#include <linux/blkdev.h>
#include <linux/ratelimit.h>
#include <linux/sched/mm.h>
#include <crypto/hash.h>
#include "ctree.h"
#include "discard.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
#include "transaction.h"
#include "backref.h"
#include "extent_io.h"
#include "dev-replace.h"
#include "check-integrity.h"
#include "raid56.h"
#include "block-group.h"
#include "zoned.h"
#include "fs.h"
#include "accessors.h"
#include "file-item.h"
#include "scrub.h"
struct scrub_ctx;
#define SCRUB_STRIPES_PER_GROUP 8
#define SCRUB_GROUPS_PER_SCTX 16
#define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
#define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
struct scrub_sector_verification {
bool is_metadata;
union {
u8 *csum;
u64 generation;
};
};
enum scrub_stripe_flags {
SCRUB_STRIPE_FLAG_INITIALIZED,
SCRUB_STRIPE_FLAG_REPAIR_DONE,
SCRUB_STRIPE_FLAG_NO_REPORT,
};
#define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE)
struct scrub_stripe {
struct scrub_ctx *sctx;
struct btrfs_block_group *bg;
struct page *pages[SCRUB_STRIPE_PAGES];
struct scrub_sector_verification *sectors;
struct btrfs_device *dev;
u64 logical;
u64 physical;
u16 mirror_num;
u16 nr_sectors;
u16 nr_data_extents;
u16 nr_meta_extents;
atomic_t pending_io;
wait_queue_head_t io_wait;
wait_queue_head_t repair_wait;
unsigned long state;
unsigned long extent_sector_bitmap;
unsigned long init_error_bitmap;
unsigned int init_nr_io_errors;
unsigned int init_nr_csum_errors;
unsigned int init_nr_meta_errors;
unsigned long error_bitmap;
unsigned long io_error_bitmap;
unsigned long csum_error_bitmap;
unsigned long meta_error_bitmap;
unsigned long write_error_bitmap;
spinlock_t write_error_lock;
u8 *csums;
struct work_struct work;
};
struct scrub_ctx {
struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES];
struct scrub_stripe *raid56_data_stripes;
struct btrfs_fs_info *fs_info;
struct btrfs_path extent_path;
struct btrfs_path csum_path;
int first_free;
int cur_stripe;
atomic_t cancel_req;
int readonly;
int sectors_per_bio;
ktime_t throttle_deadline;
u64 throttle_sent;
int is_dev_replace;
u64 write_pointer;
struct mutex wr_lock;
struct btrfs_device *wr_tgtdev;
struct btrfs_scrub_progress stat;
spinlock_t stat_lock;
refcount_t refs;
};
struct scrub_warning {
struct btrfs_path *path;
u64 extent_item_size;
const char *errstr;
u64 physical;
u64 logical;
struct btrfs_device *dev;
};
static void release_scrub_stripe(struct scrub_stripe *stripe)
{
if (!stripe)
return;
for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
if (stripe->pages[i])
__free_page(stripe->pages[i]);
stripe->pages[i] = NULL;
}
kfree(stripe->sectors);
kfree(stripe->csums);
stripe->sectors = NULL;
stripe->csums = NULL;
stripe->sctx = NULL;
stripe->state = 0;
}
static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
struct scrub_stripe *stripe)
{
int ret;
memset(stripe, 0, sizeof(*stripe));
stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
stripe->state = 0;
init_waitqueue_head(&stripe->io_wait);
init_waitqueue_head(&stripe->repair_wait);
atomic_set(&stripe->pending_io, 0);
spin_lock_init(&stripe->write_error_lock);
ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
if (ret < 0)
goto error;
stripe->sectors = kcalloc(stripe->nr_sectors,
sizeof(struct scrub_sector_verification),
GFP_KERNEL);
if (!stripe->sectors)
goto error;
stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
fs_info->csum_size, GFP_KERNEL);
if (!stripe->csums)
goto error;
return 0;
error:
release_scrub_stripe(stripe);
return -ENOMEM;
}
static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
{
wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
}
static void scrub_put_ctx(struct scrub_ctx *sctx);
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
while (atomic_read(&fs_info->scrub_pause_req)) {
mutex_unlock(&fs_info->scrub_lock);
wait_event(fs_info->scrub_pause_wait,
atomic_read(&fs_info->scrub_pause_req) == 0);
mutex_lock(&fs_info->scrub_lock);
}
}
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
{
atomic_inc(&fs_info->scrubs_paused);
wake_up(&fs_info->scrub_pause_wait);
}
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
mutex_lock(&fs_info->scrub_lock);
__scrub_blocked_if_needed(fs_info);
atomic_dec(&fs_info->scrubs_paused);
mutex_unlock(&fs_info->scrub_lock);
wake_up(&fs_info->scrub_pause_wait);
}
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
scrub_pause_on(fs_info);
scrub_pause_off(fs_info);
}
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
{
int i;
if (!sctx)
return;
for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
release_scrub_stripe(&sctx->stripes[i]);
kvfree(sctx);
}
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
if (refcount_dec_and_test(&sctx->refs))
scrub_free_ctx(sctx);
}
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
struct btrfs_fs_info *fs_info, int is_dev_replace)
{
struct scrub_ctx *sctx;
int i;
sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
if (!sctx)
goto nomem;
refcount_set(&sctx->refs, 1);
sctx->is_dev_replace = is_dev_replace;
sctx->fs_info = fs_info;
sctx->extent_path.search_commit_root = 1;
sctx->extent_path.skip_locking = 1;
sctx->csum_path.search_commit_root = 1;
sctx->csum_path.skip_locking = 1;
for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
int ret;
ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
if (ret < 0)
goto nomem;
sctx->stripes[i].sctx = sctx;
}
sctx->first_free = 0;
atomic_set(&sctx->cancel_req, 0);
spin_lock_init(&sctx->stat_lock);
sctx->throttle_deadline = 0;
mutex_init(&sctx->wr_lock);
if (is_dev_replace) {
WARN_ON(!fs_info->dev_replace.tgtdev);
sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
}
return sctx;
nomem:
scrub_free_ctx(sctx);
return ERR_PTR(-ENOMEM);
}
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
u64 root, void *warn_ctx)
{
u32 nlink;
int ret;
int i;
unsigned nofs_flag;
struct extent_buffer *eb;
struct btrfs_inode_item *inode_item;
struct scrub_warning *swarn = warn_ctx;
struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
struct inode_fs_paths *ipath = NULL;
struct btrfs_root *local_root;
struct btrfs_key key;
local_root = btrfs_get_fs_root(fs_info, root, true);
if (IS_ERR(local_root)) {
ret = PTR_ERR(local_root);
goto err;
}
key.objectid = inum;
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
if (ret) {
btrfs_put_root(local_root);
btrfs_release_path(swarn->path);
goto err;
}
eb = swarn->path->nodes[0];
inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
struct btrfs_inode_item);
nlink = btrfs_inode_nlink(eb, inode_item);
btrfs_release_path(swarn->path);
nofs_flag = memalloc_nofs_save();
ipath = init_ipath(4096, local_root, swarn->path);
memalloc_nofs_restore(nofs_flag);
if (IS_ERR(ipath)) {
btrfs_put_root(local_root);
ret = PTR_ERR(ipath);
ipath = NULL;
goto err;
}
ret = paths_from_inode(inum, ipath);
if (ret < 0)
goto err;
for (i = 0; i < ipath->fspath->elem_cnt; ++i)
btrfs_warn_in_rcu(fs_info,
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
swarn->errstr, swarn->logical,
btrfs_dev_name(swarn->dev),
swarn->physical,
root, inum, offset,
fs_info->sectorsize, nlink,
(char *)(unsigned long)ipath->fspath->val[i]);
btrfs_put_root(local_root);
free_ipath(ipath);
return 0;
err:
btrfs_warn_in_rcu(fs_info,
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
swarn->errstr, swarn->logical,
btrfs_dev_name(swarn->dev),
swarn->physical,
root, inum, offset, ret);
free_ipath(ipath);
return 0;
}
static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
bool is_super, u64 logical, u64 physical)
{
struct btrfs_fs_info *fs_info = dev->fs_info;
struct btrfs_path *path;
struct btrfs_key found_key;
struct extent_buffer *eb;
struct btrfs_extent_item *ei;
struct scrub_warning swarn;
u64 flags = 0;
u32 item_size;
int ret;
if (is_super) {
btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
errstr, btrfs_dev_name(dev), physical);
return;
}
path = btrfs_alloc_path();
if (!path)
return;
swarn.physical = physical;
swarn.logical = logical;
swarn.errstr = errstr;
swarn.dev = NULL;
ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
&flags);
if (ret < 0)
goto out;
swarn.extent_item_size = found_key.offset;
eb = path->nodes[0];
ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
item_size = btrfs_item_size(eb, path->slots[0]);
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
unsigned long ptr = 0;
u8 ref_level;
u64 ref_root;
while (true) {
ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
item_size, &ref_root,
&ref_level);
if (ret < 0) {
btrfs_warn(fs_info,
"failed to resolve tree backref for logical %llu: %d",
swarn.logical, ret);
break;
}
if (ret > 0)
break;
btrfs_warn_in_rcu(fs_info,
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
errstr, swarn.logical, btrfs_dev_name(dev),
swarn.physical, (ref_level ? "node" : "leaf"),
ref_level, ref_root);
}
btrfs_release_path(path);
} else {
struct btrfs_backref_walk_ctx ctx = { 0 };
btrfs_release_path(path);
ctx.bytenr = found_key.objectid;
ctx.extent_item_pos = swarn.logical - found_key.objectid;
ctx.fs_info = fs_info;
swarn.path = path;
swarn.dev = dev;
iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
}
out:
btrfs_free_path(path);
}
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
int ret = 0;
u64 length;
if (!btrfs_is_zoned(sctx->fs_info))
return 0;
if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
return 0;
if (sctx->write_pointer < physical) {
length = physical - sctx->write_pointer;
ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
sctx->write_pointer, length);
if (!ret)
sctx->write_pointer = physical;
}
return ret;
}
static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
{
struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
return stripe->pages[page_index];
}
static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
int sector_nr)
{
struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
return offset_in_page(sector_nr << fs_info->sectorsize_bits);
}
static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
{
struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
u8 on_disk_csum[BTRFS_CSUM_SIZE];
u8 calculated_csum[BTRFS_CSUM_SIZE];
struct btrfs_header *header;
header = (struct btrfs_header *)(page_address(first_page) + first_off);
memcpy(on_disk_csum, header->csum, fs_info->csum_size);
if (logical != btrfs_stack_header_bytenr(header)) {
bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
btrfs_warn_rl(fs_info,
"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
logical, stripe->mirror_num,
btrfs_stack_header_bytenr(header), logical);
return;
}
if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
BTRFS_FSID_SIZE) != 0) {
bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
btrfs_warn_rl(fs_info,
"tree block %llu mirror %u has bad fsid, has %pU want %pU",
logical, stripe->mirror_num,
header->fsid, fs_info->fs_devices->fsid);
return;
}
if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
BTRFS_UUID_SIZE) != 0) {
bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
btrfs_warn_rl(fs_info,
"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
logical, stripe->mirror_num,
header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
return;
}
shash->tfm = fs_info->csum_shash;
crypto_shash_init(shash);
crypto_shash_update(shash, page_address(first_page) + first_off +
BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
struct page *page = scrub_stripe_get_page(stripe, i);
unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
crypto_shash_update(shash, page_address(page) + page_off,
fs_info->sectorsize);
}
crypto_shash_final(shash, calculated_csum);
if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
btrfs_warn_rl(fs_info,
"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
logical, stripe->mirror_num,
CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
return;
}
if (stripe->sectors[sector_nr].generation !=
btrfs_stack_header_generation(header)) {
bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
btrfs_warn_rl(fs_info,
"tree block %llu mirror %u has bad generation, has %llu want %llu",
logical, stripe->mirror_num,
btrfs_stack_header_generation(header),
stripe->sectors[sector_nr].generation);
return;
}
bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
}
static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
{
struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
struct page *page = scrub_stripe_get_page(stripe, sector_nr);
unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
u8 csum_buf[BTRFS_CSUM_SIZE];
int ret;
ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
return;
if (test_bit(sector_nr, &stripe->io_error_bitmap))
return;
if (sector->is_metadata) {
if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
btrfs_warn_rl(fs_info,
"tree block at %llu crosses stripe boundary %llu",
stripe->logical +
(sector_nr << fs_info->sectorsize_bits),
stripe->logical);
return;
}
scrub_verify_one_metadata(stripe, sector_nr);
return;
}
if (!sector->csum) {
clear_bit(sector_nr, &stripe->error_bitmap);
return;
}
ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
if (ret < 0) {
set_bit(sector_nr, &stripe->csum_error_bitmap);
set_bit(sector_nr, &stripe->error_bitmap);
} else {
clear_bit(sector_nr, &stripe->csum_error_bitmap);
clear_bit(sector_nr, &stripe->error_bitmap);
}
}
static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
{
struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
int sector_nr;
for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
scrub_verify_one_sector(stripe, sector_nr);
if (stripe->sectors[sector_nr].is_metadata)
sector_nr += sectors_per_tree - 1;
}
}
static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
{
int i;
for (i = 0; i < stripe->nr_sectors; i++) {
if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
break;
}
ASSERT(i < stripe->nr_sectors);
return i;
}
static void scrub_repair_read_endio(struct btrfs_bio *bbio)
{
struct scrub_stripe *stripe = bbio->private;
struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
struct bio_vec *bvec;
int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
u32 bio_size = 0;
int i;
ASSERT(sector_nr < stripe->nr_sectors);
bio_for_each_bvec_all(bvec, &bbio->bio, i)
bio_size += bvec->bv_len;
if (bbio->bio.bi_status) {
bitmap_set(&stripe->io_error_bitmap, sector_nr,
bio_size >> fs_info->sectorsize_bits);
bitmap_set(&stripe->error_bitmap, sector_nr,
bio_size >> fs_info->sectorsize_bits);
} else {
bitmap_clear(&stripe->io_error_bitmap, sector_nr,
bio_size >> fs_info->sectorsize_bits);
}
bio_put(&bbio->bio);
if (atomic_dec_and_test(&stripe->pending_io))
wake_up(&stripe->io_wait);
}
static int calc_next_mirror(int mirror, int num_copies)
{
ASSERT(mirror <= num_copies);
return (mirror + 1 > num_copies) ? 1 : mirror + 1;
}
static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
int mirror, int blocksize, bool wait)
{
struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
struct btrfs_bio *bbio = NULL;
const unsigned long old_error_bitmap = stripe->error_bitmap;
int i;
ASSERT(stripe->mirror_num >= 1);
ASSERT(atomic_read(&stripe->pending_io) == 0);
for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
struct page *page;
int pgoff;
int ret;
page = scrub_stripe_get_page(stripe, i);
pgoff = scrub_stripe_get_page_offset(stripe, i);
if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
bbio->bio.bi_iter.bi_size >= blocksize)) {
ASSERT(bbio->bio.bi_iter.bi_size);
atomic_inc(&stripe->pending_io);
btrfs_submit_bio(bbio, mirror);
if (wait)
wait_scrub_stripe_io(stripe);
bbio = NULL;
}
if (!bbio) {
bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
fs_info, scrub_repair_read_endio, stripe);
bbio->bio.bi_iter.bi_sector = (stripe->logical +
(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
}
ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
ASSERT(ret == fs_info->sectorsize);
}
if (bbio) {
ASSERT(bbio->bio.bi_iter.bi_size);
atomic_inc(&stripe->pending_io);
btrfs_submit_bio(bbio, mirror);
if (wait)
wait_scrub_stripe_io(stripe);
}
}
static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
struct scrub_stripe *stripe)
{
static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
struct btrfs_fs_info *fs_info = sctx->fs_info;
struct btrfs_device *dev = NULL;
u64 physical = 0;
int nr_data_sectors = 0;
int nr_meta_sectors = 0;
int nr_nodatacsum_sectors = 0;
int nr_repaired_sectors = 0;
int sector_nr;
if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
return;
if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
u64 mapped_len = fs_info->sectorsize;
struct btrfs_io_context *bioc = NULL;
int stripe_index = stripe->mirror_num - 1;
int ret;
ASSERT(stripe->mirror_num >= 1);
ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
stripe->logical, &mapped_len, &bioc,
NULL, NULL, 1);
if (ret < 0)
goto skip;
physical = bioc->stripes[stripe_index].physical;
dev = bioc->stripes[stripe_index].dev;
btrfs_put_bioc(bioc);
}
skip:
for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
bool repaired = false;
if (stripe->sectors[sector_nr].is_metadata) {
nr_meta_sectors++;
} else {
nr_data_sectors++;
if (!stripe->sectors[sector_nr].csum)
nr_nodatacsum_sectors++;
}
if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
!test_bit(sector_nr, &stripe->error_bitmap)) {
nr_repaired_sectors++;
repaired = true;
}
if (!test_bit(sector_nr, &stripe->init_error_bitmap))
continue;
if (repaired) {
if (dev) {
btrfs_err_rl_in_rcu(fs_info,
"fixed up error at logical %llu on dev %s physical %llu",
stripe->logical, btrfs_dev_name(dev),
physical);
} else {
btrfs_err_rl_in_rcu(fs_info,
"fixed up error at logical %llu on mirror %u",
stripe->logical, stripe->mirror_num);
}
continue;
}
if (dev) {
btrfs_err_rl_in_rcu(fs_info,
"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
stripe->logical, btrfs_dev_name(dev),
physical);
} else {
btrfs_err_rl_in_rcu(fs_info,
"unable to fixup (regular) error at logical %llu on mirror %u",
stripe->logical, stripe->mirror_num);
}
if (test_bit(sector_nr, &stripe->io_error_bitmap))
if (__ratelimit(&rs) && dev)
scrub_print_common_warning("i/o error", dev, false,
stripe->logical, physical);
if (test_bit(sector_nr, &stripe->csum_error_bitmap))
if (__ratelimit(&rs) && dev)
scrub_print_common_warning("checksum error", dev, false,
stripe->logical, physical);
if (test_bit(sector_nr, &stripe->meta_error_bitmap))
if (__ratelimit(&rs) && dev)
scrub_print_common_warning("header error", dev, false,
stripe->logical, physical);
}
spin_lock(&sctx->stat_lock);
sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
sctx->stat.no_csum += nr_nodatacsum_sectors;
sctx->stat.read_errors += stripe->init_nr_io_errors;
sctx->stat.csum_errors += stripe->init_nr_csum_errors;
sctx->stat.verify_errors += stripe->init_nr_meta_errors;
sctx->stat.uncorrectable_errors +=
bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
sctx->stat.corrected_errors += nr_repaired_sectors;
spin_unlock(&sctx->stat_lock);
}
static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
unsigned long write_bitmap, bool dev_replace);
static void scrub_stripe_read_repair_worker(struct work_struct *work)
{
struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
struct scrub_ctx *sctx = stripe->sctx;
struct btrfs_fs_info *fs_info = sctx->fs_info;
int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
stripe->bg->length);
int mirror;
int i;
ASSERT(stripe->mirror_num > 0);
wait_scrub_stripe_io(stripe);
scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
stripe->init_error_bitmap = stripe->error_bitmap;
stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
stripe->nr_sectors);
stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
stripe->nr_sectors);
stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
stripe->nr_sectors);
if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
goto out;
for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
mirror != stripe->mirror_num;
mirror = calc_next_mirror(mirror, num_copies)) {
const unsigned long old_error_bitmap = stripe->error_bitmap;
scrub_stripe_submit_repair_read(stripe, mirror,
BTRFS_STRIPE_LEN, false);
wait_scrub_stripe_io(stripe);
scrub_verify_one_stripe(stripe, old_error_bitmap);
if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
goto out;
}
for (i = 0, mirror = stripe->mirror_num;
i < num_copies;
i++, mirror = calc_next_mirror(mirror, num_copies)) {
const unsigned long old_error_bitmap = stripe->error_bitmap;
scrub_stripe_submit_repair_read(stripe, mirror,
fs_info->sectorsize, true);
wait_scrub_stripe_io(stripe);
scrub_verify_one_stripe(stripe, old_error_bitmap);
if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
goto out;
}
out:
if (btrfs_is_zoned(fs_info)) {
if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
} else if (!sctx->readonly) {
unsigned long repaired;
bitmap_andnot(&repaired, &stripe->init_error_bitmap,
&stripe->error_bitmap, stripe->nr_sectors);
scrub_write_sectors(sctx, stripe, repaired, false);
wait_scrub_stripe_io(stripe);
}
scrub_stripe_report_errors(sctx, stripe);
set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
wake_up(&stripe->repair_wait);
}
static void scrub_read_endio(struct btrfs_bio *bbio)
{
struct scrub_stripe *stripe = bbio->private;
if (bbio->bio.bi_status) {
bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors);
} else {
bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
}
bio_put(&bbio->bio);
if (atomic_dec_and_test(&stripe->pending_io)) {
wake_up(&stripe->io_wait);
INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
}
}
static void scrub_write_endio(struct btrfs_bio *bbio)
{
struct scrub_stripe *stripe = bbio->private;
struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
struct bio_vec *bvec;
int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
u32 bio_size = 0;
int i;
bio_for_each_bvec_all(bvec, &bbio->bio, i)
bio_size += bvec->bv_len;
if (bbio->bio.bi_status) {
unsigned long flags;
spin_lock_irqsave(&stripe->write_error_lock, flags);
bitmap_set(&stripe->write_error_bitmap, sector_nr,
bio_size >> fs_info->sectorsize_bits);
spin_unlock_irqrestore(&stripe->write_error_lock, flags);
}
bio_put(&bbio->bio);
if (atomic_dec_and_test(&stripe->pending_io))
wake_up(&stripe->io_wait);
}
static void scrub_submit_write_bio(struct scrub_ctx *sctx,
struct scrub_stripe *stripe,
struct btrfs_bio *bbio, bool dev_replace)
{
struct btrfs_fs_info *fs_info = sctx->fs_info;
u32 bio_len = bbio->bio.bi_iter.bi_size;
u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
stripe->logical;
fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
atomic_inc(&stripe->pending_io);
btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
if (!btrfs_is_zoned(fs_info))
return;
wait_scrub_stripe_io(stripe);
if (!test_bit(bio_off >> fs_info->sectorsize_bits,
&stripe->write_error_bitmap))
sctx->write_pointer += bio_len;
}
static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
unsigned long write_bitmap, bool dev_replace)
{
struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
struct btrfs_bio *bbio = NULL;
int sector_nr;
for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
struct page *page = scrub_stripe_get_page(stripe, sector_nr);
unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
int ret;
ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
bbio = NULL;
}
if (!bbio) {
bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
fs_info, scrub_write_endio, stripe);
bbio->bio.bi_iter.bi_sector = (stripe->logical +
(sector_nr << fs_info->sectorsize_bits)) >>
SECTOR_SHIFT;
}
ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
ASSERT(ret == fs_info->sectorsize);
}
if (bbio)
scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
}
static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
unsigned int bio_size)
{
const int time_slice = 1000;
s64 delta;
ktime_t now;
u32 div;
u64 bwlimit;
bwlimit = READ_ONCE(device->scrub_speed_max);
if (bwlimit == 0)
return;
div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
div = min_t(u32, 64, div);
now = ktime_get();
if (sctx->throttle_deadline == 0) {
sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
sctx->throttle_sent = 0;
}
if (ktime_before(now, sctx->throttle_deadline)) {
sctx->throttle_sent += bio_size;
if (sctx->throttle_sent <= div_u64(bwlimit, div))
return;
delta = ktime_ms_delta(sctx->throttle_deadline, now);
} else {
delta = 0;
}
if (delta) {
long timeout;
timeout = div_u64(delta * HZ, 1000);
schedule_timeout_interruptible(timeout);
}
sctx->throttle_deadline = 0;
}
static int get_raid56_logic_offset(u64 physical, int num,
struct map_lookup *map, u64 *offset,
u64 *stripe_start)
{
int i;
int j = 0;
u64 last_offset;
const int data_stripes = nr_data_stripes(map);
last_offset = (physical - map->stripes[num].physical) * data_stripes;
if (stripe_start)
*stripe_start = last_offset;
*offset = last_offset;
for (i = 0; i < data_stripes; i++) {
u32 stripe_nr;
u32 stripe_index;
u32 rot;
*offset = last_offset + btrfs_stripe_nr_to_offset(i);
stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
rot = stripe_nr % map->num_stripes;
rot += i;
stripe_index = rot % map->num_stripes;
if (stripe_index == num)
return 0;
if (stripe_index < num)
j++;
}
*offset = last_offset + btrfs_stripe_nr_to_offset(j);
return 1;
}
static int compare_extent_item_range(struct btrfs_path *path,
u64 search_start, u64 search_len)
{
struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
u64 len;
struct btrfs_key key;
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
key.type == BTRFS_METADATA_ITEM_KEY);
if (key.type == BTRFS_METADATA_ITEM_KEY)
len = fs_info->nodesize;
else
len = key.offset;
if (key.objectid + len <= search_start)
return -1;
if (key.objectid >= search_start + search_len)
return 1;
return 0;
}
static int find_first_extent_item(struct btrfs_root *extent_root,
struct btrfs_path *path,
u64 search_start, u64 search_len)
{
struct btrfs_fs_info *fs_info = extent_root->fs_info;
struct btrfs_key key;
int ret;
if (path->nodes[0])
goto search_forward;
if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
key.type = BTRFS_METADATA_ITEM_KEY;
else
key.type = BTRFS_EXTENT_ITEM_KEY;
key.objectid = search_start;
key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
if (ret < 0)
return ret;
ASSERT(ret > 0);
ret = btrfs_previous_extent_item(extent_root, path, 0);
if (ret < 0)
return ret;
search_forward:
while (true) {
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.objectid >= search_start + search_len)
break;
if (key.type != BTRFS_METADATA_ITEM_KEY &&
key.type != BTRFS_EXTENT_ITEM_KEY)
goto next;
ret = compare_extent_item_range(path, search_start, search_len);
if (ret == 0)
return ret;
if (ret > 0)
break;
next:
path->slots[0]++;
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ret = btrfs_next_leaf(extent_root, path);
if (ret) {
btrfs_release_path(path);
return ret;
}
}
}
btrfs_release_path(path);
return 1;
}
static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
{
struct btrfs_key key;
struct btrfs_extent_item *ei;
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
key.type == BTRFS_EXTENT_ITEM_KEY);
*extent_start_ret = key.objectid;
if (key.type == BTRFS_METADATA_ITEM_KEY)
*size_ret = path->nodes[0]->fs_info->nodesize;
else
*size_ret = key.offset;
ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
}
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
u64 physical, u64 physical_end)
{
struct btrfs_fs_info *fs_info = sctx->fs_info;
int ret = 0;
if (!btrfs_is_zoned(fs_info))
return 0;
mutex_lock(&sctx->wr_lock);
if (sctx->write_pointer < physical_end) {
ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
physical,
sctx->write_pointer);
if (ret)
btrfs_err(fs_info,
"zoned: failed to recover write pointer");
}
mutex_unlock(&sctx->wr_lock);
btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
return ret;
}
static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
struct scrub_stripe *stripe,
u64 extent_start, u64 extent_len,
u64 extent_flags, u64 extent_gen)
{
for (u64 cur_logical = max(stripe->logical, extent_start);
cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
extent_start + extent_len);
cur_logical += fs_info->sectorsize) {
const int nr_sector = (cur_logical - stripe->logical) >>
fs_info->sectorsize_bits;
struct scrub_sector_verification *sector =
&stripe->sectors[nr_sector];
set_bit(nr_sector, &stripe->extent_sector_bitmap);
if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
sector->is_metadata = true;
sector->generation = extent_gen;
}
}
}
static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
{
stripe->extent_sector_bitmap = 0;
stripe->init_error_bitmap = 0;
stripe->init_nr_io_errors = 0;
stripe->init_nr_csum_errors = 0;
stripe->init_nr_meta_errors = 0;
stripe->error_bitmap = 0;
stripe->io_error_bitmap = 0;
stripe->csum_error_bitmap = 0;
stripe->meta_error_bitmap = 0;
}
static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
struct btrfs_path *extent_path,
struct btrfs_path *csum_path,
struct btrfs_device *dev, u64 physical,
int mirror_num, u64 logical_start,
u32 logical_len,
struct scrub_stripe *stripe)
{
struct btrfs_fs_info *fs_info = bg->fs_info;
struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
const u64 logical_end = logical_start + logical_len;
u64 cur_logical = logical_start;
u64 stripe_end;
u64 extent_start;
u64 extent_len;
u64 extent_flags;
u64 extent_gen;
int ret;
memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
stripe->nr_sectors);
scrub_stripe_reset_bitmaps(stripe);
ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
ret = find_first_extent_item(extent_root, extent_path, logical_start,
logical_len);
if (ret)
goto out;
get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
&extent_gen);
if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
stripe->nr_meta_extents++;
if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
stripe->nr_data_extents++;
cur_logical = max(extent_start, cur_logical);
stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
bg->start;
stripe->physical = physical + stripe->logical - logical_start;
stripe->dev = dev;
stripe->bg = bg;
stripe->mirror_num = mirror_num;
stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
extent_flags, extent_gen);
cur_logical = extent_start + extent_len;
while (cur_logical <= stripe_end) {
ret = find_first_extent_item(extent_root, extent_path, cur_logical,
stripe_end - cur_logical + 1);
if (ret < 0)
goto out;
if (ret > 0) {
ret = 0;
break;
}
get_extent_info(extent_path, &extent_start, &extent_len,
&extent_flags, &extent_gen);
if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
stripe->nr_meta_extents++;
if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
stripe->nr_data_extents++;
fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
extent_flags, extent_gen);
cur_logical = extent_start + extent_len;
}
if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
int sector_nr;
unsigned long csum_bitmap = 0;
ASSERT(stripe->csums);
ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
stripe->logical, stripe_end,
stripe->csums, &csum_bitmap);
if (ret < 0)
goto out;
if (ret > 0)
ret = 0;
for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
stripe->sectors[sector_nr].csum = stripe->csums +
sector_nr * fs_info->csum_size;
}
}
set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
out:
return ret;
}
static void scrub_reset_stripe(struct scrub_stripe *stripe)
{
scrub_stripe_reset_bitmaps(stripe);
stripe->nr_meta_extents = 0;
stripe->nr_data_extents = 0;
stripe->state = 0;
for (int i = 0; i < stripe->nr_sectors; i++) {
stripe->sectors[i].is_metadata = false;
stripe->sectors[i].csum = NULL;
stripe->sectors[i].generation = 0;
}
}
static void scrub_submit_initial_read(struct scrub_ctx *sctx,
struct scrub_stripe *stripe)
{
struct btrfs_fs_info *fs_info = sctx->fs_info;
struct btrfs_bio *bbio;
int mirror = stripe->mirror_num;
ASSERT(stripe->bg);
ASSERT(stripe->mirror_num > 0);
ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
scrub_read_endio, stripe);
bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
int ret;
ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0);
ASSERT(ret == PAGE_SIZE);
}
atomic_inc(&stripe->pending_io);
if (sctx->is_dev_replace &&
(fs_info->dev_replace.cont_reading_from_srcdev_mode ==
BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
!stripe->dev->bdev)) {
int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
stripe->bg->length);
mirror = calc_next_mirror(mirror, num_copies);
}
btrfs_submit_bio(bbio, mirror);
}
static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
{
int i;
for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
if (stripe->sectors[i].is_metadata) {
struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
btrfs_err(fs_info,
"stripe %llu has unrepaired metadata sector at %llu",
stripe->logical,
stripe->logical + (i << fs_info->sectorsize_bits));
return true;
}
}
return false;
}
static void submit_initial_group_read(struct scrub_ctx *sctx,
unsigned int first_slot,
unsigned int nr_stripes)
{
struct blk_plug plug;
ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
btrfs_stripe_nr_to_offset(nr_stripes));
blk_start_plug(&plug);
for (int i = 0; i < nr_stripes; i++) {
struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
scrub_submit_initial_read(sctx, stripe);
}
blk_finish_plug(&plug);
}
static int flush_scrub_stripes(struct scrub_ctx *sctx)
{
struct btrfs_fs_info *fs_info = sctx->fs_info;
struct scrub_stripe *stripe;
const int nr_stripes = sctx->cur_stripe;
int ret = 0;
if (!nr_stripes)
return 0;
ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
}
for (int i = 0; i < nr_stripes; i++) {
stripe = &sctx->stripes[i];
wait_event(stripe->repair_wait,
test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
}
if (sctx->is_dev_replace) {
for (int i = 0; i < nr_stripes; i++) {
if (stripe_has_metadata_error(&sctx->stripes[i])) {
ret = -EIO;
goto out;
}
}
for (int i = 0; i < nr_stripes; i++) {
unsigned long good;
stripe = &sctx->stripes[i];
ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
bitmap_andnot(&good, &stripe->extent_sector_bitmap,
&stripe->error_bitmap, stripe->nr_sectors);
scrub_write_sectors(sctx, stripe, good, true);
}
}
for (int i = 0; i < nr_stripes; i++) {
stripe = &sctx->stripes[i];
wait_scrub_stripe_io(stripe);
scrub_reset_stripe(stripe);
}
out:
sctx->cur_stripe = 0;
return ret;
}
static void raid56_scrub_wait_endio(struct bio *bio)
{
complete(bio->bi_private);
}
static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
struct btrfs_device *dev, int mirror_num,
u64 logical, u32 length, u64 physical,
u64 *found_logical_ret)
{
struct scrub_stripe *stripe;
int ret;
ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
stripe = &sctx->stripes[sctx->cur_stripe];
scrub_reset_stripe(stripe);
ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
&sctx->csum_path, dev, physical,
mirror_num, logical, length, stripe);
if (ret)
return ret;
if (found_logical_ret)
*found_logical_ret = stripe->logical;
sctx->cur_stripe++;
if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
}
if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
return flush_scrub_stripes(sctx);
return 0;
}
static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
struct btrfs_device *scrub_dev,
struct btrfs_block_group *bg,
struct map_lookup *map,
u64 full_stripe_start)
{
DECLARE_COMPLETION_ONSTACK(io_done);
struct btrfs_fs_info *fs_info = sctx->fs_info;
struct btrfs_raid_bio *rbio;
struct btrfs_io_context *bioc = NULL;
struct btrfs_path extent_path = { 0 };
struct btrfs_path csum_path = { 0 };
struct bio *bio;
struct scrub_stripe *stripe;
bool all_empty = true;
const int data_stripes = nr_data_stripes(map);
unsigned long extent_bitmap = 0;
u64 length = btrfs_stripe_nr_to_offset(data_stripes);
int ret;
ASSERT(sctx->raid56_data_stripes);
extent_path.search_commit_root = 1;
extent_path.skip_locking = 1;
csum_path.search_commit_root = 1;
csum_path.skip_locking = 1;
for (int i = 0; i < data_stripes; i++) {
int stripe_index;
int rot;
u64 physical;
stripe = &sctx->raid56_data_stripes[i];
rot = div_u64(full_stripe_start - bg->start,
data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
stripe_index = (i + rot) % map->num_stripes;
physical = map->stripes[stripe_index].physical +
btrfs_stripe_nr_to_offset(rot);
scrub_reset_stripe(stripe);
set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
map->stripes[stripe_index].dev, physical, 1,
full_stripe_start + btrfs_stripe_nr_to_offset(i),
BTRFS_STRIPE_LEN, stripe);
if (ret < 0)
goto out;
if (ret > 0) {
stripe->logical = full_stripe_start +
btrfs_stripe_nr_to_offset(i);
stripe->dev = map->stripes[stripe_index].dev;
stripe->mirror_num = 1;
set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
}
}
for (int i = 0; i < data_stripes; i++) {
stripe = &sctx->raid56_data_stripes[i];
if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
all_empty = false;
break;
}
}
if (all_empty) {
ret = 0;
goto out;
}
for (int i = 0; i < data_stripes; i++) {
stripe = &sctx->raid56_data_stripes[i];
scrub_submit_initial_read(sctx, stripe);
}
for (int i = 0; i < data_stripes; i++) {
stripe = &sctx->raid56_data_stripes[i];
wait_event(stripe->repair_wait,
test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
}
ASSERT(!btrfs_is_zoned(sctx->fs_info));
for (int i = 0; i < data_stripes; i++) {
unsigned long error;
stripe = &sctx->raid56_data_stripes[i];
bitmap_and(&error, &stripe->error_bitmap,
&stripe->extent_sector_bitmap, stripe->nr_sectors);
if (!bitmap_empty(&error, stripe->nr_sectors)) {
btrfs_err(fs_info,
"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
full_stripe_start, i, stripe->nr_sectors,
&error);
ret = -EIO;
goto out;
}
bitmap_or(&extent_bitmap, &extent_bitmap,
&stripe->extent_sector_bitmap, stripe->nr_sectors);
}
bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
bio->bi_private = &io_done;
bio->bi_end_io = raid56_scrub_wait_endio;
btrfs_bio_counter_inc_blocked(fs_info);
ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
&length, &bioc, NULL, NULL, 1);
if (ret < 0) {
btrfs_put_bioc(bioc);
btrfs_bio_counter_dec(fs_info);
goto out;
}
rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
btrfs_put_bioc(bioc);
if (!rbio) {
ret = -ENOMEM;
btrfs_bio_counter_dec(fs_info);
goto out;
}
for (int i = 0; i < data_stripes; i++) {
stripe = &sctx->raid56_data_stripes[i];
raid56_parity_cache_data_pages(rbio, stripe->pages,
full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
}
raid56_parity_submit_scrub_rbio(rbio);
wait_for_completion_io(&io_done);
ret = blk_status_to_errno(bio->bi_status);
bio_put(bio);
btrfs_bio_counter_dec(fs_info);
btrfs_release_path(&extent_path);
btrfs_release_path(&csum_path);
out:
return ret;
}
static int scrub_simple_mirror(struct scrub_ctx *sctx,
struct btrfs_block_group *bg,
struct map_lookup *map,
u64 logical_start, u64 logical_length,
struct btrfs_device *device,
u64 physical, int mirror_num)
{
struct btrfs_fs_info *fs_info = sctx->fs_info;
const u64 logical_end = logical_start + logical_length;
u64 cur_logical = logical_start;
int ret;
ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
while (cur_logical < logical_end) {
u64 found_logical;
u64 cur_physical = physical + cur_logical - logical_start;
if (atomic_read(&fs_info->scrub_cancel_req) ||
atomic_read(&sctx->cancel_req)) {
ret = -ECANCELED;
break;
}
if (atomic_read(&fs_info->scrub_pause_req)) {
scrub_blocked_if_needed(fs_info);
}
spin_lock(&bg->lock);
if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
spin_unlock(&bg->lock);
ret = 0;
break;
}
spin_unlock(&bg->lock);
ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
cur_logical, logical_end - cur_logical,
cur_physical, &found_logical);
if (ret > 0) {
sctx->stat.last_physical = physical + logical_length;
ret = 0;
break;
}
if (ret < 0)
break;
cur_logical = found_logical + BTRFS_STRIPE_LEN;
cond_resched();
}
return ret;
}
static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
{
ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID10));
return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
}
static u64 simple_stripe_get_logical(struct map_lookup *map,
struct btrfs_block_group *bg,
int stripe_index)
{
ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID10));
ASSERT(stripe_index < map->num_stripes);
return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
bg->start;
}
static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
{
ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID10));
ASSERT(stripe_index < map->num_stripes);
return stripe_index % map->sub_stripes + 1;
}
static int scrub_simple_stripe(struct scrub_ctx *sctx,
struct btrfs_block_group *bg,
struct map_lookup *map,
struct btrfs_device *device,
int stripe_index)
{
const u64 logical_increment = simple_stripe_full_stripe_len(map);
const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
const u64 orig_physical = map->stripes[stripe_index].physical;
const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
u64 cur_logical = orig_logical;
u64 cur_physical = orig_physical;
int ret = 0;
while (cur_logical < bg->start + bg->length) {
ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
BTRFS_STRIPE_LEN, device, cur_physical,
mirror_num);
if (ret)
return ret;
cur_logical += logical_increment;
cur_physical += BTRFS_STRIPE_LEN;
}
return ret;
}
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
struct btrfs_block_group *bg,
struct extent_map *em,
struct btrfs_device *scrub_dev,
int stripe_index)
{
struct btrfs_fs_info *fs_info = sctx->fs_info;
struct map_lookup *map = em->map_lookup;
const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
const u64 chunk_logical = bg->start;
int ret;
int ret2;
u64 physical = map->stripes[stripe_index].physical;
const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
const u64 physical_end = physical + dev_stripe_len;
u64 logical;
u64 logic_end;
u64 increment;
u64 offset;
u64 stripe_logical;
int stop_loop = 0;
ASSERT(sctx->extent_path.nodes[0] == NULL);
scrub_blocked_if_needed(fs_info);
if (sctx->is_dev_replace &&
btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
mutex_lock(&sctx->wr_lock);
sctx->write_pointer = physical;
mutex_unlock(&sctx->wr_lock);
}
if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
ASSERT(sctx->raid56_data_stripes == NULL);
sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
sizeof(struct scrub_stripe),
GFP_KERNEL);
if (!sctx->raid56_data_stripes) {
ret = -ENOMEM;
goto out;
}
for (int i = 0; i < nr_data_stripes(map); i++) {
ret = init_scrub_stripe(fs_info,
&sctx->raid56_data_stripes[i]);
if (ret < 0)
goto out;
sctx->raid56_data_stripes[i].bg = bg;
sctx->raid56_data_stripes[i].sctx = sctx;
}
}
if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
BTRFS_BLOCK_GROUP_RAID56_MASK))) {
ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
scrub_dev, map->stripes[stripe_index].physical,
stripe_index + 1);
offset = 0;
goto out;
}
if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
goto out;
}
ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
ret = 0;
get_raid56_logic_offset(physical_end, stripe_index,
map, &logic_end, NULL);
logic_end += chunk_logical;
get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
while (physical < physical_end) {
ret = get_raid56_logic_offset(physical, stripe_index, map,
&logical, &stripe_logical);
logical += chunk_logical;
if (ret) {
stripe_logical += chunk_logical;
ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
map, stripe_logical);
if (ret)
goto out;
goto next;
}
ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
scrub_dev, physical, 1);
if (ret < 0)
goto out;
next:
logical += increment;
physical += BTRFS_STRIPE_LEN;
spin_lock(&sctx->stat_lock);
if (stop_loop)
sctx->stat.last_physical =
map->stripes[stripe_index].physical + dev_stripe_len;
else
sctx->stat.last_physical = physical;
spin_unlock(&sctx->stat_lock);
if (stop_loop)
break;
}
out:
ret2 = flush_scrub_stripes(sctx);
if (!ret)
ret = ret2;
btrfs_release_path(&sctx->extent_path);
btrfs_release_path(&sctx->csum_path);
if (sctx->raid56_data_stripes) {
for (int i = 0; i < nr_data_stripes(map); i++)
release_scrub_stripe(&sctx->raid56_data_stripes[i]);
kfree(sctx->raid56_data_stripes);
sctx->raid56_data_stripes = NULL;
}
if (sctx->is_dev_replace && ret >= 0) {
int ret2;
ret2 = sync_write_pointer_for_zoned(sctx,
chunk_logical + offset,
map->stripes[stripe_index].physical,
physical_end);
if (ret2)
ret = ret2;
}
return ret < 0 ? ret : 0;
}
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
struct btrfs_block_group *bg,
struct btrfs_device *scrub_dev,
u64 dev_offset,
u64 dev_extent_len)
{
struct btrfs_fs_info *fs_info = sctx->fs_info;
struct extent_map_tree *map_tree = &fs_info->mapping_tree;
struct map_lookup *map;
struct extent_map *em;
int i;
int ret = 0;
read_lock(&map_tree->lock);
em = lookup_extent_mapping(map_tree, bg->start, bg->length);
read_unlock(&map_tree->lock);
if (!em) {
spin_lock(&bg->lock);
if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
ret = -EINVAL;
spin_unlock(&bg->lock);
return ret;
}
if (em->start != bg->start)
goto out;
if (em->len < dev_extent_len)
goto out;
map = em->map_lookup;
for (i = 0; i < map->num_stripes; ++i) {
if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
map->stripes[i].physical == dev_offset) {
ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
if (ret)
goto out;
}
}
out:
free_extent_map(em);
return ret;
}
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
struct btrfs_block_group *cache)
{
struct btrfs_fs_info *fs_info = cache->fs_info;
struct btrfs_trans_handle *trans;
if (!btrfs_is_zoned(fs_info))
return 0;
btrfs_wait_block_group_reservations(cache);
btrfs_wait_nocow_writers(cache);
btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
return PTR_ERR(trans);
return btrfs_commit_transaction(trans);
}
static noinline_for_stack
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
struct btrfs_device *scrub_dev, u64 start, u64 end)
{
struct btrfs_dev_extent *dev_extent = NULL;
struct btrfs_path *path;
struct btrfs_fs_info *fs_info = sctx->fs_info;
struct btrfs_root *root = fs_info->dev_root;
u64 chunk_offset;
int ret = 0;
int ro_set;
int slot;
struct extent_buffer *l;
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_block_group *cache;
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = READA_FORWARD;
path->search_commit_root = 1;
path->skip_locking = 1;
key.objectid = scrub_dev->devid;
key.offset = 0ull;
key.type = BTRFS_DEV_EXTENT_KEY;
while (1) {
u64 dev_extent_len;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
break;
if (ret > 0) {
if (path->slots[0] >=
btrfs_header_nritems(path->nodes[0])) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
break;
if (ret > 0) {
ret = 0;
break;
}
} else {
ret = 0;
}
}
l = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(l, &found_key, slot);
if (found_key.objectid != scrub_dev->devid)
break;
if (found_key.type != BTRFS_DEV_EXTENT_KEY)
break;
if (found_key.offset >= end)
break;
if (found_key.offset < key.offset)
break;
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
if (found_key.offset + dev_extent_len <= start)
goto skip;
chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
cache = btrfs_lookup_block_group(fs_info, chunk_offset);
if (!cache)
goto skip;
ASSERT(cache->start <= chunk_offset);
if (cache->start < chunk_offset) {
btrfs_put_block_group(cache);
goto skip;
}
if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
btrfs_put_block_group(cache);
goto skip;
}
}
spin_lock(&cache->lock);
if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
spin_unlock(&cache->lock);
btrfs_put_block_group(cache);
goto skip;
}
btrfs_freeze_block_group(cache);
spin_unlock(&cache->lock);
scrub_pause_on(fs_info);
ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
if (!ret && sctx->is_dev_replace) {
ret = finish_extent_writes_for_zoned(root, cache);
if (ret) {
btrfs_dec_block_group_ro(cache);
scrub_pause_off(fs_info);
btrfs_put_block_group(cache);
break;
}
}
if (ret == 0) {
ro_set = 1;
} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
!(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
ro_set = 0;
} else if (ret == -ETXTBSY) {
btrfs_warn(fs_info,
"skipping scrub of block group %llu due to active swapfile",
cache->start);
scrub_pause_off(fs_info);
ret = 0;
goto skip_unfreeze;
} else {
btrfs_warn(fs_info,
"failed setting block group ro: %d", ret);
btrfs_unfreeze_block_group(cache);
btrfs_put_block_group(cache);
scrub_pause_off(fs_info);
break;
}
if (sctx->is_dev_replace) {
btrfs_wait_nocow_writers(cache);
btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
cache->length);
}
scrub_pause_off(fs_info);
down_write(&dev_replace->rwsem);
dev_replace->cursor_right = found_key.offset + dev_extent_len;
dev_replace->cursor_left = found_key.offset;
dev_replace->item_needs_writeback = 1;
up_write(&dev_replace->rwsem);
ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
dev_extent_len);
if (sctx->is_dev_replace &&
!btrfs_finish_block_group_to_copy(dev_replace->srcdev,
cache, found_key.offset))
ro_set = 0;
down_write(&dev_replace->rwsem);
dev_replace->cursor_left = dev_replace->cursor_right;
dev_replace->item_needs_writeback = 1;
up_write(&dev_replace->rwsem);
if (ro_set)
btrfs_dec_block_group_ro(cache);
spin_lock(&cache->lock);
if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
!cache->ro && cache->reserved == 0 && cache->used == 0) {
spin_unlock(&cache->lock);
if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
btrfs_discard_queue_work(&fs_info->discard_ctl,
cache);
else
btrfs_mark_bg_unused(cache);
} else {
spin_unlock(&cache->lock);
}
skip_unfreeze:
btrfs_unfreeze_block_group(cache);
btrfs_put_block_group(cache);
if (ret)
break;
if (sctx->is_dev_replace &&
atomic64_read(&dev_replace->num_write_errors) > 0) {
ret = -EIO;
break;
}
if (sctx->stat.malloc_errors > 0) {
ret = -ENOMEM;
break;
}
skip:
key.offset = found_key.offset + dev_extent_len;
btrfs_release_path(path);
}
btrfs_free_path(path);
return ret;
}
static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
struct page *page, u64 physical, u64 generation)
{
struct btrfs_fs_info *fs_info = sctx->fs_info;
struct bio_vec bvec;
struct bio bio;
struct btrfs_super_block *sb = page_address(page);
int ret;
bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
ret = submit_bio_wait(&bio);
bio_uninit(&bio);
if (ret < 0)
return ret;
ret = btrfs_check_super_csum(fs_info, sb);
if (ret != 0) {
btrfs_err_rl(fs_info,
"super block at physical %llu devid %llu has bad csum",
physical, dev->devid);
return -EIO;
}
if (btrfs_super_generation(sb) != generation) {
btrfs_err_rl(fs_info,
"super block at physical %llu devid %llu has bad generation %llu expect %llu",
physical, dev->devid,
btrfs_super_generation(sb), generation);
return -EUCLEAN;
}
return btrfs_validate_super(fs_info, sb, -1);
}
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
struct btrfs_device *scrub_dev)
{
int i;
u64 bytenr;
u64 gen;
int ret = 0;
struct page *page;
struct btrfs_fs_info *fs_info = sctx->fs_info;
if (BTRFS_FS_ERROR(fs_info))
return -EROFS;
page = alloc_page(GFP_KERNEL);
if (!page) {
spin_lock(&sctx->stat_lock);
sctx->stat.malloc_errors++;
spin_unlock(&sctx->stat_lock);
return -ENOMEM;
}
if (scrub_dev->fs_devices != fs_info->fs_devices)
gen = scrub_dev->generation;
else
gen = fs_info->last_trans_committed;
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
bytenr = btrfs_sb_offset(i);
if (bytenr + BTRFS_SUPER_INFO_SIZE >
scrub_dev->commit_total_bytes)
break;
if (!btrfs_check_super_location(scrub_dev, bytenr))
continue;
ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
if (ret) {
spin_lock(&sctx->stat_lock);
sctx->stat.super_errors++;
spin_unlock(&sctx->stat_lock);
}
}
__free_page(page);
return 0;
}
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
&fs_info->scrub_lock)) {
struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
fs_info->scrub_workers = NULL;
mutex_unlock(&fs_info->scrub_lock);
if (scrub_workers)
destroy_workqueue(scrub_workers);
}
}
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
{
struct workqueue_struct *scrub_workers = NULL;
unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
int max_active = fs_info->thread_pool_size;
int ret = -ENOMEM;
if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
return 0;
scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
if (!scrub_workers)
return -ENOMEM;
mutex_lock(&fs_info->scrub_lock);
if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
ASSERT(fs_info->scrub_workers == NULL);
fs_info->scrub_workers = scrub_workers;
refcount_set(&fs_info->scrub_workers_refcnt, 1);
mutex_unlock(&fs_info->scrub_lock);
return 0;
}
refcount_inc(&fs_info->scrub_workers_refcnt);
mutex_unlock(&fs_info->scrub_lock);
ret = 0;
destroy_workqueue(scrub_workers);
return ret;
}
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
u64 end, struct btrfs_scrub_progress *progress,
int readonly, int is_dev_replace)
{
struct btrfs_dev_lookup_args args = { .devid = devid };
struct scrub_ctx *sctx;
int ret;
struct btrfs_device *dev;
unsigned int nofs_flag;
bool need_commit = false;
if (btrfs_fs_closing(fs_info))
return -EAGAIN;
ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
ASSERT(fs_info->nodesize <=
SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
sctx = scrub_setup_ctx(fs_info, is_dev_replace);
if (IS_ERR(sctx))
return PTR_ERR(sctx);
ret = scrub_workers_get(fs_info);
if (ret)
goto out_free_ctx;
mutex_lock(&fs_info->fs_devices->device_list_mutex);
dev = btrfs_find_device(fs_info->fs_devices, &args);
if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
!is_dev_replace)) {
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ret = -ENODEV;
goto out;
}
if (!is_dev_replace && !readonly &&
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
btrfs_err_in_rcu(fs_info,
"scrub on devid %llu: filesystem on %s is not writable",
devid, btrfs_dev_name(dev));
ret = -EROFS;
goto out;
}
mutex_lock(&fs_info->scrub_lock);
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
mutex_unlock(&fs_info->scrub_lock);
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ret = -EIO;
goto out;
}
down_read(&fs_info->dev_replace.rwsem);
if (dev->scrub_ctx ||
(!is_dev_replace &&
btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
up_read(&fs_info->dev_replace.rwsem);
mutex_unlock(&fs_info->scrub_lock);
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ret = -EINPROGRESS;
goto out;
}
up_read(&fs_info->dev_replace.rwsem);
sctx->readonly = readonly;
dev->scrub_ctx = sctx;
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
__scrub_blocked_if_needed(fs_info);
atomic_inc(&fs_info->scrubs_running);
mutex_unlock(&fs_info->scrub_lock);
nofs_flag = memalloc_nofs_save();
if (!is_dev_replace) {
u64 old_super_errors;
spin_lock(&sctx->stat_lock);
old_super_errors = sctx->stat.super_errors;
spin_unlock(&sctx->stat_lock);
btrfs_info(fs_info, "scrub: started on devid %llu", devid);
mutex_lock(&fs_info->fs_devices->device_list_mutex);
ret = scrub_supers(sctx, dev);
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
spin_lock(&sctx->stat_lock);
if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
need_commit = true;
spin_unlock(&sctx->stat_lock);
}
if (!ret)
ret = scrub_enumerate_chunks(sctx, dev, start, end);
memalloc_nofs_restore(nofs_flag);
atomic_dec(&fs_info->scrubs_running);
wake_up(&fs_info->scrub_pause_wait);
if (progress)
memcpy(progress, &sctx->stat, sizeof(*progress));
if (!is_dev_replace)
btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
ret ? "not finished" : "finished", devid, ret);
mutex_lock(&fs_info->scrub_lock);
dev->scrub_ctx = NULL;
mutex_unlock(&fs_info->scrub_lock);
scrub_workers_put(fs_info);
scrub_put_ctx(sctx);
if (need_commit) {
struct btrfs_trans_handle *trans;
trans = btrfs_start_transaction(fs_info->tree_root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
btrfs_err(fs_info,
"scrub: failed to start transaction to fix super block errors: %d", ret);
return ret;
}
ret = btrfs_commit_transaction(trans);
if (ret < 0)
btrfs_err(fs_info,
"scrub: failed to commit transaction to fix super block errors: %d", ret);
}
return ret;
out:
scrub_workers_put(fs_info);
out_free_ctx:
scrub_free_ctx(sctx);
return ret;
}
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
{
mutex_lock(&fs_info->scrub_lock);
atomic_inc(&fs_info->scrub_pause_req);
while (atomic_read(&fs_info->scrubs_paused) !=
atomic_read(&fs_info->scrubs_running)) {
mutex_unlock(&fs_info->scrub_lock);
wait_event(fs_info->scrub_pause_wait,
atomic_read(&fs_info->scrubs_paused) ==
atomic_read(&fs_info->scrubs_running));
mutex_lock(&fs_info->scrub_lock);
}
mutex_unlock(&fs_info->scrub_lock);
}
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
{
atomic_dec(&fs_info->scrub_pause_req);
wake_up(&fs_info->scrub_pause_wait);
}
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
{
mutex_lock(&fs_info->scrub_lock);
if (!atomic_read(&fs_info->scrubs_running)) {
mutex_unlock(&fs_info->scrub_lock);
return -ENOTCONN;
}
atomic_inc(&fs_info->scrub_cancel_req);
while (atomic_read(&fs_info->scrubs_running)) {
mutex_unlock(&fs_info->scrub_lock);
wait_event(fs_info->scrub_pause_wait,
atomic_read(&fs_info->scrubs_running) == 0);
mutex_lock(&fs_info->scrub_lock);
}
atomic_dec(&fs_info->scrub_cancel_req);
mutex_unlock(&fs_info->scrub_lock);
return 0;
}
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
{
struct btrfs_fs_info *fs_info = dev->fs_info;
struct scrub_ctx *sctx;
mutex_lock(&fs_info->scrub_lock);
sctx = dev->scrub_ctx;
if (!sctx) {
mutex_unlock(&fs_info->scrub_lock);
return -ENOTCONN;
}
atomic_inc(&sctx->cancel_req);
while (dev->scrub_ctx) {
mutex_unlock(&fs_info->scrub_lock);
wait_event(fs_info->scrub_pause_wait,
dev->scrub_ctx == NULL);
mutex_lock(&fs_info->scrub_lock);
}
mutex_unlock(&fs_info->scrub_lock);
return 0;
}
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
struct btrfs_scrub_progress *progress)
{
struct btrfs_dev_lookup_args args = { .devid = devid };
struct btrfs_device *dev;
struct scrub_ctx *sctx = NULL;
mutex_lock(&fs_info->fs_devices->device_list_mutex);
dev = btrfs_find_device(fs_info->fs_devices, &args);
if (dev)
sctx = dev->scrub_ctx;
if (sctx)
memcpy(progress, &sctx->stat, sizeof(*progress));
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
}