#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/dma-mapping.h>
#include "sparx5_main_regs.h"
#include "sparx5_main.h"
#include "sparx5_port.h"
#define FDMA_XTR_CHANNEL 6
#define FDMA_INJ_CHANNEL 0
#define FDMA_DCB_INFO_DATAL(x) ((x) & GENMASK(15, 0))
#define FDMA_DCB_INFO_TOKEN BIT(17)
#define FDMA_DCB_INFO_INTR BIT(18)
#define FDMA_DCB_INFO_SW(x) (((x) << 24) & GENMASK(31, 24))
#define FDMA_DCB_STATUS_BLOCKL(x) ((x) & GENMASK(15, 0))
#define FDMA_DCB_STATUS_SOF BIT(16)
#define FDMA_DCB_STATUS_EOF BIT(17)
#define FDMA_DCB_STATUS_INTR BIT(18)
#define FDMA_DCB_STATUS_DONE BIT(19)
#define FDMA_DCB_STATUS_BLOCKO(x) (((x) << 20) & GENMASK(31, 20))
#define FDMA_DCB_INVALID_DATA 0x1
#define FDMA_XTR_BUFFER_SIZE 2048
#define FDMA_WEIGHT 4
struct sparx5_db {
struct list_head list;
void *cpu_addr;
};
static void sparx5_fdma_rx_add_dcb(struct sparx5_rx *rx,
struct sparx5_rx_dcb_hw *dcb,
u64 nextptr)
{
int idx = 0;
for (idx = 0; idx < FDMA_RX_DCB_MAX_DBS; ++idx) {
struct sparx5_db_hw *db = &dcb->db[idx];
db->status = FDMA_DCB_STATUS_INTR;
}
dcb->nextptr = FDMA_DCB_INVALID_DATA;
dcb->info = FDMA_DCB_INFO_DATAL(FDMA_XTR_BUFFER_SIZE);
rx->last_entry->nextptr = nextptr;
rx->last_entry = dcb;
}
static void sparx5_fdma_tx_add_dcb(struct sparx5_tx *tx,
struct sparx5_tx_dcb_hw *dcb,
u64 nextptr)
{
int idx = 0;
for (idx = 0; idx < FDMA_TX_DCB_MAX_DBS; ++idx) {
struct sparx5_db_hw *db = &dcb->db[idx];
db->status = FDMA_DCB_STATUS_DONE;
}
dcb->nextptr = FDMA_DCB_INVALID_DATA;
dcb->info = FDMA_DCB_INFO_DATAL(FDMA_XTR_BUFFER_SIZE);
}
static void sparx5_fdma_rx_activate(struct sparx5 *sparx5, struct sparx5_rx *rx)
{
spx5_wr(((u64)rx->dma) & GENMASK(31, 0), sparx5,
FDMA_DCB_LLP(rx->channel_id));
spx5_wr(((u64)rx->dma) >> 32, sparx5, FDMA_DCB_LLP1(rx->channel_id));
spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(FDMA_RX_DCB_MAX_DBS) |
FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) |
FDMA_CH_CFG_CH_INJ_PORT_SET(XTR_QUEUE),
sparx5, FDMA_CH_CFG(rx->channel_id));
spx5_rmw(FDMA_XTR_CFG_XTR_FIFO_WM_SET(31), FDMA_XTR_CFG_XTR_FIFO_WM,
sparx5,
FDMA_XTR_CFG);
spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(0), FDMA_PORT_CTRL_XTR_STOP,
sparx5, FDMA_PORT_CTRL(0));
spx5_rmw(BIT(rx->channel_id),
BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
sparx5, FDMA_INTR_DB_ENA);
spx5_wr(BIT(rx->channel_id), sparx5, FDMA_CH_ACTIVATE);
}
static void sparx5_fdma_rx_deactivate(struct sparx5 *sparx5, struct sparx5_rx *rx)
{
spx5_rmw(0, BIT(rx->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE,
sparx5, FDMA_CH_ACTIVATE);
spx5_rmw(0, BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
sparx5, FDMA_INTR_DB_ENA);
spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(1), FDMA_PORT_CTRL_XTR_STOP,
sparx5, FDMA_PORT_CTRL(0));
}
static void sparx5_fdma_tx_activate(struct sparx5 *sparx5, struct sparx5_tx *tx)
{
spx5_wr(((u64)tx->dma) & GENMASK(31, 0), sparx5,
FDMA_DCB_LLP(tx->channel_id));
spx5_wr(((u64)tx->dma) >> 32, sparx5, FDMA_DCB_LLP1(tx->channel_id));
spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(FDMA_TX_DCB_MAX_DBS) |
FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) |
FDMA_CH_CFG_CH_INJ_PORT_SET(INJ_QUEUE),
sparx5, FDMA_CH_CFG(tx->channel_id));
spx5_rmw(FDMA_PORT_CTRL_INJ_STOP_SET(0), FDMA_PORT_CTRL_INJ_STOP,
sparx5, FDMA_PORT_CTRL(0));
spx5_wr(BIT(tx->channel_id), sparx5, FDMA_CH_ACTIVATE);
}
static void sparx5_fdma_tx_deactivate(struct sparx5 *sparx5, struct sparx5_tx *tx)
{
spx5_rmw(0, BIT(tx->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE,
sparx5, FDMA_CH_ACTIVATE);
}
static void sparx5_fdma_rx_reload(struct sparx5 *sparx5, struct sparx5_rx *rx)
{
spx5_wr(BIT(rx->channel_id), sparx5, FDMA_CH_RELOAD);
}
static void sparx5_fdma_tx_reload(struct sparx5 *sparx5, struct sparx5_tx *tx)
{
spx5_wr(BIT(tx->channel_id), sparx5, FDMA_CH_RELOAD);
}
static struct sk_buff *sparx5_fdma_rx_alloc_skb(struct sparx5_rx *rx)
{
return __netdev_alloc_skb(rx->ndev, FDMA_XTR_BUFFER_SIZE,
GFP_ATOMIC);
}
static bool sparx5_fdma_rx_get_frame(struct sparx5 *sparx5, struct sparx5_rx *rx)
{
struct sparx5_db_hw *db_hw;
unsigned int packet_size;
struct sparx5_port *port;
struct sk_buff *new_skb;
struct frame_info fi;
struct sk_buff *skb;
dma_addr_t dma_addr;
db_hw = &rx->dcb_entries[rx->dcb_index].db[rx->db_index];
if (unlikely(!(db_hw->status & FDMA_DCB_STATUS_DONE)))
return false;
skb = rx->skb[rx->dcb_index][rx->db_index];
new_skb = sparx5_fdma_rx_alloc_skb(rx);
if (unlikely(!new_skb))
return false;
dma_addr = virt_to_phys(new_skb->data);
rx->skb[rx->dcb_index][rx->db_index] = new_skb;
db_hw->dataptr = dma_addr;
packet_size = FDMA_DCB_STATUS_BLOCKL(db_hw->status);
skb_put(skb, packet_size);
sparx5_ifh_parse((u32 *)skb->data, &fi);
port = fi.src_port < SPX5_PORTS ? sparx5->ports[fi.src_port] : NULL;
if (!port || !port->ndev) {
dev_err(sparx5->dev, "Data on inactive port %d\n", fi.src_port);
sparx5_xtr_flush(sparx5, XTR_QUEUE);
return false;
}
skb->dev = port->ndev;
skb_pull(skb, IFH_LEN * sizeof(u32));
if (likely(!(skb->dev->features & NETIF_F_RXFCS)))
skb_trim(skb, skb->len - ETH_FCS_LEN);
sparx5_ptp_rxtstamp(sparx5, skb, fi.timestamp);
skb->protocol = eth_type_trans(skb, skb->dev);
if (test_bit(port->portno, sparx5->bridge_mask))
skb->offload_fwd_mark = 1;
skb->dev->stats.rx_bytes += skb->len;
skb->dev->stats.rx_packets++;
rx->packets++;
netif_receive_skb(skb);
return true;
}
static int sparx5_fdma_napi_callback(struct napi_struct *napi, int weight)
{
struct sparx5_rx *rx = container_of(napi, struct sparx5_rx, napi);
struct sparx5 *sparx5 = container_of(rx, struct sparx5, rx);
int counter = 0;
while (counter < weight && sparx5_fdma_rx_get_frame(sparx5, rx)) {
struct sparx5_rx_dcb_hw *old_dcb;
rx->db_index++;
counter++;
if (rx->db_index != FDMA_RX_DCB_MAX_DBS)
continue;
rx->db_index = 0;
old_dcb = &rx->dcb_entries[rx->dcb_index];
rx->dcb_index++;
rx->dcb_index &= FDMA_DCB_MAX - 1;
sparx5_fdma_rx_add_dcb(rx, old_dcb,
rx->dma +
((unsigned long)old_dcb -
(unsigned long)rx->dcb_entries));
}
if (counter < weight) {
napi_complete_done(&rx->napi, counter);
spx5_rmw(BIT(rx->channel_id),
BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
sparx5, FDMA_INTR_DB_ENA);
}
if (counter)
sparx5_fdma_rx_reload(sparx5, rx);
return counter;
}
static struct sparx5_tx_dcb_hw *sparx5_fdma_next_dcb(struct sparx5_tx *tx,
struct sparx5_tx_dcb_hw *dcb)
{
struct sparx5_tx_dcb_hw *next_dcb;
next_dcb = dcb;
next_dcb++;
if ((unsigned long)next_dcb >=
((unsigned long)tx->first_entry + FDMA_DCB_MAX * sizeof(*dcb)))
next_dcb = tx->first_entry;
return next_dcb;
}
int sparx5_fdma_xmit(struct sparx5 *sparx5, u32 *ifh, struct sk_buff *skb)
{
struct sparx5_tx_dcb_hw *next_dcb_hw;
struct sparx5_tx *tx = &sparx5->tx;
static bool first_time = true;
struct sparx5_db_hw *db_hw;
struct sparx5_db *db;
next_dcb_hw = sparx5_fdma_next_dcb(tx, tx->curr_entry);
db_hw = &next_dcb_hw->db[0];
if (!(db_hw->status & FDMA_DCB_STATUS_DONE))
return -EINVAL;
db = list_first_entry(&tx->db_list, struct sparx5_db, list);
list_move_tail(&db->list, &tx->db_list);
next_dcb_hw->nextptr = FDMA_DCB_INVALID_DATA;
tx->curr_entry->nextptr = tx->dma +
((unsigned long)next_dcb_hw -
(unsigned long)tx->first_entry);
tx->curr_entry = next_dcb_hw;
memset(db->cpu_addr, 0, FDMA_XTR_BUFFER_SIZE);
memcpy(db->cpu_addr, ifh, IFH_LEN * 4);
memcpy(db->cpu_addr + IFH_LEN * 4, skb->data, skb->len);
db_hw->status = FDMA_DCB_STATUS_SOF |
FDMA_DCB_STATUS_EOF |
FDMA_DCB_STATUS_BLOCKO(0) |
FDMA_DCB_STATUS_BLOCKL(skb->len + IFH_LEN * 4 + 4);
if (first_time) {
sparx5_fdma_tx_activate(sparx5, tx);
first_time = false;
} else {
sparx5_fdma_tx_reload(sparx5, tx);
}
return NETDEV_TX_OK;
}
static int sparx5_fdma_rx_alloc(struct sparx5 *sparx5)
{
struct sparx5_rx *rx = &sparx5->rx;
struct sparx5_rx_dcb_hw *dcb;
int idx, jdx;
int size;
size = sizeof(struct sparx5_rx_dcb_hw) * FDMA_DCB_MAX;
size = ALIGN(size, PAGE_SIZE);
rx->dcb_entries = devm_kzalloc(sparx5->dev, size, GFP_KERNEL);
if (!rx->dcb_entries)
return -ENOMEM;
rx->dma = virt_to_phys(rx->dcb_entries);
rx->last_entry = rx->dcb_entries;
rx->db_index = 0;
rx->dcb_index = 0;
for (idx = 0; idx < FDMA_DCB_MAX; ++idx) {
dcb = &rx->dcb_entries[idx];
dcb->info = 0;
for (jdx = 0; jdx < FDMA_RX_DCB_MAX_DBS; ++jdx) {
struct sparx5_db_hw *db_hw = &dcb->db[jdx];
dma_addr_t dma_addr;
struct sk_buff *skb;
skb = sparx5_fdma_rx_alloc_skb(rx);
if (!skb)
return -ENOMEM;
dma_addr = virt_to_phys(skb->data);
db_hw->dataptr = dma_addr;
db_hw->status = 0;
rx->skb[idx][jdx] = skb;
}
sparx5_fdma_rx_add_dcb(rx, dcb, rx->dma + sizeof(*dcb) * idx);
}
netif_napi_add_weight(rx->ndev, &rx->napi, sparx5_fdma_napi_callback,
FDMA_WEIGHT);
napi_enable(&rx->napi);
sparx5_fdma_rx_activate(sparx5, rx);
return 0;
}
static int sparx5_fdma_tx_alloc(struct sparx5 *sparx5)
{
struct sparx5_tx *tx = &sparx5->tx;
struct sparx5_tx_dcb_hw *dcb;
int idx, jdx;
int size;
size = sizeof(struct sparx5_tx_dcb_hw) * FDMA_DCB_MAX;
size = ALIGN(size, PAGE_SIZE);
tx->curr_entry = devm_kzalloc(sparx5->dev, size, GFP_KERNEL);
if (!tx->curr_entry)
return -ENOMEM;
tx->dma = virt_to_phys(tx->curr_entry);
tx->first_entry = tx->curr_entry;
INIT_LIST_HEAD(&tx->db_list);
for (idx = 0; idx < FDMA_DCB_MAX; ++idx) {
dcb = &tx->curr_entry[idx];
dcb->info = 0;
for (jdx = 0; jdx < FDMA_TX_DCB_MAX_DBS; ++jdx) {
struct sparx5_db_hw *db_hw = &dcb->db[jdx];
struct sparx5_db *db;
dma_addr_t phys;
void *cpu_addr;
cpu_addr = devm_kzalloc(sparx5->dev,
FDMA_XTR_BUFFER_SIZE,
GFP_KERNEL);
if (!cpu_addr)
return -ENOMEM;
phys = virt_to_phys(cpu_addr);
db_hw->dataptr = phys;
db_hw->status = 0;
db = devm_kzalloc(sparx5->dev, sizeof(*db), GFP_KERNEL);
if (!db)
return -ENOMEM;
db->cpu_addr = cpu_addr;
list_add_tail(&db->list, &tx->db_list);
}
sparx5_fdma_tx_add_dcb(tx, dcb, tx->dma + sizeof(*dcb) * idx);
if (idx == FDMA_DCB_MAX - 1)
tx->curr_entry = dcb;
}
return 0;
}
static void sparx5_fdma_rx_init(struct sparx5 *sparx5,
struct sparx5_rx *rx, int channel)
{
int idx;
rx->channel_id = channel;
for (idx = 0; idx < SPX5_PORTS; ++idx) {
struct sparx5_port *port = sparx5->ports[idx];
if (port && port->ndev) {
rx->ndev = port->ndev;
break;
}
}
}
static void sparx5_fdma_tx_init(struct sparx5 *sparx5,
struct sparx5_tx *tx, int channel)
{
tx->channel_id = channel;
}
irqreturn_t sparx5_fdma_handler(int irq, void *args)
{
struct sparx5 *sparx5 = args;
u32 db = 0, err = 0;
db = spx5_rd(sparx5, FDMA_INTR_DB);
err = spx5_rd(sparx5, FDMA_INTR_ERR);
if (db) {
spx5_wr(0, sparx5, FDMA_INTR_DB_ENA);
spx5_wr(db, sparx5, FDMA_INTR_DB);
napi_schedule(&sparx5->rx.napi);
}
if (err) {
u32 err_type = spx5_rd(sparx5, FDMA_ERRORS);
dev_err_ratelimited(sparx5->dev,
"ERR: int: %#x, type: %#x\n",
err, err_type);
spx5_wr(err, sparx5, FDMA_INTR_ERR);
spx5_wr(err_type, sparx5, FDMA_ERRORS);
}
return IRQ_HANDLED;
}
static void sparx5_fdma_injection_mode(struct sparx5 *sparx5)
{
const int byte_swap = 1;
int portno;
int urgency;
spx5_wr(QS_XTR_GRP_CFG_MODE_SET(2) |
QS_XTR_GRP_CFG_STATUS_WORD_POS_SET(1) |
QS_XTR_GRP_CFG_BYTE_SWAP_SET(byte_swap),
sparx5, QS_XTR_GRP_CFG(XTR_QUEUE));
spx5_wr(QS_INJ_GRP_CFG_MODE_SET(2) |
QS_INJ_GRP_CFG_BYTE_SWAP_SET(byte_swap),
sparx5, QS_INJ_GRP_CFG(INJ_QUEUE));
for (portno = SPX5_PORT_CPU_0; portno <= SPX5_PORT_CPU_1; portno++) {
spx5_wr(ASM_PORT_CFG_PAD_ENA_SET(1) |
ASM_PORT_CFG_NO_PREAMBLE_ENA_SET(1) |
ASM_PORT_CFG_INJ_FORMAT_CFG_SET(1),
sparx5, ASM_PORT_CFG(portno));
spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR_SET(1),
DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR,
sparx5,
DSM_DEV_TX_STOP_WM_CFG(portno));
spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM_SET(100),
DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM,
sparx5,
DSM_DEV_TX_STOP_WM_CFG(portno));
urgency = sparx5_port_fwd_urg(sparx5, SPEED_2500);
spx5_rmw(QFWD_SWITCH_PORT_MODE_PORT_ENA_SET(1) |
QFWD_SWITCH_PORT_MODE_FWD_URGENCY_SET(urgency),
QFWD_SWITCH_PORT_MODE_PORT_ENA |
QFWD_SWITCH_PORT_MODE_FWD_URGENCY,
sparx5,
QFWD_SWITCH_PORT_MODE(portno));
spx5_rmw(DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS_SET(1),
DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS,
sparx5,
DSM_BUF_CFG(portno));
spx5_rmw(HSCH_PORT_MODE_AGE_DIS_SET(1),
HSCH_PORT_MODE_AGE_DIS,
sparx5,
HSCH_PORT_MODE(portno));
}
}
int sparx5_fdma_start(struct sparx5 *sparx5)
{
int err;
spx5_wr(FDMA_CTRL_NRESET_SET(0), sparx5, FDMA_CTRL);
spx5_wr(FDMA_CTRL_NRESET_SET(1), sparx5, FDMA_CTRL);
spx5_rmw(CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA_SET(1) |
CPU_PROC_CTRL_ACP_AWCACHE_SET(0) |
CPU_PROC_CTRL_ACP_ARCACHE_SET(0),
CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA |
CPU_PROC_CTRL_ACP_AWCACHE |
CPU_PROC_CTRL_ACP_ARCACHE,
sparx5, CPU_PROC_CTRL);
sparx5_fdma_injection_mode(sparx5);
sparx5_fdma_rx_init(sparx5, &sparx5->rx, FDMA_XTR_CHANNEL);
sparx5_fdma_tx_init(sparx5, &sparx5->tx, FDMA_INJ_CHANNEL);
err = sparx5_fdma_rx_alloc(sparx5);
if (err) {
dev_err(sparx5->dev, "Could not allocate RX buffers: %d\n", err);
return err;
}
err = sparx5_fdma_tx_alloc(sparx5);
if (err) {
dev_err(sparx5->dev, "Could not allocate TX buffers: %d\n", err);
return err;
}
return err;
}
static u32 sparx5_fdma_port_ctrl(struct sparx5 *sparx5)
{
return spx5_rd(sparx5, FDMA_PORT_CTRL(0));
}
int sparx5_fdma_stop(struct sparx5 *sparx5)
{
u32 val;
napi_disable(&sparx5->rx.napi);
sparx5_fdma_rx_deactivate(sparx5, &sparx5->rx);
sparx5_fdma_tx_deactivate(sparx5, &sparx5->tx);
read_poll_timeout(sparx5_fdma_port_ctrl, val,
FDMA_PORT_CTRL_XTR_BUF_IS_EMPTY_GET(val) == 0,
500, 10000, 0, sparx5);
return 0;
}