#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/bitmap.h>
#include <linux/slab.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <linux/uaccess.h>
#include <linux/atmdev.h>
#include <linux/atm.h>
#include <linux/sonet.h>
#undef USE_SCATTERGATHER
#undef USE_CHECKSUM_HW /* still confused about this */
#include "he.h"
#include "suni.h"
#include <linux/atm_he.h>
#define hprintk(fmt,args...) printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
#ifdef HE_DEBUG
#define HPRINTK(fmt,args...) printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
#else /* !HE_DEBUG */
#define HPRINTK(fmt,args...) do { } while (0)
#endif /* HE_DEBUG */
static int he_open(struct atm_vcc *vcc);
static void he_close(struct atm_vcc *vcc);
static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
static irqreturn_t he_irq_handler(int irq, void *dev_id);
static void he_tasklet(unsigned long data);
static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
static int he_start(struct atm_dev *dev);
static void he_stop(struct he_dev *dev);
static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
static unsigned char he_phy_get(struct atm_dev *, unsigned long);
static u8 read_prom_byte(struct he_dev *he_dev, int addr);
static struct he_dev *he_devs;
static bool disable64;
static short nvpibits = -1;
static short nvcibits = -1;
static short rx_skb_reserve = 16;
static bool irq_coalesce = true;
static bool sdh;
static unsigned int readtab[] = {
CS_HIGH | CLK_HIGH,
CS_LOW | CLK_LOW,
CLK_HIGH,
CLK_LOW,
CLK_HIGH,
CLK_LOW,
CLK_HIGH,
CLK_LOW,
CLK_HIGH,
CLK_LOW,
CLK_HIGH,
CLK_LOW,
CLK_HIGH,
CLK_LOW | SI_HIGH,
CLK_HIGH | SI_HIGH,
CLK_LOW | SI_HIGH,
CLK_HIGH | SI_HIGH
};
static unsigned int clocktab[] = {
CLK_LOW,
CLK_HIGH,
CLK_LOW,
CLK_HIGH,
CLK_LOW,
CLK_HIGH,
CLK_LOW,
CLK_HIGH,
CLK_LOW,
CLK_HIGH,
CLK_LOW,
CLK_HIGH,
CLK_LOW,
CLK_HIGH,
CLK_LOW,
CLK_HIGH,
CLK_LOW
};
static const struct atmdev_ops he_ops =
{
.open = he_open,
.close = he_close,
.ioctl = he_ioctl,
.send = he_send,
.phy_put = he_phy_put,
.phy_get = he_phy_get,
.proc_read = he_proc_read,
.owner = THIS_MODULE
};
#define he_writel(dev, val, reg) do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
#define he_readl(dev, reg) readl((dev)->membase + (reg))
static __inline__ void
he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
unsigned flags)
{
he_writel(he_dev, val, CON_DAT);
(void) he_readl(he_dev, CON_DAT);
he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
}
#define he_writel_rcm(dev, val, reg) \
he_writel_internal(dev, val, reg, CON_CTL_RCM)
#define he_writel_tcm(dev, val, reg) \
he_writel_internal(dev, val, reg, CON_CTL_TCM)
#define he_writel_mbox(dev, val, reg) \
he_writel_internal(dev, val, reg, CON_CTL_MBOX)
static unsigned
he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
{
he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
return he_readl(he_dev, CON_DAT);
}
#define he_readl_rcm(dev, reg) \
he_readl_internal(dev, reg, CON_CTL_RCM)
#define he_readl_tcm(dev, reg) \
he_readl_internal(dev, reg, CON_CTL_TCM)
#define he_readl_mbox(dev, reg) \
he_readl_internal(dev, reg, CON_CTL_MBOX)
#define he_mkcid(dev, vpi, vci) (((vpi << (dev)->vcibits) | vci) & 0x1fff)
#define he_writel_tsr0(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
#define he_readl_tsr0(dev, cid) \
he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
#define he_writel_tsr1(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
#define he_writel_tsr2(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
#define he_writel_tsr3(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
#define he_writel_tsr4(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
#define he_writel_tsr4_upper(dev, val, cid) \
he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
CON_CTL_TCM \
| CON_BYTE_DISABLE_2 \
| CON_BYTE_DISABLE_1 \
| CON_BYTE_DISABLE_0)
#define he_readl_tsr4(dev, cid) \
he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
#define he_writel_tsr5(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
#define he_writel_tsr6(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
#define he_writel_tsr7(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
#define he_writel_tsr8(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
#define he_writel_tsr9(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
#define he_writel_tsr10(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
#define he_writel_tsr11(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
#define he_writel_tsr12(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
#define he_writel_tsr13(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
#define he_writel_tsr14(dev, val, cid) \
he_writel_tcm(dev, val, CONFIG_TSRD | cid)
#define he_writel_tsr14_upper(dev, val, cid) \
he_writel_internal(dev, val, CONFIG_TSRD | cid, \
CON_CTL_TCM \
| CON_BYTE_DISABLE_2 \
| CON_BYTE_DISABLE_1 \
| CON_BYTE_DISABLE_0)
#define he_writel_rsr0(dev, val, cid) \
he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
#define he_readl_rsr0(dev, cid) \
he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
#define he_writel_rsr1(dev, val, cid) \
he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
#define he_writel_rsr2(dev, val, cid) \
he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
#define he_writel_rsr3(dev, val, cid) \
he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
#define he_writel_rsr4(dev, val, cid) \
he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
#define he_writel_rsr5(dev, val, cid) \
he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
#define he_writel_rsr6(dev, val, cid) \
he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
#define he_writel_rsr7(dev, val, cid) \
he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
static __inline__ struct atm_vcc*
__find_vcc(struct he_dev *he_dev, unsigned cid)
{
struct hlist_head *head;
struct atm_vcc *vcc;
struct sock *s;
short vpi;
int vci;
vpi = cid >> he_dev->vcibits;
vci = cid & ((1 << he_dev->vcibits) - 1);
head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
sk_for_each(s, head) {
vcc = atm_sk(s);
if (vcc->dev == he_dev->atm_dev &&
vcc->vci == vci && vcc->vpi == vpi &&
vcc->qos.rxtp.traffic_class != ATM_NONE) {
return vcc;
}
}
return NULL;
}
static int he_init_one(struct pci_dev *pci_dev,
const struct pci_device_id *pci_ent)
{
struct atm_dev *atm_dev = NULL;
struct he_dev *he_dev = NULL;
int err = 0;
printk(KERN_INFO "ATM he driver\n");
if (pci_enable_device(pci_dev))
return -EIO;
if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) {
printk(KERN_WARNING "he: no suitable dma available\n");
err = -EIO;
goto init_one_failure;
}
atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
if (!atm_dev) {
err = -ENODEV;
goto init_one_failure;
}
pci_set_drvdata(pci_dev, atm_dev);
he_dev = kzalloc(sizeof(struct he_dev),
GFP_KERNEL);
if (!he_dev) {
err = -ENOMEM;
goto init_one_failure;
}
he_dev->pci_dev = pci_dev;
he_dev->atm_dev = atm_dev;
he_dev->atm_dev->dev_data = he_dev;
atm_dev->dev_data = he_dev;
he_dev->number = atm_dev->number;
tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
spin_lock_init(&he_dev->global_lock);
if (he_start(atm_dev)) {
he_stop(he_dev);
err = -ENODEV;
goto init_one_failure;
}
he_dev->next = NULL;
if (he_devs)
he_dev->next = he_devs;
he_devs = he_dev;
return 0;
init_one_failure:
if (atm_dev)
atm_dev_deregister(atm_dev);
kfree(he_dev);
pci_disable_device(pci_dev);
return err;
}
static void he_remove_one(struct pci_dev *pci_dev)
{
struct atm_dev *atm_dev;
struct he_dev *he_dev;
atm_dev = pci_get_drvdata(pci_dev);
he_dev = HE_DEV(atm_dev);
he_stop(he_dev);
atm_dev_deregister(atm_dev);
kfree(he_dev);
pci_disable_device(pci_dev);
}
static unsigned
rate_to_atmf(unsigned rate)
{
#define NONZERO (1 << 14)
unsigned exp = 0;
if (rate == 0)
return 0;
rate <<= 9;
while (rate > 0x3ff) {
++exp;
rate >>= 1;
}
return (NONZERO | (exp << 9) | (rate & 0x1ff));
}
static void he_init_rx_lbfp0(struct he_dev *he_dev)
{
unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
lbufd_index = 0;
lbm_offset = he_readl(he_dev, RCMLBM_BA);
he_writel(he_dev, lbufd_index, RLBF0_H);
for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
lbufd_index += 2;
lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
if (++lbuf_count == lbufs_per_row) {
lbuf_count = 0;
row_offset += he_dev->bytes_per_row;
}
lbm_offset += 4;
}
he_writel(he_dev, lbufd_index - 2, RLBF0_T);
he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
}
static void he_init_rx_lbfp1(struct he_dev *he_dev)
{
unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
lbufd_index = 1;
lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
he_writel(he_dev, lbufd_index, RLBF1_H);
for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
lbufd_index += 2;
lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
if (++lbuf_count == lbufs_per_row) {
lbuf_count = 0;
row_offset += he_dev->bytes_per_row;
}
lbm_offset += 4;
}
he_writel(he_dev, lbufd_index - 2, RLBF1_T);
he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
}
static void he_init_tx_lbfp(struct he_dev *he_dev)
{
unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
he_writel(he_dev, lbufd_index, TLBF_H);
for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
lbufd_index += 1;
lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
if (++lbuf_count == lbufs_per_row) {
lbuf_count = 0;
row_offset += he_dev->bytes_per_row;
}
lbm_offset += 2;
}
he_writel(he_dev, lbufd_index - 1, TLBF_T);
}
static int he_init_tpdrq(struct he_dev *he_dev)
{
he_dev->tpdrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq),
&he_dev->tpdrq_phys,
GFP_KERNEL);
if (he_dev->tpdrq_base == NULL) {
hprintk("failed to alloc tpdrq\n");
return -ENOMEM;
}
he_dev->tpdrq_tail = he_dev->tpdrq_base;
he_dev->tpdrq_head = he_dev->tpdrq_base;
he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
he_writel(he_dev, 0, TPDRQ_T);
he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
return 0;
}
static void he_init_cs_block(struct he_dev *he_dev)
{
unsigned clock, rate, delta;
int reg;
for (reg = 0; reg < 0x20; ++reg)
he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
clock = he_is622(he_dev) ? 66667000 : 50000000;
rate = he_dev->atm_dev->link_rate;
delta = rate / 16 / 2;
for (reg = 0; reg < 0x10; ++reg) {
unsigned period = clock / rate;
he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
rate -= delta;
}
if (he_is622(he_dev)) {
he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
he_writel_mbox(he_dev, 0x4680, CS_RTATR);
he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
he_writel_mbox(he_dev, 0x5, CS_OTPPER);
he_writel_mbox(he_dev, 0x14, CS_OTWPER);
} else {
he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
he_writel_mbox(he_dev, 0x4680, CS_RTATR);
he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
he_writel_mbox(he_dev, 0x6, CS_OTPPER);
he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
}
he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
for (reg = 0; reg < 0x8; ++reg)
he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
}
static int he_init_cs_block_rcm(struct he_dev *he_dev)
{
unsigned (*rategrid)[16][16];
unsigned rate, delta;
int i, j, reg;
unsigned rate_atmf, exp, man;
unsigned long long rate_cps;
int mult, buf, buf_limit = 4;
rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
if (!rategrid)
return -ENOMEM;
for (reg = 0x0; reg < 0xff; ++reg)
he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
for (reg = 0x100; reg < 0x1ff; ++reg)
he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
rate = he_dev->atm_dev->link_rate;
delta = rate / 32;
for (j = 0; j < 16; j++) {
(*rategrid)[0][j] = rate;
rate -= delta;
}
for (i = 1; i < 16; i++)
for (j = 0; j < 16; j++)
if (i > 14)
(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
else
(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
rate_atmf = 0;
while (rate_atmf < 0x400) {
man = (rate_atmf & 0x1f) << 4;
exp = rate_atmf >> 5;
rate_cps = (unsigned long long) (1UL << exp) * (man + 512) >> 9;
if (rate_cps < 10)
rate_cps = 10;
for (i = 255; i > 0; i--)
if ((*rategrid)[i/16][i%16] >= rate_cps)
break;
#ifdef notdef
buf = rate_cps * he_dev->tx_numbuffs /
(he_dev->atm_dev->link_rate * 2);
#else
mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
if (rate_cps > (272ULL * mult))
buf = 4;
else if (rate_cps > (204ULL * mult))
buf = 3;
else if (rate_cps > (136ULL * mult))
buf = 2;
else if (rate_cps > (68ULL * mult))
buf = 1;
else
buf = 0;
#endif
if (buf > buf_limit)
buf = buf_limit;
reg = (reg << 16) | ((i << 8) | buf);
#define RTGTBL_OFFSET 0x400
if (rate_atmf & 0x1)
he_writel_rcm(he_dev, reg,
CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
++rate_atmf;
}
kfree(rategrid);
return 0;
}
static int he_init_group(struct he_dev *he_dev, int group)
{
struct he_buff *heb, *next;
dma_addr_t mapping;
int i;
he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
G0_RBPS_BS + (group * 32));
he_dev->rbpl_table = bitmap_zalloc(RBPL_TABLE_SIZE, GFP_KERNEL);
if (!he_dev->rbpl_table) {
hprintk("unable to allocate rbpl bitmap table\n");
return -ENOMEM;
}
he_dev->rbpl_virt = kmalloc_array(RBPL_TABLE_SIZE,
sizeof(*he_dev->rbpl_virt),
GFP_KERNEL);
if (!he_dev->rbpl_virt) {
hprintk("unable to allocate rbpl virt table\n");
goto out_free_rbpl_table;
}
he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev,
CONFIG_RBPL_BUFSIZE, 64, 0);
if (he_dev->rbpl_pool == NULL) {
hprintk("unable to create rbpl pool\n");
goto out_free_rbpl_virt;
}
he_dev->rbpl_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
CONFIG_RBPL_SIZE * sizeof(struct he_rbp),
&he_dev->rbpl_phys, GFP_KERNEL);
if (he_dev->rbpl_base == NULL) {
hprintk("failed to alloc rbpl_base\n");
goto out_destroy_rbpl_pool;
}
INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping);
if (!heb)
goto out_free_rbpl;
heb->mapping = mapping;
list_add(&heb->entry, &he_dev->rbpl_outstanding);
set_bit(i, he_dev->rbpl_table);
he_dev->rbpl_virt[i] = heb;
he_dev->rbpl_hint = i + 1;
he_dev->rbpl_base[i].idx = i << RBP_IDX_OFFSET;
he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
}
he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
G0_RBPL_T + (group * 32));
he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
G0_RBPL_BS + (group * 32));
he_writel(he_dev,
RBP_THRESH(CONFIG_RBPL_THRESH) |
RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
RBP_INT_ENB,
G0_RBPL_QI + (group * 32));
he_dev->rbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
&he_dev->rbrq_phys, GFP_KERNEL);
if (he_dev->rbrq_base == NULL) {
hprintk("failed to allocate rbrq\n");
goto out_free_rbpl;
}
he_dev->rbrq_head = he_dev->rbrq_base;
he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
he_writel(he_dev,
RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
G0_RBRQ_Q + (group * 16));
if (irq_coalesce) {
hprintk("coalescing interrupts\n");
he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
G0_RBRQ_I + (group * 16));
} else
he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
G0_RBRQ_I + (group * 16));
he_dev->tbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
&he_dev->tbrq_phys, GFP_KERNEL);
if (he_dev->tbrq_base == NULL) {
hprintk("failed to allocate tbrq\n");
goto out_free_rbpq_base;
}
he_dev->tbrq_head = he_dev->tbrq_base;
he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
return 0;
out_free_rbpq_base:
dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE *
sizeof(struct he_rbrq), he_dev->rbrq_base,
he_dev->rbrq_phys);
out_free_rbpl:
list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE *
sizeof(struct he_rbp), he_dev->rbpl_base,
he_dev->rbpl_phys);
out_destroy_rbpl_pool:
dma_pool_destroy(he_dev->rbpl_pool);
out_free_rbpl_virt:
kfree(he_dev->rbpl_virt);
out_free_rbpl_table:
bitmap_free(he_dev->rbpl_table);
return -ENOMEM;
}
static int he_init_irq(struct he_dev *he_dev)
{
int i;
he_dev->irq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
(CONFIG_IRQ_SIZE + 1) * sizeof(struct he_irq),
&he_dev->irq_phys, GFP_KERNEL);
if (he_dev->irq_base == NULL) {
hprintk("failed to allocate irq\n");
return -ENOMEM;
}
he_dev->irq_tailoffset = (unsigned *)
&he_dev->irq_base[CONFIG_IRQ_SIZE];
*he_dev->irq_tailoffset = 0;
he_dev->irq_head = he_dev->irq_base;
he_dev->irq_tail = he_dev->irq_base;
for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
he_dev->irq_base[i].isw = ITYPE_INVALID;
he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
he_writel(he_dev,
IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
IRQ0_HEAD);
he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
he_writel(he_dev, 0x0, IRQ0_DATA);
he_writel(he_dev, 0x0, IRQ1_BASE);
he_writel(he_dev, 0x0, IRQ1_HEAD);
he_writel(he_dev, 0x0, IRQ1_CNTL);
he_writel(he_dev, 0x0, IRQ1_DATA);
he_writel(he_dev, 0x0, IRQ2_BASE);
he_writel(he_dev, 0x0, IRQ2_HEAD);
he_writel(he_dev, 0x0, IRQ2_CNTL);
he_writel(he_dev, 0x0, IRQ2_DATA);
he_writel(he_dev, 0x0, IRQ3_BASE);
he_writel(he_dev, 0x0, IRQ3_HEAD);
he_writel(he_dev, 0x0, IRQ3_CNTL);
he_writel(he_dev, 0x0, IRQ3_DATA);
he_writel(he_dev, 0x0, GRP_10_MAP);
he_writel(he_dev, 0x0, GRP_32_MAP);
he_writel(he_dev, 0x0, GRP_54_MAP);
he_writel(he_dev, 0x0, GRP_76_MAP);
if (request_irq(he_dev->pci_dev->irq,
he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
return -EINVAL;
}
he_dev->irq = he_dev->pci_dev->irq;
return 0;
}
static int he_start(struct atm_dev *dev)
{
struct he_dev *he_dev;
struct pci_dev *pci_dev;
unsigned long membase;
u16 command;
u32 gen_cntl_0, host_cntl, lb_swap;
u8 cache_size, timer;
unsigned err;
unsigned int status, reg;
int i, group;
he_dev = HE_DEV(dev);
pci_dev = he_dev->pci_dev;
membase = pci_resource_start(pci_dev, 0);
HPRINTK("membase = 0x%lx irq = %d.\n", membase, pci_dev->irq);
if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
hprintk("can't read GEN_CNTL_0\n");
return -EINVAL;
}
gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
hprintk("can't write GEN_CNTL_0.\n");
return -EINVAL;
}
if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
hprintk("can't read PCI_COMMAND.\n");
return -EINVAL;
}
command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
hprintk("can't enable memory.\n");
return -EINVAL;
}
if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
hprintk("can't read cache line size?\n");
return -EINVAL;
}
if (cache_size < 16) {
cache_size = 16;
if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
hprintk("can't set cache line size to %d\n", cache_size);
}
if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
hprintk("can't read latency timer?\n");
return -EINVAL;
}
#define LAT_TIMER 209
if (timer < LAT_TIMER) {
HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
timer = LAT_TIMER;
if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
hprintk("can't set latency timer to %d\n", timer);
}
if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
hprintk("can't set up page mapping\n");
return -EINVAL;
}
he_writel(he_dev, 0x0, RESET_CNTL);
he_writel(he_dev, 0xff, RESET_CNTL);
msleep(16);
status = he_readl(he_dev, RESET_CNTL);
if ((status & BOARD_RST_STATUS) == 0) {
hprintk("reset failed\n");
return -EINVAL;
}
host_cntl = he_readl(he_dev, HOST_CNTL);
if (host_cntl & PCI_BUS_SIZE64)
gen_cntl_0 |= ENBL_64;
else
gen_cntl_0 &= ~ENBL_64;
if (disable64 == 1) {
hprintk("disabling 64-bit pci bus transfers\n");
gen_cntl_0 &= ~ENBL_64;
}
if (gen_cntl_0 & ENBL_64)
hprintk("64-bit transfers enabled\n");
pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
for (i = 0; i < PROD_ID_LEN; ++i)
he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
he_dev->media = read_prom_byte(he_dev, MEDIA);
for (i = 0; i < 6; ++i)
dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
hprintk("%s%s, %pM\n", he_dev->prod_id,
he_dev->media & 0x40 ? "SM" : "MM", dev->esi);
he_dev->atm_dev->link_rate = he_is622(he_dev) ?
ATM_OC12_PCR : ATM_OC3_PCR;
lb_swap = he_readl(he_dev, LB_SWAP);
if (he_is622(he_dev))
lb_swap &= ~XFER_SIZE;
else
lb_swap |= XFER_SIZE;
#ifdef __BIG_ENDIAN
lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
#else
lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
#endif /* __BIG_ENDIAN */
he_writel(he_dev, lb_swap, LB_SWAP);
he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
lb_swap |= SWAP_RNUM_MAX(0xf);
he_writel(he_dev, lb_swap, LB_SWAP);
if ((err = he_init_irq(he_dev)) != 0)
return err;
host_cntl |= (OUTFF_ENB | CMDFF_ENB |
QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
he_writel(he_dev, host_cntl, HOST_CNTL);
gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
return -ENODEV;
}
if (nvpibits != -1) {
he_dev->vpibits = nvpibits;
he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
}
if (nvcibits != -1) {
he_dev->vcibits = nvcibits;
he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
}
if (he_is622(he_dev)) {
he_dev->cells_per_row = 40;
he_dev->bytes_per_row = 2048;
he_dev->r0_numrows = 256;
he_dev->tx_numrows = 512;
he_dev->r1_numrows = 256;
he_dev->r0_startrow = 0;
he_dev->tx_startrow = 256;
he_dev->r1_startrow = 768;
} else {
he_dev->cells_per_row = 20;
he_dev->bytes_per_row = 1024;
he_dev->r0_numrows = 512;
he_dev->tx_numrows = 1018;
he_dev->r1_numrows = 512;
he_dev->r0_startrow = 6;
he_dev->tx_startrow = 518;
he_dev->r1_startrow = 1536;
}
he_dev->cells_per_lbuf = 4;
he_dev->buffer_limit = 4;
he_dev->r0_numbuffs = he_dev->r0_numrows *
he_dev->cells_per_row / he_dev->cells_per_lbuf;
if (he_dev->r0_numbuffs > 2560)
he_dev->r0_numbuffs = 2560;
he_dev->r1_numbuffs = he_dev->r1_numrows *
he_dev->cells_per_row / he_dev->cells_per_lbuf;
if (he_dev->r1_numbuffs > 2560)
he_dev->r1_numbuffs = 2560;
he_dev->tx_numbuffs = he_dev->tx_numrows *
he_dev->cells_per_row / he_dev->cells_per_lbuf;
if (he_dev->tx_numbuffs > 5120)
he_dev->tx_numbuffs = 5120;
he_writel(he_dev,
SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
(he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
(he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
LBARB);
he_writel(he_dev, BANK_ON |
(he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
SDRAMCON);
he_writel(he_dev,
(he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
RM_RW_WAIT(1), RCMCONFIG);
he_writel(he_dev,
(he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
TM_RW_WAIT(1), TCMCONFIG);
he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
he_writel(he_dev,
(he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
(he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
RX_VALVP(he_dev->vpibits) |
RX_VALVC(he_dev->vcibits), RC_CONFIG);
he_writel(he_dev, DRF_THRESH(0x20) |
(he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
TX_VCI_MASK(he_dev->vcibits) |
LBFREE_CNT(he_dev->tx_numbuffs), TX_CONFIG);
he_writel(he_dev, 0x0, TXAAL5_PROTO);
he_writel(he_dev, PHY_INT_ENB |
(he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
RH_CONFIG);
for (i = 0; i < TCM_MEM_SIZE; ++i)
he_writel_tcm(he_dev, 0, i);
for (i = 0; i < RCM_MEM_SIZE; ++i)
he_writel_rcm(he_dev, 0, i);
he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
he_writel(he_dev, 0x08000, RCMLBM_BA);
he_writel(he_dev, 0x0e000, RCMRSRB_BA);
he_writel(he_dev, 0x0d800, RCMABR_BA);
he_init_rx_lbfp0(he_dev);
he_init_rx_lbfp1(he_dev);
he_writel(he_dev, 0x0, RLBC_H);
he_writel(he_dev, 0x0, RLBC_T);
he_writel(he_dev, 0x0, RLBC_H2);
he_writel(he_dev, 512, RXTHRSH);
he_writel(he_dev, 256, LITHRSH);
he_init_tx_lbfp(he_dev);
he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
if (he_is622(he_dev)) {
he_writel(he_dev, 0x000f, G0_INMQ_S);
he_writel(he_dev, 0x200f, G0_INMQ_L);
he_writel(he_dev, 0x001f, G1_INMQ_S);
he_writel(he_dev, 0x201f, G1_INMQ_L);
he_writel(he_dev, 0x002f, G2_INMQ_S);
he_writel(he_dev, 0x202f, G2_INMQ_L);
he_writel(he_dev, 0x003f, G3_INMQ_S);
he_writel(he_dev, 0x203f, G3_INMQ_L);
he_writel(he_dev, 0x004f, G4_INMQ_S);
he_writel(he_dev, 0x204f, G4_INMQ_L);
he_writel(he_dev, 0x005f, G5_INMQ_S);
he_writel(he_dev, 0x205f, G5_INMQ_L);
he_writel(he_dev, 0x006f, G6_INMQ_S);
he_writel(he_dev, 0x206f, G6_INMQ_L);
he_writel(he_dev, 0x007f, G7_INMQ_S);
he_writel(he_dev, 0x207f, G7_INMQ_L);
} else {
he_writel(he_dev, 0x0000, G0_INMQ_S);
he_writel(he_dev, 0x0008, G0_INMQ_L);
he_writel(he_dev, 0x0001, G1_INMQ_S);
he_writel(he_dev, 0x0009, G1_INMQ_L);
he_writel(he_dev, 0x0002, G2_INMQ_S);
he_writel(he_dev, 0x000a, G2_INMQ_L);
he_writel(he_dev, 0x0003, G3_INMQ_S);
he_writel(he_dev, 0x000b, G3_INMQ_L);
he_writel(he_dev, 0x0004, G4_INMQ_S);
he_writel(he_dev, 0x000c, G4_INMQ_L);
he_writel(he_dev, 0x0005, G5_INMQ_S);
he_writel(he_dev, 0x000d, G5_INMQ_L);
he_writel(he_dev, 0x0006, G6_INMQ_S);
he_writel(he_dev, 0x000e, G6_INMQ_L);
he_writel(he_dev, 0x0007, G7_INMQ_S);
he_writel(he_dev, 0x000f, G7_INMQ_L);
}
he_writel(he_dev, 0x0, MCC);
he_writel(he_dev, 0x0, OEC);
he_writel(he_dev, 0x0, DCC);
he_writel(he_dev, 0x0, CEC);
he_init_cs_block(he_dev);
if (he_init_cs_block_rcm(he_dev) < 0)
return -ENOMEM;
he_init_tpdrq(he_dev);
he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev,
sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
if (he_dev->tpd_pool == NULL) {
hprintk("unable to create tpd dma_pool\n");
return -ENOMEM;
}
INIT_LIST_HEAD(&he_dev->outstanding_tpds);
if (he_init_group(he_dev, 0) != 0)
return -ENOMEM;
for (group = 1; group < HE_NUM_GROUPS; ++group) {
he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
G0_RBPS_BS + (group * 32));
he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
G0_RBPL_QI + (group * 32));
he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
G0_RBRQ_Q + (group * 16));
he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
he_writel(he_dev, TBRQ_THRESH(0x1),
G0_TBRQ_THRESH + (group * 16));
he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
}
he_dev->hsp = dma_alloc_coherent(&he_dev->pci_dev->dev,
sizeof(struct he_hsp),
&he_dev->hsp_phys, GFP_KERNEL);
if (he_dev->hsp == NULL) {
hprintk("failed to allocate host status page\n");
return -ENOMEM;
}
he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
#ifdef CONFIG_ATM_HE_USE_SUNI
if (he_isMM(he_dev))
suni_init(he_dev->atm_dev);
if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
he_dev->atm_dev->phy->start(he_dev->atm_dev);
#endif /* CONFIG_ATM_HE_USE_SUNI */
if (sdh) {
int val;
val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
}
reg = he_readl_mbox(he_dev, CS_ERCTL0);
reg |= TX_ENABLE|ER_ENABLE;
he_writel_mbox(he_dev, reg, CS_ERCTL0);
reg = he_readl(he_dev, RC_CONFIG);
reg |= RX_ENABLE;
he_writel(he_dev, reg, RC_CONFIG);
for (i = 0; i < HE_NUM_CS_STPER; ++i) {
he_dev->cs_stper[i].inuse = 0;
he_dev->cs_stper[i].pcr = -1;
}
he_dev->total_bw = 0;
he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
he_dev->irq_peak = 0;
he_dev->rbrq_peak = 0;
he_dev->rbpl_peak = 0;
he_dev->tbrq_peak = 0;
HPRINTK("hell bent for leather!\n");
return 0;
}
static void
he_stop(struct he_dev *he_dev)
{
struct he_buff *heb, *next;
struct pci_dev *pci_dev;
u32 gen_cntl_0, reg;
u16 command;
pci_dev = he_dev->pci_dev;
if (he_dev->membase) {
pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
tasklet_disable(&he_dev->tasklet);
reg = he_readl_mbox(he_dev, CS_ERCTL0);
reg &= ~(TX_ENABLE|ER_ENABLE);
he_writel_mbox(he_dev, reg, CS_ERCTL0);
reg = he_readl(he_dev, RC_CONFIG);
reg &= ~(RX_ENABLE);
he_writel(he_dev, reg, RC_CONFIG);
}
#ifdef CONFIG_ATM_HE_USE_SUNI
if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
he_dev->atm_dev->phy->stop(he_dev->atm_dev);
#endif /* CONFIG_ATM_HE_USE_SUNI */
if (he_dev->irq)
free_irq(he_dev->irq, he_dev);
if (he_dev->irq_base)
dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1)
* sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
if (he_dev->hsp)
dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp),
he_dev->hsp, he_dev->hsp_phys);
if (he_dev->rbpl_base) {
list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE
* sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
}
kfree(he_dev->rbpl_virt);
bitmap_free(he_dev->rbpl_table);
dma_pool_destroy(he_dev->rbpl_pool);
if (he_dev->rbrq_base)
dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
he_dev->rbrq_base, he_dev->rbrq_phys);
if (he_dev->tbrq_base)
dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
he_dev->tbrq_base, he_dev->tbrq_phys);
if (he_dev->tpdrq_base)
dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
he_dev->tpdrq_base, he_dev->tpdrq_phys);
dma_pool_destroy(he_dev->tpd_pool);
if (he_dev->pci_dev) {
pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
}
if (he_dev->membase)
iounmap(he_dev->membase);
}
static struct he_tpd *
__alloc_tpd(struct he_dev *he_dev)
{
struct he_tpd *tpd;
dma_addr_t mapping;
tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping);
if (tpd == NULL)
return NULL;
tpd->status = TPD_ADDR(mapping);
tpd->reserved = 0;
tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
return tpd;
}
#define AAL5_LEN(buf,len) \
((((unsigned char *)(buf))[(len)-6] << 8) | \
(((unsigned char *)(buf))[(len)-5]))
#define TCP_CKSUM(buf,len) \
((((unsigned char *)(buf))[(len)-2] << 8) | \
(((unsigned char *)(buf))[(len-1)]))
static int
he_service_rbrq(struct he_dev *he_dev, int group)
{
struct he_rbrq *rbrq_tail = (struct he_rbrq *)
((unsigned long)he_dev->rbrq_base |
he_dev->hsp->group[group].rbrq_tail);
unsigned cid, lastcid = -1;
struct sk_buff *skb;
struct atm_vcc *vcc = NULL;
struct he_vcc *he_vcc;
struct he_buff *heb, *next;
int i;
int pdus_assembled = 0;
int updated = 0;
read_lock(&vcc_sklist_lock);
while (he_dev->rbrq_head != rbrq_tail) {
++updated;
HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
he_dev->rbrq_head, group,
RBRQ_ADDR(he_dev->rbrq_head),
RBRQ_BUFLEN(he_dev->rbrq_head),
RBRQ_CID(he_dev->rbrq_head),
RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
heb = he_dev->rbpl_virt[i];
cid = RBRQ_CID(he_dev->rbrq_head);
if (cid != lastcid)
vcc = __find_vcc(he_dev, cid);
lastcid = cid;
if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
hprintk("vcc/he_vcc == NULL (cid 0x%x)\n", cid);
if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
clear_bit(i, he_dev->rbpl_table);
list_del(&heb->entry);
dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
}
goto next_rbrq_entry;
}
if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
hprintk("HBUF_ERR! (cid 0x%x)\n", cid);
atomic_inc(&vcc->stats->rx_drop);
goto return_host_buffers;
}
heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
clear_bit(i, he_dev->rbpl_table);
list_move_tail(&heb->entry, &he_vcc->buffers);
he_vcc->pdu_len += heb->len;
if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
lastcid = -1;
HPRINTK("wake_up rx_waitq (cid 0x%x)\n", cid);
wake_up(&he_vcc->rx_waitq);
goto return_host_buffers;
}
if (!RBRQ_END_PDU(he_dev->rbrq_head))
goto next_rbrq_entry;
if (RBRQ_LEN_ERR(he_dev->rbrq_head)
|| RBRQ_CRC_ERR(he_dev->rbrq_head)) {
HPRINTK("%s%s (%d.%d)\n",
RBRQ_CRC_ERR(he_dev->rbrq_head)
? "CRC_ERR " : "",
RBRQ_LEN_ERR(he_dev->rbrq_head)
? "LEN_ERR" : "",
vcc->vpi, vcc->vci);
atomic_inc(&vcc->stats->rx_err);
goto return_host_buffers;
}
skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
GFP_ATOMIC);
if (!skb) {
HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
goto return_host_buffers;
}
if (rx_skb_reserve > 0)
skb_reserve(skb, rx_skb_reserve);
__net_timestamp(skb);
list_for_each_entry(heb, &he_vcc->buffers, entry)
skb_put_data(skb, &heb->data, heb->len);
switch (vcc->qos.aal) {
case ATM_AAL0:
skb->len = ATM_AAL0_SDU;
skb_set_tail_pointer(skb, skb->len);
break;
case ATM_AAL5:
skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
skb_set_tail_pointer(skb, skb->len);
#ifdef USE_CHECKSUM_HW
if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = TCP_CKSUM(skb->data,
he_vcc->pdu_len);
}
#endif
break;
}
#ifdef should_never_happen
if (skb->len > vcc->qos.rxtp.max_sdu)
hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)! cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
#endif
#ifdef notdef
ATM_SKB(skb)->vcc = vcc;
#endif
spin_unlock(&he_dev->global_lock);
vcc->push(vcc, skb);
spin_lock(&he_dev->global_lock);
atomic_inc(&vcc->stats->rx);
return_host_buffers:
++pdus_assembled;
list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
INIT_LIST_HEAD(&he_vcc->buffers);
he_vcc->pdu_len = 0;
next_rbrq_entry:
he_dev->rbrq_head = (struct he_rbrq *)
((unsigned long) he_dev->rbrq_base |
RBRQ_MASK(he_dev->rbrq_head + 1));
}
read_unlock(&vcc_sklist_lock);
if (updated) {
if (updated > he_dev->rbrq_peak)
he_dev->rbrq_peak = updated;
he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
G0_RBRQ_H + (group * 16));
}
return pdus_assembled;
}
static void
he_service_tbrq(struct he_dev *he_dev, int group)
{
struct he_tbrq *tbrq_tail = (struct he_tbrq *)
((unsigned long)he_dev->tbrq_base |
he_dev->hsp->group[group].tbrq_tail);
struct he_tpd *tpd;
int slot, updated = 0;
struct he_tpd *__tpd;
while (he_dev->tbrq_head != tbrq_tail) {
++updated;
HPRINTK("tbrq%d 0x%x%s%s\n",
group,
TBRQ_TPD(he_dev->tbrq_head),
TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
tpd = NULL;
list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
tpd = __tpd;
list_del(&__tpd->entry);
break;
}
}
if (tpd == NULL) {
hprintk("unable to locate tpd for dma buffer %x\n",
TBRQ_TPD(he_dev->tbrq_head));
goto next_tbrq_entry;
}
if (TBRQ_EOS(he_dev->tbrq_head)) {
HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
if (tpd->vcc)
wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
goto next_tbrq_entry;
}
for (slot = 0; slot < TPD_MAXIOV; ++slot) {
if (tpd->iovec[slot].addr)
dma_unmap_single(&he_dev->pci_dev->dev,
tpd->iovec[slot].addr,
tpd->iovec[slot].len & TPD_LEN_MASK,
DMA_TO_DEVICE);
if (tpd->iovec[slot].len & TPD_LST)
break;
}
if (tpd->skb) {
if (tpd->vcc && tpd->vcc->pop)
tpd->vcc->pop(tpd->vcc, tpd->skb);
else
dev_kfree_skb_any(tpd->skb);
}
next_tbrq_entry:
if (tpd)
dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
he_dev->tbrq_head = (struct he_tbrq *)
((unsigned long) he_dev->tbrq_base |
TBRQ_MASK(he_dev->tbrq_head + 1));
}
if (updated) {
if (updated > he_dev->tbrq_peak)
he_dev->tbrq_peak = updated;
he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
G0_TBRQ_H + (group * 16));
}
}
static void
he_service_rbpl(struct he_dev *he_dev, int group)
{
struct he_rbp *new_tail;
struct he_rbp *rbpl_head;
struct he_buff *heb;
dma_addr_t mapping;
int i;
int moved = 0;
rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
for (;;) {
new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
RBPL_MASK(he_dev->rbpl_tail+1));
if (new_tail == rbpl_head)
break;
i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
if (i > (RBPL_TABLE_SIZE - 1)) {
i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
if (i > (RBPL_TABLE_SIZE - 1))
break;
}
he_dev->rbpl_hint = i + 1;
heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping);
if (!heb)
break;
heb->mapping = mapping;
list_add(&heb->entry, &he_dev->rbpl_outstanding);
he_dev->rbpl_virt[i] = heb;
set_bit(i, he_dev->rbpl_table);
new_tail->idx = i << RBP_IDX_OFFSET;
new_tail->phys = mapping + offsetof(struct he_buff, data);
he_dev->rbpl_tail = new_tail;
++moved;
}
if (moved)
he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
}
static void
he_tasklet(unsigned long data)
{
unsigned long flags;
struct he_dev *he_dev = (struct he_dev *) data;
int group, type;
int updated = 0;
HPRINTK("tasklet (0x%lx)\n", data);
spin_lock_irqsave(&he_dev->global_lock, flags);
while (he_dev->irq_head != he_dev->irq_tail) {
++updated;
type = ITYPE_TYPE(he_dev->irq_head->isw);
group = ITYPE_GROUP(he_dev->irq_head->isw);
switch (type) {
case ITYPE_RBRQ_THRESH:
HPRINTK("rbrq%d threshold\n", group);
fallthrough;
case ITYPE_RBRQ_TIMER:
if (he_service_rbrq(he_dev, group))
he_service_rbpl(he_dev, group);
break;
case ITYPE_TBRQ_THRESH:
HPRINTK("tbrq%d threshold\n", group);
fallthrough;
case ITYPE_TPD_COMPLETE:
he_service_tbrq(he_dev, group);
break;
case ITYPE_RBPL_THRESH:
he_service_rbpl(he_dev, group);
break;
case ITYPE_RBPS_THRESH:
break;
case ITYPE_PHY:
HPRINTK("phy interrupt\n");
#ifdef CONFIG_ATM_HE_USE_SUNI
spin_unlock_irqrestore(&he_dev->global_lock, flags);
if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
spin_lock_irqsave(&he_dev->global_lock, flags);
#endif
break;
case ITYPE_OTHER:
switch (type|group) {
case ITYPE_PARITY:
hprintk("parity error\n");
break;
case ITYPE_ABORT:
hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
break;
}
break;
case ITYPE_TYPE(ITYPE_INVALID):
HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
he_service_rbrq(he_dev, 0);
he_service_rbpl(he_dev, 0);
he_service_tbrq(he_dev, 0);
break;
default:
hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
}
he_dev->irq_head->isw = ITYPE_INVALID;
he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
}
if (updated) {
if (updated > he_dev->irq_peak)
he_dev->irq_peak = updated;
he_writel(he_dev,
IRQ_SIZE(CONFIG_IRQ_SIZE) |
IRQ_THRESH(CONFIG_IRQ_THRESH) |
IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
(void) he_readl(he_dev, INT_FIFO);
}
spin_unlock_irqrestore(&he_dev->global_lock, flags);
}
static irqreturn_t
he_irq_handler(int irq, void *dev_id)
{
unsigned long flags;
struct he_dev *he_dev = (struct he_dev * )dev_id;
int handled = 0;
if (he_dev == NULL)
return IRQ_NONE;
spin_lock_irqsave(&he_dev->global_lock, flags);
he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
(*he_dev->irq_tailoffset << 2));
if (he_dev->irq_tail == he_dev->irq_head) {
HPRINTK("tailoffset not updated?\n");
he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
(void) he_readl(he_dev, INT_FIFO);
}
#ifdef DEBUG
if (he_dev->irq_head == he_dev->irq_tail )
hprintk("spurious (or shared) interrupt?\n");
#endif
if (he_dev->irq_head != he_dev->irq_tail) {
handled = 1;
tasklet_schedule(&he_dev->tasklet);
he_writel(he_dev, INT_CLEAR_A, INT_FIFO);
(void) he_readl(he_dev, INT_FIFO);
}
spin_unlock_irqrestore(&he_dev->global_lock, flags);
return IRQ_RETVAL(handled);
}
static __inline__ void
__enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
{
struct he_tpdrq *new_tail;
HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
tpd, cid, he_dev->tpdrq_tail);
new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
TPDRQ_MASK(he_dev->tpdrq_tail+1));
if (new_tail == he_dev->tpdrq_head) {
he_dev->tpdrq_head = (struct he_tpdrq *)
(((unsigned long)he_dev->tpdrq_base) |
TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
if (new_tail == he_dev->tpdrq_head) {
int slot;
hprintk("tpdrq full (cid 0x%x)\n", cid);
for (slot = 0; slot < TPD_MAXIOV; ++slot) {
if (tpd->iovec[slot].addr)
dma_unmap_single(&he_dev->pci_dev->dev,
tpd->iovec[slot].addr,
tpd->iovec[slot].len & TPD_LEN_MASK,
DMA_TO_DEVICE);
}
if (tpd->skb) {
if (tpd->vcc->pop)
tpd->vcc->pop(tpd->vcc, tpd->skb);
else
dev_kfree_skb_any(tpd->skb);
atomic_inc(&tpd->vcc->stats->tx_err);
}
dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
return;
}
}
list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
he_dev->tpdrq_tail->cid = cid;
wmb();
he_dev->tpdrq_tail = new_tail;
he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
(void) he_readl(he_dev, TPDRQ_T);
}
static int
he_open(struct atm_vcc *vcc)
{
unsigned long flags;
struct he_dev *he_dev = HE_DEV(vcc->dev);
struct he_vcc *he_vcc;
int err = 0;
unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
short vpi = vcc->vpi;
int vci = vcc->vci;
if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
return 0;
HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
set_bit(ATM_VF_ADDR, &vcc->flags);
cid = he_mkcid(he_dev, vpi, vci);
he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
if (he_vcc == NULL) {
hprintk("unable to allocate he_vcc during open\n");
return -ENOMEM;
}
INIT_LIST_HEAD(&he_vcc->buffers);
he_vcc->pdu_len = 0;
he_vcc->rc_index = -1;
init_waitqueue_head(&he_vcc->rx_waitq);
init_waitqueue_head(&he_vcc->tx_waitq);
vcc->dev_data = he_vcc;
if (vcc->qos.txtp.traffic_class != ATM_NONE) {
int pcr_goal;
pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
if (pcr_goal == 0)
pcr_goal = he_dev->atm_dev->link_rate;
if (pcr_goal < 0)
pcr_goal = -pcr_goal;
HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
switch (vcc->qos.aal) {
case ATM_AAL5:
tsr0_aal = TSR0_AAL5;
tsr4 = TSR4_AAL5;
break;
case ATM_AAL0:
tsr0_aal = TSR0_AAL0_SDU;
tsr4 = TSR4_AAL0_SDU;
break;
default:
err = -EINVAL;
goto open_failed;
}
spin_lock_irqsave(&he_dev->global_lock, flags);
tsr0 = he_readl_tsr0(he_dev, cid);
spin_unlock_irqrestore(&he_dev->global_lock, flags);
if (TSR0_CONN_STATE(tsr0) != 0) {
hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
err = -EBUSY;
goto open_failed;
}
switch (vcc->qos.txtp.traffic_class) {
case ATM_UBR:
tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
TSR0_USE_WMIN | TSR0_UPDATE_GER;
break;
case ATM_CBR:
if ((he_dev->total_bw + pcr_goal)
> (he_dev->atm_dev->link_rate * 9 / 10))
{
err = -EBUSY;
goto open_failed;
}
spin_lock_irqsave(&he_dev->global_lock, flags);
for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
if (he_dev->cs_stper[reg].inuse == 0 ||
he_dev->cs_stper[reg].pcr == pcr_goal)
break;
if (reg == HE_NUM_CS_STPER) {
err = -EBUSY;
spin_unlock_irqrestore(&he_dev->global_lock, flags);
goto open_failed;
}
he_dev->total_bw += pcr_goal;
he_vcc->rc_index = reg;
++he_dev->cs_stper[reg].inuse;
he_dev->cs_stper[reg].pcr = pcr_goal;
clock = he_is622(he_dev) ? 66667000 : 50000000;
period = clock / pcr_goal;
HPRINTK("rc_index = %d period = %d\n",
reg, period);
he_writel_mbox(he_dev, rate_to_atmf(period/2),
CS_STPER0 + reg);
spin_unlock_irqrestore(&he_dev->global_lock, flags);
tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
TSR0_RC_INDEX(reg);
break;
default:
err = -EINVAL;
goto open_failed;
}
spin_lock_irqsave(&he_dev->global_lock, flags);
he_writel_tsr0(he_dev, tsr0, cid);
he_writel_tsr4(he_dev, tsr4 | 1, cid);
he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
he_writel_tsr3(he_dev, 0x0, cid);
he_writel_tsr5(he_dev, 0x0, cid);
he_writel_tsr6(he_dev, 0x0, cid);
he_writel_tsr7(he_dev, 0x0, cid);
he_writel_tsr8(he_dev, 0x0, cid);
he_writel_tsr10(he_dev, 0x0, cid);
he_writel_tsr11(he_dev, 0x0, cid);
he_writel_tsr12(he_dev, 0x0, cid);
he_writel_tsr13(he_dev, 0x0, cid);
he_writel_tsr14(he_dev, 0x0, cid);
(void) he_readl_tsr0(he_dev, cid);
spin_unlock_irqrestore(&he_dev->global_lock, flags);
}
if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
unsigned aal;
HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
&HE_VCC(vcc)->rx_waitq);
switch (vcc->qos.aal) {
case ATM_AAL5:
aal = RSR0_AAL5;
break;
case ATM_AAL0:
aal = RSR0_RAWCELL;
break;
default:
err = -EINVAL;
goto open_failed;
}
spin_lock_irqsave(&he_dev->global_lock, flags);
rsr0 = he_readl_rsr0(he_dev, cid);
if (rsr0 & RSR0_OPEN_CONN) {
spin_unlock_irqrestore(&he_dev->global_lock, flags);
hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
err = -EBUSY;
goto open_failed;
}
rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ?
(RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
#ifdef USE_CHECKSUM_HW
if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
rsr0 |= RSR0_TCP_CKSUM;
#endif
he_writel_rsr4(he_dev, rsr4, cid);
he_writel_rsr1(he_dev, rsr1, cid);
he_writel_rsr0(he_dev,
rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
(void) he_readl_rsr0(he_dev, cid);
spin_unlock_irqrestore(&he_dev->global_lock, flags);
}
open_failed:
if (err) {
kfree(he_vcc);
clear_bit(ATM_VF_ADDR, &vcc->flags);
}
else
set_bit(ATM_VF_READY, &vcc->flags);
return err;
}
static void
he_close(struct atm_vcc *vcc)
{
unsigned long flags;
DECLARE_WAITQUEUE(wait, current);
struct he_dev *he_dev = HE_DEV(vcc->dev);
struct he_tpd *tpd;
unsigned cid;
struct he_vcc *he_vcc = HE_VCC(vcc);
#define MAX_RETRY 30
int retry = 0, sleep = 1, tx_inuse;
HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
clear_bit(ATM_VF_READY, &vcc->flags);
cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
int timeout;
HPRINTK("close rx cid 0x%x\n", cid);
spin_lock_irqsave(&he_dev->global_lock, flags);
while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
udelay(250);
}
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&he_vcc->rx_waitq, &wait);
he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
(void) he_readl_rsr0(he_dev, cid);
he_writel_mbox(he_dev, cid, RXCON_CLOSE);
spin_unlock_irqrestore(&he_dev->global_lock, flags);
timeout = schedule_timeout(30*HZ);
remove_wait_queue(&he_vcc->rx_waitq, &wait);
set_current_state(TASK_RUNNING);
if (timeout == 0)
hprintk("close rx timeout cid 0x%x\n", cid);
HPRINTK("close rx cid 0x%x complete\n", cid);
}
if (vcc->qos.txtp.traffic_class != ATM_NONE) {
volatile unsigned tsr4, tsr0;
int timeout;
HPRINTK("close tx cid 0x%x\n", cid);
while (((tx_inuse = refcount_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
(retry < MAX_RETRY)) {
msleep(sleep);
if (sleep < 250)
sleep = sleep * 2;
++retry;
}
if (tx_inuse > 1)
hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
spin_lock_irqsave(&he_dev->global_lock, flags);
he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
switch (vcc->qos.txtp.traffic_class) {
case ATM_UBR:
he_writel_tsr1(he_dev,
TSR1_MCR(rate_to_atmf(200000))
| TSR1_PCR(0), cid);
break;
case ATM_CBR:
he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
break;
}
(void) he_readl_tsr4(he_dev, cid);
tpd = __alloc_tpd(he_dev);
if (tpd == NULL) {
hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
goto close_tx_incomplete;
}
tpd->status |= TPD_EOS | TPD_INT;
tpd->skb = NULL;
tpd->vcc = vcc;
wmb();
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&he_vcc->tx_waitq, &wait);
__enqueue_tpd(he_dev, tpd, cid);
spin_unlock_irqrestore(&he_dev->global_lock, flags);
timeout = schedule_timeout(30*HZ);
remove_wait_queue(&he_vcc->tx_waitq, &wait);
set_current_state(TASK_RUNNING);
spin_lock_irqsave(&he_dev->global_lock, flags);
if (timeout == 0) {
hprintk("close tx timeout cid 0x%x\n", cid);
goto close_tx_incomplete;
}
while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
udelay(250);
}
while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
udelay(250);
}
close_tx_incomplete:
if (vcc->qos.txtp.traffic_class == ATM_CBR) {
int reg = he_vcc->rc_index;
HPRINTK("cs_stper reg = %d\n", reg);
if (he_dev->cs_stper[reg].inuse == 0)
hprintk("cs_stper[%d].inuse = 0!\n", reg);
else
--he_dev->cs_stper[reg].inuse;
he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
}
spin_unlock_irqrestore(&he_dev->global_lock, flags);
HPRINTK("close tx cid 0x%x complete\n", cid);
}
kfree(he_vcc);
clear_bit(ATM_VF_ADDR, &vcc->flags);
}
static int
he_send(struct atm_vcc *vcc, struct sk_buff *skb)
{
unsigned long flags;
struct he_dev *he_dev = HE_DEV(vcc->dev);
unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
struct he_tpd *tpd;
#ifdef USE_SCATTERGATHER
int i, slot = 0;
#endif
#define HE_TPD_BUFSIZE 0xffff
HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
if ((skb->len > HE_TPD_BUFSIZE) ||
((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
if (vcc->pop)
vcc->pop(vcc, skb);
else
dev_kfree_skb_any(skb);
atomic_inc(&vcc->stats->tx_err);
return -EINVAL;
}
#ifndef USE_SCATTERGATHER
if (skb_shinfo(skb)->nr_frags) {
hprintk("no scatter/gather support\n");
if (vcc->pop)
vcc->pop(vcc, skb);
else
dev_kfree_skb_any(skb);
atomic_inc(&vcc->stats->tx_err);
return -EINVAL;
}
#endif
spin_lock_irqsave(&he_dev->global_lock, flags);
tpd = __alloc_tpd(he_dev);
if (tpd == NULL) {
if (vcc->pop)
vcc->pop(vcc, skb);
else
dev_kfree_skb_any(skb);
atomic_inc(&vcc->stats->tx_err);
spin_unlock_irqrestore(&he_dev->global_lock, flags);
return -ENOMEM;
}
if (vcc->qos.aal == ATM_AAL5)
tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
else {
char *pti_clp = (void *) (skb->data + 3);
int clp, pti;
pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
clp = (*pti_clp & ATM_HDR_CLP);
tpd->status |= TPD_CELLTYPE(pti);
if (clp)
tpd->status |= TPD_CLP;
skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
}
#ifdef USE_SCATTERGATHER
tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
tpd->iovec[slot].len = skb_headlen(skb);
++slot;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
if (slot == TPD_MAXIOV) {
tpd->vcc = vcc;
tpd->skb = NULL;
wmb();
__enqueue_tpd(he_dev, tpd, cid);
tpd = __alloc_tpd(he_dev);
if (tpd == NULL) {
if (vcc->pop)
vcc->pop(vcc, skb);
else
dev_kfree_skb_any(skb);
atomic_inc(&vcc->stats->tx_err);
spin_unlock_irqrestore(&he_dev->global_lock, flags);
return -ENOMEM;
}
tpd->status |= TPD_USERCELL;
slot = 0;
}
tpd->iovec[slot].addr = skb_frag_dma_map(&he_dev->pci_dev->dev,
frag, 0, skb_frag_size(frag), DMA_TO_DEVICE);
tpd->iovec[slot].len = skb_frag_size(frag);
++slot;
}
tpd->iovec[slot - 1].len |= TPD_LST;
#else
tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
tpd->length0 = skb->len | TPD_LST;
#endif
tpd->status |= TPD_INT;
tpd->vcc = vcc;
tpd->skb = skb;
wmb();
ATM_SKB(skb)->vcc = vcc;
__enqueue_tpd(he_dev, tpd, cid);
spin_unlock_irqrestore(&he_dev->global_lock, flags);
atomic_inc(&vcc->stats->tx);
return 0;
}
static int
he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
{
unsigned long flags;
struct he_dev *he_dev = HE_DEV(atm_dev);
struct he_ioctl_reg reg;
int err = 0;
switch (cmd) {
case HE_GET_REG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(®, arg,
sizeof(struct he_ioctl_reg)))
return -EFAULT;
spin_lock_irqsave(&he_dev->global_lock, flags);
switch (reg.type) {
case HE_REGTYPE_PCI:
if (reg.addr >= HE_REGMAP_SIZE) {
err = -EINVAL;
break;
}
reg.val = he_readl(he_dev, reg.addr);
break;
case HE_REGTYPE_RCM:
reg.val =
he_readl_rcm(he_dev, reg.addr);
break;
case HE_REGTYPE_TCM:
reg.val =
he_readl_tcm(he_dev, reg.addr);
break;
case HE_REGTYPE_MBOX:
reg.val =
he_readl_mbox(he_dev, reg.addr);
break;
default:
err = -EINVAL;
break;
}
spin_unlock_irqrestore(&he_dev->global_lock, flags);
if (err == 0)
if (copy_to_user(arg, ®,
sizeof(struct he_ioctl_reg)))
return -EFAULT;
break;
default:
#ifdef CONFIG_ATM_HE_USE_SUNI
if (atm_dev->phy && atm_dev->phy->ioctl)
err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
#else /* CONFIG_ATM_HE_USE_SUNI */
err = -EINVAL;
#endif /* CONFIG_ATM_HE_USE_SUNI */
break;
}
return err;
}
static void
he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
{
unsigned long flags;
struct he_dev *he_dev = HE_DEV(atm_dev);
HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
spin_lock_irqsave(&he_dev->global_lock, flags);
he_writel(he_dev, val, FRAMER + (addr*4));
(void) he_readl(he_dev, FRAMER + (addr*4));
spin_unlock_irqrestore(&he_dev->global_lock, flags);
}
static unsigned char
he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
{
unsigned long flags;
struct he_dev *he_dev = HE_DEV(atm_dev);
unsigned reg;
spin_lock_irqsave(&he_dev->global_lock, flags);
reg = he_readl(he_dev, FRAMER + (addr*4));
spin_unlock_irqrestore(&he_dev->global_lock, flags);
HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
return reg;
}
static int
he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
{
unsigned long flags;
struct he_dev *he_dev = HE_DEV(dev);
int left, i;
#ifdef notdef
struct he_rbrq *rbrq_tail;
struct he_tpdrq *tpdrq_head;
int rbpl_head, rbpl_tail;
#endif
static long mcc = 0, oec = 0, dcc = 0, cec = 0;
left = *pos;
if (!left--)
return sprintf(page, "ATM he driver\n");
if (!left--)
return sprintf(page, "%s%s\n\n",
he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
if (!left--)
return sprintf(page, "Mismatched Cells VPI/VCI Not Open Dropped Cells RCM Dropped Cells\n");
spin_lock_irqsave(&he_dev->global_lock, flags);
mcc += he_readl(he_dev, MCC);
oec += he_readl(he_dev, OEC);
dcc += he_readl(he_dev, DCC);
cec += he_readl(he_dev, CEC);
spin_unlock_irqrestore(&he_dev->global_lock, flags);
if (!left--)
return sprintf(page, "%16ld %16ld %13ld %17ld\n\n",
mcc, oec, dcc, cec);
if (!left--)
return sprintf(page, "irq_size = %d inuse = ? peak = %d\n",
CONFIG_IRQ_SIZE, he_dev->irq_peak);
if (!left--)
return sprintf(page, "tpdrq_size = %d inuse = ?\n",
CONFIG_TPDRQ_SIZE);
if (!left--)
return sprintf(page, "rbrq_size = %d inuse = ? peak = %d\n",
CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
if (!left--)
return sprintf(page, "tbrq_size = %d peak = %d\n",
CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
#ifdef notdef
rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
inuse = rbpl_head - rbpl_tail;
if (inuse < 0)
inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
inuse /= sizeof(struct he_rbp);
if (!left--)
return sprintf(page, "rbpl_size = %d inuse = %d\n\n",
CONFIG_RBPL_SIZE, inuse);
#endif
if (!left--)
return sprintf(page, "rate controller periods (cbr)\n pcr #vc\n");
for (i = 0; i < HE_NUM_CS_STPER; ++i)
if (!left--)
return sprintf(page, "cs_stper%-2d %8ld %3d\n", i,
he_dev->cs_stper[i].pcr,
he_dev->cs_stper[i].inuse);
if (!left--)
return sprintf(page, "total bw (cbr): %d (limit %d)\n",
he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
return 0;
}
static u8 read_prom_byte(struct he_dev *he_dev, int addr)
{
u32 val = 0, tmp_read = 0;
int i, j = 0;
u8 byte_read = 0;
val = readl(he_dev->membase + HOST_CNTL);
val &= 0xFFFFE0FF;
val |= 0x800;
he_writel(he_dev, val, HOST_CNTL);
for (i = 0; i < ARRAY_SIZE(readtab); i++) {
he_writel(he_dev, val | readtab[i], HOST_CNTL);
udelay(EEPROM_DELAY);
}
for (i = 7; i >= 0; i--) {
he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
udelay(EEPROM_DELAY);
he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
udelay(EEPROM_DELAY);
}
j = 0;
val &= 0xFFFFF7FF;
he_writel(he_dev, val, HOST_CNTL);
for (i = 7; i >= 0; i--) {
he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
udelay(EEPROM_DELAY);
tmp_read = he_readl(he_dev, HOST_CNTL);
byte_read |= (unsigned char)
((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
udelay(EEPROM_DELAY);
}
he_writel(he_dev, val | ID_CS, HOST_CNTL);
udelay(EEPROM_DELAY);
return byte_read;
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
module_param(disable64, bool, 0);
MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
module_param(nvpibits, short, 0);
MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
module_param(nvcibits, short, 0);
MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
module_param(rx_skb_reserve, short, 0);
MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
module_param(irq_coalesce, bool, 0);
MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
module_param(sdh, bool, 0);
MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
static const struct pci_device_id he_pci_tbl[] = {
{ PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, he_pci_tbl);
static struct pci_driver he_driver = {
.name = "he",
.probe = he_init_one,
.remove = he_remove_one,
.id_table = he_pci_tbl,
};
module_pci_driver