->cpu_transcoder));
pipe_config->framestart_delay = REG_FIELD_GET(HSW_FRAME_START_DELAY_MASK, tmp) + 1;
} else {
pipe_config->framestart_delay = 1;
}
out:
intel_display_power_put_all_in_set(dev_priv, &crtc->hw_readout_power_domains);
return active;
}
bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
if (!i915->display.funcs.display->get_pipe_config(crtc, crtc_state))
return false;
crtc_state->hw.active = true;
intel_crtc_readout_derived_state(crtc_state);
return true;
}
static int i9xx_pll_refclk(struct drm_device *dev,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 dpll = pipe_config->dpll_hw_state.dpll;
if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
return dev_priv->display.vbt.lvds_ssc_freq;
else if (HAS_PCH_SPLIT(dev_priv))
return 120000;
else if (DISPLAY_VER(dev_priv) != 2)
return 96000;
else
return 48000;
}
void i9xx_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 dpll = pipe_config->dpll_hw_state.dpll;
u32 fp;
struct dpll clock;
int port_clock;
int refclk = i9xx_pll_refclk(dev, pipe_config);
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
fp = pipe_config->dpll_hw_state.fp0;
else
fp = pipe_config->dpll_hw_state.fp1;
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
if (IS_PINEVIEW(dev_priv)) {
clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
} else {
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
}
if (DISPLAY_VER(dev_priv) != 2) {
if (IS_PINEVIEW(dev_priv))
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
else
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
switch (dpll & DPLL_MODE_MASK) {
case DPLLB_MODE_DAC_SERIAL:
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5 : 10;
break;
case DPLLB_MODE_LVDS:
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7 : 14;
break;
default:
drm_dbg_kms(&dev_priv->drm,
"Unknown DPLL mode %08x in programmed "
"mode\n", (int)(dpll & DPLL_MODE_MASK));
return;
}
if (IS_PINEVIEW(dev_priv))
port_clock = pnv_calc_dpll_params(refclk, &clock);
else
port_clock = i9xx_calc_dpll_params(refclk, &clock);
} else {
enum pipe lvds_pipe;
if (IS_I85X(dev_priv) &&
intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) &&
lvds_pipe == crtc->pipe) {
u32 lvds = intel_de_read(dev_priv, LVDS);
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
if (lvds & LVDS_CLKB_POWER_UP)
clock.p2 = 7;
else
clock.p2 = 14;
} else {
if (dpll & PLL_P1_DIVIDE_BY_TWO)
clock.p1 = 2;
else {
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
}
if (dpll & PLL_P2_DIVIDE_BY_4)
clock.p2 = 4;
else
clock.p2 = 2;
}
port_clock = i9xx_calc_dpll_params(refclk, &clock);
}
pipe_config->port_clock = port_clock;
}
int intel_dotclock_calculate(int link_freq,
const struct intel_link_m_n *m_n)
{
if (!m_n->link_n)
return 0;
return DIV_ROUND_UP_ULL(mul_u32_u32(m_n->link_m, link_freq),
m_n->link_n);
}
int intel_crtc_dotclock(const struct intel_crtc_state *pipe_config)
{
int dotclock;
if (intel_crtc_has_dp_encoder(pipe_config))
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp > 24)
dotclock = DIV_ROUND_CLOSEST(pipe_config->port_clock * 24,
pipe_config->pipe_bpp);
else
dotclock = pipe_config->port_clock;
if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
!intel_crtc_has_dp_encoder(pipe_config))
dotclock *= 2;
if (pipe_config->pixel_multiplier)
dotclock /= pipe_config->pixel_multiplier;
return dotclock;
}
struct drm_display_mode *
intel_encoder_current_mode(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc_state *crtc_state;
struct drm_display_mode *mode;
struct intel_crtc *crtc;
enum pipe pipe;
if (!encoder->get_hw_state(encoder, &pipe))
return NULL;
crtc = intel_crtc_for_pipe(dev_priv, pipe);
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode)
return NULL;
crtc_state = intel_crtc_state_alloc(crtc);
if (!crtc_state) {
kfree(mode);
return NULL;
}
if (!intel_crtc_get_pipe_config(crtc_state)) {
kfree(crtc_state);
kfree(mode);
return NULL;
}
intel_encoder_get_config(encoder, crtc_state);
intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode);
kfree(crtc_state);
return mode;
}
static bool encoders_cloneable(const struct intel_encoder *a,
const struct intel_encoder *b)
{
return a == b || (a->cloneable & BIT(b->type) &&
b->cloneable & BIT(a->type));
}
static bool check_single_encoder_cloning(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct intel_encoder *source_encoder;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int i;
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
if (connector_state->crtc != &crtc->base)
continue;
source_encoder =
to_intel_encoder(connector_state->best_encoder);
if (!encoders_cloneable(encoder, source_encoder))
return false;
}
return true;
}
static int icl_add_linked_planes(struct intel_atomic_state *state)
{
struct intel_plane *plane, *linked;
struct intel_plane_state *plane_state, *linked_plane_state;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
linked = plane_state->planar_linked_plane;
if (!linked)
continue;
linked_plane_state = intel_atomic_get_plane_state(state, linked);
if (IS_ERR(linked_plane_state))
return PTR_ERR(linked_plane_state);
drm_WARN_ON(state->base.dev,
linked_plane_state->planar_linked_plane != plane);
drm_WARN_ON(state->base.dev,
linked_plane_state->planar_slave == plane_state->planar_slave);
}
return 0;
}
static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
struct intel_plane *plane, *linked;
struct intel_plane_state *plane_state;
int i;
if (DISPLAY_VER(dev_priv) < 11)
return 0;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
continue;
plane_state->planar_linked_plane = NULL;
if (plane_state->planar_slave && !plane_state->uapi.visible) {
crtc_state->enabled_planes &= ~BIT(plane->id);
crtc_state->active_planes &= ~BIT(plane->id);
crtc_state->update_planes |= BIT(plane->id);
crtc_state->data_rate[plane->id] = 0;
crtc_state->rel_data_rate[plane->id] = 0;
}
plane_state->planar_slave = false;
}
if (!crtc_state->nv12_planes)
return 0;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
struct intel_plane_state *linked_state = NULL;
if (plane->pipe != crtc->pipe ||
!(crtc_state->nv12_planes & BIT(plane->id)))
continue;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
if (!icl_is_nv12_y_plane(dev_priv, linked->id))
continue;
if (crtc_state->active_planes & BIT(linked->id))
continue;
linked_state = intel_atomic_get_plane_state(state, linked);
if (IS_ERR(linked_state))
return PTR_ERR(linked_state);
break;
}
if (!linked_state) {
drm_dbg_kms(&dev_priv->drm,
"Need %d free Y planes for planar YUV\n",
hweight8(crtc_state->nv12_planes));
return -EINVAL;
}
plane_state->planar_linked_plane = linked;
linked_state->planar_slave = true;
linked_state->planar_linked_plane = plane;
crtc_state->enabled_planes |= BIT(linked->id);
crtc_state->active_planes |= BIT(linked->id);
crtc_state->update_planes |= BIT(linked->id);
crtc_state->data_rate[linked->id] =
crtc_state->data_rate_y[plane->id];
crtc_state->rel_data_rate[linked->id] =
crtc_state->rel_data_rate_y[plane->id];
drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n",
linked->base.name, plane->base.name);
linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE;
linked_state->color_ctl = plane_state->color_ctl;
linked_state->view = plane_state->view;
linked_state->decrypt = plane_state->decrypt;
intel_plane_copy_hw_state(linked_state, plane_state);
linked_state->uapi.src = plane_state->uapi.src;
linked_state->uapi.dst = plane_state->uapi.dst;
if (icl_is_hdr_plane(dev_priv, plane->id)) {
if (linked->id == PLANE_SPRITE5)
plane_state->cus_ctl |= PLANE_CUS_Y_PLANE_7_ICL;
else if (linked->id == PLANE_SPRITE4)
plane_state->cus_ctl |= PLANE_CUS_Y_PLANE_6_ICL;
else if (linked->id == PLANE_SPRITE3)
plane_state->cus_ctl |= PLANE_CUS_Y_PLANE_5_RKL;
else if (linked->id == PLANE_SPRITE2)
plane_state->cus_ctl |= PLANE_CUS_Y_PLANE_4_RKL;
else
MISSING_CASE(linked->id);
}
}
return 0;
}
static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct intel_atomic_state *state =
to_intel_atomic_state(new_crtc_state->uapi.state);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
}
static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state)
{
const struct drm_display_mode *pipe_mode =
&crtc_state->hw.pipe_mode;
int linetime_wm;
if (!crtc_state->hw.enable)
return 0;
linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8,
pipe_mode->crtc_clock);
return min(linetime_wm, 0x1ff);
}
static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state,
const struct intel_cdclk_state *cdclk_state)
{
const struct drm_display_mode *pipe_mode =
&crtc_state->hw.pipe_mode;
int linetime_wm;
if (!crtc_state->hw.enable)
return 0;
linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8,
cdclk_state->logical.cdclk);
return min(linetime_wm, 0x1ff);
}
static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct drm_display_mode *pipe_mode =
&crtc_state->hw.pipe_mode;
int linetime_wm;
if (!crtc_state->hw.enable)
return 0;
linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8,
crtc_state->pixel_rate);
if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
skl_watermark_ipc_enabled(dev_priv))
linetime_wm /= 2;
return min(linetime_wm, 0x1ff);
}
static int hsw_compute_linetime_wm(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_cdclk_state *cdclk_state;
if (DISPLAY_VER(dev_priv) >= 9)
crtc_state->linetime = skl_linetime_wm(crtc_state);
else
crtc_state->linetime = hsw_linetime_wm(crtc_state);
if (!hsw_crtc_supports_ips(crtc))
return 0;
cdclk_state = intel_atomic_get_cdclk_state(state);
if (IS_ERR(cdclk_state))
return PTR_ERR(cdclk_state);
crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state,
cdclk_state);
return 0;
}
static int intel_crtc_atomic_check(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
int ret;
if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv) &&
intel_crtc_needs_modeset(crtc_state) &&
!crtc_state->hw.active)
crtc_state->update_wm_post = true;
if (intel_crtc_needs_modeset(crtc_state)) {
ret = intel_dpll_crtc_get_shared_dpll(state, crtc);
if (ret)
return ret;
}
if (c8_planes_changed(crtc_state))
crtc_state->uapi.color_mgmt_changed = true;
if (intel_crtc_needs_color_update(crtc_state)) {
ret = intel_color_check(crtc_state);
if (ret)
return ret;
}
ret = intel_compute_pipe_wm(state, crtc);
if (ret) {
drm_dbg_kms(&dev_priv->drm,
"Target pipe watermarks are invalid\n");
return ret;
}
ret = intel_compute_intermediate_wm(state, crtc);
if (ret) {
drm_dbg_kms(&dev_priv->drm,
"No valid intermediate pipe watermarks are possible\n");
return ret;
}
if (DISPLAY_VER(dev_priv) >= 9) {
if (intel_crtc_needs_modeset(crtc_state) ||
intel_crtc_needs_fastset(crtc_state)) {
ret = skl_update_scaler_crtc(crtc_state);
if (ret)
return ret;
}
ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state);
if (ret)
return ret;
}
if (HAS_IPS(dev_priv)) {
ret = hsw_ips_compute_config(state, crtc);
if (ret)
return ret;
}
if (DISPLAY_VER(dev_priv) >= 9 ||
IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
ret = hsw_compute_linetime_wm(state, crtc);
if (ret)
return ret;
}
ret = intel_psr2_sel_fetch_update(state, crtc);
if (ret)
return ret;
return 0;
}
static int
compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
struct intel_crtc_state *crtc_state)
{
struct drm_connector *connector = conn_state->connector;
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
const struct drm_display_info *info = &connector->display_info;
int bpp;
switch (conn_state->max_bpc) {
case 6 ... 7:
bpp = 6 * 3;
break;
case 8 ... 9:
bpp = 8 * 3;
break;
case 10 ... 11:
bpp = 10 * 3;
break;
case 12 ... 16:
bpp = 12 * 3;
break;
default:
MISSING_CASE(conn_state->max_bpc);
return -EINVAL;
}
if (bpp < crtc_state->pipe_bpp) {
drm_dbg_kms(&i915->drm,
"[CONNECTOR:%d:%s] Limiting display bpp to %d "
"(EDID bpp %d, max requested bpp %d, max platform bpp %d)\n",
connector->base.id, connector->name,
bpp, 3 * info->bpc,
3 * conn_state->max_requested_bpc,
crtc_state->pipe_bpp);
crtc_state->pipe_bpp = bpp;
}
return 0;
}
static int
compute_baseline_pipe_bpp(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int bpp, i;
if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv)))
bpp = 10*3;
else if (DISPLAY_VER(dev_priv) >= 5)
bpp = 12*3;
else
bpp = 8*3;
crtc_state->pipe_bpp = bpp;
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
int ret;
if (connector_state->crtc != &crtc->base)
continue;
ret = compute_sink_pipe_bpp(connector_state, crtc_state);
if (ret)
return ret;
}
return 0;
}
static bool check_digital_port_conflicts(struct intel_atomic_state *state)
{
struct drm_device *dev = state->base.dev;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
unsigned int used_ports = 0;
unsigned int used_mst_ports = 0;
bool ret = true;
drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
struct drm_connector_state *connector_state;
struct intel_encoder *encoder;
connector_state =
drm_atomic_get_new_connector_state(&state->base,
connector);
if (!connector_state)
connector_state = connector->state;
if (!connector_state->best_encoder)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
drm_WARN_ON(dev, !connector_state->crtc);
switch (encoder->type) {
case INTEL_OUTPUT_DDI:
if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev))))
break;
fallthrough;
case INTEL_OUTPUT_DP:
case INTEL_OUTPUT_HDMI:
case INTEL_OUTPUT_EDP:
if (used_ports & BIT(encoder->port))
ret = false;
used_ports |= BIT(encoder->port);
break;
case INTEL_OUTPUT_DP_MST:
used_mst_ports |=
1 << encoder->port;
break;
default:
break;
}
}
drm_connector_list_iter_end(&conn_iter);
if (used_ports & used_mst_ports)
return false;
return ret;
}
static void
intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
WARN_ON(intel_crtc_is_bigjoiner_slave(crtc_state));
drm_property_replace_blob(&crtc_state->hw.degamma_lut,
crtc_state->uapi.degamma_lut);
drm_property_replace_blob(&crtc_state->hw.gamma_lut,
crtc_state->uapi.gamma_lut);
drm_property_replace_blob(&crtc_state->hw.ctm,
crtc_state->uapi.ctm);
}
static void
intel_crtc_copy_uapi_to_hw_state_modeset(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
WARN_ON(intel_crtc_is_bigjoiner_slave(crtc_state));
crtc_state->hw.enable = crtc_state->uapi.enable;
crtc_state->hw.active = crtc_state->uapi.active;
drm_mode_copy(&crtc_state->hw.mode,
&crtc_state->uapi.mode);
drm_mode_copy(&crtc_state->hw.adjusted_mode,
&crtc_state->uapi.adjusted_mode);
crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter;
intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc);
}
static void
copy_bigjoiner_crtc_state_nomodeset(struct intel_atomic_state *state,
struct intel_crtc *slave_crtc)
{
struct intel_crtc_state *slave_crtc_state =
intel_atomic_get_new_crtc_state(state, slave_crtc);
struct intel_crtc *master_crtc = intel_master_crtc(slave_crtc_state);
const struct intel_crtc_state *master_crtc_state =
intel_atomic_get_new_crtc_state(state, master_crtc);
drm_property_replace_blob(&slave_crtc_state->hw.degamma_lut,
master_crtc_state->hw.degamma_lut);
drm_property_replace_blob(&slave_crtc_state->hw.gamma_lut,
master_crtc_state->hw.gamma_lut);
drm_property_replace_blob(&slave_crtc_state->hw.ctm,
master_crtc_state->hw.ctm);
slave_crtc_state->uapi.color_mgmt_changed = master_crtc_state->uapi.color_mgmt_changed;
}
static int
copy_bigjoiner_crtc_state_modeset(struct intel_atomic_state *state,
struct intel_crtc *slave_crtc)
{
struct intel_crtc_state *slave_crtc_state =
intel_atomic_get_new_crtc_state(state, slave_crtc);
struct intel_crtc *master_crtc = intel_master_crtc(slave_crtc_state);
const struct intel_crtc_state *master_crtc_state =
intel_atomic_get_new_crtc_state(state, master_crtc);
struct intel_crtc_state *saved_state;
WARN_ON(master_crtc_state->bigjoiner_pipes !=
slave_crtc_state->bigjoiner_pipes);
saved_state = kmemdup(master_crtc_state, sizeof(*saved_state), GFP_KERNEL);
if (!saved_state)
return -ENOMEM;
saved_state->uapi = slave_crtc_state->uapi;
saved_state->scaler_state = slave_crtc_state->scaler_state;
saved_state->shared_dpll = slave_crtc_state->shared_dpll;
saved_state->crc_enabled = slave_crtc_state->crc_enabled;
intel_crtc_free_hw_state(slave_crtc_state);
memcpy(slave_crtc_state, saved_state, sizeof(*slave_crtc_state));
kfree(saved_state);
memset(&slave_crtc_state->hw, 0, sizeof(slave_crtc_state->hw));
slave_crtc_state->hw.enable = master_crtc_state->hw.enable;
slave_crtc_state->hw.active = master_crtc_state->hw.active;
drm_mode_copy(&slave_crtc_state->hw.mode,
&master_crtc_state->hw.mode);
drm_mode_copy(&slave_crtc_state->hw.pipe_mode,
&master_crtc_state->hw.pipe_mode);
drm_mode_copy(&slave_crtc_state->hw.adjusted_mode,
&master_crtc_state->hw.adjusted_mode);
slave_crtc_state->hw.scaling_filter = master_crtc_state->hw.scaling_filter;
copy_bigjoiner_crtc_state_nomodeset(state, slave_crtc);
slave_crtc_state->uapi.mode_changed = master_crtc_state->uapi.mode_changed;
slave_crtc_state->uapi.connectors_changed = master_crtc_state->uapi.connectors_changed;
slave_crtc_state->uapi.active_changed = master_crtc_state->uapi.active_changed;
WARN_ON(master_crtc_state->bigjoiner_pipes !=
slave_crtc_state->bigjoiner_pipes);
return 0;
}
static int
intel_crtc_prepare_cleared_state(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *saved_state;
saved_state = intel_crtc_state_alloc(crtc);
if (!saved_state)
return -ENOMEM;
intel_crtc_free_hw_state(crtc_state);
saved_state->uapi = crtc_state->uapi;
saved_state->inherited = crtc_state->inherited;
saved_state->scaler_state = crtc_state->scaler_state;
saved_state->shared_dpll = crtc_state->shared_dpll;
saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
sizeof(saved_state->icl_port_dplls));
saved_state->crc_enabled = crtc_state->crc_enabled;
if (IS_G4X(dev_priv) ||
IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
saved_state->wm = crtc_state->wm;
memcpy(crtc_state, saved_state, sizeof(*crtc_state));
kfree(saved_state);
intel_crtc_copy_uapi_to_hw_state_modeset(state, crtc);
return 0;
}
static int
intel_modeset_pipe_config(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int pipe_src_w, pipe_src_h;
int base_bpp, ret, i;
bool retry = true;
crtc_state->cpu_transcoder = (enum transcoder) crtc->pipe;
crtc_state->framestart_delay = 1;
if (!(crtc_state->hw.adjusted_mode.flags &
(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
crtc_state->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
if (!(crtc_state->hw.adjusted_mode.flags &
(DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
crtc_state->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
ret = compute_baseline_pipe_bpp(state, crtc);
if (ret)
return ret;
base_bpp = crtc_state->pipe_bpp;
drm_mode_get_hv_timing(&crtc_state->hw.mode,
&pipe_src_w, &pipe_src_h);
drm_rect_init(&crtc_state->pipe_src, 0, 0,
pipe_src_w, pipe_src_h);
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(connector_state->best_encoder);
if (connector_state->crtc != &crtc->base)
continue;
if (!check_single_encoder_cloning(state, crtc, encoder)) {
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s] rejecting invalid cloning configuration\n",
encoder->base.base.id, encoder->base.name);
return -EINVAL;
}
if (encoder->compute_output_type)
crtc_state->output_types |=
BIT(encoder->compute_output_type(encoder, crtc_state,
connector_state));
else
crtc_state->output_types |= BIT(encoder->type);
}
encoder_retry:
crtc_state->port_clock = 0;
crtc_state->pixel_multiplier = 1;
drm_mode_set_crtcinfo(&crtc_state->hw.adjusted_mode,
CRTC_STEREO_DOUBLE);
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(connector_state->best_encoder);
if (connector_state->crtc != &crtc->base)
continue;
ret = encoder->compute_config(encoder, crtc_state,
connector_state);
if (ret == -EDEADLK)
return ret;
if (ret < 0) {
drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] config failure: %d\n",
encoder->base.base.id, encoder->base.name, ret);
return ret;
}
}
if (!crtc_state->port_clock)
crtc_state->port_clock = crtc_state->hw.adjusted_mode.crtc_clock
* crtc_state->pixel_multiplier;
ret = intel_crtc_compute_config(state, crtc);
if (ret == -EDEADLK)
return ret;
if (ret == -EAGAIN) {
if (drm_WARN(&i915->drm, !retry,
"[CRTC:%d:%s] loop in pipe configuration computation\n",
crtc->base.base.id, crtc->base.name))
return -EINVAL;
drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] bw constrained, retrying\n",
crtc->base.base.id, crtc->base.name);
retry = false;
goto encoder_retry;
}
if (ret < 0) {
drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] config failure: %d\n",
crtc->base.base.id, crtc->base.name, ret);
return ret;
}
crtc_state->dither = (crtc_state->pipe_bpp == 6*3) &&
!crtc_state->dither_force_disable;
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
crtc->base.base.id, crtc->base.name,
base_bpp, crtc_state->pipe_bpp, crtc_state->dither);
return 0;
}
static int
intel_modeset_pipe_config_late(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_connector_state *conn_state;
struct drm_connector *connector;
int i;
intel_bigjoiner_adjust_pipe_src(crtc_state);
for_each_new_connector_in_state(&state->base, connector,
conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
int ret;
if (conn_state->crtc != &crtc->base ||
!encoder->compute_config_late)
continue;
ret = encoder->compute_config_late(encoder, crtc_state,
conn_state);
if (ret)
return ret;
}
return 0;
}
bool intel_fuzzy_clock_check(int clock1, int clock2)
{
int diff;
if (clock1 == clock2)
return true;
if (!clock1 || !clock2)
return false;
diff = abs(clock1 - clock2);
if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
return true;
return false;
}
static bool
intel_compare_link_m_n(const struct intel_link_m_n *m_n,
const struct intel_link_m_n *m2_n2)
{
return m_n->tu == m2_n2->tu &&
m_n->data_m == m2_n2->data_m &&
m_n->data_n == m2_n2->data_n &&
m_n->link_m == m2_n2->link_m &&
m_n->link_n == m2_n2->link_n;
}
static bool
intel_compare_infoframe(const union hdmi_infoframe *a,
const union hdmi_infoframe *b)
{
return memcmp(a, b, sizeof(*a)) == 0;
}
static bool
intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a,
const struct drm_dp_vsc_sdp *b)
{
return memcmp(a, b, sizeof(*a)) == 0;
}
static bool
intel_compare_buffer(const u8 *a, const u8 *b, size_t len)
{
return memcmp(a, b, len) == 0;
}
static void
pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
bool fastset, const char *name,
const union hdmi_infoframe *a,
const union hdmi_infoframe *b)
{
if (fastset) {
if (!drm_debug_enabled(DRM_UT_KMS))
return;
drm_dbg_kms(&dev_priv->drm,
"fastset requirement not met in %s infoframe\n", name);
drm_dbg_kms(&dev_priv->drm, "expected:\n");
hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
drm_dbg_kms(&dev_priv->drm, "found:\n");
hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
} else {
drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name);
drm_err(&dev_priv->drm, "expected:\n");
hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
drm_err(&dev_priv->drm, "found:\n");
hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
}
}
static void
pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv,
bool fastset, const char *name,
const struct drm_dp_vsc_sdp *a,
const struct drm_dp_vsc_sdp *b)
{
if (fastset) {
if (!drm_debug_enabled(DRM_UT_KMS))
return;
drm_dbg_kms(&dev_priv->drm,
"fastset requirement not met in %s dp sdp\n", name);
drm_dbg_kms(&dev_priv->drm, "expected:\n");
drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a);
drm_dbg_kms(&dev_priv->drm, "found:\n");
drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b);
} else {
drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name);
drm_err(&dev_priv->drm, "expected:\n");
drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a);
drm_err(&dev_priv->drm, "found:\n");
drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b);
}
}
static size_t
memcmp_diff_len(const u8 *a, const u8 *b, size_t len)
{
int i;
for (i = len - 1; i >= 0; i--) {
if (a[i] != b[i])
return i + 1;
}
return 0;
}
static void
pipe_config_buffer_mismatch(struct drm_i915_private *dev_priv,
bool fastset, const char *name,
const u8 *a, const u8 *b, size_t len)
{
if (fastset) {
if (!drm_debug_enabled(DRM_UT_KMS))
return;
len = memcmp_diff_len(a, b, len);
drm_dbg_kms(&dev_priv->drm,
"fastset requirement not met in %s buffer\n", name);
print_hex_dump(KERN_DEBUG, "expected: ", DUMP_PREFIX_NONE,
16, 0, a, len, false);
print_hex_dump(KERN_DEBUG, "found: ", DUMP_PREFIX_NONE,
16, 0, b, len, false);
} else {
len = memcmp_diff_len(a, b, len);
drm_err(&dev_priv->drm, "mismatch in %s buffer\n", name);
print_hex_dump(KERN_ERR, "expected: ", DUMP_PREFIX_NONE,
16, 0, a, len, false);
print_hex_dump(KERN_ERR, "found: ", DUMP_PREFIX_NONE,
16, 0, b, len, false);
}
}
static void __printf(4, 5)
pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
const char *name, const char *format, ...)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct va_format vaf;
va_list args;
va_start(args, format);
vaf.fmt = format;
vaf.va = &args;
if (fastset)
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] fastset requirement not met in %s %pV\n",
crtc->base.base.id, crtc->base.name, name, &vaf);
else
drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n",
crtc->base.base.id, crtc->base.name, name, &vaf);
va_end(args);
}
static bool fastboot_enabled(struct drm_i915_private *dev_priv)
{
if (dev_priv->params.fastboot != -1)
return dev_priv->params.fastboot;
if (DISPLAY_VER(dev_priv) >= 9)
return true;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
return true;
return false;
}
bool
intel_pipe_config_compare(const struct intel_crtc_state *current_config,
const struct intel_crtc_state *pipe_config,
bool fastset)
{
struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev);
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
bool ret = true;
bool fixup_inherited = fastset &&
current_config->inherited && !pipe_config->inherited;
if (fixup_inherited && !fastboot_enabled(dev_priv)) {
drm_dbg_kms(&dev_priv->drm,
"initial modeset and fastboot not set\n");
ret = false;
}
#define PIPE_CONF_CHECK_X(name) do { \
if (current_config->name != pipe_config->name) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(expected 0x%08x, found 0x%08x)", \
current_config->name, \
pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_X_WITH_MASK(name, mask) do { \
if ((current_config->name & (mask)) != (pipe_config->name & (mask))) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(expected 0x%08x, found 0x%08x)", \
current_config->name & (mask), \
pipe_config->name & (mask)); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_I(name) do { \
if (current_config->name != pipe_config->name) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(expected %i, found %i)", \
current_config->name, \
pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_BOOL(name) do { \
if (current_config->name != pipe_config->name) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(expected %s, found %s)", \
str_yes_no(current_config->name), \
str_yes_no(pipe_config->name)); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
PIPE_CONF_CHECK_BOOL(name); \
} else { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
str_yes_no(current_config->name), \
str_yes_no(pipe_config->name)); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_P(name) do { \
if (current_config->name != pipe_config->name) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(expected %p, found %p)", \
current_config->name, \
pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_M_N(name) do { \
if (!intel_compare_link_m_n(¤t_config->name, \
&pipe_config->name)) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(expected tu %i data %i/%i link %i/%i, " \
"found tu %i, data %i/%i link %i/%i)", \
current_config->name.tu, \
current_config->name.data_m, \
current_config->name.data_n, \
current_config->name.link_m, \
current_config->name.link_n, \
pipe_config->name.tu, \
pipe_config->name.data_m, \
pipe_config->name.data_n, \
pipe_config->name.link_m, \
pipe_config->name.link_n); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_TIMINGS(name) do { \
PIPE_CONF_CHECK_I(name.crtc_hdisplay); \
PIPE_CONF_CHECK_I(name.crtc_htotal); \
PIPE_CONF_CHECK_I(name.crtc_hblank_start); \
PIPE_CONF_CHECK_I(name.crtc_hblank_end); \
PIPE_CONF_CHECK_I(name.crtc_hsync_start); \
PIPE_CONF_CHECK_I(name.crtc_hsync_end); \
PIPE_CONF_CHECK_I(name.crtc_vdisplay); \
PIPE_CONF_CHECK_I(name.crtc_vtotal); \
PIPE_CONF_CHECK_I(name.crtc_vblank_start); \
PIPE_CONF_CHECK_I(name.crtc_vblank_end); \
PIPE_CONF_CHECK_I(name.crtc_vsync_start); \
PIPE_CONF_CHECK_I(name.crtc_vsync_end); \
} while (0)
#define PIPE_CONF_CHECK_RECT(name) do { \
PIPE_CONF_CHECK_I(name.x1); \
PIPE_CONF_CHECK_I(name.x2); \
PIPE_CONF_CHECK_I(name.y1); \
PIPE_CONF_CHECK_I(name.y2); \
} while (0)
#define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
if ((current_config->name ^ pipe_config->name) & (mask)) { \
pipe_config_mismatch(fastset, crtc, __stringify(name), \
"(%x) (expected %i, found %i)", \
(mask), \
current_config->name & (mask), \
pipe_config->name & (mask)); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_INFOFRAME(name) do { \
if (!intel_compare_infoframe(¤t_config->infoframes.name, \
&pipe_config->infoframes.name)) { \
pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
¤t_config->infoframes.name, \
&pipe_config->infoframes.name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \
if (!current_config->has_psr && !pipe_config->has_psr && \
!intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \
&pipe_config->infoframes.name)) { \
pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \
¤t_config->infoframes.name, \
&pipe_config->infoframes.name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_BUFFER(name, len) do { \
BUILD_BUG_ON(sizeof(current_config->name) != (len)); \
BUILD_BUG_ON(sizeof(pipe_config->name) != (len)); \
if (!intel_compare_buffer(current_config->name, pipe_config->name, (len))) { \
pipe_config_buffer_mismatch(dev_priv, fastset, __stringify(name), \
current_config->name, \
pipe_config->name, \
(len)); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_COLOR_LUT(lut, is_pre_csc_lut) do { \
if (current_config->gamma_mode == pipe_config->gamma_mode && \
!intel_color_lut_equal(current_config, \
current_config->lut, pipe_config->lut, \
is_pre_csc_lut)) { \
pipe_config_mismatch(fastset, crtc, __stringify(lut), \
"hw_state doesn't match sw_state"); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_CSC(name) do { \
PIPE_CONF_CHECK_X(name.preoff[0]); \
PIPE_CONF_CHECK_X(name.preoff[1]); \
PIPE_CONF_CHECK_X(name.preoff[2]); \
PIPE_CONF_CHECK_X(name.coeff[0]); \
PIPE_CONF_CHECK_X(name.coeff[1]); \
PIPE_CONF_CHECK_X(name.coeff[2]); \
PIPE_CONF_CHECK_X(name.coeff[3]); \
PIPE_CONF_CHECK_X(name.coeff[4]); \
PIPE_CONF_CHECK_X(name.coeff[5]); \
PIPE_CONF_CHECK_X(name.coeff[6]); \
PIPE_CONF_CHECK_X(name.coeff[7]); \
PIPE_CONF_CHECK_X(name.coeff[8]); \
PIPE_CONF_CHECK_X(name.postoff[0]); \
PIPE_CONF_CHECK_X(name.postoff[1]); \
PIPE_CONF_CHECK_X(name.postoff[2]); \
} while (0)
#define PIPE_CONF_QUIRK(quirk) \
((current_config->quirks | pipe_config->quirks) & (quirk))
PIPE_CONF_CHECK_I(hw.enable);
PIPE_CONF_CHECK_I(hw.active);
PIPE_CONF_CHECK_I(cpu_transcoder);
PIPE_CONF_CHECK_I(mst_master_transcoder);
PIPE_CONF_CHECK_BOOL(has_pch_encoder);
PIPE_CONF_CHECK_I(fdi_lanes);
PIPE_CONF_CHECK_M_N(fdi_m_n);
PIPE_CONF_CHECK_I(lane_count);
PIPE_CONF_CHECK_X(lane_lat_optim_mask);
if (HAS_DOUBLE_BUFFERED_M_N(dev_priv)) {
if (!fastset || !pipe_config->seamless_m_n)
PIPE_CONF_CHECK_M_N(dp_m_n);
} else {
PIPE_CONF_CHECK_M_N(dp_m_n);
PIPE_CONF_CHECK_M_N(dp_m2_n2);
}
PIPE_CONF_CHECK_X(output_types);
PIPE_CONF_CHECK_I(framestart_delay);
PIPE_CONF_CHECK_I(msa_timing_delay);
PIPE_CONF_CHECK_TIMINGS(hw.pipe_mode);
PIPE_CONF_CHECK_TIMINGS(hw.adjusted_mode);
PIPE_CONF_CHECK_I(pixel_multiplier);
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_INTERLACE);
if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_PHSYNC);
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_NHSYNC);
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_PVSYNC);
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_NVSYNC);
}
PIPE_CONF_CHECK_I(output_format);
PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
if ((DISPLAY_VER(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
PIPE_CONF_CHECK_BOOL(limited_color_range);
PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
PIPE_CONF_CHECK_BOOL(has_infoframe);
PIPE_CONF_CHECK_BOOL(fec_enable);
PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
PIPE_CONF_CHECK_BUFFER(eld, MAX_ELD_BYTES);
PIPE_CONF_CHECK_X(gmch_pfit.control);
if (DISPLAY_VER(dev_priv) < 4)
PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
if (!fastset) {
PIPE_CONF_CHECK_RECT(pipe_src);
PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
PIPE_CONF_CHECK_RECT(pch_pfit.dst);
PIPE_CONF_CHECK_I(scaler_state.scaler_id);
PIPE_CONF_CHECK_I(pixel_rate);
PIPE_CONF_CHECK_X(gamma_mode);
if (IS_CHERRYVIEW(dev_priv))
PIPE_CONF_CHECK_X(cgm_mode);
else
PIPE_CONF_CHECK_X(csc_mode);
PIPE_CONF_CHECK_BOOL(gamma_enable);
PIPE_CONF_CHECK_BOOL(csc_enable);
PIPE_CONF_CHECK_BOOL(wgc_enable);
PIPE_CONF_CHECK_I(linetime);
PIPE_CONF_CHECK_I(ips_linetime);
PIPE_CONF_CHECK_COLOR_LUT(pre_csc_lut, true);
PIPE_CONF_CHECK_COLOR_LUT(post_csc_lut, false);
PIPE_CONF_CHECK_CSC(csc);
PIPE_CONF_CHECK_CSC(output_csc);
if (current_config->active_planes) {
PIPE_CONF_CHECK_BOOL(has_psr);
PIPE_CONF_CHECK_BOOL(has_psr2);
PIPE_CONF_CHECK_BOOL(enable_psr2_sel_fetch);
PIPE_CONF_CHECK_I(dc3co_exitline);
}
}
PIPE_CONF_CHECK_BOOL(double_wide);
if (dev_priv->display.dpll.mgr) {
PIPE_CONF_CHECK_P(shared_dpll);
PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
PIPE_CONF_CHECK_X(dpll_hw_state.spll);
PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
PIPE_CONF_CHECK_X(dpll_hw_state.div0);
PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
}
PIPE_CONF_CHECK_X(dsi_pll.ctrl);
PIPE_CONF_CHECK_X(dsi_pll.div);
if (IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) >= 5)
PIPE_CONF_CHECK_I(pipe_bpp);
if (!fastset || !pipe_config->seamless_m_n) {
PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_clock);
PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_clock);
}
PIPE_CONF_CHECK_I(port_clock);
PIPE_CONF_CHECK_I(min_voltage_level);
if (current_config->has_psr || pipe_config->has_psr)
PIPE_CONF_CHECK_X_WITH_MASK(infoframes.enable,
~intel_hdmi_infoframe_enable(DP_SDP_VSC));
else
PIPE_CONF_CHECK_X(infoframes.enable);
PIPE_CONF_CHECK_X(infoframes.gcp);
PIPE_CONF_CHECK_INFOFRAME(avi);
PIPE_CONF_CHECK_INFOFRAME(spd);
PIPE_CONF_CHECK_INFOFRAME(hdmi);
PIPE_CONF_CHECK_INFOFRAME(drm);
PIPE_CONF_CHECK_DP_VSC_SDP(vsc);
PIPE_CONF_CHECK_X(sync_mode_slaves_mask);
PIPE_CONF_CHECK_I(master_transcoder);
PIPE_CONF_CHECK_X(bigjoiner_pipes);
PIPE_CONF_CHECK_I(dsc.compression_enable);
PIPE_CONF_CHECK_I(dsc.dsc_split);
PIPE_CONF_CHECK_I(dsc.compressed_bpp);
PIPE_CONF_CHECK_BOOL(splitter.enable);
PIPE_CONF_CHECK_I(splitter.link_count);
PIPE_CONF_CHECK_I(splitter.pixel_overlap);
if (!fastset)
PIPE_CONF_CHECK_BOOL(vrr.enable);
PIPE_CONF_CHECK_I(vrr.vmin);
PIPE_CONF_CHECK_I(vrr.vmax);
PIPE_CONF_CHECK_I(vrr.flipline);
PIPE_CONF_CHECK_I(vrr.pipeline_full);
PIPE_CONF_CHECK_I(vrr.guardband);
#undef PIPE_CONF_CHECK_X
#undef PIPE_CONF_CHECK_I
#undef PIPE_CONF_CHECK_BOOL
#undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
#undef PIPE_CONF_CHECK_P
#undef PIPE_CONF_CHECK_FLAGS
#undef PIPE_CONF_CHECK_COLOR_LUT
#undef PIPE_CONF_CHECK_TIMINGS
#undef PIPE_CONF_CHECK_RECT
#undef PIPE_CONF_QUIRK
return ret;
}
static void
intel_verify_planes(struct intel_atomic_state *state)
{
struct intel_plane *plane;
const struct intel_plane_state *plane_state;
int i;
for_each_new_intel_plane_in_state(state, plane,
plane_state, i)
assert_plane(plane, plane_state->planar_slave ||
plane_state->uapi.visible);
}
int intel_modeset_all_pipes(struct intel_atomic_state *state,
const char *reason)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc *crtc;
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_crtc_state *crtc_state;
int ret;
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
if (!crtc_state->hw.active ||
intel_crtc_needs_modeset(crtc_state))
continue;
drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] Full modeset due to %s\n",
crtc->base.base.id, crtc->base.name, reason);
crtc_state->uapi.mode_changed = true;
crtc_state->update_pipe = false;
ret = drm_atomic_add_affected_connectors(&state->base,
&crtc->base);
if (ret)
return ret;
ret = intel_dp_mst_add_topology_state_for_crtc(state, crtc);
if (ret)
return ret;
ret = intel_atomic_add_affected_planes(state, crtc);
if (ret)
return ret;
crtc_state->update_planes |= crtc_state->active_planes;
crtc_state->async_flip_planes = 0;
crtc_state->do_async_flip = false;
}
return 0;
}
static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state)
{
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
struct intel_crtc_state *first_crtc_state = NULL;
struct intel_crtc_state *other_crtc_state = NULL;
enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
if (!crtc_state->hw.active ||
!intel_crtc_needs_modeset(crtc_state))
continue;
if (first_crtc_state) {
other_crtc_state = crtc_state;
break;
} else {
first_crtc_state = crtc_state;
first_pipe = crtc->pipe;
}
}
if (!first_crtc_state)
return 0;
for_each_intel_crtc(state->base.dev, crtc) {
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
crtc_state->hsw_workaround_pipe = INVALID_PIPE;
if (!crtc_state->hw.active ||
intel_crtc_needs_modeset(crtc_state))
continue;
if (enabled_pipe != INVALID_PIPE)
return 0;
enabled_pipe = crtc->pipe;
}
if (enabled_pipe != INVALID_PIPE)
first_crtc_state->hsw_workaround_pipe = enabled_pipe;
else if (other_crtc_state)
other_crtc_state->hsw_workaround_pipe = first_pipe;
return 0;
}
u8 intel_calc_active_pipes(struct intel_atomic_state *state,
u8 active_pipes)
{
const struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
if (crtc_state->hw.active)
active_pipes |= BIT(crtc->pipe);
else
active_pipes &= ~BIT(crtc->pipe);
}
return active_pipes;
}
static int intel_modeset_checks(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
state->modeset = true;
if (IS_HASWELL(dev_priv))
return hsw_mode_set_planes_workaround(state);
return 0;
}
static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
struct intel_crtc_state *new_crtc_state)
{
struct drm_i915_private *i915 = to_i915(old_crtc_state->uapi.crtc->dev);
if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) {
drm_dbg_kms(&i915->drm, "fastset requirement not met, forcing full modeset\n");
return;
}
new_crtc_state->uapi.mode_changed = false;
if (!intel_crtc_needs_modeset(new_crtc_state))
new_crtc_state->update_pipe = true;
}
static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
struct intel_crtc *crtc,
u8 plane_ids_mask)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_plane *plane;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
struct intel_plane_state *plane_state;
if ((plane_ids_mask & BIT(plane->id)) == 0)
continue;
plane_state = intel_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
}
return 0;
}
int intel_atomic_add_affected_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
return intel_crtc_add_planes_to_state(state, crtc,
old_crtc_state->enabled_planes |
new_crtc_state->enabled_planes);
}
static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
{
return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_IVYBRIDGE(dev_priv);
}
static int intel_crtc_add_bigjoiner_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_crtc *other)
{
const struct intel_plane_state __maybe_unused *plane_state;
struct intel_plane *plane;
u8 plane_ids = 0;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
if (plane->pipe == crtc->pipe)
plane_ids |= BIT(plane->id);
}
return intel_crtc_add_planes_to_state(state, other, plane_ids);
}
static int intel_bigjoiner_add_affected_planes(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
struct intel_crtc *other;
for_each_intel_crtc_in_pipe_mask(&i915->drm, other,
crtc_state->bigjoiner_pipes) {
int ret;
if (crtc == other)
continue;
ret = intel_crtc_add_bigjoiner_planes(state, crtc, other);
if (ret)
return ret;
}
}
return 0;
}
static int intel_atomic_check_planes(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_plane_state __maybe_unused *plane_state;
struct intel_plane *plane;
struct intel_crtc *crtc;
int i, ret;
ret = icl_add_linked_planes(state);
if (ret)
return ret;
ret = intel_bigjoiner_add_affected_planes(state);
if (ret)
return ret;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
ret = intel_plane_atomic_check(state, plane);
if (ret) {
drm_dbg_atomic(&dev_priv->drm,
"[PLANE:%d:%s] atomic driver check failed\n",
plane->base.base.id, plane->base.name);
return ret;
}
}
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
u8 old_active_planes, new_active_planes;
ret = icl_check_nv12_planes(new_crtc_state);
if (ret)
return ret;
if (!active_planes_affects_min_cdclk(dev_priv))
continue;
old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
if (hweight8(old_active_planes) == hweight8(new_active_planes))
continue;
ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
if (ret)
return ret;
}
return 0;
}
static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
{
struct intel_crtc_state __maybe_unused *crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
int ret;
ret = intel_crtc_atomic_check(state, crtc);
if (ret) {
drm_dbg_atomic(&i915->drm,
"[CRTC:%d:%s] atomic driver check failed\n",
crtc->base.base.id, crtc->base.name);
return ret;
}
}
return 0;
}
static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state,
u8 transcoders)
{
const struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->hw.enable &&
transcoders & BIT(new_crtc_state->cpu_transcoder) &&
intel_crtc_needs_modeset(new_crtc_state))
return true;
}
return false;
}
static bool intel_pipes_need_modeset(struct intel_atomic_state *state,
u8 pipes)
{
const struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->hw.enable &&
pipes & BIT(crtc->pipe) &&
intel_crtc_needs_modeset(new_crtc_state))
return true;
}
return false;
}
static int intel_atomic_check_bigjoiner(struct intel_atomic_state *state,
struct intel_crtc *master_crtc)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_crtc_state *master_crtc_state =
intel_atomic_get_new_crtc_state(state, master_crtc);
struct intel_crtc *slave_crtc;
if (!master_crtc_state->bigjoiner_pipes)
return 0;
if (drm_WARN_ON(&i915->drm,
master_crtc->pipe != bigjoiner_master_pipe(master_crtc_state)))
return -EINVAL;
if (master_crtc_state->bigjoiner_pipes & ~bigjoiner_pipes(i915)) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] Cannot act as big joiner master "
"(need 0x%x as pipes, only 0x%x possible)\n",
master_crtc->base.base.id, master_crtc->base.name,
master_crtc_state->bigjoiner_pipes, bigjoiner_pipes(i915));
return -EINVAL;
}
for_each_intel_crtc_in_pipe_mask(&i915->drm, slave_crtc,
intel_crtc_bigjoiner_slave_pipes(master_crtc_state)) {
struct intel_crtc_state *slave_crtc_state;
int ret;
slave_crtc_state = intel_atomic_get_crtc_state(&state->base, slave_crtc);
if (IS_ERR(slave_crtc_state))
return PTR_ERR(slave_crtc_state);
if (slave_crtc_state->uapi.enable) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] Slave is enabled as normal CRTC, but "
"[CRTC:%d:%s] claiming this CRTC for bigjoiner.\n",
slave_crtc->base.base.id, slave_crtc->base.name,
master_crtc->base.base.id, master_crtc->base.name);
return -EINVAL;
}
if (WARN_ON(drm_crtc_index(&master_crtc->base) >
drm_crtc_index(&slave_crtc->base)))
return -EINVAL;
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] Used as slave for big joiner master [CRTC:%d:%s]\n",
slave_crtc->base.base.id, slave_crtc->base.name,
master_crtc->base.base.id, master_crtc->base.name);
slave_crtc_state->bigjoiner_pipes =
master_crtc_state->bigjoiner_pipes;
ret = copy_bigjoiner_crtc_state_modeset(state, slave_crtc);
if (ret)
return ret;
}
return 0;
}
static void kill_bigjoiner_slave(struct intel_atomic_state *state,
struct intel_crtc *master_crtc)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_crtc_state *master_crtc_state =
intel_atomic_get_new_crtc_state(state, master_crtc);
struct intel_crtc *slave_crtc;
for_each_intel_crtc_in_pipe_mask(&i915->drm, slave_crtc,
intel_crtc_bigjoiner_slave_pipes(master_crtc_state)) {
struct intel_crtc_state *slave_crtc_state =
intel_atomic_get_new_crtc_state(state, slave_crtc);
slave_crtc_state->bigjoiner_pipes = 0;
intel_crtc_copy_uapi_to_hw_state_modeset(state, slave_crtc);
}
master_crtc_state->bigjoiner_pipes = 0;
}
static int intel_async_flip_check_uapi(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_plane_state *old_plane_state;
struct intel_plane_state *new_plane_state;
struct intel_plane *plane;
int i;
if (!new_crtc_state->uapi.async_flip)
return 0;
if (!new_crtc_state->uapi.active) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] not active\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
if (intel_crtc_needs_modeset(new_crtc_state)) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] modeset required\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
new_plane_state, i) {
if (plane->pipe != crtc->pipe)
continue;
if (!plane->async_flip) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] async flip not supported\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (!old_plane_state->uapi.fb || !new_plane_state->uapi.fb) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] no old or new framebuffer\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
}
return 0;
}
static int intel_async_flip_check_hw(struct intel_atomic_state *state, struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state, *new_crtc_state;
const struct intel_plane_state *new_plane_state, *old_plane_state;
struct intel_plane *plane;
int i;
old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
if (!new_crtc_state->uapi.async_flip)
return 0;
if (!new_crtc_state->hw.active) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] not active\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
if (intel_crtc_needs_modeset(new_crtc_state)) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] modeset required\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
if (old_crtc_state->active_planes != new_crtc_state->active_planes) {
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] Active planes cannot be in async flip\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
new_plane_state, i) {
if (plane->pipe != crtc->pipe)
continue;
if (drm_WARN_ON(&i915->drm,
new_crtc_state->do_async_flip && !plane->async_flip))
return -EINVAL;
if (!plane->async_flip)
continue;
switch (new_plane_state->hw.fb->modifier) {
case DRM_FORMAT_MOD_LINEAR:
if (DISPLAY_VER(i915) < 12) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Modifier 0x%llx does not support async flip on display ver %d\n",
plane->base.base.id, plane->base.name,
new_plane_state->hw.fb->modifier, DISPLAY_VER(i915));
return -EINVAL;
}
break;
case I915_FORMAT_MOD_X_TILED:
case I915_FORMAT_MOD_Y_TILED:
case I915_FORMAT_MOD_Yf_TILED:
case I915_FORMAT_MOD_4_TILED:
break;
default:
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Modifier 0x%llx does not support async flip\n",
plane->base.base.id, plane->base.name,
new_plane_state->hw.fb->modifier);
return -EINVAL;
}
if (new_plane_state->hw.fb->format->num_planes > 1) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Planar formats do not support async flips\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->view.color_plane[0].mapping_stride !=
new_plane_state->view.color_plane[0].mapping_stride) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Stride cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.fb->modifier !=
new_plane_state->hw.fb->modifier) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Modifier cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.fb->format !=
new_plane_state->hw.fb->format) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Pixel format cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.rotation !=
new_plane_state->hw.rotation) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Rotation cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) ||
!drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Size/co-ordinates cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) {
drm_dbg_kms(&i915->drm,
"[PLANES:%d:%s] Alpha value cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.pixel_blend_mode !=
new_plane_state->hw.pixel_blend_mode) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Pixel blend mode cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Color encoding cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Color range cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->decrypt != new_plane_state->decrypt) {
drm_dbg_kms(&i915->drm,
"[PLANE:%d:%s] Decryption cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
}
return 0;
}
static int intel_bigjoiner_add_affected_crtcs(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
u8 affected_pipes = 0;
u8 modeset_pipes = 0;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
affected_pipes |= crtc_state->bigjoiner_pipes;
if (intel_crtc_needs_modeset(crtc_state))
modeset_pipes |= crtc_state->bigjoiner_pipes;
}
for_each_intel_crtc_in_pipe_mask(&i915->drm, crtc, affected_pipes) {
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
}
for_each_intel_crtc_in_pipe_mask(&i915->drm, crtc, modeset_pipes) {
int ret;
crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
crtc_state->uapi.mode_changed = true;
ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
if (ret)
return ret;
ret = intel_atomic_add_affected_planes(state, crtc);
if (ret)
return ret;
}
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
if (intel_crtc_needs_modeset(crtc_state) &&
intel_crtc_is_bigjoiner_master(crtc_state))
kill_bigjoiner_slave(state, crtc);
}
return 0;
}
int intel_atomic_check(struct drm_device *dev,
struct drm_atomic_state *_state)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_atomic_state *state = to_intel_atomic_state(_state);
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_crtc *crtc;
int ret, i;
bool any_ms = false;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!state->internal)
new_crtc_state->inherited = false;
if (new_crtc_state->inherited != old_crtc_state->inherited)
new_crtc_state->uapi.mode_changed = true;
if (new_crtc_state->uapi.scaling_filter !=
old_crtc_state->uapi.scaling_filter)
new_crtc_state->uapi.mode_changed = true;
}
intel_vrr_check_modeset(state);
ret = drm_atomic_helper_check_modeset(dev, &state->base);
if (ret)
goto fail;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
ret = intel_async_flip_check_uapi(state, crtc);
if (ret)
return ret;
}
ret = intel_bigjoiner_add_affected_crtcs(state);
if (ret)
goto fail;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state)) {
if (intel_crtc_is_bigjoiner_slave(new_crtc_state))
copy_bigjoiner_crtc_state_nomodeset(state, crtc);
else
intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc);
continue;
}
if (intel_crtc_is_bigjoiner_slave(new_crtc_state)) {
drm_WARN_ON(&dev_priv->drm, new_crtc_state->uapi.enable);
continue;
}
ret = intel_crtc_prepare_cleared_state(state, crtc);
if (ret)
goto fail;
if (!new_crtc_state->hw.enable)
continue;
ret = intel_modeset_pipe_config(state, crtc);
if (ret)
goto fail;
ret = intel_atomic_check_bigjoiner(state, crtc);
if (ret)
goto fail;
}
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state))
continue;
if (new_crtc_state->hw.enable) {
ret = intel_modeset_pipe_config_late(state, crtc);
if (ret)
goto fail;
}
intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
}
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state))
continue;
if (intel_dp_mst_is_slave_trans(new_crtc_state)) {
enum transcoder master = new_crtc_state->mst_master_transcoder;
if (intel_cpu_transcoders_need_modeset(state, BIT(master))) {
new_crtc_state->uapi.mode_changed = true;
new_crtc_state->update_pipe = false;
}
}
if (is_trans_port_sync_mode(new_crtc_state)) {
u8 trans = new_crtc_state->sync_mode_slaves_mask;
if (new_crtc_state->master_transcoder != INVALID_TRANSCODER)
trans |= BIT(new_crtc_state->master_transcoder);
if (intel_cpu_transcoders_need_modeset(state, trans)) {
new_crtc_state->uapi.mode_changed = true;
new_crtc_state->update_pipe = false;
}
}
if (new_crtc_state->bigjoiner_pipes) {
if (intel_pipes_need_modeset(state, new_crtc_state->bigjoiner_pipes)) {
new_crtc_state->uapi.mode_changed = true;
new_crtc_state->update_pipe = false;
}
}
}
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state))
continue;
any_ms = true;
intel_release_shared_dplls(state, crtc);
}
if (any_ms && !check_digital_port_conflicts(state)) {
drm_dbg_kms(&dev_priv->drm,
"rejecting conflicting digital port configuration\n");
ret = -EINVAL;
goto fail;
}
ret = drm_dp_mst_atomic_check(&state->base);
if (ret)
goto fail;
ret = intel_atomic_check_planes(state);
if (ret)
goto fail;
ret = intel_compute_global_watermarks(state);
if (ret)
goto fail;
ret = intel_bw_atomic_check(state);
if (ret)
goto fail;
ret = intel_cdclk_atomic_check(state, &any_ms);
if (ret)
goto fail;
if (intel_any_crtc_needs_modeset(state))
any_ms = true;
if (any_ms) {
ret = intel_modeset_checks(state);
if (ret)
goto fail;
ret = intel_modeset_calc_cdclk(state);
if (ret)
return ret;
}
ret = intel_pmdemand_atomic_check(state);
if (ret)
goto fail;
ret = intel_atomic_check_crtcs(state);
if (ret)
goto fail;
ret = intel_fbc_atomic_check(state);
if (ret)
goto fail;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
intel_color_assert_luts(new_crtc_state);
ret = intel_async_flip_check_hw(state, crtc);
if (ret)
goto fail;
drm_WARN_ON(&dev_priv->drm,
intel_crtc_needs_modeset(new_crtc_state) &&
intel_crtc_needs_fastset(new_crtc_state));
if (!intel_crtc_needs_modeset(new_crtc_state) &&
!intel_crtc_needs_fastset(new_crtc_state))
continue;
intel_crtc_state_dump(new_crtc_state, state,
intel_crtc_needs_modeset(new_crtc_state) ?
"modeset" : "fastset");
}
return 0;
fail:
if (ret == -EDEADLK)
return ret;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i)
intel_crtc_state_dump(new_crtc_state, state, "failed");
return ret;
}
static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
{
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int i, ret;
ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base);
if (ret < 0)
return ret;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
if (intel_crtc_needs_color_update(crtc_state))
intel_color_prepare_commit(crtc_state);
}
return 0;
}
void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (DISPLAY_VER(dev_priv) != 2 || crtc_state->active_planes)
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
if (crtc_state->has_pch_encoder) {
enum pipe pch_transcoder =
intel_crtc_pch_transcoder(crtc);
intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
}
}
static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
intel_set_pipe_src_size(new_crtc_state);
if (DISPLAY_VER(dev_priv) >= 9) {
if (new_crtc_state->pch_pfit.enabled)
skl_pfit_enable(new_crtc_state);
} else if (HAS_PCH_SPLIT(dev_priv)) {
if (new_crtc_state->pch_pfit.enabled)
ilk_pfit_enable(new_crtc_state);
else if (old_crtc_state->pch_pfit.enabled)
ilk_pfit_disable(old_crtc_state);
}
if (DISPLAY_VER(dev_priv) >= 9 ||
IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
hsw_set_linetime_wm(new_crtc_state);
if (new_crtc_state->seamless_m_n)
intel_cpu_transcoder_set_m1_n1(crtc, new_crtc_state->cpu_transcoder,
&new_crtc_state->dp_m_n);
}
static void commit_pipe_pre_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
bool modeset = intel_crtc_needs_modeset(new_crtc_state);
if (!modeset) {
if (intel_crtc_needs_color_update(new_crtc_state))
intel_color_commit_arm(new_crtc_state);
if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
bdw_set_pipe_misc(new_crtc_state);
if (intel_crtc_needs_fastset(new_crtc_state))
intel_pipe_fastset(old_crtc_state, new_crtc_state);
}
intel_psr2_program_trans_man_trk_ctl(new_crtc_state);
intel_atomic_update_watermarks(state, crtc);
}
static void commit_pipe_post_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (DISPLAY_VER(dev_priv) >= 9 &&
!intel_crtc_needs_modeset(new_crtc_state))
skl_detach_scalers(new_crtc_state);
}
static void intel_enable_crtc(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (!intel_crtc_needs_modeset(new_crtc_state))
return;
intel_crtc_update_active_timings(new_crtc_state, false);
dev_priv->display.funcs.display->crtc_enable(state, crtc);
if (intel_crtc_is_bigjoiner_slave(new_crtc_state))
return;
intel_crtc_enable_pipe_crc(crtc);
}
static void intel_update_crtc(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
bool modeset = intel_crtc_needs_modeset(new_crtc_state);
if (old_crtc_state->inherited ||
intel_crtc_needs_modeset(new_crtc_state)) {
if (HAS_DPT(i915))
intel_dpt_configure(crtc);
}
if (vrr_enabling(old_crtc_state, new_crtc_state)) {
intel_vrr_enable(new_crtc_state);
intel_crtc_update_active_timings(new_crtc_state,
new_crtc_state->vrr.enable);
}
if (!modeset) {
if (new_crtc_state->preload_luts &&
intel_crtc_needs_color_update(new_crtc_state))
intel_color_load_luts(new_crtc_state);
intel_pre_plane_update(state, crtc);
if (intel_crtc_needs_fastset(new_crtc_state))
intel_encoders_update_pipe(state, crtc);
if (DISPLAY_VER(i915) >= 11 &&
intel_crtc_needs_fastset(new_crtc_state))
icl_set_pipe_chicken(new_crtc_state);
}
intel_fbc_update(state, crtc);
drm_WARN_ON(&i915->drm, !intel_display_power_is_enabled(i915, POWER_DOMAIN_DC_OFF));
if (!modeset &&
intel_crtc_needs_color_update(new_crtc_state))
intel_color_commit_noarm(new_crtc_state);
intel_crtc_planes_update_noarm(state, crtc);
intel_pipe_update_start(new_crtc_state);
commit_pipe_pre_planes(state, crtc);
intel_crtc_planes_update_arm(state, crtc);
commit_pipe_post_planes(state, crtc);
intel_pipe_update_end(new_crtc_state);
if (intel_crtc_needs_fastset(new_crtc_state) && !modeset &&
old_crtc_state->inherited)
intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
}
static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
struct intel_crtc_state *old_crtc_state,
struct intel_crtc_state *new_crtc_state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
intel_crtc_disable_pipe_crc(crtc);
dev_priv->display.funcs.display->crtc_disable(state, crtc);
crtc->active = false;
intel_fbc_disable(crtc);
if (!new_crtc_state->hw.active)
intel_initial_watermarks(state, crtc);
}
static void intel_commit_modeset_disables(struct intel_atomic_state *state)
{
struct intel_crtc_state *new_crtc_state, *old_crtc_state;
struct intel_crtc *crtc;
u32 handled = 0;
int i;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state))
continue;
if (!old_crtc_state->hw.active)
continue;
intel_pre_plane_update(state, crtc);
intel_crtc_disable_planes(state, crtc);
}
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state))
continue;
if (!old_crtc_state->hw.active)
continue;
if (!is_trans_port_sync_slave(old_crtc_state) &&
!intel_dp_mst_is_slave_trans(old_crtc_state) &&
!intel_crtc_is_bigjoiner_slave(old_crtc_state))
continue;
intel_old_crtc_state_disables(state, old_crtc_state,
new_crtc_state, crtc);
handled |= BIT(crtc->pipe);
}
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state) ||
(handled & BIT(crtc->pipe)))
continue;
if (!old_crtc_state->hw.active)
continue;
intel_old_crtc_state_disables(state, old_crtc_state,
new_crtc_state, crtc);
}
}
static void intel_commit_modeset_enables(struct intel_atomic_state *state)
{
struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (!new_crtc_state->hw.active)
continue;
intel_enable_crtc(state, crtc);
intel_update_crtc(state, crtc);
}
}
static void skl_commit_modeset_enables(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc *crtc;
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
u8 update_pipes = 0, modeset_pipes = 0;
int i;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if (!new_crtc_state->hw.active)
continue;
if (!intel_crtc_needs_modeset(new_crtc_state)) {
entries[pipe] = old_crtc_state->wm.skl.ddb;
update_pipes |= BIT(pipe);
} else {
modeset_pipes |= BIT(pipe);
}
}
while (update_pipes) {
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if ((update_pipes & BIT(pipe)) == 0)
continue;
if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
entries, I915_MAX_PIPES, pipe))
continue;
entries[pipe] = new_crtc_state->wm.skl.ddb;
update_pipes &= ~BIT(pipe);
intel_update_crtc(state, crtc);
if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
&old_crtc_state->wm.skl.ddb) &&
(update_pipes | modeset_pipes))
intel_crtc_wait_for_next_vblank(crtc);
}
}
update_pipes = modeset_pipes;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if ((modeset_pipes & BIT(pipe)) == 0)
continue;
if (intel_dp_mst_is_slave_trans(new_crtc_state) ||
is_trans_port_sync_master(new_crtc_state) ||
intel_crtc_is_bigjoiner_master(new_crtc_state))
continue;
modeset_pipes &= ~BIT(pipe);
intel_enable_crtc(state, crtc);
}
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if ((modeset_pipes & BIT(pipe)) == 0)
continue;
modeset_pipes &= ~BIT(pipe);
intel_enable_crtc(state, crtc);
}
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if ((update_pipes & BIT(pipe)) == 0)
continue;
drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
entries, I915_MAX_PIPES, pipe));
entries[pipe] = new_crtc_state->wm.skl.ddb;
update_pipes &= ~BIT(pipe);
intel_update_crtc(state, crtc);
}
drm_WARN_ON(&dev_priv->drm, modeset_pipes);
drm_WARN_ON(&dev_priv->drm, update_pipes);
}
static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
{
struct intel_atomic_state *state, *next;
struct llist_node *freed;
freed = llist_del_all(&dev_priv->display.atomic_helper.free_list);
llist_for_each_entry_safe(state, next, freed, freed)
drm_atomic_state_put(&state->base);
}
void intel_atomic_helper_free_state_worker(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), display.atomic_helper.free_work);
intel_atomic_helper_free_state(dev_priv);
}
static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
{
struct wait_queue_entry wait_fence, wait_reset;
struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
init_wait_entry(&wait_fence, 0);
init_wait_entry(&wait_reset, 0);
for (;;) {
prepare_to_wait(&intel_state->commit_ready.wait,
&wait_fence, TASK_UNINTERRUPTIBLE);
prepare_to_wait(bit_waitqueue(&to_gt(dev_priv)->reset.flags,
I915_RESET_MODESET),
&wait_reset, TASK_UNINTERRUPTIBLE);
if (i915_sw_fence_done(&intel_state->commit_ready) ||
test_bit(I915_RESET_MODESET, &to_gt(dev_priv)->reset.flags))
break;
schedule();
}
finish_wait(&intel_state->commit_ready.wait, &wait_fence);
finish_wait(bit_waitqueue(&to_gt(dev_priv)->reset.flags,
I915_RESET_MODESET),
&wait_reset);
}
static void intel_atomic_cleanup_work(struct work_struct *work)
{
struct intel_atomic_state *state =
container_of(work, struct intel_atomic_state, base.commit_work);
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_crtc_state *old_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_old_intel_crtc_in_state(state, crtc, old_crtc_state, i)
intel_color_cleanup_commit(old_crtc_state);
drm_atomic_helper_cleanup_planes(&i915->drm, &state->base);
drm_atomic_helper_commit_cleanup_done(&state->base);
drm_atomic_state_put(&state->base);
intel_atomic_helper_free_state(i915);
}
static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_plane *plane;
struct intel_plane_state *plane_state;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
struct drm_framebuffer *fb = plane_state->hw.fb;
int cc_plane;
int ret;
if (!fb)
continue;
cc_plane = intel_fb_rc_ccs_cc_plane(fb);
if (cc_plane < 0)
continue;
ret = i915_gem_object_read_from_page(intel_fb_obj(fb),
fb->offsets[cc_plane] + 16,
&plane_state->ccval,
sizeof(plane_state->ccval));
drm_WARN_ON(&i915->drm, ret);
}
}
static void intel_atomic_commit_tail(struct intel_atomic_state *state)
{
struct drm_device *dev = state->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc_state *new_crtc_state, *old_crtc_state;
struct intel_crtc *crtc;
struct intel_power_domain_mask put_domains[I915_MAX_PIPES] = {};
intel_wakeref_t wakeref = 0;
int i;
intel_atomic_commit_fence_wait(state);
drm_atomic_helper_wait_for_dependencies(&state->base);
drm_dp_mst_atomic_wait_for_dependencies(&state->base);
wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DC_OFF);
intel_atomic_prepare_plane_clear_colors(state);
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (intel_crtc_needs_modeset(new_crtc_state) ||
intel_crtc_needs_fastset(new_crtc_state))
intel_modeset_get_crtc_power_domains(new_crtc_state, &put_domains[crtc->pipe]);
}
intel_commit_modeset_disables(state);
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
crtc->config = new_crtc_state;
intel_pmdemand_pre_plane_update(state);
if (state->modeset) {
drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
intel_set_cdclk_pre_plane_update(state);
intel_modeset_verify_disabled(dev_priv, state);
}
intel_sagv_pre_plane_update(state);
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
bool modeset = intel_crtc_needs_modeset(new_crtc_state);
if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) {
spin_lock_irq(&dev->event_lock);
drm_crtc_send_vblank_event(&crtc->base,
new_crtc_state->uapi.event);
spin_unlock_irq(&dev->event_lock);
new_crtc_state->uapi.event = NULL;
}
}
intel_encoders_update_prepare(state);
intel_dbuf_pre_plane_update(state);
intel_mbus_dbox_update(state);
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->do_async_flip)
intel_crtc_enable_flip_done(state, crtc);
}
dev_priv->display.funcs.display->commit_modeset_enables(state);
if (state->modeset)
intel_set_cdclk_post_plane_update(state);
intel_wait_for_vblank_workers(state);
drm_atomic_helper_wait_for_flip_done(dev, &state->base);
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->do_async_flip)
intel_crtc_disable_flip_done(state, crtc);
}
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (DISPLAY_VER(dev_priv) == 2 && planes_enabling(old_crtc_state, new_crtc_state))
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
intel_optimize_watermarks(state, crtc);
}
intel_dbuf_post_plane_update(state);
intel_psr_post_plane_update(state);
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
intel_post_plane_update(state, crtc);
intel_modeset_put_crtc_power_domains(crtc, &put_domains[crtc->pipe]);
intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
hsw_ips_post_update(state, crtc);
intel_drrs_activate(new_crtc_state);
old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb);
}
intel_check_cpu_fifo_underruns(dev_priv);
intel_check_pch_fifo_underruns(dev_priv);
if (state->modeset)
intel_verify_planes(state);
intel_sagv_post_plane_update(state);
intel_pmdemand_post_plane_update(state);
drm_atomic_helper_commit_hw_done(&state->base);
if (state->modeset) {
intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
}
intel_display_power_put_async_delay(dev_priv, POWER_DOMAIN_DC_OFF, wakeref, 17);
intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
queue_work(system_highpri_wq, &state->base.commit_work);
}
static void intel_atomic_commit_work(struct work_struct *work)
{
struct intel_atomic_state *state =
container_of(work, struct intel_atomic_state, base.commit_work);
intel_atomic_commit_tail(state);
}
static int
intel_atomic_commit_ready(struct i915_sw_fence *fence,
enum i915_sw_fence_notify notify)
{
struct intel_atomic_state *state =
container_of(fence, struct intel_atomic_state, commit_ready);
switch (notify) {
case FENCE_COMPLETE:
break;
case FENCE_FREE:
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_atomic_helper *helper =
&i915->display.atomic_helper;
if (llist_add(&state->freed, &helper->free_list))
queue_work(i915->unordered_wq, &helper->free_work);
break;
}
}
return NOTIFY_DONE;
}
static void intel_atomic_track_fbs(struct intel_atomic_state *state)
{
struct intel_plane_state *old_plane_state, *new_plane_state;
struct intel_plane *plane;
int i;
for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
new_plane_state, i)
intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
to_intel_frontbuffer(new_plane_state->hw.fb),
plane->frontbuffer_bit);
}
int intel_atomic_commit(struct drm_device *dev, struct drm_atomic_state *_state,
bool nonblock)
{
struct intel_atomic_state *state = to_intel_atomic_state(_state);
struct drm_i915_private *dev_priv = to_i915(dev);
int ret = 0;
state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
drm_atomic_state_get(&state->base);
i915_sw_fence_init(&state->commit_ready,
intel_atomic_commit_ready);
if (DISPLAY_VER(dev_priv) < 9 && state->base.legacy_cursor_update) {
struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
if (new_crtc_state->wm.need_postvbl_update ||
new_crtc_state->update_wm_post)
state->base.legacy_cursor_update = false;
}
ret = intel_atomic_prepare_commit(state);
if (ret) {
drm_dbg_atomic(&dev_priv->drm,
"Preparing state failed with %i\n", ret);
i915_sw_fence_commit(&state->commit_ready);
intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
return ret;
}
ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
if (!ret)
ret = drm_atomic_helper_swap_state(&state->base, true);
if (!ret)
intel_atomic_swap_global_state(state);
if (ret) {
struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
i915_sw_fence_commit(&state->commit_ready);
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
intel_color_cleanup_commit(new_crtc_state);
drm_atomic_helper_cleanup_planes(dev, &state->base);
intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
return ret;
}
intel_shared_dpll_swap_state(state);
intel_atomic_track_fbs(state);
drm_atomic_state_get(&state->base);
INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
i915_sw_fence_commit(&state->commit_ready);
if (nonblock && state->modeset) {
queue_work(dev_priv->display.wq.modeset, &state->base.commit_work);
} else if (nonblock) {
queue_work(dev_priv->display.wq.flip, &state->base.commit_work);
} else {
if (state->modeset)
flush_workqueue(dev_priv->display.wq.modeset);
intel_atomic_commit_tail(state);
}
return 0;
}
void intel_plane_destroy(struct drm_plane *plane)
{
drm_plane_cleanup(plane);
kfree(to_intel_plane(plane));
}
int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
struct drm_crtc *drmmode_crtc;
struct intel_crtc *crtc;
drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
if (!drmmode_crtc)
return -ENOENT;
crtc = to_intel_crtc(drmmode_crtc);
pipe_from_crtc_id->pipe = crtc->pipe;
return 0;
}
static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct intel_encoder *source_encoder;
u32 possible_clones = 0;
for_each_intel_encoder(dev, source_encoder) {
if (encoders_cloneable(encoder, source_encoder))
possible_clones |= drm_encoder_mask(&source_encoder->base);
}
return possible_clones;
}
static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct intel_crtc *crtc;
u32 possible_crtcs = 0;
for_each_intel_crtc_in_pipe_mask(dev, crtc, encoder->pipe_mask)
possible_crtcs |= drm_crtc_mask(&crtc->base);
return possible_crtcs;
}
static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
{
if (!IS_MOBILE(dev_priv))
return false;
if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0)
return false;
if (IS_IRONLAKE(dev_priv) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE))
return false;
return true;
}
static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
{
if (DISPLAY_VER(dev_priv) >= 9)
return false;
if (IS_HASWELL_ULT(dev_priv) || IS_BROADWELL_ULT(dev_priv))
return false;
if (HAS_PCH_LPT_H(dev_priv) &&
intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
return false;
if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
return false;
if (!dev_priv->display.vbt.int_crt_support)
return false;
return true;
}
bool assert_port_valid(struct drm_i915_private *i915, enum port port)
{
return !drm_WARN(&i915->drm, !(DISPLAY_RUNTIME_INFO(i915)->port_mask & BIT(port)),
"Platform does not support port %c\n", port_name(port));
}
void intel_setup_outputs(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
bool dpd_is_edp = false;
intel_pps_unlock_regs_wa(dev_priv);
if (!HAS_DISPLAY(dev_priv))
return;
if (HAS_DDI(dev_priv)) {
if (intel_ddi_crt_present(dev_priv))
intel_crt_init(dev_priv);
intel_bios_for_each_encoder(dev_priv, intel_ddi_init);
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
vlv_dsi_init(dev_priv);
} else if (HAS_PCH_SPLIT(dev_priv)) {
int found;
intel_lvds_init(dev_priv);
intel_crt_init(dev_priv);
dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
if (ilk_has_edp_a(dev_priv))
g4x_dp_init(dev_priv, DP_A, PORT_A);
if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) {
found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
if (!found)
g4x_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED))
g4x_dp_init(dev_priv, PCH_DP_B, PORT_B);
}
if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED)
g4x_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED)
g4x_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED)
g4x_dp_init(dev_priv, PCH_DP_C, PORT_C);
if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED)
g4x_dp_init(dev_priv, PCH_DP_D, PORT_D);
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
bool has_edp, has_port;
if (IS_VALLEYVIEW(dev_priv) && dev_priv->display.vbt.int_crt_support)
intel_crt_init(dev_priv);
has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
has_port = intel_bios_is_port_present(dev_priv, PORT_B);
if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port)
has_edp &= g4x_dp_init(dev_priv, VLV_DP_B, PORT_B);
if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
g4x_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
has_port = intel_bios_is_port_present(dev_priv, PORT_C);
if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port)
has_edp &= g4x_dp_init(dev_priv, VLV_DP_C, PORT_C);
if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
g4x_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
if (IS_CHERRYVIEW(dev_priv)) {
has_port = intel_bios_is_port_present(dev_priv, PORT_D);
if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port)
g4x_dp_init(dev_priv, CHV_DP_D, PORT_D);
if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port)
g4x_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
}
vlv_dsi_init(dev_priv);
} else if (IS_PINEVIEW(dev_priv)) {
intel_lvds_init(dev_priv);
intel_crt_init(dev_priv);
} else if (IS_DISPLAY_VER(dev_priv, 3, 4)) {
bool found = false;
if (IS_MOBILE(dev_priv))
intel_lvds_init(dev_priv);
intel_crt_init(dev_priv);
if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n");
found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
if (!found && IS_G4X(dev_priv)) {
drm_dbg_kms(&dev_priv->drm,
"probing HDMI on SDVOB\n");
g4x_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
}
if (!found && IS_G4X(dev_priv))
g4x_dp_init(dev_priv, DP_B, PORT_B);
}
if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n");
found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
}
if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) {
if (IS_G4X(dev_priv)) {
drm_dbg_kms(&dev_priv->drm,
"probing HDMI on SDVOC\n");
g4x_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
}
if (IS_G4X(dev_priv))
g4x_dp_init(dev_priv, DP_C, PORT_C);
}
if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED))
g4x_dp_init(dev_priv, DP_D, PORT_D);
if (SUPPORTS_TV(dev_priv))
intel_tv_init(dev_priv);
} else if (DISPLAY_VER(dev_priv) == 2) {
if (IS_I85X(dev_priv))
intel_lvds_init(dev_priv);
intel_crt_init(dev_priv);
intel_dvo_init(dev_priv);
}
for_each_intel_encoder(&dev_priv->drm, encoder) {
encoder->base.possible_crtcs =
intel_encoder_possible_crtcs(encoder);
encoder->base.possible_clones =
intel_encoder_possible_clones(encoder);
}
intel_init_pch_refclk(dev_priv);
drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
}
static int max_dotclock(struct drm_i915_private *i915)
{
int max_dotclock = i915->max_dotclk_freq;
if (DISPLAY_VER(i915) >= 11)
max_dotclock *= 2;
return max_dotclock;
}
enum drm_mode_status intel_mode_valid(struct drm_device *dev,
const struct drm_display_mode *mode)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int hdisplay_max, htotal_max;
int vdisplay_max, vtotal_max;
if (mode->vscan > 1)
return MODE_NO_VSCAN;
if (mode->flags & DRM_MODE_FLAG_HSKEW)
return MODE_H_ILLEGAL;
if (mode->flags & (DRM_MODE_FLAG_CSYNC |
DRM_MODE_FLAG_NCSYNC |
DRM_MODE_FLAG_PCSYNC))
return MODE_HSYNC;
if (mode->flags & (DRM_MODE_FLAG_BCAST |
DRM_MODE_FLAG_PIXMUX |
DRM_MODE_FLAG_CLKDIV2))
return MODE_BAD;
if (mode->clock > max_dotclock(dev_priv))
return MODE_CLOCK_HIGH;
if (DISPLAY_VER(dev_priv) >= 11) {
hdisplay_max = 16384;
vdisplay_max = 8192;
htotal_max = 16384;
vtotal_max = 8192;
} else if (DISPLAY_VER(dev_priv) >= 9 ||
IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
hdisplay_max = 8192;
vdisplay_max = 4096;
htotal_max = 8192;
vtotal_max = 8192;
} else if (DISPLAY_VER(dev_priv) >= 3) {
hdisplay_max = 4096;
vdisplay_max = 4096;
htotal_max = 8192;
vtotal_max = 8192;
} else {
hdisplay_max = 2048;
vdisplay_max = 2048;
htotal_max = 4096;
vtotal_max = 4096;
}
if (mode->hdisplay > hdisplay_max ||
mode->hsync_start > htotal_max ||
mode->hsync_end > htotal_max ||
mode->htotal > htotal_max)
return MODE_H_ILLEGAL;
if (mode->vdisplay > vdisplay_max ||
mode->vsync_start > vtotal_max ||
mode->vsync_end > vtotal_max ||
mode->vtotal > vtotal_max)
return MODE_V_ILLEGAL;
if (DISPLAY_VER(dev_priv) >= 5) {
if (mode->hdisplay < 64 ||
mode->htotal - mode->hdisplay < 32)
return MODE_H_ILLEGAL;
if (mode->vtotal - mode->vdisplay < 5)
return MODE_V_ILLEGAL;
} else {
if (mode->htotal - mode->hdisplay < 32)
return MODE_H_ILLEGAL;
if (mode->vtotal - mode->vdisplay < 3)
return MODE_V_ILLEGAL;
}
if ((DISPLAY_VER(dev_priv) > 4 || IS_G4X(dev_priv)) &&
mode->hsync_start == mode->hdisplay)
return MODE_H_ILLEGAL;
return MODE_OK;
}
enum drm_mode_status
intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
const struct drm_display_mode *mode,
bool bigjoiner)
{
int plane_width_max, plane_height_max;
if (DISPLAY_VER(dev_priv) < 9)
return MODE_OK;
if (DISPLAY_VER(dev_priv) >= 11) {
plane_width_max = 5120 << bigjoiner;
plane_height_max = 4320;
} else {
plane_width_max = 5120;
plane_height_max = 4096;
}
if (mode->hdisplay > plane_width_max)
return MODE_H_ILLEGAL;
if (mode->vdisplay > plane_height_max)
return MODE_V_ILLEGAL;
return MODE_OK;
}
static const struct intel_display_funcs skl_display_funcs = {
.get_pipe_config = hsw_get_pipe_config,
.crtc_enable = hsw_crtc_enable,
.crtc_disable = hsw_crtc_disable,
.commit_modeset_enables = skl_commit_modeset_enables,
.get_initial_plane_config = skl_get_initial_plane_config,
};
static const struct intel_display_funcs ddi_display_funcs = {
.get_pipe_config = hsw_get_pipe_config,
.crtc_enable = hsw_crtc_enable,
.crtc_disable = hsw_crtc_disable,
.commit_modeset_enables = intel_commit_modeset_enables,
.get_initial_plane_config = i9xx_get_initial_plane_config,
};
static const struct intel_display_funcs pch_split_display_funcs = {
.get_pipe_config = ilk_get_pipe_config,
.crtc_enable = ilk_crtc_enable,
.crtc_disable = ilk_crtc_disable,
.commit_modeset_enables = intel_commit_modeset_enables,
.get_initial_plane_config = i9xx_get_initial_plane_config,
};
static const struct intel_display_funcs vlv_display_funcs = {
.get_pipe_config = i9xx_get_pipe_config,
.crtc_enable = valleyview_crtc_enable,
.crtc_disable = i9xx_crtc_disable,
.commit_modeset_enables = intel_commit_modeset_enables,
.get_initial_plane_config = i9xx_get_initial_plane_config,
};
static const struct intel_display_funcs i9xx_display_funcs = {
.get_pipe_config = i9xx_get_pipe_config,
.crtc_enable = i9xx_crtc_enable,
.crtc_disable = i9xx_crtc_disable,
.commit_modeset_enables = intel_commit_modeset_enables,
.get_initial_plane_config = i9xx_get_initial_plane_config,
};
void intel_init_display_hooks(struct drm_i915_private *dev_priv)
{
if (DISPLAY_VER(dev_priv) >= 9) {
dev_priv->display.funcs.display = &skl_display_funcs;
} else if (HAS_DDI(dev_priv)) {
dev_priv->display.funcs.display = &ddi_display_funcs;
} else if (HAS_PCH_SPLIT(dev_priv)) {
dev_priv->display.funcs.display = &pch_split_display_funcs;
} else if (IS_CHERRYVIEW(dev_priv) ||
IS_VALLEYVIEW(dev_priv)) {
dev_priv->display.funcs.display = &vlv_display_funcs;
} else {
dev_priv->display.funcs.display = &i9xx_display_funcs;
}
}
int intel_initial_commit(struct drm_device *dev)
{
struct drm_atomic_state *state = NULL;
struct drm_modeset_acquire_ctx ctx;
struct intel_crtc *crtc;
int ret = 0;
state = drm_atomic_state_alloc(dev);
if (!state)
return -ENOMEM;
drm_modeset_acquire_init(&ctx, 0);
state->acquire_ctx = &ctx;
to_intel_atomic_state(state)->internal = true;
retry:
for_each_intel_crtc(dev, crtc) {
struct intel_crtc_state *crtc_state =
intel_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto out;
}
if (crtc_state->hw.active) {
struct intel_encoder *encoder;
ret = drm_atomic_add_affected_planes(state, &crtc->base);
if (ret)
goto out;
crtc_state->uapi.color_mgmt_changed = true;
for_each_intel_encoder_mask(dev, encoder,
crtc_state->uapi.encoder_mask) {
if (encoder->initial_fastset_check &&
!encoder->initial_fastset_check(encoder, crtc_state)) {
ret = drm_atomic_add_affected_connectors(state,
&crtc->base);
if (ret)
goto out;
}
}
}
}
ret = drm_atomic_commit(state);
out:
if (ret == -EDEADLK) {
drm_atomic_state_clear(state);
drm_modeset_backoff(&ctx);
goto retry;
}
drm_atomic_state_put(state);
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
return ret;
}
void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
{
struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
enum transcoder cpu_transcoder = (enum transcoder)pipe;
struct dpll clock = {
.m1 = 18,
.m2 = 7,
.p1 = 13,
.p2 = 4,
.n = 2,
};
u32 dpll, fp;
int i;
drm_WARN_ON(&dev_priv->drm,
i9xx_calc_dpll_params(48000, &clock) != 25154);
drm_dbg_kms(&dev_priv->drm,
"enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
pipe_name(pipe), clock.vco, clock.dot);
fp = i9xx_dpll_compute_fp(&clock);
dpll = DPLL_DVO_2X_MODE |
DPLL_VGA_MODE_DIS |
((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
PLL_P2_DIVIDE_BY_4 |
PLL_REF_INPUT_DREFCLK |
DPLL_VCO_ENABLE;
intel_de_write(dev_priv, TRANS_HTOTAL(cpu_transcoder),
HACTIVE(640 - 1) | HTOTAL(800 - 1));
intel_de_write(dev_priv, TRANS_HBLANK(cpu_transcoder),
HBLANK_START(640 - 1) | HBLANK_END(800 - 1));
intel_de_write(dev_priv, TRANS_HSYNC(cpu_transcoder),
HSYNC_START(656 - 1) | HSYNC_END(752 - 1));
intel_de_write(dev_priv, TRANS_VTOTAL(cpu_transcoder),
VACTIVE(480 - 1) | VTOTAL(525 - 1));
intel_de_write(dev_priv, TRANS_VBLANK(cpu_transcoder),
VBLANK_START(480 - 1) | VBLANK_END(525 - 1));
intel_de_write(dev_priv, TRANS_VSYNC(cpu_transcoder),
VSYNC_START(490 - 1) | VSYNC_END(492 - 1));
intel_de_write(dev_priv, PIPESRC(pipe),
PIPESRC_WIDTH(640 - 1) | PIPESRC_HEIGHT(480 - 1));
intel_de_write(dev_priv, FP0(pipe), fp);
intel_de_write(dev_priv, FP1(pipe), fp);
intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
intel_de_write(dev_priv, DPLL(pipe), dpll);
intel_de_posting_read(dev_priv, DPLL(pipe));
udelay(150);
intel_de_write(dev_priv, DPLL(pipe), dpll);
for (i = 0; i < 3 ; i++) {
intel_de_write(dev_priv, DPLL(pipe), dpll);
intel_de_posting_read(dev_priv, DPLL(pipe));
udelay(150);
}
intel_de_write(dev_priv, TRANSCONF(pipe), TRANSCONF_ENABLE);
intel_de_posting_read(dev_priv, TRANSCONF(pipe));
intel_wait_for_pipe_scanline_moving(crtc);
}
void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
{
struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n",
pipe_name(pipe));
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & DISP_ENABLE);
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & DISP_ENABLE);
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & DISP_ENABLE);
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE_MASK);
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE_MASK);
intel_de_write(dev_priv, TRANSCONF(pipe), 0);
intel_de_posting_read(dev_priv, TRANSCONF(pipe));
intel_wait_for_pipe_scanline_stopped(crtc);
intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
intel_de_posting_read(dev_priv, DPLL(pipe));
}
void intel_hpd_poll_fini(struct drm_i915_private *i915)
{
struct intel_connector *connector;
struct drm_connector_list_iter conn_iter;
drm_connector_list_iter_begin(&i915->drm, &conn_iter);
for_each_intel_connector_iter(connector, &conn_iter) {
if (connector->modeset_retry_work.func)
cancel_work_sync(&connector->modeset_retry_work);
if (connector->hdcp.shim) {
cancel_delayed_work_sync(&connector->hdcp.check_work);
cancel_work_sync(&connector->hdcp.prop_work);
}
}
drm_connector_list_iter_end(&conn_iter);
}
bool intel_scanout_needs_vtd_wa(struct drm_i915_private *i915)
{
return DISPLAY_VER(i915) >= 6 && i915_vtd_active(i915);
}