/*
 *    Disk Array driver for HP Smart Array SAS controllers
 *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
 *    Copyright 2016 Microsemi Corporation
 *    Copyright 2014-2015 PMC-Sierra, Inc.
 *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_transport_sas.h>
#include <scsi/scsi_dbg.h>
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
#include <linux/atomic.h>
#include <linux/jiffies.h>
#include <linux/percpu-defs.h>
#include <linux/percpu.h>
#include <asm/unaligned.h>
#include <asm/div64.h>
#include "hpsa_cmd.h"
#include "hpsa.h"

/*
 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
 * with an optional trailing '-' followed by a byte value (0-255).
 */
#define HPSA_DRIVER_VERSION "3.4.20-200"
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
#define HPSA "hpsa"

/* How long to wait for CISS doorbell communication */
#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3
/* How long to wait before giving up on a command */
#define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");
MODULE_ALIAS("cciss");

static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x40700E11, "Smart Array 5300", &SA5A_access},
	{0x40800E11, "Smart Array 5i", &SA5B_access},
	{0x40820E11, "Smart Array 532", &SA5B_access},
	{0x40830E11, "Smart Array 5312", &SA5B_access},
	{0x409A0E11, "Smart Array 641", &SA5A_access},
	{0x409B0E11, "Smart Array 642", &SA5A_access},
	{0x409C0E11, "Smart Array 6400", &SA5A_access},
	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
	{0x40910E11, "Smart Array 6i", &SA5A_access},
	{0x3225103C, "Smart Array P600", &SA5A_access},
	{0x3223103C, "Smart Array P800", &SA5A_access},
	{0x3234103C, "Smart Array P400", &SA5A_access},
	{0x3235103C, "Smart Array P400i", &SA5A_access},
	{0x3211103C, "Smart Array E200i", &SA5A_access},
	{0x3212103C, "Smart Array E200", &SA5A_access},
	{0x3213103C, "Smart Array E200i", &SA5A_access},
	{0x3214103C, "Smart Array E200i", &SA5A_access},
	{0x3215103C, "Smart Array E200i", &SA5A_access},
	{0x3237103C, "Smart Array E500", &SA5A_access},
	{0x323D103C, "Smart Array P700m", &SA5A_access},
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
	{0x1920103C, "Smart Array P430i", &SA5_access},
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1925103C, "Smart Array P831", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
	{0x21BD103C, "Smart Array P244br", &SA5_access},
	{0x21BE103C, "Smart Array P741m", &SA5_access},
	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
	{0x21C0103C, "Smart Array P440ar", &SA5_access},
	{0x21C1103C, "Smart Array P840ar", &SA5_access},
	{0x21C2103C, "Smart Array P440", &SA5_access},
	{0x21C3103C, "Smart Array P441", &SA5_access},
	{0x21C4103C, "Smart Array", &SA5_access},
	{0x21C5103C, "Smart Array P841", &SA5_access},
	{0x21C6103C, "Smart HBA H244br", &SA5_access},
	{0x21C7103C, "Smart HBA H240", &SA5_access},
	{0x21C8103C, "Smart HBA H241", &SA5_access},
	{0x21C9103C, "Smart Array", &SA5_access},
	{0x21CA103C, "Smart Array P246br", &SA5_access},
	{0x21CB103C, "Smart Array P840", &SA5_access},
	{0x21CC103C, "Smart Array", &SA5_access},
	{0x21CD103C, "Smart Array", &SA5_access},
	{0x21CE103C, "Smart HBA", &SA5_access},
	{0x05809005, "SmartHBA-SA", &SA5_access},
	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

static struct scsi_transport_template *hpsa_sas_transport_template;
static int hpsa_add_sas_host(struct ctlr_info *h);
static void hpsa_delete_sas_host(struct ctlr_info *h);
static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
			struct hpsa_scsi_dev_t *device);
static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
static struct hpsa_scsi_dev_t
	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
		struct sas_rphy *rphy);

#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
static const struct scsi_cmnd hpsa_cmd_busy;
#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
static const struct scsi_cmnd hpsa_cmd_idle;
static int number_of_controllers;

static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
		      void __user *arg);
static int hpsa_passthru_ioctl(struct ctlr_info *h,
			       IOCTL_Command_struct *iocommand);
static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
				   BIG_IOCTL_Command_struct *ioc);

#ifdef CONFIG_COMPAT
static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
	void __user *arg);
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
					    struct scsi_cmnd *scmd);
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
	int cmd_type);
static void hpsa_free_cmd_pool(struct ctlr_info *h);
#define VPD_PAGE (1 << 8)
#define HPSA_SIMPLE_ERROR_BITS 0x03

static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
static int hpsa_slave_alloc(struct scsi_device *sdev);
static int hpsa_slave_configure(struct scsi_device *sdev);
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
	int nsgs, int min_blocks, u32 *bucket_map);
static void hpsa_free_performant_mode(struct ctlr_info *h);
static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
static inline u32 next_command(struct ctlr_info *h, u8 q);
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
				bool *legacy_board);
static int wait_for_device_to_become_ready(struct ctlr_info *h,
					   unsigned char lunaddr[],
					   int reply_queue);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
static inline void finish_cmd(struct CommandList *c);
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
#define BOARD_NOT_READY 0
#define BOARD_READY 1
static void hpsa_drain_accel_commands(struct ctlr_info *h);
static void hpsa_flush_cache(struct ctlr_info *h);
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
static void hpsa_command_resubmit_worker(struct work_struct *work);
static u32 lockup_detected(struct ctlr_info *h);
static int detect_controller_lockup(struct ctlr_info *h);
static void hpsa_disable_rld_caching(struct ctlr_info *h);
static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
	struct ReportExtendedLUNdata *buf, int bufsize);
static bool hpsa_vpd_page_supported(struct ctlr_info *h,
	unsigned char scsi3addr[], u8 page);
static int hpsa_luns_changed(struct ctlr_info *h);
static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
			       struct hpsa_scsi_dev_t *dev,
			       unsigned char *scsi3addr);

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

static inline bool hpsa_is_cmd_idle(struct CommandList *c)
{
	return c->scsi_cmd == SCSI_CMD_IDLE;
}

/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
static void decode_sense_data(const u8 *sense_data, int sense_data_len,
			u8 *sense_key, u8 *asc, u8 *ascq)
{
	struct scsi_sense_hdr sshdr;
	bool rc;

	*sense_key = -1;
	*asc = -1;
	*ascq = -1;

	if (sense_data_len < 1)
		return;

	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
	if (rc) {
		*sense_key = sshdr.sense_key;
		*asc = sshdr.asc;
		*ascq = sshdr.ascq;
	}
}

static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	u8 sense_key, asc, ascq;
	int sense_len;

	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
		sense_len = sizeof(c->err_info->SenseInfo);
	else
		sense_len = c->err_info->SenseLen;

	decode_sense_data(c->err_info->SenseInfo, sense_len,
				&sense_key, &asc, &ascq);
	if (sense_key != UNIT_ATTENTION || asc == 0xff)
		return 0;

	switch (asc) {
	case STATE_CHANGED:
		dev_warn(&h->pdev->dev,
			"%s: a state change detected, command retried\n",
			h->devname);
		break;
	case LUN_FAILED:
		dev_warn(&h->pdev->dev,
			"%s: LUN failure detected\n", h->devname);
		break;
	case REPORT_LUNS_CHANGED:
		dev_warn(&h->pdev->dev,
			"%s: report LUN data changed\n", h->devname);
	/*
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
	 */
		break;
	case POWER_OR_RESET:
		dev_warn(&h->pdev->dev,
			"%s: a power on or device reset detected\n",
			h->devname);
		break;
	case UNIT_ATTENTION_CLEARED:
		dev_warn(&h->pdev->dev,
			"%s: unit attention cleared by another initiator\n",
			h->devname);
		break;
	default:
		dev_warn(&h->pdev->dev,
			"%s: unknown unit attention detected\n",
			h->devname);
		break;
	}
	return 1;
}

static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

static u32 lockup_detected(struct ctlr_info *h);
static ssize_t host_show_lockup_detected(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int ld;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	ld = lockup_detected(h);

	return sprintf(buf, "ld=%d\n", ld);
}

static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int status, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &status) != 1)
		return -EINVAL;
	h = shost_to_hba(shost);
	h->acciopath_status = !!status;
	dev_warn(&h->pdev->dev,
		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
		h->acciopath_status ? "enabled" : "disabled");
	return count;
}

static ssize_t host_store_raid_offload_debug(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int debug_level, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
		return -EINVAL;
	if (debug_level < 0)
		debug_level = 0;
	h = shost_to_hba(shost);
	h->raid_offload_debug = debug_level;
	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
		h->raid_offload_debug);
	return count;
}

static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	h = shost_to_hba(shost);
	hpsa_scan_start(h->scsi_host);
	return count;
}

static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
{
	device->offload_enabled = 0;
	device->offload_to_be_enabled = 0;
}

static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

	return snprintf(buf, 20, "%d\n",
			atomic_read(&h->commands_outstanding));
}

static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
		h->transMethod & CFGTBL_Trans_Performant ?
			"performant" : "simple");
}

static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
		(h->acciopath_status == 1) ?  "enabled" : "disabled");
}

/* List of controllers which cannot be hard reset on kexec with reset_devices */
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* Smart Array P711m */
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
	0x40800E11, /* Smart Array 5i */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
};

/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
	0x40800E11, /* Smart Array 5i */
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

static int board_id_in_array(u32 a[], int nelems, u32 board_id)
{
	int i;

	for (i = 0; i < nelems; i++)
		if (a[i] == board_id)
			return 1;
	return 0;
}

static int ctlr_is_hard_resettable(u32 board_id)
{
	return !board_id_in_array(unresettable_controller,
			ARRAY_SIZE(unresettable_controller), board_id);
}

static int ctlr_is_soft_resettable(u32 board_id)
{
	return !board_id_in_array(soft_unresettable_controller,
			ARRAY_SIZE(soft_unresettable_controller), board_id);
}

static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
}

static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
};
#define HPSA_RAID_0	0
#define HPSA_RAID_4	1
#define HPSA_RAID_1	2	/* also used for RAID 10 */
#define HPSA_RAID_5	3	/* also used for RAID 50 */
#define HPSA_RAID_51	4
#define HPSA_RAID_6	5	/* also used for RAID 60 */
#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)

static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
{
	return !device->physical_device;
}

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
	unsigned char rlevel;
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_device(hdev)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
	if (rlevel > RAID_UNKNOWN)
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%8phN\n", lunid);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

static ssize_t sas_address_show(struct device *dev,
	      struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	u64 sas_address;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	sas_address = hdev->sas_address;
	spin_unlock_irqrestore(&h->lock, flags);

	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
}

static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	int offload_enabled;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	offload_enabled = hdev->offload_enabled;
	spin_unlock_irqrestore(&h->lock, flags);

	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
		return snprintf(buf, 20, "%d\n", offload_enabled);
	else
		return snprintf(buf, 40, "%s\n",
				"Not applicable for a controller");
}

#define MAX_PATHS 8
static ssize_t path_info_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	int i;
	int output_len = 0;
	u8 box;
	u8 bay;
	u8 path_map_index = 0;
	char *active;
	unsigned char phys_connector[2];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->devlock, flags);
		return -ENODEV;
	}

	bay = hdev->bay;
	for (i = 0; i < MAX_PATHS; i++) {
		path_map_index = 1<<i;
		if (i == hdev->active_path_index)
			active = "Active";
		else if (hdev->path_map & path_map_index)
			active = "Inactive";
		else
			continue;

		output_len += scnprintf(buf + output_len,
				PAGE_SIZE - output_len,
				"[%d:%d:%d:%d] %20.20s ",
				h->scsi_host->host_no,
				hdev->bus, hdev->target, hdev->lun,
				scsi_device_type(hdev->devtype));

		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
			output_len += scnprintf(buf + output_len,
						PAGE_SIZE - output_len,
						"%s\n", active);
			continue;
		}

		box = hdev->box[i];
		memcpy(&phys_connector, &hdev->phys_connector[i],
			sizeof(phys_connector));
		if (phys_connector[0] < '0')
			phys_connector[0] = '0';
		if (phys_connector[1] < '0')
			phys_connector[1] = '0';
		output_len += scnprintf(buf + output_len,
				PAGE_SIZE - output_len,
				"PORT: %.2s ",
				phys_connector);
		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
			hdev->expose_device) {
			if (box == 0 || box == 0xFF) {
				output_len += scnprintf(buf + output_len,
					PAGE_SIZE - output_len,
					"BAY: %hhu %s\n",
					bay, active);
			} else {
				output_len += scnprintf(buf + output_len,
					PAGE_SIZE - output_len,
					"BOX: %hhu BAY: %hhu %s\n",
					box, bay, active);
			}
		} else if (box != 0 && box != 0xFF) {
			output_len += scnprintf(buf + output_len,
				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
				box, active);
		} else
			output_len += scnprintf(buf + output_len,
				PAGE_SIZE - output_len, "%s\n", active);
	}

	spin_unlock_irqrestore(&h->devlock, flags);
	return output_len;
}

static ssize_t host_show_ctlr_num(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%d\n", h->ctlr);
}

static ssize_t host_show_legacy_board(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
}

static DEVICE_ATTR_RO(raid_level);
static DEVICE_ATTR_RO(lunid);
static DEVICE_ATTR_RO(unique_id);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
static DEVICE_ATTR_RO(sas_address);
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
			host_show_hp_ssd_smart_path_enabled, NULL);
static DEVICE_ATTR_RO(path_info);
static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
		host_show_hp_ssd_smart_path_status,
		host_store_hp_ssd_smart_path_status);
static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
			host_store_raid_offload_debug);
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
static DEVICE_ATTR(lockup_detected, S_IRUGO,
	host_show_lockup_detected, NULL);
static DEVICE_ATTR(ctlr_num, S_IRUGO,
	host_show_ctlr_num, NULL);
static DEVICE_ATTR(legacy_board, S_IRUGO,
	host_show_legacy_board, NULL);

static struct attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level.attr,
	&dev_attr_lunid.attr,
	&dev_attr_unique_id.attr,
	&dev_attr_hp_ssd_smart_path_enabled.attr,
	&dev_attr_path_info.attr,
	&dev_attr_sas_address.attr,
	NULL,
};

ATTRIBUTE_GROUPS(hpsa_sdev);

static struct attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan.attr,
	&dev_attr_firmware_revision.attr,
	&dev_attr_commands_outstanding.attr,
	&dev_attr_transport_mode.attr,
	&dev_attr_resettable.attr,
	&dev_attr_hp_ssd_smart_path_status.attr,
	&dev_attr_raid_offload_debug.attr,
	&dev_attr_lockup_detected.attr,
	&dev_attr_ctlr_num.attr,
	&dev_attr_legacy_board.attr,
	NULL,
};

ATTRIBUTE_GROUPS(hpsa_shost);

#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
				 HPSA_MAX_CONCURRENT_PASSTHRUS)

static const struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
	.name			= HPSA,
	.proc_name		= HPSA,
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
	.change_queue_depth	= hpsa_change_queue_depth,
	.this_id		= -1,
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
	.slave_configure	= hpsa_slave_configure,
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_groups = hpsa_sdev_groups,
	.shost_groups = hpsa_shost_groups,
	.max_sectors = 2048,
	.no_write_same = 1,
};

static inline u32 next_command(struct ctlr_info *h, u8 q)
{
	u32 a;
	struct reply_queue_buffer *rq = &h->reply_queue[q];

	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return h->access.command_completed(h, q);

	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
		return h->access.command_completed(h, q);

	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
		atomic_dec(&h->commands_outstanding);
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
	}
	return a;
}

/*
 * There are some special bits in the bus address of the
 * command that we have to set for the controller to know
 * how to process the command:
 *
 * Normal performant mode:
 * bit 0: 1 means performant mode, 0 means simple mode.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 0)
 *
 * ioaccel1 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 110)
 * (command type is needed because ioaccel1 mode
 * commands are submitted through the same register as normal
 * mode commands, so this is how the controller knows whether
 * the command is normal mode or ioaccel1 mode.)
 *
 * ioaccel2 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-4 = block fetch table entry (note extra bit)
 * bits 4-6 = not needed, because ioaccel2 mode has
 * a separate special register for submitting commands.
 */

/*
 * set_performant_mode: Modify the tag for cciss performant
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
#define DEFAULT_REPLY_QUEUE (-1)
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
					int reply_queue)
{
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
		if (unlikely(!h->msix_vectors))
			return;
		c->Header.ReplyQueue = reply_queue;
	}
}

static void set_ioaccel1_performant_mode(struct ctlr_info *h,
						struct CommandList *c,
						int reply_queue)
{
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];

	/*
	 * Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	cp->ReplyQueue = reply_queue;
	/*
	 * Set the bits in the address sent down to include:
	 *  - performant mode bit (bit 0)
	 *  - pull count (bits 1-3)
	 *  - command type (bits 4-6)
	 */
	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
					IOACCEL1_BUSADDR_CMDTYPE;
}

static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
						struct CommandList *c,
						int reply_queue)
{
	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
		&h->ioaccel2_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	cp->reply_queue = reply_queue;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= h->ioaccel2_blockFetchTable[0];
}

static void set_ioaccel2_performant_mode(struct ctlr_info *h,
						struct CommandList *c,
						int reply_queue)
{
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];

	/*
	 * Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	cp->reply_queue = reply_queue;
	/*
	 * Set the bits in the address sent down to include:
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
}

static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c, int reply_queue)
{
	dial_down_lockup_detection_during_fw_flash(h, c);
	atomic_inc(&h->commands_outstanding);
	/*
	 * Check to see if the command is being retried.
	 */
	if (c->device && !c->retry_pending)
		atomic_inc(&c->device->commands_outstanding);

	reply_queue = h->reply_map[raw_smp_processor_id()];
	switch (c->cmd_type) {
	case CMD_IOACCEL1:
		set_ioaccel1_performant_mode(h, c, reply_queue);
		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
		break;
	case CMD_IOACCEL2:
		set_ioaccel2_performant_mode(h, c, reply_queue);
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
		break;
	case IOACCEL2_TMF:
		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
		break;
	default:
		set_performant_mode(h, c, reply_queue);
		h->access.submit_command(h, c);
	}
}

static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
{
	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
}

static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);

	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
			__set_bit(h->dev[i]->target, lun_taken);
	}

	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
	}
	return !found;
}

static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
	struct hpsa_scsi_dev_t *dev, char *description)
{
#define LABEL_SIZE 25
	char label[LABEL_SIZE];

	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
		return;

	switch (dev->devtype) {
	case TYPE_RAID:
		snprintf(label, LABEL_SIZE, "controller");
		break;
	case TYPE_ENCLOSURE:
		snprintf(label, LABEL_SIZE, "enclosure");
		break;
	case TYPE_DISK:
	case TYPE_ZBC:
		if (dev->external)
			snprintf(label, LABEL_SIZE, "external");
		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
			snprintf(label, LABEL_SIZE, "%s",
				raid_label[PHYSICAL_DRIVE]);
		else
			snprintf(label, LABEL_SIZE, "RAID-%s",
				dev->raid_level > RAID_UNKNOWN ? "?" :
				raid_label[dev->raid_level]);
		break;
	case TYPE_ROM:
		snprintf(label, LABEL_SIZE, "rom");
		break;
	case TYPE_TAPE:
		snprintf(label, LABEL_SIZE, "tape");
		break;
	case TYPE_MEDIUM_CHANGER:
		snprintf(label, LABEL_SIZE, "changer");
		break;
	default:
		snprintf(label, LABEL_SIZE, "UNKNOWN");
		break;
	}

	dev_printk(level, &h->pdev->dev,
			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
			description,
			scsi_device_type(dev->devtype),
			dev->vendor,
			dev->model,
			label,
			dev->offload_config ? '+' : '-',
			dev->offload_to_be_enabled ? '+' : '-',
			dev->expose_device);
}

/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

	if (n >= HPSA_MAX_DEVICES) {
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
	 * unit no, zero otherwise.
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4 and 5.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	addr1[5] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		addr2[5] = 0;
		/* differ only in byte 4 and 5? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
		return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
	added[*nadded] = device;
	(*nadded)++;
	hpsa_show_dev_msg(KERN_INFO, h, device,
		device->expose_device ? "added" : "masked");
	return 0;
}

/*
 * Called during a scan operation.
 *
 * Update an entry in h->dev[] array.
 */
static void hpsa_scsi_update_entry(struct ctlr_info *h,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;

	/*
	 * ioacccel_handle may have changed for a dual domain disk
	 */
	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;

	/* Raid offload parameters changed.  Careful about the ordering. */
	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
		/*
		 * if drive is newly offload_enabled, we want to copy the
		 * raid map data first.  If previously offload_enabled and
		 * offload_config were set, raid map data had better be
		 * the same as it was before. If raid map data has changed
		 * then it had better be the case that
		 * h->dev[entry]->offload_enabled is currently 0.
		 */
		h->dev[entry]->raid_map = new_entry->raid_map;
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
	}
	if (new_entry->offload_to_be_enabled) {
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
	}
	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
	h->dev[entry]->offload_config = new_entry->offload_config;
	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
	h->dev[entry]->queue_depth = new_entry->queue_depth;

	/*
	 * We can turn off ioaccel offload now, but need to delay turning
	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
	 * can't do that until all the devices are updated.
	 */
	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;

	/*
	 * turn ioaccel off immediately if told to do so.
	 */
	if (!new_entry->offload_to_be_enabled)
		h->dev[entry]->offload_enabled = 0;

	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
}

/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;

	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
}

/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
	if (dev1->offload_config != dev2->offload_config)
		return 1;
	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
		return 1;
	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
		if (dev1->queue_depth != dev2->queue_depth)
			return 1;
	/*
	 * This can happen for dual domain devices. An active
	 * path change causes the ioaccel handle to change
	 *
	 * for example note the handle differences between p0 and p1
	 * Device                    WWN               ,WWN hash,Handle
	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
	 */
	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
		return 1;
	return 0;
}

/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
#define DEVICE_UPDATED 3
	if (needle == NULL)
		return DEVICE_NOT_FOUND;

	for (i = 0; i < haystack_size; i++) {
		if (haystack[i] == NULL) /* previously removed. */
			continue;
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
				return DEVICE_SAME;
			} else {
				/* Keep offline devices offline */
				if (needle->volume_offline)
					return DEVICE_NOT_FOUND;
				return DEVICE_CHANGED;
			}
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

static void hpsa_monitor_offline_device(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	struct offline_device_entry *device;
	unsigned long flags;

	/* Check to see if device is already on the list */
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_entry(device, &h->offline_device_list, offline_list) {
		if (memcmp(device->scsi3addr, scsi3addr,
			sizeof(device->scsi3addr)) == 0) {
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
			return;
		}
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);

	/* Device is not on the list, add it. */
	device = kmalloc(sizeof(*device), GFP_KERNEL);
	if (!device)
		return;

	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_add_tail(&device->offline_list, &h->offline_device_list);
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
}

/* Print a message explaining various offline volume states */
static void hpsa_show_volume_status(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *sd)
{
	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
	switch (sd->volume_offline) {
	case HPSA_LV_OK:
		break;
	case HPSA_LV_UNDERGOING_ERASE:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_NOT_AVAILABLE:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_RPI:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_RPI:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_NO_KEY:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	}
}

/*
 * Figure the list of physical drive pointers for a logical drive with
 * raid offload configured.
 */
static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices,
				struct hpsa_scsi_dev_t *logical_drive)
{
	struct raid_map_data *map = &logical_drive->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int i, j;
	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
				le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int nphys_disk = le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int qdepth;

	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
		nraid_map_entries = RAID_MAP_MAX_ENTRIES;

	logical_drive->nphysical_disks = nraid_map_entries;

	qdepth = 0;
	for (i = 0; i < nraid_map_entries; i++) {
		logical_drive->phys_disk[i] = NULL;
		if (!logical_drive->offload_config)
			continue;
		for (j = 0; j < ndevices; j++) {
			if (dev[j] == NULL)
				continue;
			if (dev[j]->devtype != TYPE_DISK &&
			    dev[j]->devtype != TYPE_ZBC)
				continue;
			if (is_logical_device(dev[j]))
				continue;
			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
				continue;

			logical_drive->phys_disk[i] = dev[j];
			if (i < nphys_disk)
				qdepth = min(h->nr_cmds, qdepth +
				    logical_drive->phys_disk[i]->queue_depth);
			break;
		}

		/*
		 * This can happen if a physical drive is removed and
		 * the logical drive is degraded.  In that case, the RAID
		 * map data will refer to a physical disk which isn't actually
		 * present.  And in that case offload_enabled should already
		 * be 0, but we'll turn it off here just in case
		 */
		if (!logical_drive->phys_disk[i]) {
			dev_warn(&h->pdev->dev,
				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
				__func__,
				h->scsi_host->host_no, logical_drive->bus,
				logical_drive->target, logical_drive->lun);
			hpsa_turn_off_ioaccel_for_device(logical_drive);
			logical_drive->queue_depth = 8;
		}
	}
	if (nraid_map_entries)
		/*
		 * This is correct for reads, too high for full stripe writes,
		 * way too high for partial stripe writes
		 */
		logical_drive->queue_depth = qdepth;
	else {
		if (logical_drive->external)
			logical_drive->queue_depth = EXTERNAL_QD;
		else
			logical_drive->queue_depth = h->nr_cmds;
	}
}

static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices)
{
	int i;

	for (i = 0; i < ndevices; i++) {
		if (dev[i] == NULL)
			continue;
		if (dev[i]->devtype != TYPE_DISK &&
		    dev[i]->devtype != TYPE_ZBC)
			continue;
		if (!is_logical_device(dev[i]))
			continue;

		/*
		 * If offload is currently enabled, the RAID map and
		 * phys_disk[] assignment *better* not be changing
		 * because we would be changing ioaccel phsy_disk[] pointers
		 * on a ioaccel volume processing I/O requests.
		 *
		 * If an ioaccel volume status changed, initially because it was
		 * re-configured and thus underwent a transformation, or
		 * a drive failed, we would have received a state change
		 * request and ioaccel should have been turned off. When the
		 * transformation completes, we get another state change
		 * request to turn ioaccel back on. In this case, we need
		 * to update the ioaccel information.
		 *
		 * Thus: If it is not currently enabled, but will be after
		 * the scan completes, make sure the ioaccel pointers
		 * are up to date.
		 */

		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
	}
}

static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
{
	int rc = 0;

	if (!h->scsi_host)
		return 1;

	if (is_logical_device(device)) /* RAID */
		rc = scsi_add_device(h->scsi_host, device->bus,
					device->target, device->lun);
	else /* HBA */
		rc = hpsa_add_sas_device(h->sas_host, device);

	return rc;
}

static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
						struct hpsa_scsi_dev_t *dev)
{
	int i;
	int count = 0;

	for (i = 0; i < h->nr_cmds; i++) {
		struct CommandList *c = h->cmd_pool + i;
		int refcount = atomic_inc_return(&c->refcount);

		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
				dev->scsi3addr)) {
			unsigned long flags;

			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
			if (!hpsa_is_cmd_idle(c))
				++count;
			spin_unlock_irqrestore(&h->lock, flags);
		}

		cmd_free(h, c);
	}

	return count;
}

#define NUM_WAIT 20
static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
						struct hpsa_scsi_dev_t *device)
{
	int cmds = 0;
	int waits = 0;
	int num_wait = NUM_WAIT;

	if (device->external)
		num_wait = HPSA_EH_PTRAID_TIMEOUT;

	while (1) {
		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
		if (cmds == 0)
			break;
		if (++waits > num_wait)
			break;
		msleep(1000);
	}

	if (waits > num_wait) {
		dev_warn(&h->pdev->dev,
			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
			__func__,
			h->scsi_host->host_no,
			device->bus, device->target, device->lun, cmds);
	}
}

static void hpsa_remove_device(struct ctlr_info *h,
			struct hpsa_scsi_dev_t *device)
{
	struct scsi_device *sdev = NULL;

	if (!h->scsi_host)
		return;

	/*
	 * Allow for commands to drain
	 */
	device->removed = 1;
	hpsa_wait_for_outstanding_commands_for_dev(h, device);

	if (is_logical_device(device)) { /* RAID */
		sdev = scsi_device_lookup(h->scsi_host, device->bus,
						device->target, device->lun);
		if (sdev) {
			scsi_remove_device(sdev);
			scsi_device_put(sdev);
		} else {
			/*
			 * We don't expect to get here.  Future commands
			 * to this device will get a selection timeout as
			 * if the device were gone.
			 */
			hpsa_show_dev_msg(KERN_WARNING, h, device,
					"didn't find device for removal.");
		}
	} else { /* HBA */

		hpsa_remove_sas_device(device);
	}
}

static void adjust_hpsa_scsi_table(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;

	/*
	 * A reset can cause a device status to change
	 * re-schedule the scan to see what happened.
	 */
	spin_lock_irqsave(&h->reset_lock, flags);
	if (h->reset_in_progress) {
		h->drv_req_rescan = 1;
		spin_unlock_irqrestore(&h->reset_lock, flags);
		return;
	}
	spin_unlock_irqrestore(&h->reset_lock, flags);

	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
	 * If minor device attributes change, just update
	 * the existing device structure.
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
			hpsa_scsi_replace_entry(h, i, sd[entry],
				added, &nadded, removed, &nremoved);
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, i, sd[entry]);
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;

		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
		 * as the SCSI mid-layer does not handle such devices well.
		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
		 * at 160Hz, and prevents the system from coming up.
		 */
		if (sd[i]->volume_offline) {
			hpsa_show_volume_status(h, sd[i]);
			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
			continue;
		}

		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);

	/*
	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
	 * any logical drives that need it enabled.
	 *
	 * The raid map should be current by now.
	 *
	 * We are updating the device list used for I/O requests.
	 */
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == NULL)
			continue;
		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
	}

	spin_unlock_irqrestore(&h->devlock, flags);

	/* Monitor devices which are in one of several NOT READY states to be
	 * brought online later. This must be done without holding h->devlock,
	 * so don't touch h->dev[]
	 */
	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		if (sd[i]->volume_offline)
			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
	}

	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (!changes)
		goto free_and_out;

	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
		if (removed[i] == NULL)
			continue;
		if (removed[i]->expose_device)
			hpsa_remove_device(h, removed[i]);
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
		int rc = 0;

		if (added[i] == NULL)
			continue;
		if (!(added[i]->expose_device))
			continue;
		rc = hpsa_add_device(h, added[i]);
		if (!rc)
			continue;
		dev_warn(&h->pdev->dev,
			"addition failed %d, device not added.", rc);
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
		h->drv_req_rescan = 1;
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd = NULL;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
		struct scsi_target *starget;
		struct sas_rphy *rphy;

		starget = scsi_target(sdev);
		rphy = target_to_rphy(starget);
		sd = hpsa_find_device_by_sas_rphy(h, rphy);
		if (sd) {
			sd->target = sdev_id(sdev);
			sd->lun = sdev->lun;
		}
	}
	if (!sd)
		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
					sdev_id(sdev), sdev->lun);

	if (sd && sd->expose_device) {
		atomic_set(&sd->ioaccel_cmds_out, 0);
		sdev->hostdata = sd;
	} else
		sdev->hostdata = NULL;
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

/* configure scsi device based on internal per-device structure */
#define CTLR_TIMEOUT (120 * HZ)
static int hpsa_slave_configure(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	int queue_depth;

	sd = sdev->hostdata;
	sdev->no_uld_attach = !sd || !sd->expose_device;

	if (sd) {
		sd->was_removed = 0;
		queue_depth = sd->queue_depth != 0 ?
				sd->queue_depth : sdev->host->can_queue;
		if (sd->external) {
			queue_depth = EXTERNAL_QD;
			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
			blk_queue_rq_timeout(sdev->request_queue,
						HPSA_EH_PTRAID_TIMEOUT);
		}
		if (is_hba_lunid(sd->scsi3addr)) {
			sdev->eh_timeout = CTLR_TIMEOUT;
			blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
		}
	} else {
		queue_depth = sdev->host->can_queue;
	}

	scsi_change_queue_depth(sdev, queue_depth);

	return 0;
}

static void hpsa_slave_destroy(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *hdev = NULL;

	hdev = sdev->hostdata;

	if (hdev)
		hdev->was_removed = 1;
}

static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->ioaccel2_cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->ioaccel2_cmd_sg_list[i]);
		h->ioaccel2_cmd_sg_list[i] = NULL;
	}
	kfree(h->ioaccel2_cmd_sg_list);
	h->ioaccel2_cmd_sg_list = NULL;
}

static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->ioaccel2_cmd_sg_list =
		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
					GFP_KERNEL);
	if (!h->ioaccel2_cmd_sg_list)
		return -ENOMEM;
	for (i = 0; i < h->nr_cmds; i++) {
		h->ioaccel2_cmd_sg_list[i] =
			kmalloc_array(h->maxsgentries,
				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
				      GFP_KERNEL);
		if (!h->ioaccel2_cmd_sg_list[i])
			goto clean;
	}
	return 0;

clean:
	hpsa_free_ioaccel2_sg_chain_blocks(h);
	return -ENOMEM;
}

static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
				 GFP_KERNEL);
	if (!h->cmd_sg_list)
		return -ENOMEM;

	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
						  sizeof(*h->cmd_sg_list[i]),
						  GFP_KERNEL);
		if (!h->cmd_sg_list[i])
			goto clean;

	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
	struct io_accel2_cmd *cp, struct CommandList *c)
{
	struct ioaccel2_sg_element *chain_block;
	u64 temp64;
	u32 chain_size;

	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
	chain_size = le32_to_cpu(cp->sg[0].length);
	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
				DMA_TO_DEVICE);
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
		cp->sg->address = 0;
		return -1;
	}
	cp->sg->address = cpu_to_le64(temp64);
	return 0;
}

static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
	struct io_accel2_cmd *cp)
{
	struct ioaccel2_sg_element *chain_sg;
	u64 temp64;
	u32 chain_size;

	chain_sg = cp->sg;
	temp64 = le64_to_cpu(chain_sg->address);
	chain_size = le32_to_cpu(cp->sg[0].length);
	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
}

static int hpsa_map_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;
	u32 chain_len;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
	chain_len = sizeof(*chain_sg) *
		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
	chain_sg->Len = cpu_to_le32(chain_len);
	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
				DMA_TO_DEVICE);
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
		chain_sg->Addr = cpu_to_le64(0);
		return -1;
	}
	chain_sg->Addr = cpu_to_le64(temp64);
	return 0;
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;

	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
}


/* Decode the various types of errors on ioaccel2 path.
 * Return 1 for any error that should generate a RAID path retry.
 * Return 0 for errors that don't require a RAID path retry.
 */
static int handle_ioaccel_mode2_error(struct ctlr_info *h,
					struct CommandList *c,
					struct scsi_cmnd *cmd,
					struct io_accel2_cmd *c2,
					struct hpsa_scsi_dev_t *dev)
{
	int data_len;
	int retry = 0;
	u32 ioaccel2_resid = 0;

	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_COMPLETE:
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
			if (cmd)
				cmd->result = 0;
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
			cmd->result |= SAM_STAT_CHECK_CONDITION;
			if (c2->error_data.data_present !=
					IOACCEL2_SENSE_DATA_PRESENT) {
				memset(cmd->sense_buffer, 0,
					SCSI_SENSE_BUFFERSIZE);
				break;
			}
			/* copy the sense data */
			data_len = c2->error_data.sense_data_len;
			if (data_len > SCSI_SENSE_BUFFERSIZE)
				data_len = SCSI_SENSE_BUFFERSIZE;
			if (data_len > sizeof(c2->error_data.sense_data_buff))
				data_len =
					sizeof(c2->error_data.sense_data_buff);
			memcpy(cmd->sense_buffer,
				c2->error_data.sense_data_buff, data_len);
			retry = 1;
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
			retry = 1;
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
			retry = 1;
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
			retry = 1;
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
			retry = 1;
			break;
		default:
			retry = 1;
			break;
		}
		break;
	case IOACCEL2_SERV_RESPONSE_FAILURE:
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_IO_ERROR:
		case IOACCEL2_STATUS_SR_IO_ABORTED:
		case IOACCEL2_STATUS_SR_OVERRUN:
			retry = 1;
			break;
		case IOACCEL2_STATUS_SR_UNDERRUN:
			cmd->result = (DID_OK << 16);		/* host byte */
			ioaccel2_resid = get_unaligned_le32(
						&c2->error_data.resid_cnt[0]);
			scsi_set_resid(cmd, ioaccel2_resid);
			break;
		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
			/*
			 * Did an HBA disk disappear? We will eventually
			 * get a state change event from the controller but
			 * in the meantime, we need to tell the OS that the
			 * HBA disk is no longer there and stop I/O
			 * from going down. This allows the potential re-insert
			 * of the disk to get the same device node.
			 */
			if (dev->physical_device && dev->expose_device) {
				cmd->result = DID_NO_CONNECT << 16;
				dev->removed = 1;
				h->drv_req_rescan = 1;
				dev_warn(&h->pdev->dev,
					"%s: device is gone!\n", __func__);
			} else
				/*
				 * Retry by sending down the RAID path.
				 * We will get an event from ctlr to
				 * trigger rescan regardless.
				 */
				retry = 1;
			break;
		default:
			retry = 1;
		}
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
		retry = 1;
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		break;
	default:
		retry = 1;
		break;
	}

	if (dev->in_reset)
		retry = 0;

	return retry;	/* retry on raid path? */
}

static void hpsa_cmd_resolve_events(struct ctlr_info *h,
		struct CommandList *c)
{
	struct hpsa_scsi_dev_t *dev = c->device;

	/*
	 * Reset c->scsi_cmd here so that the reset handler will know
	 * this command has completed.  Then, check to see if the handler is
	 * waiting for this command, and, if so, wake it.
	 */
	c->scsi_cmd = SCSI_CMD_IDLE;
	mb();	/* Declare command idle before checking for pending events. */
	if (dev) {
		atomic_dec(&dev->commands_outstanding);
		if (dev->in_reset &&
			atomic_read(&dev->commands_outstanding) <= 0)
			wake_up_all(&h->event_sync_wait_queue);
	}
}

static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
				      struct CommandList *c)
{
	hpsa_cmd_resolve_events(h, c);
	cmd_tagged_free(h, c);
}

static void hpsa_cmd_free_and_done(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd)
{
	hpsa_cmd_resolve_and_free(h, c);
	if (cmd)
		scsi_done(cmd);
}

static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
{
	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
}

static void process_ioaccel2_completion(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		struct hpsa_scsi_dev_t *dev)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* check for good status */
	if (likely(c2->error_data.serv_response == 0 &&
			c2->error_data.status == 0)) {
		cmd->result = 0;
		return hpsa_cmd_free_and_done(h, c, cmd);
	}

	/*
	 * Any RAID offload error results in retry which will use
	 * the normal I/O path so the controller can handle whatever is
	 * wrong.
	 */
	if (is_logical_device(dev) &&
		c2->error_data.serv_response ==
			IOACCEL2_SERV_RESPONSE_FAILURE) {
		if (c2->error_data.status ==
			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
			hpsa_turn_off_ioaccel_for_device(dev);
		}

		if (dev->in_reset) {
			cmd->result = DID_RESET << 16;
			return hpsa_cmd_free_and_done(h, c, cmd);
		}

		return hpsa_retry_cmd(h, c);
	}

	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
		return hpsa_retry_cmd(h, c);

	return hpsa_cmd_free_and_done(h, c, cmd);
}

/* Returns 0 on success, < 0 otherwise. */
static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
					struct CommandList *cp)
{
	u8 tmf_status = cp->err_info->ScsiStatus;

	switch (tmf_status) {
	case CISS_TMF_COMPLETE:
		/*
		 * CISS_TMF_COMPLETE never happens, instead,
		 * ei->CommandStatus == 0 for this case.
		 */
	case CISS_TMF_SUCCESS:
		return 0;
	case CISS_TMF_INVALID_FRAME:
	case CISS_TMF_NOT_SUPPORTED:
	case CISS_TMF_FAILED:
	case CISS_TMF_WRONG_LUN:
	case CISS_TMF_OVERLAPPED_TAG:
		break;
	default:
		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
				tmf_status);
		break;
	}
	return -tmf_status;
}

static void complete_scsi_command(struct CommandList *cp)
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;
	struct hpsa_scsi_dev_t *dev;
	struct io_accel2_cmd *c2;

	u8 sense_key;
	u8 asc;      /* additional sense code */
	u8 ascq;     /* additional sense code qualifier */
	unsigned long sense_data_size;

	ei = cp->err_info;
	cmd = cp->scsi_cmd;
	h = cp->h;

	if (!cmd->device) {
		cmd->result = DID_NO_CONNECT << 16;
		return hpsa_cmd_free_and_done(h, cp, cmd);
	}

	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		return hpsa_cmd_free_and_done(h, cp, cmd);
	}
	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
	if ((cp->cmd_type == CMD_SCSI) &&
		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
		hpsa_unmap_sg_chain_block(h, cp);

	if ((cp->cmd_type == CMD_IOACCEL2) &&
		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);

	cmd->result = (DID_OK << 16);		/* host byte */

	/* SCSI command has already been cleaned up in SML */
	if (dev->was_removed) {
		hpsa_cmd_resolve_and_free(h, cp);
		return;
	}

	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
		if (dev->physical_device && dev->expose_device &&
			dev->removed) {
			cmd->result = DID_NO_CONNECT << 16;
			return hpsa_cmd_free_and_done(h, cp, cmd);
		}
		if (likely(cp->phys_disk != NULL))
			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
	}

	/*
	 * We check for lockup status here as it may be set for
	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
	 * fail_all_oustanding_cmds()
	 */
	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
		/* DID_NO_CONNECT will prevent a retry */
		cmd->result = DID_NO_CONNECT << 16;
		return hpsa_cmd_free_and_done(h, cp, cmd);
	}

	if (cp->cmd_type == CMD_IOACCEL2)
		return process_ioaccel2_completion(h, cp, cmd, dev);

	scsi_set_resid(cmd, ei->ResidualCnt);
	if (ei->CommandStatus == 0)
		return hpsa_cmd_free_and_done(h, cp, cmd);

	/* For I/O accelerator commands, copy over some fields to the normal
	 * CISS header used below for error handling.
	 */
	if (cp->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
		cp->Header.SGList = scsi_sg_count(cmd);
		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
			IOACCEL1_IOFLAGS_CDBLEN_MASK;
		cp->Header.tag = c->tag;
		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);

		/* Any RAID offload error results in retry which will use
		 * the normal I/O path so the controller can handle whatever's
		 * wrong.
		 */
		if (is_logical_device(dev)) {
			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
				dev->offload_enabled = 0;
			return hpsa_retry_cmd(h, cp);
		}
	}

	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
		cmd->result |= ei->ScsiStatus;
		/* copy the sense data */
		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
			sense_data_size = SCSI_SENSE_BUFFERSIZE;
		else
			sense_data_size = sizeof(ei->SenseInfo);
		if (ei->SenseLen < sense_data_size)
			sense_data_size = ei->SenseLen;
		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
		if (ei->ScsiStatus)
			decode_sense_data(ei->SenseInfo, sense_data_size,
				&sense_key, &asc, &ascq);
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
			switch (sense_key) {
			case ABORTED_COMMAND:
				cmd->result |= DID_SOFT_ERROR << 16;
				break;
			case UNIT_ATTENTION:
				if (asc == 0x3F && ascq == 0x0E)
					h->drv_req_rescan = 1;
				break;
			case ILLEGAL_REQUEST:
				if (asc == 0x25 && ascq == 0x00) {
					dev->removed = 1;
					cmd->result = DID_NO_CONNECT << 16;
				}
				break;
			}
			break;
		}
		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
		dev_warn(&h->pdev->dev,
			"CDB %16phN data overrun\n", cp->Request.CDB);
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
				cp->Request.CDB);
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
			cp->Request.CDB);
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
			cp->Request.CDB);
		break;
	case CMD_ABORTED:
		cmd->result = DID_ABORT << 16;
		break;
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
			cp->Request.CDB);
		break;
	case CMD_UNSOLICITED_ABORT:
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
			cp->Request.CDB);
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
			cp->Request.CDB);
		break;
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
	case CMD_TMF_STATUS:
		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
			cmd->result = DID_ERROR << 16;
		break;
	case CMD_IOACCEL_DISABLED:
		/* This only handles the direct pass-through case since RAID
		 * offload is handled above.  Just attempt a retry.
		 */
		cmd->result = DID_SOFT_ERROR << 16;
		dev_warn(&h->pdev->dev,
				"cp %p had HP SSD Smart Path error\n", cp);
		break;
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}

	return hpsa_cmd_free_and_done(h, cp, cmd);
}

static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
		int sg_used, enum dma_data_direction data_direction)
{
	int i;

	for (i = 0; i < sg_used; i++)
		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
				le32_to_cpu(c->SG[i].Len),
				data_direction);
}

static int hpsa_map_one(struct pci_dev *pdev,
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		enum dma_data_direction data_direction)
{
	u64 addr64;

	if (buflen == 0 || data_direction == DMA_NONE) {
		cp->Header.SGList = 0;
		cp->Header.SGTotal = cpu_to_le16(0);
		return 0;
	}

	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
	if (dma_mapping_error(&pdev->dev, addr64)) {
		/* Prevent subsequent unmap of something never mapped */
		cp->Header.SGList = 0;
		cp->Header.SGTotal = cpu_to_le16(0);
		return -1;
	}
	cp->SG[0].Addr = cpu_to_le64(addr64);
	cp->SG[0].Len = cpu_to_le32(buflen);
	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
	return 0;
}

#define NO_TIMEOUT ((unsigned long) -1)
#define DEFAULT_TIMEOUT 30000 /* milliseconds */
static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
	__enqueue_cmd_and_start_io(h, c, reply_queue);
	if (timeout_msecs == NO_TIMEOUT) {
		/* TODO: get rid of this no-timeout thing */
		wait_for_completion_io(&wait);
		return IO_OK;
	}
	if (!wait_for_completion_io_timeout(&wait,
					msecs_to_jiffies(timeout_msecs))) {
		dev_warn(&h->pdev->dev, "Command timed out.\n");
		return -ETIMEDOUT;
	}
	return IO_OK;
}

static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
				   int reply_queue, unsigned long timeout_msecs)
{
	if (unlikely(lockup_detected(h))) {
		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
		return IO_OK;
	}
	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
}

static u32 lockup_detected(struct ctlr_info *h)
{
	int cpu;
	u32 rc, *lockup_detected;

	cpu = get_cpu();
	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
	rc = *lockup_detected;
	put_cpu();
	return rc;
}

#define MAX_DRIVER_CMD_RETRIES 25
static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
		struct CommandList *c, enum dma_data_direction data_direction,
		unsigned long timeout_msecs)
{
	int backoff_time = 10, retry_count = 0;
	int rc;

	do {
		memset(c->err_info, 0, sizeof(*c->err_info));
		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
						  timeout_msecs);
		if (rc)
			break;
		retry_count++;
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
	} while ((check_for_unit_attention(h, c) ||
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
	if (retry_count > MAX_DRIVER_CMD_RETRIES)
		rc = -EIO;
	return rc;
}

static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
				struct CommandList *c)
{
	const u8 *cdb = c->Request.CDB;
	const u8 *lun = c->Header.LUN.LunAddrBytes;

	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
		 txt, lun, cdb);
}

static void hpsa_scsi_interpret_error(struct ctlr_info *h,
			struct CommandList *cp)
{
	const struct ErrorInfo *ei = cp->err_info;
	struct device *d = &cp->h->pdev->dev;
	u8 sense_key, asc, ascq;
	int sense_len;

	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
		if (ei->SenseLen > sizeof(ei->SenseInfo))
			sense_len = sizeof(ei->SenseInfo);
		else
			sense_len = ei->SenseLen;
		decode_sense_data(ei->SenseInfo, sense_len,
					&sense_key, &asc, &ascq);
		hpsa_print_cmd(h, "SCSI status", cp);
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
				sense_key, asc, ascq);
		else
			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
		hpsa_print_cmd(h, "overrun condition", cp);
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
		hpsa_print_cmd(h, "invalid command", cp);
		dev_warn(d, "probably means device no longer present\n");
		}
		break;
	case CMD_PROTOCOL_ERR:
		hpsa_print_cmd(h, "protocol error", cp);
		break;
	case CMD_HARDWARE_ERR:
		hpsa_print_cmd(h, "hardware error", cp);
		break;
	case CMD_CONNECTION_LOST:
		hpsa_print_cmd(h, "connection lost", cp);
		break;
	case CMD_ABORTED:
		hpsa_print_cmd(h, "aborted", cp);
		break;
	case CMD_ABORT_FAILED:
		hpsa_print_cmd(h, "abort failed", cp);
		break;
	case CMD_UNSOLICITED_ABORT:
		hpsa_print_cmd(h, "unsolicited abort", cp);
		break;
	case CMD_TIMEOUT:
		hpsa_print_cmd(h, "timed out", cp);
		break;
	case CMD_UNABORTABLE:
		hpsa_print_cmd(h, "unabortable", cp);
		break;
	case CMD_CTLR_LOCKUP:
		hpsa_print_cmd(h, "controller lockup detected", cp);
		break;
	default:
		hpsa_print_cmd(h, "unknown status", cp);
		dev_warn(d, "Unknown command status %x\n",
				ei->CommandStatus);
	}
}

static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
					u8 page, u8 *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);
	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
			NO_TIMEOUT);
	if (rc)
		goto out;
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_free(h, c);
	return rc;
}

static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
						u8 *scsi3addr)
{
	u8 *buf;
	u64 sa = 0;
	int rc = 0;

	buf = kzalloc(1024, GFP_KERNEL);
	if (!buf)
		return 0;

	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
					buf, 1024);

	if (rc)
		goto out;

	sa = get_unaligned_be64(buf+12);

out:
	kfree(buf);
	return sa;
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
			u16 page, unsigned char *buf,
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);

	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
			NO_TIMEOUT);
	if (rc)
		goto out;
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_free(h, c);
	return rc;
}

static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
	u8 reset_type, int reply_queue)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);
	c->device = dev;

	/* fill_cmd can't fail here, no data buffer to map. */
	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	if (rc) {
		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
		goto out;
	}
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_free(h, c);
	return rc;
}

static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
			       struct hpsa_scsi_dev_t *dev,
			       unsigned char *scsi3addr)
{
	int i;
	bool match = false;
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;

	if (hpsa_is_cmd_idle(c))
		return false;

	switch (c->cmd_type) {
	case CMD_SCSI:
	case CMD_IOCTL_PEND:
		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
				sizeof(c->Header.LUN.LunAddrBytes));
		break;

	case CMD_IOACCEL1:
	case CMD_IOACCEL2:
		if (c->phys_disk == dev) {
			/* HBA mode match */
			match = true;
		} else {
			/* Possible RAID mode -- check each phys dev. */
			/* FIXME:  Do we need to take out a lock here?  If
			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
			 * instead. */
			for (i = 0; i < dev->nphysical_disks && !match; i++) {
				/* FIXME: an alternate test might be
				 *
				 * match = dev->phys_disk[i]->ioaccel_handle
				 *              == c2->scsi_nexus;      */
				match = dev->phys_disk[i] == c->phys_disk;
			}
		}
		break;

	case IOACCEL2_TMF:
		for (i = 0; i < dev->nphysical_disks && !match; i++) {
			match = dev->phys_disk[i]->ioaccel_handle ==
					le32_to_cpu(ac->it_nexus);
		}
		break;

	case 0:		/* The command is in the middle of being initialized. */
		match = false;
		break;

	default:
		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
			c->cmd_type);
		BUG();
	}

	return match;
}

static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
	u8 reset_type, int reply_queue)
{
	int rc = 0;

	/* We can really only handle one reset at a time */
	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
		return -EINTR;
	}

	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
	if (!rc) {
		/* incremented by sending the reset request */
		atomic_dec(&dev->commands_outstanding);
		wait_event(h->event_sync_wait_queue,
			atomic_read(&dev->commands_outstanding) <= 0 ||
			lockup_detected(h));
	}

	if (unlikely(lockup_detected(h))) {
		dev_warn(&h->pdev->dev,
			 "Controller lockup detected during reset wait\n");
		rc = -ENODEV;
	}

	if (!rc)
		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);

	mutex_unlock(&h->reset_mutex);
	return rc;
}

static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;

	if (!hpsa_vpd_page_supported(h, scsi3addr,
		HPSA_VPD_LV_DEVICE_GEOMETRY))
		goto exit;

	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);

	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
exit:
	kfree(buf);
	return;
}

#define HPSA_MAP_DEBUG
#ifdef HPSA_MAP_DEBUG
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
				struct raid_map_data *map_buff)
{
	struct raid_map_disk_data *dd = &map_buff->data[0];
	int map, row, col;
	u16 map_cnt, row_cnt, disks_per_row;

	if (rc != 0)
		return;

	/* Show details only if debugging has been activated. */
	if (h->raid_offload_debug < 2)
		return;

	dev_info(&h->pdev->dev, "structure_size = %u\n",
				le32_to_cpu(map_buff->structure_size));
	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
			le32_to_cpu(map_buff->volume_blk_size));
	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->volume_blk_cnt));
	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
			map_buff->phys_blk_shift);
	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
			map_buff->parity_rotation_shift);
	dev_info(&h->pdev->dev, "strip_size = %u\n",
			le16_to_cpu(map_buff->strip_size));
	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
			le64_to_cpu(map_buff->disk_starting_blk));
	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->disk_blk_cnt));
	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
			le16_to_cpu(map_buff->data_disks_per_row));
	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
			le16_to_cpu(map_buff->metadata_disks_per_row));
	dev_info(&h->pdev->dev, "row_cnt = %u\n",
			le16_to_cpu(map_buff->row_cnt));
	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
			le16_to_cpu(map_buff->layout_map_count));
	dev_info(&h->pdev->dev, "flags = 0x%x\n",
			le16_to_cpu(map_buff->flags));
	dev_info(&h->pdev->dev, "encryption = %s\n",
			le16_to_cpu(map_buff->flags) &
			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
	dev_info(&h->pdev->dev, "dekindex = %u\n",
			le16_to_cpu(map_buff->dekindex));
	map_cnt = le16_to_cpu(map_buff->layout_map_count);
	for (map = 0; map < map_cnt; map++) {
		dev_info(&h->pdev->dev, "Map%u:\n", map);
		row_cnt = le16_to_cpu(map_buff->row_cnt);
		for (row = 0; row < row_cnt; row++) {
			dev_info(&h->pdev->dev, "  Row%u:\n", row);
			disks_per_row =
				le16_to_cpu(map_buff->data_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    D%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
			disks_per_row =
				le16_to_cpu(map_buff->metadata_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    M%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
		}
	}
}
#else
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
			__attribute__((unused)) int rc,
			__attribute__((unused)) struct raid_map_data *map_buff)
{
}
#endif

static int hpsa_get_raid_map(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc = 0;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);

	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
			sizeof(this_device->raid_map), 0,
			scsi3addr, TYPE_CMD)) {
		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
		cmd_free(h, c);
		return -1;
	}
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
			NO_TIMEOUT);
	if (rc)
		goto out;
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
		goto out;
	}
	cmd_free(h, c);

	/* @todo in the future, dynamically allocate RAID map memory */
	if (le32_to_cpu(this_device->raid_map.structure_size) >
				sizeof(this_device->raid_map)) {
		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
		rc = -1;
	}
	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
	return rc;
out:
	cmd_free(h, c);
	return rc;
}

static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
		unsigned char scsi3addr[], u16 bmic_device_index,
		struct bmic_sense_subsystem_info *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);

	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
		0, RAID_CTLR_LUNID, TYPE_CMD);
	if (rc)
		goto out;

	c->Request.CDB[2] = bmic_device_index & 0xff;
	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;

	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
			NO_TIMEOUT);
	if (rc)
		goto out;
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_free(h, c);
	return rc;
}

static int hpsa_bmic_id_controller(struct ctlr_info *h,
	struct bmic_identify_controller *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);

	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
		0, RAID_CTLR_LUNID, TYPE_CMD);
	if (rc)
		goto out;

	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
			NO_TIMEOUT);
	if (rc)
		goto out;
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_free(h, c);
	return rc;
}

static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
		unsigned char scsi3addr[], u16 bmic_device_index,
		struct bmic_identify_physical_device *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);
	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
		0, RAID_CTLR_LUNID, TYPE_CMD);
	if (rc)
		goto out;

	c->Request.CDB[2] = bmic_device_index & 0xff;
	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;

	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
						NO_TIMEOUT);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_free(h, c);

	return rc;
}

/*
 * get enclosure information
 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
 * Uses id_physical_device to determine the box_index.
 */
static void hpsa_get_enclosure_info(struct ctlr_info *h,
			unsigned char *scsi3addr,
			struct ReportExtendedLUNdata *rlep, int rle_index,
			struct hpsa_scsi_dev_t *encl_dev)
{
	int rc = -1;
	struct CommandList *c = NULL;
	struct ErrorInfo *ei = NULL;
	struct bmic_sense_storage_box_params *bssbp = NULL;
	struct bmic_identify_physical_device *id_phys = NULL;
	struct ext_report_lun_entry *rle;
	u16 bmic_device_index = 0;

	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
		return;

	rle = &rlep->LUN[rle_index];

	encl_dev->eli =
		hpsa_get_enclosure_logical_identifier(h, scsi3addr);

	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);

	if (encl_dev->target == -1 || encl_dev->lun == -1) {
		rc = IO_OK;
		goto out;
	}

	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
		rc = IO_OK;
		goto out;
	}

	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
	if (!bssbp)
		goto out;

	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
	if (!id_phys)
		goto out;

	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
						id_phys, sizeof(*id_phys));
	if (rc) {
		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
			__func__, encl_dev->external, bmic_device_index);
		goto out;
	}

	c = cmd_alloc(h);

	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);

	if (rc)
		goto out;

	if (id_phys->phys_connector[1] == 'E')
		c->Request.CDB[5] = id_phys->box_index;
	else
		c->Request.CDB[5] = 0;

	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
						NO_TIMEOUT);
	if (rc)
		goto out;

	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		rc = -1;
		goto out;
	}

	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
		bssbp->phys_connector, sizeof(bssbp->phys_connector));

	rc = IO_OK;
out:
	kfree(bssbp);
	kfree(id_phys);

	if (c)
		cmd_free(h, c);

	if (rc != IO_OK)
		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
			"Error, could not get enclosure information");
}

static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
						unsigned char *scsi3addr)
{
	struct ReportExtendedLUNdata *physdev;
	u32 nphysicals;
	u64 sa = 0;
	int i;

	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
	if (!physdev)
		return 0;

	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		kfree(physdev);
		return 0;
	}
	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;

	for (i = 0; i < nphysicals; i++)
		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
			break;
		}

	kfree(physdev);

	return sa;
}

static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
					struct hpsa_scsi_dev_t *dev)
{
	int rc;
	u64 sa = 0;

	if (is_hba_lunid(scsi3addr)) {
		struct bmic_sense_subsystem_info *ssi;

		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
		if (!ssi)
			return;

		rc = hpsa_bmic_sense_subsystem_information(h,
					scsi3addr, 0, ssi, sizeof(*ssi));
		if (rc == 0) {
			sa = get_unaligned_be64(ssi->primary_world_wide_id);
			h->sas_address = sa;
		}

		kfree(ssi);
	} else
		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);

	dev->sas_address = sa;
}

static void hpsa_ext_ctrl_present(struct ctlr_info *h,
	struct ReportExtendedLUNdata *physdev)
{
	u32 nphysicals;
	int i;

	if (h->discovery_polling)
		return;

	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;

	for (i = 0; i < nphysicals; i++) {
		if (physdev->LUN[i].device_type ==
			BMIC_DEVICE_TYPE_CONTROLLER
			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
			dev_info(&h->pdev->dev,
				"External controller present, activate discovery polling and disable rld caching\n");
			hpsa_disable_rld_caching(h);
			h->discovery_polling = 1;
			break;
		}
	}
}

/* Get a device id from inquiry page 0x83 */
static bool hpsa_vpd_page_supported(struct ctlr_info *h,
	unsigned char scsi3addr[], u8 page)
{
	int rc;
	int i;
	int pages;
	unsigned char *buf, bufsize;

	buf = kzalloc(256, GFP_KERNEL);
	if (!buf)
		return false;

	/* Get the size of the page list first */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, HPSA_VPD_HEADER_SZ);
	if (rc != 0)
		goto exit_unsupported;
	pages = buf[3];
	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
		bufsize = pages + HPSA_VPD_HEADER_SZ;
	else
		bufsize = 255;

	/* Get the whole VPD page list */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, bufsize);
	if (rc != 0)
		goto exit_unsupported;

	pages = buf[3];
	for (i = 1; i <= pages; i++)
		if (buf[3 + i] == page)
			goto exit_supported;
exit_unsupported:
	kfree(buf);
	return false;
exit_supported:
	kfree(buf);
	return true;
}

/*
 * Called during a scan operation.
 * Sets ioaccel status on the new device list, not the existing device list
 *
 * The device list used during I/O will be updated later in
 * adjust_hpsa_scsi_table.
 */
static void hpsa_get_ioaccel_status(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc;
	unsigned char *buf;
	u8 ioaccel_status;

	this_device->offload_config = 0;
	this_device->offload_enabled = 0;
	this_device->offload_to_be_enabled = 0;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
		goto out;
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
	if (rc != 0)
		goto out;

#define IOACCEL_STATUS_BYTE 4
#define OFFLOAD_CONFIGURED_BIT 0x01
#define OFFLOAD_ENABLED_BIT 0x02
	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
	this_device->offload_config =
		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
	if (this_device->offload_config) {
		bool offload_enabled =
			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
		/*
		 * Check to see if offload can be enabled.
		 */
		if (offload_enabled) {
			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
			if (rc) /* could not load raid_map */
				goto out;
			this_device->offload_to_be_enabled = 1;
		}
	}

out:
	kfree(buf);
	return;
}

/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int index, int buflen)
{
	int rc;
	unsigned char *buf;

	/* Does controller have VPD for device id? */
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
		return 1; /* not supported */

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
					HPSA_VPD_LV_DEVICE_ID, buf, 64);
	if (rc == 0) {
		if (buflen > 16)
			buflen = 16;
		memcpy(device_id, &buf[8], buflen);
	}

	kfree(buf);

	return rc; /*0 - got id,  otherwise, didn't */
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
		void *buf, int bufsize,
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

	c = cmd_alloc(h);

	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -EAGAIN;
		goto out;
	}
	if (extended_response)
		c->Request.CDB[1] = extended_response;
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
			NO_TIMEOUT);
	if (rc)
		goto out;
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -EIO;
	} else {
		struct ReportLUNdata *rld = buf;

		if (rld->extended_response_flag != extended_response) {
			if (!h->legacy_board) {
				dev_err(&h->pdev->dev,
					"report luns requested format %u, got %u\n",
					extended_response,
					rld->extended_response_flag);
				rc = -EINVAL;
			} else
				rc = -EOPNOTSUPP;
		}
	}
out:
	cmd_free(h, c);
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
		struct ReportExtendedLUNdata *buf, int bufsize)
{
	int rc;
	struct ReportLUNdata *lbuf;

	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
				      HPSA_REPORT_PHYS_EXTENDED);
	if (!rc || rc != -EOPNOTSUPP)
		return rc;

	/* REPORT PHYS EXTENDED is not supported */
	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
	if (!lbuf)
		return -ENOMEM;

	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
	if (!rc) {
		int i;
		u32 nphys;

		/* Copy ReportLUNdata header */
		memcpy(buf, lbuf, 8);
		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
		for (i = 0; i < nphys; i++)
			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
	}
	kfree(lbuf);
	return rc;
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

/* Use VPD inquiry to get details of volume status */
static int hpsa_get_volume_status(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	int rc;
	int status;
	int size;
	unsigned char *buf;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return HPSA_VPD_LV_STATUS_UNSUPPORTED;

	/* Does controller have VPD for logical volume status? */
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
		goto exit_failed;

	/* Get the size of the VPD return buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, HPSA_VPD_HEADER_SZ);
	if (rc != 0)
		goto exit_failed;
	size = buf[3];

	/* Now get the whole VPD buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, size + HPSA_VPD_HEADER_SZ);
	if (rc != 0)
		goto exit_failed;
	status = buf[4]; /* status byte */

	kfree(buf);
	return status;
exit_failed:
	kfree(buf);
	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
}

/* Determine offline status of a volume.
 * Return either:
 *  0 (not offline)
 *  0xff (offline for unknown reasons)
 *  # (integer code indicating one of several NOT READY states
 *     describing why a volume is to be kept offline)
 */
static unsigned char hpsa_volume_offline(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	struct CommandList *c;
	unsigned char *sense;
	u8 sense_key, asc, ascq;
	int sense_len;
	int rc, ldstat = 0;
#define ASC_LUN_NOT_READY 0x04
#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02

	c = cmd_alloc(h);

	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
					NO_TIMEOUT);
	if (rc) {
		cmd_free(h, c);
		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
	}
	sense = c->err_info->SenseInfo;
	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
		sense_len = sizeof(c->err_info->SenseInfo);
	else
		sense_len = c->err_info->SenseLen;
	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
	cmd_free(h, c);

	/* Determine the reason for not ready state */
	ldstat = hpsa_get_volume_status(h, scsi3addr);

	/* Keep volume offline in certain cases: */
	switch (ldstat) {
	case HPSA_LV_FAILED:
	case HPSA_LV_UNDERGOING_ERASE:
	case HPSA_LV_NOT_AVAILABLE:
	case HPSA_LV_UNDERGOING_RPI:
	case HPSA_LV_PENDING_RPI:
	case HPSA_LV_ENCRYPTED_NO_KEY:
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
	case HPSA_LV_UNDERGOING_ENCRYPTION:
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		return ldstat;
	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
		/* If VPD status page isn't available,
		 * use ASC/ASCQ to determine state
		 */
		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
			return ldstat;
		break;
	default:
		break;
	}
	return HPSA_LV_OK;
}

static int hpsa_update_device_info(struct ctlr_info *h,
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
{

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

	unsigned char *inq_buff;
	unsigned char *obdr_sig;
	int rc = 0;

	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
	if (!inq_buff) {
		rc = -ENOMEM;
		goto bail_out;
	}

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		dev_err(&h->pdev->dev,
			"%s: inquiry failed, device will be skipped.\n",
			__func__);
		rc = HPSA_INQUIRY_FAILED;
		goto bail_out;
	}

	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
	scsi_sanitize_inquiry_string(&inq_buff[16], 16);

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	this_device->rev = inq_buff[2];
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
		sizeof(this_device->device_id)) < 0) {
		dev_err(&h->pdev->dev,
			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
			h->ctlr, __func__,
			h->scsi_host->host_no,
			this_device->bus, this_device->target,
			this_device->lun,
			scsi_device_type(this_device->devtype),
			this_device->model);
		rc = HPSA_LV_FAILED;
		goto bail_out;
	}

	if ((this_device->devtype == TYPE_DISK ||
		this_device->devtype == TYPE_ZBC) &&
		is_logical_dev_addr_mode(scsi3addr)) {
		unsigned char volume_offline;

		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
		volume_offline = hpsa_volume_offline(h, scsi3addr);
		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
		    h->legacy_board) {
			/*
			 * Legacy boards might not support volume status
			 */
			dev_info(&h->pdev->dev,
				 "C0:T%d:L%d Volume status not available, assuming online.\n",
				 this_device->target, this_device->lun);
			volume_offline = 0;
		}
		this_device->volume_offline = volume_offline;
		if (volume_offline == HPSA_LV_FAILED) {
			rc = HPSA_LV_FAILED;
			dev_err(&h->pdev->dev,
				"%s: LV failed, device will be skipped.\n",
				__func__);
			goto bail_out;
		}
	} else {
		this_device->raid_level = RAID_UNKNOWN;
		this_device->offload_config = 0;
		hpsa_turn_off_ioaccel_for_device(this_device);
		this_device->hba_ioaccel_enabled = 0;
		this_device->volume_offline = 0;
		this_device->queue_depth = h->nr_cmds;
	}

	if (this_device->external)
		this_device->queue_depth = EXTERNAL_QD;

	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return rc;
}

/*
 * Helper function to assign bus, target, lun mapping of devices.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
*/
static void figure_bus_target_lun(struct ctlr_info *h,
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
{
	u32 lunid = get_unaligned_le32(lunaddrbytes);

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
		if (is_hba_lunid(lunaddrbytes)) {
			int bus = HPSA_HBA_BUS;

			if (!device->rev)
				bus = HPSA_LEGACY_HBA_BUS;
			hpsa_set_bus_target_lun(device,
					bus, 0, lunid & 0x3fff);
		} else
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device,
					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
		return;
	}
	/* It's a logical device */
	if (device->external) {
		hpsa_set_bus_target_lun(device,
			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
			lunid & 0x00ff);
		return;
	}
	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
				0, lunid & 0x3fff);
}

static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
	int i, int nphysicals, int nlocal_logicals)
{
	/* In report logicals, local logicals are listed first,
	* then any externals.
	*/
	int logicals_start = nphysicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return 0;

	if (i < logicals_start)
		return 0;

	/* i is in logicals range, but still within local logicals */
	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
		return 0;

	return 1; /* it's an external lun */
}

/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
	struct ReportLUNdata *logdev, u32 *nlogicals)
{
	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
		*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
	int i, int nphysicals, int nlogicals,
	struct ReportExtendedLUNdata *physdev_list,
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
		return &physdev_list->LUN[i -
				(raid_ctlr_position == 0)].lunid[0];

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

/* get physical drive ioaccel handle and queue depth */
static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
		struct hpsa_scsi_dev_t *dev,
		struct ReportExtendedLUNdata *rlep, int rle_index,
		struct bmic_identify_physical_device *id_phys)
{
	int rc;
	struct ext_report_lun_entry *rle;

	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
		return;

	rle = &rlep->LUN[rle_index];

	dev->ioaccel_handle = rle->ioaccel_handle;
	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
		dev->hba_ioaccel_enabled = 1;
	memset(id_phys, 0, sizeof(*id_phys));
	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
			sizeof(*id_phys));
	if (!rc)
		/* Reserve space for FW operations */
#define DRIVE_CMDS_RESERVED_FOR_FW 2
#define DRIVE_QUEUE_DEPTH 7
		dev->queue_depth =
			le16_to_cpu(id_phys->current_queue_depth_limit) -
				DRIVE_CMDS_RESERVED_FOR_FW;
	else
		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
}

static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
	struct ReportExtendedLUNdata *rlep, int rle_index,
	struct bmic_identify_physical_device *id_phys)
{
	struct ext_report_lun_entry *rle;

	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
		return;

	rle = &rlep->LUN[rle_index];

	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
		this_device->hba_ioaccel_enabled = 1;

	memcpy(&this_device->active_path_index,
		&id_phys->active_path_number,
		sizeof(this_device->active_path_index));
	memcpy(&this_device->path_map,
		&id_phys->redundant_path_present_map,
		sizeof(this_device->path_map));
	memcpy(&this_device->box,
		&id_phys->alternate_paths_phys_box_on_port,
		sizeof(this_device->box));
	memcpy(&this_device->phys_connector,
		&id_phys->alternate_paths_phys_connector,
		sizeof(this_device->phys_connector));
	memcpy(&this_device->bay,
		&id_phys->phys_bay_in_box,
		sizeof(this_device->bay));
}

/* get number of local logical disks. */
static int hpsa_set_local_logical_count(struct ctlr_info *h,
	struct bmic_identify_controller *id_ctlr,
	u32 *nlocals)
{
	int rc;

	if (!id_ctlr) {
		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
			__func__);
		return -ENOMEM;
	}
	memset(id_ctlr, 0, sizeof(*id_ctlr));
	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
	if (!rc)
		if (id_ctlr->configured_logical_drive_count < 255)
			*nlocals = id_ctlr->configured_logical_drive_count;
		else
			*nlocals = le16_to_cpu(
					id_ctlr->extended_logical_unit_count);
	else
		*nlocals = -1;
	return rc;
}

static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
{
	struct bmic_identify_physical_device *id_phys;
	bool is_spare = false;
	int rc;

	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
	if (!id_phys)
		return false;

	rc = hpsa_bmic_id_physical_device(h,
					lunaddrbytes,
					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
					id_phys, sizeof(*id_phys));
	if (rc == 0)
		is_spare = (id_phys->more_flags >> 6) & 0x01;

	kfree(id_phys);
	return is_spare;
}

#define RPL_DEV_FLAG_NON_DISK                           0x1
#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
#define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4

#define BMIC_DEVICE_TYPE_ENCLOSURE  6

static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
				struct ext_report_lun_entry *rle)
{
	u8 device_flags;
	u8 device_type;

	if (!MASKED_DEVICE(lunaddrbytes))
		return false;

	device_flags = rle->device_flags;
	device_type = rle->device_type;

	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
			return false;
		return true;
	}

	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
		return false;

	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
		return false;

	/*
	 * Spares may be spun down, we do not want to
	 * do an Inquiry to a RAID set spare drive as
	 * that would have them spun up, that is a
	 * performance hit because I/O to the RAID device
	 * stops while the spin up occurs which can take
	 * over 50 seconds.
	 */
	if (hpsa_is_disk_spare(h, lunaddrbytes))
		return true;

	return false;
}

static void hpsa_update_scsi_devices(struct ctlr_info *h)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
	struct ReportExtendedLUNdata *physdev_list = NULL;
	struct ReportLUNdata *logdev_list = NULL;
	struct bmic_identify_physical_device *id_phys = NULL;
	struct bmic_identify_controller *id_ctlr = NULL;
	u32 nphysicals = 0;
	u32 nlogicals = 0;
	u32 nlocal_logicals = 0;
	u32 ndev_allocated = 0;
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
	int i, ndevs_to_allocate;
	int raid_ctlr_position;
	bool physical_device;

	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);

	if (!currentsd || !physdev_list || !logdev_list ||
		!tmpdevice || !id_phys || !id_ctlr) {
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}

	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */

	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
			logdev_list, &nlogicals)) {
		h->drv_req_rescan = 1;
		goto out;
	}

	/* Set number of local logicals (non PTRAID) */
	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
		dev_warn(&h->pdev->dev,
			"%s: Can't determine number of local logical devices.\n",
			__func__);
	}

	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
	 */
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;

	hpsa_ext_ctrl_present(h, physdev_list);

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			h->drv_req_rescan = 1;
			goto out;
		}
		ndev_allocated++;
	}

	if (is_scsi_rev_5(h))
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

	/* adjust our table of devices */
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
		u8 *lunaddrbytes, is_OBDR = 0;
		int rc = 0;
		int phys_dev_index = i - (raid_ctlr_position == 0);
		bool skip_device = false;

		memset(tmpdevice, 0, sizeof(*tmpdevice));

		physical_device = i < nphysicals + (raid_ctlr_position == 0);

		/* Figure out where the LUN ID info is coming from */
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);

		/* Determine if this is a lun from an external target array */
		tmpdevice->external =
			figure_external_status(h, raid_ctlr_position, i,
						nphysicals, nlocal_logicals);

		/*
		 * Skip over some devices such as a spare.
		 */
		if (phys_dev_index >= 0 && !tmpdevice->external &&
			physical_device) {
			skip_device = hpsa_skip_device(h, lunaddrbytes,
					&physdev_list->LUN[phys_dev_index]);
			if (skip_device)
				continue;
		}

		/* Get device type, vendor, model, device id, raid_map */
		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR);
		if (rc == -ENOMEM) {
			dev_warn(&h->pdev->dev,
				"Out of memory, rescan deferred.\n");
			h->drv_req_rescan = 1;
			goto out;
		}
		if (rc) {
			h->drv_req_rescan = 1;
			continue;
		}

		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
		this_device = currentsd[ncurrent];

		*this_device = *tmpdevice;
		this_device->physical_device = physical_device;

		/*
		 * Expose all devices except for physical devices that
		 * are masked.
		 */
		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
			this_device->expose_device = 0;
		else
			this_device->expose_device = 1;


		/*
		 * Get the SAS address for physical devices that are exposed.
		 */
		if (this_device->physical_device && this_device->expose_device)
			hpsa_get_sas_address(h, lunaddrbytes, this_device);

		switch (this_device->devtype) {
		case TYPE_ROM:
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
			if (is_OBDR)
				ncurrent++;
			break;
		case TYPE_DISK:
		case TYPE_ZBC:
			if (this_device->physical_device) {
				/* The disk is in HBA mode. */
				/* Never use RAID mapper in HBA mode. */
				this_device->offload_enabled = 0;
				hpsa_get_ioaccel_drive_info(h, this_device,
					physdev_list, phys_dev_index, id_phys);
				hpsa_get_path_info(this_device,
					physdev_list, phys_dev_index, id_phys);
			}
			ncurrent++;
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
		case TYPE_ENCLOSURE:
			if (!this_device->external)
				hpsa_get_enclosure_info(h, lunaddrbytes,
						physdev_list, phys_dev_index,
						this_device);
			ncurrent++;
			break;
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
		if (ncurrent >= HPSA_MAX_DEVICES)
			break;
	}

	if (h->sas_host == NULL) {
		int rc = 0;

		rc = hpsa_add_sas_host(h);
		if (rc) {
			dev_warn(&h->pdev->dev,
				"Could not add sas host %d\n", rc);
			goto out;
		}
	}

	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
	kfree(id_ctlr);
	kfree(id_phys);
}

static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
				   struct scatterlist *sg)
{
	u64 addr64 = (u64) sg_dma_address(sg);
	unsigned int len = sg_dma_len(sg);

	desc->Addr = cpu_to_le64(addr64);
	desc->Len = cpu_to_le32(len);
	desc->Ext = 0;
}

/*
 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
static int hpsa_scatter_gather(struct ctlr_info *h,
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	struct scatterlist *sg;
	int use_sg, i, sg_limit, chained;
	struct SGDescriptor *curr_sg;

	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

	/*
	 * If the number of entries is greater than the max for a single list,
	 * then we have a chained list; we will set up all but one entry in the
	 * first list (the last entry is saved for link information);
	 * otherwise, we don't have a chained list and we'll set up at each of
	 * the entries in the one list.
	 */
	curr_sg = cp->SG;
	chained = use_sg > h->max_cmd_sg_entries;
	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
	scsi_for_each_sg(cmd, sg, sg_limit, i) {
		hpsa_set_sg_descriptor(curr_sg, sg);
		curr_sg++;
	}

	if (chained) {
		/*
		 * Continue with the chained list.  Set curr_sg to the chained
		 * list.  Modify the limit to the total count less the entries
		 * we've already set up.  Resume the scan at the list entry
		 * where the previous loop left off.
		 */
		curr_sg = h->cmd_sg_list[cp->cmdindex];
		sg_limit = use_sg - sg_limit;
		for_each_sg(sg, sg, sg_limit, i) {
			hpsa_set_sg_descriptor(curr_sg, sg);
			curr_sg++;
		}
	}

	/* Back the pointer up to the last entry and mark it as "last". */
	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
		return 0;
	}

sglist_finished:

	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
	return 0;
}

static inline void warn_zero_length_transfer(struct ctlr_info *h,
						u8 *cdb, int cdb_len,
						const char *func)
{
	dev_warn(&h->pdev->dev,
		 "%s: Blocking zero-length request: CDB:%*phN\n",
		 func, cdb_len, cdb);
}

#define IO_ACCEL_INELIGIBLE 1
/* zero-length transfers trigger hardware errors. */
static bool is_zero_length_transfer(u8 *cdb)
{
	u32 block_cnt;

	/* Block zero-length transfer sizes on certain commands. */
	switch (cdb[0]) {
	case READ_10:
	case WRITE_10:
	case VERIFY:		/* 0x2F */
	case WRITE_VERIFY:	/* 0x2E */
		block_cnt = get_unaligned_be16(&cdb[7]);
		break;
	case READ_12:
	case WRITE_12:
	case VERIFY_12: /* 0xAF */
	case WRITE_VERIFY_12:	/* 0xAE */
		block_cnt = get_unaligned_be32(&cdb[6]);
		break;
	case READ_16:
	case WRITE_16:
	case VERIFY_16:		/* 0x8F */
		block_cnt = get_unaligned_be32(&cdb[10]);
		break;
	default:
		return false;
	}

	return block_cnt == 0;
}

static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
{
	int is_write = 0;
	u32 block;
	u32 block_cnt;

	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
	switch (cdb[0]) {
	case WRITE_6:
	case WRITE_12:
		is_write = 1;
		fallthrough;
	case READ_6:
	case READ_12:
		if (*cdb_len == 6) {
			block = (((cdb[1] & 0x1F) << 16) |
				(cdb[2] << 8) |
				cdb[3]);
			block_cnt = cdb[4];
			if (block_cnt == 0)
				block_cnt = 256;
		} else {
			BUG_ON(*cdb_len != 12);
			block = get_unaligned_be32(&cdb[2]);
			block_cnt = get_unaligned_be32(&cdb[6]);
		}
		if (block_cnt > 0xffff)
			return IO_ACCEL_INELIGIBLE;

		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (block >> 24);
		cdb[3] = (u8) (block >> 16);
		cdb[4] = (u8) (block >> 8);
		cdb[5] = (u8) (block);
		cdb[6] = 0;
		cdb[7] = (u8) (block_cnt >> 8);
		cdb[8] = (u8) (block_cnt);
		cdb[9] = 0;
		*cdb_len = 10;
		break;
	}
	return 0;
}

static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
	unsigned int len;
	unsigned int total_len = 0;
	struct scatterlist *sg;
	u64 addr64;
	int use_sg, i;
	struct SGDescriptor *curr_sg;
	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;

	/* TODO: implement chaining support */
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return IO_ACCEL_INELIGIBLE;
	}

	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);

	if (is_zero_length_transfer(cdb)) {
		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return IO_ACCEL_INELIGIBLE;
	}

	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return IO_ACCEL_INELIGIBLE;
	}

	c->cmd_type = CMD_IOACCEL1;

	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return use_sg;
	}

	if (use_sg) {
		curr_sg = cp->SG;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->Addr = cpu_to_le64(addr64);
			curr_sg->Len = cpu_to_le32(len);
			curr_sg->Ext = cpu_to_le32(0);
			curr_sg++;
		}
		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_IN;
			break;
		case DMA_NONE:
			control |= IOACCEL1_CONTROL_NODATAXFER;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		control |= IOACCEL1_CONTROL_NODATAXFER;
	}

	c->Header.SGList = use_sg;
	/* Fill out the command structure to submit */
	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
	cp->transfer_len = cpu_to_le32(total_len);
	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
	cp->control = cpu_to_le32(control);
	memcpy(cp->CDB, cdb, cdb_len);
	memcpy(cp->CISS_LUN, scsi3addr, 8);
	/* Tag was already set at init time. */
	enqueue_cmd_and_start_io(h, c);
	return 0;
}

/*
 * Queue a command directly to a device behind the controller using the
 * I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;

	if (!dev)
		return -1;

	c->phys_disk = dev;

	if (dev->in_reset)
		return -1;

	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
}

/*
 * Set encryption parameters for the ioaccel2 request
 */
static void set_encrypt_ioaccel2(struct ctlr_info *h,
	struct CommandList *c, struct io_accel2_cmd *cp)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	u64 first_block;

	/* Are we doing encryption on this device */
	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
		return;
	/* Set the data encryption key index. */
	cp->dekindex = map->dekindex;

	/* Set the encryption enable flag, encoded into direction field. */
	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;

	/* Set encryption tweak values based on logical block address
	 * If block size is 512, tweak value is LBA.
	 * For other block sizes, tweak is (LBA * block size)/ 512)
	 */
	switch (cmd->cmnd[0]) {
	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
	case READ_6:
	case WRITE_6:
		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
				(cmd->cmnd[2] << 8) |
				cmd->cmnd[3]);
		break;
	case WRITE_10:
	case READ_10:
	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_12:
	case READ_12:
		first_block = get_unaligned_be32(&cmd->cmnd[2]);
		break;
	case WRITE_16:
	case READ_16:
		first_block = get_unaligned_be64(&cmd->cmnd[2]);
		break;
	default:
		dev_err(&h->pdev->dev,
			"ERROR: %s: size (0x%x) not supported for encryption\n",
			__func__, cmd->cmnd[0]);
		BUG();
		break;
	}

	if (le32_to_cpu(map->volume_blk_size) != 512)
		first_block = first_block *
				le32_to_cpu(map->volume_blk_size)/512;

	cp->tweak_lower = cpu_to_le32(first_block);
	cp->tweak_upper = cpu_to_le32(first_block >> 32);
}

static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct ioaccel2_sg_element *curr_sg;
	int use_sg, i;
	struct scatterlist *sg;
	u64 addr64;
	u32 len;
	u32 total_len = 0;

	if (!cmd->device)
		return -1;

	if (!cmd->device->hostdata)
		return -1;

	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);

	if (is_zero_length_transfer(cdb)) {
		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return IO_ACCEL_INELIGIBLE;
	}

	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return IO_ACCEL_INELIGIBLE;
	}

	c->cmd_type = CMD_IOACCEL2;
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(cp, 0, sizeof(*cp));
	cp->IU_type = IOACCEL2_IU_TYPE;

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return use_sg;
	}

	if (use_sg) {
		curr_sg = cp->sg;
		if (use_sg > h->ioaccel_maxsg) {
			addr64 = le64_to_cpu(
				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = 0;
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = IOACCEL2_CHAIN;

			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
		}
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = cpu_to_le32(len);
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0;
			curr_sg++;
		}

		/*
		 * Set the last s/g element bit
		 */
		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_IN;
			break;
		case DMA_NONE:
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_NO_DATA;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
				cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
		cp->direction |= IOACCEL2_DIR_NO_DATA;
	}

	/* Set encryption parameters, if necessary */
	set_encrypt_ioaccel2(h, c, cp);

	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
	memcpy(cp->cdb, cdb, sizeof(cp->cdb));

	cp->data_len = cpu_to_le32(total_len);
	cp->err_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
	cp->err_len = cpu_to_le32(sizeof(cp->error_data));

	/* fill in sg elements */
	if (use_sg > h->ioaccel_maxsg) {
		cp->sg_count = 1;
		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
			atomic_dec(&phys_disk->ioaccel_cmds_out);
			scsi_dma_unmap(cmd);
			return -1;
		}
	} else
		cp->sg_count = (u8) use_sg;

	if (phys_disk->in_reset) {
		cmd->result = DID_RESET << 16;
		return -1;
	}

	enqueue_cmd_and_start_io(h, c);
	return 0;
}

/*
 * Queue a command to the correct I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
{
	if (!c->scsi_cmd->device)
		return -1;

	if (!c->scsi_cmd->device->hostdata)
		return -1;

	if (phys_disk->in_reset)
		return -1;

	/* Try to honor the device's queue depth */
	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
					phys_disk->queue_depth) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return IO_ACCEL_INELIGIBLE;
	}
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
						cdb, cdb_len, scsi3addr,
						phys_disk);
	else
		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
						cdb, cdb_len, scsi3addr,
						phys_disk);
}

static void raid_map_helper(struct raid_map_data *map,
		int offload_to_mirror, u32 *map_index, u32 *current_group)
{
	if (offload_to_mirror == 0)  {
		/* use physical disk in the first mirrored group. */
		*map_index %= le16_to_cpu(map->data_disks_per_row);
		return;
	}
	do {
		/* determine mirror group that *map_index indicates */
		*current_group = *map_index /
			le16_to_cpu(map->data_disks_per_row);
		if (offload_to_mirror == *current_group)
			continue;
		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
			/* select map index from next group */
			*map_index += le16_to_cpu(map->data_disks_per_row);
			(*current_group)++;
		} else {
			/* select map index from first group */
			*map_index %= le16_to_cpu(map->data_disks_per_row);
			*current_group = 0;
		}
	} while (offload_to_mirror != *current_group);
}

/*
 * Attempt to perform offload RAID mapping for a logical volume I/O.
 */
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int is_write = 0;
	u32 map_index;
	u64 first_block, last_block;
	u32 block_cnt;
	u32 blocks_per_row;
	u64 first_row, last_row;
	u32 first_row_offset, last_row_offset;
	u32 first_column, last_column;
	u64 r0_first_row, r0_last_row;
	u32 r5or6_blocks_per_row;
	u64 r5or6_first_row, r5or6_last_row;
	u32 r5or6_first_row_offset, r5or6_last_row_offset;
	u32 r5or6_first_column, r5or6_last_column;
	u32 total_disks_per_row;
	u32 stripesize;
	u32 first_group, last_group, current_group;
	u32 map_row;
	u32 disk_handle;
	u64 disk_block;
	u32 disk_block_cnt;
	u8 cdb[16];
	u8 cdb_len;
	u16 strip_size;
#if BITS_PER_LONG == 32
	u64 tmpdiv;
#endif
	int offload_to_mirror;

	if (!dev)
		return -1;

	if (dev->in_reset)
		return -1;

	/* check for valid opcode, get LBA and block count */
	switch (cmd->cmnd[0]) {
	case WRITE_6:
		is_write = 1;
		fallthrough;
	case READ_6:
		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
				(cmd->cmnd[2] << 8) |
				cmd->cmnd[3]);
		block_cnt = cmd->cmnd[4];
		if (block_cnt == 0)
			block_cnt = 256;
		break;
	case WRITE_10:
		is_write = 1;
		fallthrough;
	case READ_10:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[7]) << 8) |
			cmd->cmnd[8];
		break;
	case WRITE_12:
		is_write = 1;
		fallthrough;
	case READ_12:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[6]) << 24) |
			(((u32) cmd->cmnd[7]) << 16) |
			(((u32) cmd->cmnd[8]) << 8) |
		cmd->cmnd[9];
		break;
	case WRITE_16:
		is_write = 1;
		fallthrough;
	case READ_16:
		first_block =
			(((u64) cmd->cmnd[2]) << 56) |
			(((u64) cmd->cmnd[3]) << 48) |
			(((u64) cmd->cmnd[4]) << 40) |
			(((u64) cmd->cmnd[5]) << 32) |
			(((u64) cmd->cmnd[6]) << 24) |
			(((u64) cmd->cmnd[7]) << 16) |
			(((u64) cmd->cmnd[8]) << 8) |
			cmd->cmnd[9];
		block_cnt =
			(((u32) cmd->cmnd[10]) << 24) |
			(((u32) cmd->cmnd[11]) << 16) |
			(((u32) cmd->cmnd[12]) << 8) |
			cmd->cmnd[13];
		break;
	default:
		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
	}
	last_block = first_block + block_cnt - 1;

	/* check for write to non-RAID-0 */
	if (is_write && dev->raid_level != 0)
		return IO_ACCEL_INELIGIBLE;

	/* check for invalid block or wraparound */
	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
		last_block < first_block)
		return IO_ACCEL_INELIGIBLE;

	/* calculate stripe information for the request */
	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
				le16_to_cpu(map->strip_size);
	strip_size = le16_to_cpu(map->strip_size);
#if BITS_PER_LONG == 32
	tmpdiv = first_block;
	(void) do_div(tmpdiv, blocks_per_row);
	first_row = tmpdiv;
	tmpdiv = last_block;
	(void) do_div(tmpdiv, blocks_per_row);
	last_row = tmpdiv;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	tmpdiv = first_row_offset;
	(void) do_div(tmpdiv, strip_size);
	first_column = tmpdiv;
	tmpdiv = last_row_offset;
	(void) do_div(tmpdiv, strip_size);
	last_column = tmpdiv;
#else
	first_row = first_block / blocks_per_row;
	last_row = last_block / blocks_per_row;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	first_column = first_row_offset / strip_size;
	last_column = last_row_offset / strip_size;
#endif

	/* if this isn't a single row/column then give to the controller */
	if ((first_row != last_row) || (first_column != last_column))
		return IO_ACCEL_INELIGIBLE;

	/* proceeding with driver mapping */
	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
				le16_to_cpu(map->row_cnt);
	map_index = (map_row * total_disks_per_row) + first_column;

	switch (dev->raid_level) {
	case HPSA_RAID_0:
		break; /* nothing special to do */
	case HPSA_RAID_1:
		/* Handles load balance across RAID 1 members.
		 * (2-drive R1 and R10 with even # of drives.)
		 * Appropriate for SSDs, not optimal for HDDs
		 * Ensure we have the correct raid_map.
		 */
		if (le16_to_cpu(map->layout_map_count) != 2) {
			hpsa_turn_off_ioaccel_for_device(dev);
			return IO_ACCEL_INELIGIBLE;
		}
		if (dev->offload_to_mirror)
			map_index += le16_to_cpu(map->data_disks_per_row);
		dev->offload_to_mirror = !dev->offload_to_mirror;
		break;
	case HPSA_RAID_ADM:
		/* Handles N-way mirrors  (R1-ADM)
		 * and R10 with # of drives divisible by 3.)
		 * Ensure we have the correct raid_map.
		 */
		if (le16_to_cpu(map->layout_map_count) != 3) {
			hpsa_turn_off_ioaccel_for_device(dev);
			return IO_ACCEL_INELIGIBLE;
		}

		offload_to_mirror = dev->offload_to_mirror;
		raid_map_helper(map, offload_to_mirror,
				&map_index, &current_group);
		/* set mirror group to use next time */
		offload_to_mirror =
			(offload_to_mirror >=
			le16_to_cpu(map->layout_map_count) - 1)
			? 0 : offload_to_mirror + 1;
		dev->offload_to_mirror = offload_to_mirror;
		/* Avoid direct use of dev->offload_to_mirror within this
		 * function since multiple threads might simultaneously
		 * increment it beyond the range of dev->layout_map_count -1.
		 */
		break;
	case HPSA_RAID_5:
	case HPSA_RAID_6:
		if (le16_to_cpu(map->layout_map_count) <= 1)
			break;

		/* Verify first and last block are in same RAID group */
		r5or6_blocks_per_row =
			le16_to_cpu(map->strip_size) *
			le16_to_cpu(map->data_disks_per_row);
		if (r5or6_blocks_per_row == 0) {
			hpsa_turn_off_ioaccel_for_device(dev);
			return IO_ACCEL_INELIGIBLE;
		}
		stripesize = r5or6_blocks_per_row *
			le16_to_cpu(map->layout_map_count);
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_group = do_div(tmpdiv, stripesize);
		tmpdiv = first_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		first_group = tmpdiv;
		tmpdiv = last_block;
		last_group = do_div(tmpdiv, stripesize);
		tmpdiv = last_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		last_group = tmpdiv;
#else
		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
#endif
		if (first_group != last_group)
			return IO_ACCEL_INELIGIBLE;

		/* Verify request is in a single row of RAID 5/6 */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		(void) do_div(tmpdiv, stripesize);
		first_row = r5or6_first_row = r0_first_row = tmpdiv;
		tmpdiv = last_block;
		(void) do_div(tmpdiv, stripesize);
		r5or6_last_row = r0_last_row = tmpdiv;
#else
		first_row = r5or6_first_row = r0_first_row =
						first_block / stripesize;
		r5or6_last_row = r0_last_row = last_block / stripesize;
#endif
		if (r5or6_first_row != r5or6_last_row)
			return IO_ACCEL_INELIGIBLE;


		/* Verify request is in a single column */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = first_row_offset;
		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
		r5or6_first_row_offset = first_row_offset;
		tmpdiv = last_block;
		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = r5or6_last_row_offset;
		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
		tmpdiv = r5or6_first_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		first_column = r5or6_first_column = tmpdiv;
		tmpdiv = r5or6_last_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		r5or6_last_column = tmpdiv;
#else
		first_row_offset = r5or6_first_row_offset =
			(u32)((first_block % stripesize) %
						r5or6_blocks_per_row);

		r5or6_last_row_offset =
			(u32)((last_block % stripesize) %
						r5or6_blocks_per_row);

		first_column = r5or6_first_column =
			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
		r5or6_last_column =
			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
#endif
		if (r5or6_first_column != r5or6_last_column)
			return IO_ACCEL_INELIGIBLE;

		/* Request is eligible */
		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
			le16_to_cpu(map->row_cnt);

		map_index = (first_group *
			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
			(map_row * total_disks_per_row) + first_column;
		break;
	default:
		return IO_ACCEL_INELIGIBLE;
	}

	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
		return IO_ACCEL_INELIGIBLE;

	c->phys_disk = dev->phys_disk[map_index];
	if (!c->phys_disk)
		return IO_ACCEL_INELIGIBLE;

	disk_handle = dd[map_index].ioaccel_handle;
	disk_block = le64_to_cpu(map->disk_starting_blk) +
			first_row * le16_to_cpu(map->strip_size) +
			(first_row_offset - first_column *
			le16_to_cpu(map->strip_size));
	disk_block_cnt = block_cnt;

	/* handle differing logical/physical block sizes */
	if (map->phys_blk_shift) {
		disk_block <<= map->phys_blk_shift;
		disk_block_cnt <<= map->phys_blk_shift;
	}
	BUG_ON(disk_block_cnt > 0xffff);

	/* build the new CDB for the physical disk I/O */
	if (disk_block > 0xffffffff) {
		cdb[0] = is_write ? WRITE_16 : READ_16;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 56);
		cdb[3] = (u8) (disk_block >> 48);
		cdb[4] = (u8) (disk_block >> 40);
		cdb[5] = (u8) (disk_block >> 32);
		cdb[6] = (u8) (disk_block >> 24);
		cdb[7] = (u8) (disk_block >> 16);
		cdb[8] = (u8) (disk_block >> 8);
		cdb[9] = (u8) (disk_block);
		cdb[10] = (u8) (disk_block_cnt >> 24);
		cdb[11] = (u8) (disk_block_cnt >> 16);
		cdb[12] = (u8) (disk_block_cnt >> 8);
		cdb[13] = (u8) (disk_block_cnt);
		cdb[14] = 0;
		cdb[15] = 0;
		cdb_len = 16;
	} else {
		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 24);
		cdb[3] = (u8) (disk_block >> 16);
		cdb[4] = (u8) (disk_block >> 8);
		cdb[5] = (u8) (disk_block);
		cdb[6] = 0;
		cdb[7] = (u8) (disk_block_cnt >> 8);
		cdb[8] = (u8) (disk_block_cnt);
		cdb[9] = 0;
		cdb_len = 10;
	}
	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
						dev->scsi3addr,
						dev->phys_disk[map_index]);
}

/*
 * Submit commands down the "normal" RAID stack path
 * All callers to hpsa_ciss_submit must check lockup_detected
 * beforehand, before (opt.) and after calling cmd_alloc
 */
static int hpsa_ciss_submit(struct ctlr_info *h,
	struct CommandList *c, struct scsi_cmnd *cmd,
	struct hpsa_scsi_dev_t *dev)
{
	cmd->host_scribble = (unsigned char *) c;
	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
		break;
	case DMA_FROM_DEVICE:
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
		break;
	case DMA_NONE:
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
		hpsa_cmd_resolve_and_free(h, c);
		return SCSI_MLQUEUE_HOST_BUSY;
	}

	if (dev->in_reset) {
		hpsa_cmd_resolve_and_free(h, c);
		return SCSI_MLQUEUE_HOST_BUSY;
	}

	c->device = dev;

	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

static void hpsa_cmd_init(struct ctlr_info *h, int index,
				struct CommandList *c)
{
	dma_addr_t cmd_dma_handle, err_dma_handle;

	/* Zero out all of commandlist except the last field, refcount */
	memset(c, 0, offsetof(struct CommandList, refcount));
	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
	c->err_info = h->errinfo_pool + index;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + index * sizeof(*c->err_info);
	c->cmdindex = index;
	c->busaddr = (u32) cmd_dma_handle;
	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
	c->h = h;
	c->scsi_cmd = SCSI_CMD_IDLE;
}

static void hpsa_preinitialize_commands(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nr_cmds; i++) {
		struct CommandList *c = h->cmd_pool + i;

		hpsa_cmd_init(h, i, c);
		atomic_set(&c->refcount, 0);
	}
}

static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
				struct CommandList *c)
{
	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);

	BUG_ON(c->cmdindex != index);

	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	memset(c->err_info, 0, sizeof(*c->err_info));
	c->busaddr = (u32) cmd_dma_handle;
}

static int hpsa_ioaccel_submit(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		bool retry)
{
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	int rc = IO_ACCEL_INELIGIBLE;

	if (!dev)
		return SCSI_MLQUEUE_HOST_BUSY;

	if (dev->in_reset)
		return SCSI_MLQUEUE_HOST_BUSY;

	if (hpsa_simple_mode)
		return IO_ACCEL_INELIGIBLE;

	cmd->host_scribble = (unsigned char *) c;

	if (dev->offload_enabled) {
		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;
		c->device = dev;
		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
			c->retry_pending = true;
		rc = hpsa_scsi_ioaccel_raid_map(h, c);
		if (rc < 0)     /* scsi_dma_map failed. */
			rc = SCSI_MLQUEUE_HOST_BUSY;
	} else if (dev->hba_ioaccel_enabled) {
		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;
		c->device = dev;
		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
			c->retry_pending = true;
		rc = hpsa_scsi_ioaccel_direct_map(h, c);
		if (rc < 0)     /* scsi_dma_map failed. */
			rc = SCSI_MLQUEUE_HOST_BUSY;
	}
	return rc;
}

static void hpsa_command_resubmit_worker(struct work_struct *work)
{
	struct scsi_cmnd *cmd;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *c = container_of(work, struct CommandList, work);

	cmd = c->scsi_cmd;
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		return hpsa_cmd_free_and_done(c->h, c, cmd);
	}

	if (dev->in_reset) {
		cmd->result = DID_RESET << 16;
		return hpsa_cmd_free_and_done(c->h, c, cmd);
	}

	if (c->cmd_type == CMD_IOACCEL2) {
		struct ctlr_info *h = c->h;
		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
		int rc;

		if (c2->error_data.serv_response ==
				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
			/* Resubmit with the retry_pending flag set. */
			rc = hpsa_ioaccel_submit(h, c, cmd, true);
			if (rc == 0)
				return;
			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
				/*
				 * If we get here, it means dma mapping failed.
				 * Try again via scsi mid layer, which will
				 * then get SCSI_MLQUEUE_HOST_BUSY.
				 */
				cmd->result = DID_IMM_RETRY << 16;
				return hpsa_cmd_free_and_done(h, c, cmd);
			}
			/* else, fall thru and resubmit down CISS path */
		}
	}
	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
	/*
	 * Here we have not come in though queue_command, so we
	 * can set the retry_pending flag to true for a driver initiated
	 * retry attempt (I.E. not a SML retry).
	 * I.E. We are submitting a driver initiated retry.
	 * Note: hpsa_ciss_submit does not zero out the command fields like
	 *       ioaccel submit does.
	 */
	c->retry_pending = true;
	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
		/*
		 * If we get here, it means dma mapping failed. Try
		 * again via scsi mid layer, which will then get
		 * SCSI_MLQUEUE_HOST_BUSY.
		 *
		 * hpsa_ciss_submit will have already freed c
		 * if it encountered a dma mapping failure.
		 */
		cmd->result = DID_IMM_RETRY << 16;
		scsi_done(cmd);
	}
}

/* Running in struct Scsi_Host->host_lock less mode */
static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *c;
	int rc = 0;

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);

	BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0);

	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		scsi_done(cmd);
		return 0;
	}

	if (dev->removed) {
		cmd->result = DID_NO_CONNECT << 16;
		scsi_done(cmd);
		return 0;
	}

	if (unlikely(lockup_detected(h))) {
		cmd->result = DID_NO_CONNECT << 16;
		scsi_done(cmd);
		return 0;
	}

	if (dev->in_reset)
		return SCSI_MLQUEUE_DEVICE_BUSY;

	c = cmd_tagged_alloc(h, cmd);
	if (c == NULL)
		return SCSI_MLQUEUE_DEVICE_BUSY;

	/*
	 * This is necessary because the SML doesn't zero out this field during
	 * error recovery.
	 */
	cmd->result = 0;

	/*
	 * Call alternate submit routine for I/O accelerated commands.
	 * Retries always go down the normal I/O path.
	 * Note: If cmd->retries is non-zero, then this is a SML
	 *       initiated retry and not a driver initiated retry.
	 *       This command has been obtained from cmd_tagged_alloc
	 *       and is therefore a brand-new command.
	 */
	if (likely(cmd->retries == 0 &&
			!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) &&
			h->acciopath_status)) {
		/* Submit with the retry_pending flag unset. */
		rc = hpsa_ioaccel_submit(h, c, cmd, false);
		if (rc == 0)
			return 0;
		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
			hpsa_cmd_resolve_and_free(h, c);
			return SCSI_MLQUEUE_HOST_BUSY;
		}
	}
	return hpsa_ciss_submit(h, c, cmd, dev);
}

static void hpsa_scan_complete(struct ctlr_info *h)
{
	unsigned long flags;

	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1;
	wake_up(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
}

static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

	/*
	 * Don't let rescans be initiated on a controller known to be locked
	 * up.  If the controller locks up *during* a rescan, that thread is
	 * probably hosed, but at least we can prevent new rescan threads from
	 * piling up on a locked up controller.
	 */
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);

	/*
	 * If a scan is already waiting to run, no need to add another
	 */
	spin_lock_irqsave(&h->scan_lock, flags);
	if (h->scan_waiting) {
		spin_unlock_irqrestore(&h->scan_lock, flags);
		return;
	}

	spin_unlock_irqrestore(&h->scan_lock, flags);

	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		h->scan_waiting = 1;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	h->scan_waiting = 0;
	spin_unlock_irqrestore(&h->scan_lock, flags);

	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);

	/*
	 * Do the scan after a reset completion
	 */
	spin_lock_irqsave(&h->reset_lock, flags);
	if (h->reset_in_progress) {
		h->drv_req_rescan = 1;
		spin_unlock_irqrestore(&h->reset_lock, flags);
		hpsa_scan_complete(h);
		return;
	}
	spin_unlock_irqrestore(&h->reset_lock, flags);

	hpsa_update_scsi_devices(h);

	hpsa_scan_complete(h);
}

static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
{
	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;

	if (!logical_drive)
		return -ENODEV;

	if (qdepth < 1)
		qdepth = 1;
	else if (qdepth > logical_drive->queue_depth)
		qdepth = logical_drive->queue_depth;

	return scsi_change_queue_depth(sdev, qdepth);
}

static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

static int hpsa_scsi_host_alloc(struct ctlr_info *h)
{
	struct Scsi_Host *sh;

	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(struct ctlr_info));
	if (sh == NULL) {
		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
		return -ENOMEM;
	}

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
	sh->cmd_per_lun = sh->can_queue;
	sh->sg_tablesize = h->maxsgentries;
	sh->transportt = hpsa_sas_transport_template;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = pci_irq_vector(h->pdev, 0);
	sh->unique_id = sh->irq;

	h->scsi_host = sh;
	return 0;
}

static int hpsa_scsi_add_host(struct ctlr_info *h)
{
	int rv;

	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
	if (rv) {
		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
		return rv;
	}
	scsi_scan_host(h->scsi_host);
	return 0;
}

/*
 * The block layer has already gone to the trouble of picking out a unique,
 * small-integer tag for this request.  We use an offset from that value as
 * an index to select our command block.  (The offset allows us to reserve the
 * low-numbered entries for our own uses.)
 */
static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
{
	int idx = scsi_cmd_to_rq(scmd)->tag;

	if (idx < 0)
		return idx;

	/* Offset to leave space for internal cmds. */
	return idx += HPSA_NRESERVED_CMDS;
}

/*
 * Send a TEST_UNIT_READY command to the specified LUN using the specified
 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
 */
static int hpsa_send_test_unit_ready(struct ctlr_info *h,
				struct CommandList *c, unsigned char lunaddr[],
				int reply_queue)
{
	int rc;

	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
	(void) fill_cmd(c, TEST_UNIT_READY, h,
			NULL, 0, 0, lunaddr, TYPE_CMD);
	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	if (rc)
		return rc;
	/* no unmap needed here because no data xfer. */

	/* Check if the unit is already ready. */
	if (c->err_info->CommandStatus == CMD_SUCCESS)
		return 0;

	/*
	 * The first command sent after reset will receive "unit attention" to
	 * indicate that the LUN has been reset...this is actually what we're
	 * looking for (but, success is good too).
	 */
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
		return 0;

	return 1;
}

/*
 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
 * returns zero when the unit is ready, and non-zero when giving up.
 */
static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
				struct CommandList *c,
				unsigned char lunaddr[], int reply_queue)
{
	int rc;
	int count = 0;
	int waittime = 1; /* seconds */

	/* Send test unit ready until device ready, or give up. */
	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {

		/*
		 * Wait for a bit.  do this first, because if we send
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);

		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
		if (!rc)
			break;

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
			waittime *= 2;

		dev_warn(&h->pdev->dev,
			 "waiting %d secs for device to become ready.\n",
			 waittime);
	}

	return rc;
}

static int wait_for_device_to_become_ready(struct ctlr_info *h,
					   unsigned char lunaddr[],
					   int reply_queue)
{
	int first_queue;
	int last_queue;
	int rq;
	int rc = 0;
	struct CommandList *c;

	c = cmd_alloc(h);

	/*
	 * If no specific reply queue was requested, then send the TUR
	 * repeatedly, requesting a reply on each reply queue; otherwise execute
	 * the loop exactly once using only the specified queue.
	 */
	if (reply_queue == DEFAULT_REPLY_QUEUE) {
		first_queue = 0;
		last_queue = h->nreply_queues - 1;
	} else {
		first_queue = reply_queue;
		last_queue = reply_queue;
	}

	for (rq = first_queue; rq <= last_queue; rq++) {
		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
		if (rc)
			break;
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

	cmd_free(h, c);
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc = SUCCESS;
	int i;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev = NULL;
	u8 reset_type;
	char msg[48];
	unsigned long flags;

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;

	spin_lock_irqsave(&h->reset_lock, flags);
	h->reset_in_progress = 1;
	spin_unlock_irqrestore(&h->reset_lock, flags);

	if (lockup_detected(h)) {
		rc = FAILED;
		goto return_reset_status;
	}

	dev = scsicmd->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
		rc = FAILED;
		goto return_reset_status;
	}

	if (dev->devtype == TYPE_ENCLOSURE) {
		rc = SUCCESS;
		goto return_reset_status;
	}

	/* if controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
		snprintf(msg, sizeof(msg),
			 "cmd %d RESET FAILED, lockup detected",
			 hpsa_get_cmd_index(scsicmd));
		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
		rc = FAILED;
		goto return_reset_status;
	}

	/* this reset request might be the result of a lockup; check */
	if (detect_controller_lockup(h)) {
		snprintf(msg, sizeof(msg),
			 "cmd %d RESET FAILED, new lockup detected",
			 hpsa_get_cmd_index(scsicmd));
		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
		rc = FAILED;
		goto return_reset_status;
	}

	/* Do not attempt on controller */
	if (is_hba_lunid(dev->scsi3addr)) {
		rc = SUCCESS;
		goto return_reset_status;
	}

	if (is_logical_dev_addr_mode(dev->scsi3addr))
		reset_type = HPSA_DEVICE_RESET_MSG;
	else
		reset_type = HPSA_PHYS_TARGET_RESET;

	sprintf(msg, "resetting %s",
		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);

	/*
	 * wait to see if any commands will complete before sending reset
	 */
	dev->in_reset = true; /* block any new cmds from OS for this device */
	for (i = 0; i < 10; i++) {
		if (atomic_read(&dev->commands_outstanding) > 0)
			msleep(1000);
		else
			break;
	}

	/* send a reset to the SCSI LUN which the command was sent to */
	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
	if (rc == 0)
		rc = SUCCESS;
	else
		rc = FAILED;

	sprintf(msg, "reset %s %s",
		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
		rc == SUCCESS ? "completed successfully" : "failed");
	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);

return_reset_status:
	spin_lock_irqsave(&h->reset_lock, flags);
	h->reset_in_progress = 0;
	if (dev)
		dev->in_reset = false;
	spin_unlock_irqrestore(&h->reset_lock, flags);
	return rc;
}

/*
 * For operations with an associated SCSI command, a command block is allocated
 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
 * block request tag as an index into a table of entries.  cmd_tagged_free() is
 * the complement, although cmd_free() may be called instead.
 * This function is only called for new requests from queue_command.
 */
static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
					    struct scsi_cmnd *scmd)
{
	int idx = hpsa_get_cmd_index(scmd);
	struct CommandList *c = h->cmd_pool + idx;

	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
		/* The index value comes from the block layer, so if it's out of
		 * bounds, it's probably not our bug.
		 */
		BUG();
	}

	if (unlikely(!hpsa_is_cmd_idle(c))) {
		/*
		 * We expect that the SCSI layer will hand us a unique tag
		 * value.  Thus, there should never be a collision here between
		 * two requests...because if the selected command isn't idle
		 * then someone is going to be very disappointed.
		 */
		if (idx != h->last_collision_tag) { /* Print once per tag */
			dev_warn(&h->pdev->dev,
				"%s: tag collision (tag=%d)\n", __func__, idx);
			if (scmd)
				scsi_print_command(scmd);
			h->last_collision_tag = idx;
		}
		return NULL;
	}

	atomic_inc(&c->refcount);
	hpsa_cmd_partial_init(h, idx, c);

	/*
	 * This is a new command obtained from queue_command so
	 * there have not been any driver initiated retry attempts.
	 */
	c->retry_pending = false;

	return c;
}

static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
{
	/*
	 * Release our reference to the block.  We don't need to do anything
	 * else to free it, because it is accessed by index.
	 */
	(void)atomic_dec(&c->refcount);
}

/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
 * This function never gives up and returns NULL.  If it hangs,
 * another thread must call cmd_free() to free some tags.
 */

static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	int refcount, i;
	int offset = 0;

	/*
	 * There is some *extremely* small but non-zero chance that that
	 * multiple threads could get in here, and one thread could
	 * be scanning through the list of bits looking for a free
	 * one, but the free ones are always behind him, and other
	 * threads sneak in behind him and eat them before he can
	 * get to them, so that while there is always a free one, a
	 * very unlucky thread might be starved anyway, never able to
	 * beat the other threads.  In reality, this happens so
	 * infrequently as to be indistinguishable from never.
	 *
	 * Note that we start allocating commands before the SCSI host structure
	 * is initialized.  Since the search starts at bit zero, this
	 * all works, since we have at least one command structure available;
	 * however, it means that the structures with the low indexes have to be
	 * reserved for driver-initiated requests, while requests from the block
	 * layer will use the higher indexes.
	 */

	for (;;) {
		i = find_next_zero_bit(h->cmd_pool_bits,
					HPSA_NRESERVED_CMDS,
					offset);
		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
			offset = 0;
			continue;
		}
		c = h->cmd_pool + i;
		refcount = atomic_inc_return(&c->refcount);
		if (unlikely(refcount > 1)) {
			cmd_free(h, c); /* already in use */
			offset = (i + 1) % HPSA_NRESERVED_CMDS;
			continue;
		}
		set_bit(i, h->cmd_pool_bits);
		break; /* it's ours now. */
	}
	hpsa_cmd_partial_init(h, i, c);
	c->device = NULL;

	/*
	 * cmd_alloc is for "internal" commands and they are never
	 * retried.
	 */
	c->retry_pending = false;

	return c;
}

/*
 * This is the complementary operation to cmd_alloc().  Note, however, in some
 * corner cases it may also be used to free blocks allocated by
 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
 * the clear-bit is harmless.
 */
static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
	if (atomic_dec_and_test(&c->refcount)) {
		int i;

		i = c - h->cmd_pool;
		clear_bit(i, h->cmd_pool_bits);
	}
}

#ifdef CONFIG_COMPAT

static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
	void __user *arg)
{
	struct ctlr_info *h = sdev_to_hba(dev);
	IOCTL32_Command_struct __user *arg32 = arg;
	IOCTL_Command_struct arg64;
	int err;
	u32 cp;

	if (!arg)
		return -EINVAL;

	memset(&arg64, 0, sizeof(arg64));
	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
		return -EFAULT;
	if (get_user(cp, &arg32->buf))
		return -EFAULT;
	arg64.buf = compat_ptr(cp);

	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
		return -EAGAIN;
	err = hpsa_passthru_ioctl(h, &arg64);
	atomic_inc(&h->passthru_cmds_avail);
	if (err)
		return err;
	if (copy_to_user(&arg32->error_info, &arg64.error_info,
			 sizeof(arg32->error_info)))
		return -EFAULT;
	return 0;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
	unsigned int cmd, void __user *arg)
{
	struct ctlr_info *h = sdev_to_hba(dev);
	BIG_IOCTL32_Command_struct __user *arg32 = arg;
	BIG_IOCTL_Command_struct arg64;
	int err;
	u32 cp;

	if (!arg)
		return -EINVAL;
	memset(&arg64, 0, sizeof(arg64));
	if (copy_from_user(&arg64, arg32,
			   offsetof(BIG_IOCTL32_Command_struct, buf)))
		return -EFAULT;
	if (get_user(cp, &arg32->buf))
		return -EFAULT;
	arg64.buf = compat_ptr(cp);

	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
		return -EAGAIN;
	err = hpsa_big_passthru_ioctl(h, &arg64);
	atomic_inc(&h->passthru_cmds_avail);
	if (err)
		return err;
	if (copy_to_user(&arg32->error_info, &arg64.error_info,
			 sizeof(arg32->error_info)))
		return -EFAULT;
	return 0;
}

static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
			     void __user *arg)
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h,
			       IOCTL_Command_struct *iocommand)
{
	struct CommandList *c;
	char *buff = NULL;
	u64 temp64;
	int rc = 0;

	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if ((iocommand->buf_size < 1) &&
	    (iocommand->Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand->buf_size > 0) {
		buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
		if (buff == NULL)
			return -ENOMEM;
		if (iocommand->Request.Type.Direction & XFER_WRITE) {
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand->buf,
				iocommand->buf_size)) {
				rc = -EFAULT;
				goto out_kfree;
			}
		} else {
			memset(buff, 0, iocommand->buf_size);
		}
	}
	c = cmd_alloc(h);

	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
	c->scsi_cmd = SCSI_CMD_BUSY;
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand->buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
		c->Header.SGTotal = cpu_to_le16(1);
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
		c->Header.SGTotal = cpu_to_le16(0);
	}
	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand->Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand->buf_size > 0) {
		temp64 = dma_map_single(&h->pdev->dev, buff,
			iocommand->buf_size, DMA_BIDIRECTIONAL);
		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
			c->SG[0].Addr = cpu_to_le64(0);
			c->SG[0].Len = cpu_to_le32(0);
			rc = -ENOMEM;
			goto out;
		}
		c->SG[0].Addr = cpu_to_le64(temp64);
		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
	}
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
					NO_TIMEOUT);
	if (iocommand->buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
	check_ioctl_unit_attention(h, c);
	if (rc) {
		rc = -EIO;
		goto out;
	}

	/* Copy the error information out */
	memcpy(&iocommand->error_info, c->err_info,
		sizeof(iocommand->error_info));
	if ((iocommand->Request.Type.Direction & XFER_READ) &&
		iocommand->buf_size > 0) {
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
			rc = -EFAULT;
			goto out;
		}
	}
out:
	cmd_free(h, c);
out_kfree:
	kfree(buff);
	return rc;
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
				   BIG_IOCTL_Command_struct *ioc)
{
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
	u64 temp64;
	BYTE sg_used = 0;
	int status = 0;
	u32 left;
	u32 sz;
	BYTE __user *data_ptr;

	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;

	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE))
		return -EINVAL;
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
		return -EINVAL;
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
		return -EINVAL;
	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
		if (ioc->Request.Type.Direction & XFER_WRITE) {
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
				status = -EFAULT;
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
	c = cmd_alloc(h);

	c->cmd_type = CMD_IOCTL_PEND;
	c->scsi_cmd = SCSI_CMD_BUSY;
	c->Header.ReplyQueue = 0;
	c->Header.SGList = (u8) sg_used;
	c->Header.SGTotal = cpu_to_le16(sg_used);
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
			temp64 = dma_map_single(&h->pdev->dev, buff[i],
				    buff_size[i], DMA_BIDIRECTIONAL);
			if (dma_mapping_error(&h->pdev->dev,
							(dma_addr_t) temp64)) {
				c->SG[i].Addr = cpu_to_le64(0);
				c->SG[i].Len = cpu_to_le32(0);
				hpsa_pci_unmap(h->pdev, c, i,
					DMA_BIDIRECTIONAL);
				status = -ENOMEM;
				goto cleanup0;
			}
			c->SG[i].Addr = cpu_to_le64(temp64);
			c->SG[i].Len = cpu_to_le32(buff_size[i]);
			c->SG[i].Ext = cpu_to_le32(0);
		}
		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
	}
	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
						NO_TIMEOUT);
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
	check_ioctl_unit_attention(h, c);
	if (status) {
		status = -EIO;
		goto cleanup0;
	}

	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
		int i;

		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				status = -EFAULT;
				goto cleanup0;
			}
			ptr += buff_size[i];
		}
	}
	status = 0;
cleanup0:
	cmd_free(h, c);
cleanup1:
	if (buff) {
		int i;

		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}

/*
 * ioctl
 */
static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
		      void __user *argp)
{
	struct ctlr_info *h = sdev_to_hba(dev);
	int rc;

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
		hpsa_scan_start(h->scsi_host);
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU: {
		IOCTL_Command_struct iocommand;

		if (!argp)
			return -EINVAL;
		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
			return -EFAULT;
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
			return -EAGAIN;
		rc = hpsa_passthru_ioctl(h, &iocommand);
		atomic_inc(&h->passthru_cmds_avail);
		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
			rc = -EFAULT;
		return rc;
	}
	case CCISS_BIG_PASSTHRU: {
		BIG_IOCTL_Command_struct ioc;
		if (!argp)
			return -EINVAL;
		if (copy_from_user(&ioc, argp, sizeof(ioc)))
			return -EFAULT;
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
			return -EAGAIN;
		rc = hpsa_big_passthru_ioctl(h, &ioc);
		atomic_inc(&h->passthru_cmds_avail);
		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
			rc = -EFAULT;
		return rc;
	}
	default:
		return -ENOTTY;
	}
}

static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
{
	struct CommandList *c;

	c = cmd_alloc(h);

	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
	return;
}

static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
	int cmd_type)
{
	enum dma_data_direction dir = DMA_NONE;

	c->cmd_type = CMD_IOCTL_PEND;
	c->scsi_cmd = SCSI_CMD_BUSY;
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
		c->Header.SGTotal = cpu_to_le16(1);
	} else {
		c->Header.SGList = 0;
		c->Header.SGTotal = cpu_to_le16(0);
	}
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
			if (page_code & VPD_PAGE) {
				c->Request.CDB[1] = 0x01;
				c->Request.CDB[2] = (page_code & 0xff);
			}
			c->Request.CDBLen = 6;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case RECEIVE_DIAGNOSTIC:
			c->Request.CDBLen = 6;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[1] = 1;
			c->Request.CDB[2] = 1;
			c->Request.CDB[3] = (size >> 8) & 0xFF;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case BMIC_SENSE_DIAG_OPTIONS:
			c->Request.CDBLen = 16;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			/* Spec says this should be BMIC_WRITE */
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
			break;
		case BMIC_SET_DIAG_OPTIONS:
			c->Request.CDBLen = 16;
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
			c->Request.Timeout = 0;
			break;
		case HPSA_GET_RAID_MAP:
			c->Request.CDBLen = 12;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_CISS_READ;
			c->Request.CDB[1] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case BMIC_SENSE_CONTROLLER_PARAMETERS:
			c->Request.CDBLen = 10;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			break;
		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
			c->Request.CDBLen = 10;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0XFF;
			break;
		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
			c->Request.CDBLen = 10;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0XFF;
			break;
		case BMIC_SENSE_STORAGE_BOX_PARAMS:
			c->Request.CDBLen = 10;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0XFF;
			break;
		case BMIC_IDENTIFY_CONTROLLER:
			c->Request.CDBLen = 10;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[1] = 0;
			c->Request.CDB[2] = 0;
			c->Request.CDB[3] = 0;
			c->Request.CDB[4] = 0;
			c->Request.CDB[5] = 0;
			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0XFF;
			c->Request.CDB[9] = 0;
			break;
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_PHYS_TARGET_RESET:
			c->Request.CDBLen = 16;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
			c->Request.Timeout = 0; /* Don't time out */
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] = HPSA_RESET;
			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
			/* Physical target reset needs no control bytes 4-7*/
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
			break;
		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
			c->Request.Timeout = 0; /* Don't time out */
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
			break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

	switch (GET_DIR(c->Request.type_attr_dir)) {
	case XFER_READ:
		dir = DMA_FROM_DEVICE;
		break;
	case XFER_WRITE:
		dir = DMA_TO_DEVICE;
		break;
	case XFER_NONE:
		dir = DMA_NONE;
		break;
	default:
		dir = DMA_BIDIRECTIONAL;
	}
	if (hpsa_map_one(h->pdev, c, buff, size, dir))
		return -1;
	return 0;
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
	void __iomem *page_remapped = ioremap(page_base,
		page_offs + size);

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
{
	return h->access.command_completed(h, q);
}

static inline bool interrupt_pending(struct ctlr_info *h)
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
}

static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

static inline void finish_cmd(struct CommandList *c)
{
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
			|| c->cmd_type == CMD_IOACCEL2))
		complete_scsi_command(c);
	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
		complete(c->waiting);
}

/* process completion of an indexed ("direct lookup") command */
static inline void process_indexed_cmd(struct ctlr_info *h,
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
}

/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
{
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
	h->last_intr_timestamp = get_jiffies_64();
	while (interrupt_pending(h)) {
		raw_tag = get_next_completion(h, q);
		while (raw_tag != FIFO_EMPTY)
			raw_tag = next_command(h, q);
	}
	return IRQ_HANDLED;
}

static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u32 raw_tag;
	u8 q = *(u8 *) queue;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	h->last_intr_timestamp = get_jiffies_64();
	raw_tag = get_next_completion(h, q);
	while (raw_tag != FIFO_EMPTY)
		raw_tag = next_command(h, q);
	return IRQ_HANDLED;
}

static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
	u32 raw_tag;
	u8 q = *(u8 *) queue;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
	h->last_intr_timestamp = get_jiffies_64();
	while (interrupt_pending(h)) {
		raw_tag = get_next_completion(h, q);
		while (raw_tag != FIFO_EMPTY) {
			process_indexed_cmd(h, raw_tag);
			raw_tag = next_command(h, q);
		}
	}
	return IRQ_HANDLED;
}

static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u32 raw_tag;
	u8 q = *(u8 *) queue;

	h->last_intr_timestamp = get_jiffies_64();
	raw_tag = get_next_completion(h, q);
	while (raw_tag != FIFO_EMPTY) {
		process_indexed_cmd(h, raw_tag);
		raw_tag = next_command(h, q);
	}
	return IRQ_HANDLED;
}

/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
	__le32 paddr32;
	u32 tag;
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
		return err;
	}

	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
	paddr32 = cpu_to_le32(paddr64);

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
	cmd->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
	cmd->ErrorDescriptor.Addr =
			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));

	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

static int hpsa_controller_hard_reset(struct pci_dev *pdev,
	void __iomem *vaddr, u32 use_doorbell)
{

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
		writel(use_doorbell, vaddr + SA5_DOORBELL);

		/* PMC hardware guys tell us we need a 10 second delay after
		 * doorbell reset and before any attempt to talk to the board
		 * at all to ensure that this actually works and doesn't fall
		 * over in some weird corner cases.
		 */
		msleep(10000);
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */

		int rc = 0;

		dev_info(&pdev->dev, "using PCI PM to reset controller\n");

		/* enter the D3hot power management state */
		rc = pci_set_power_state(pdev, PCI_D3hot);
		if (rc)
			return rc;

		msleep(500);

		/* enter the D0 power management state */
		rc = pci_set_power_state(pdev, PCI_D0);
		if (rc)
			return rc;

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
	}
	return 0;
}

static void init_driver_version(char *driver_version, int len)
{
	memset(driver_version, 0, len);
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
}

static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
/* This does a hard reset of the controller using PCI power management
 * states or the using the doorbell register.
 */
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
{
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
	u32 misc_fw_support;
	int rc;
	struct CfgTable __iomem *cfgtable;
	u32 use_doorbell;
	u16 command_register;

	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
	 */

	if (!ctlr_is_resettable(board_id)) {
		dev_warn(&pdev->dev, "Controller not resettable\n");
		return -ENODEV;
	}

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */

	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	pci_save_state(pdev);

	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;

	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
		goto unmap_cfgtable;

	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
	misc_fw_support = readl(&cfgtable->misc_fw_support);
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
			dev_warn(&pdev->dev,
				"Soft reset not supported. Firmware update is required.\n");
			rc = -ENOTSUPP; /* try soft reset */
			goto unmap_cfgtable;
		}
	}

	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;

	pci_restore_state(pdev);
	pci_write_config_word(pdev, 4, command_register);

	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
			"Failed waiting for board to become ready after hard reset\n");
		goto unmap_cfgtable;
	}

	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
	} else {
		dev_info(&pdev->dev, "board ready after hard reset.\n");
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
{
#ifdef HPSA_DEBUG
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
	dev_info(dev, "   Max outstanding commands = %d\n",
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
}

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
{
	pci_free_irq_vectors(h->pdev);
	h->msix_vectors = 0;
}

static void hpsa_setup_reply_map(struct ctlr_info *h)
{
	const struct cpumask *mask;
	unsigned int queue, cpu;

	for (queue = 0; queue < h->msix_vectors; queue++) {
		mask = pci_irq_get_affinity(h->pdev, queue);
		if (!mask)
			goto fallback;

		for_each_cpu(cpu, mask)
			h->reply_map[cpu] = queue;
	}
	return;

fallback:
	for_each_possible_cpu(cpu)
		h->reply_map[cpu] = 0;
}

/* If MSI/MSI-X is supported by the kernel we will try to enable it on
 * controllers that are capable. If not, we use legacy INTx mode.
 */
static int hpsa_interrupt_mode(struct ctlr_info *h)
{
	unsigned int flags = PCI_IRQ_LEGACY;
	int ret;

	/* Some boards advertise MSI but don't really support it */
	switch (h->board_id) {
	case 0x40700E11:
	case 0x40800E11:
	case 0x40820E11:
	case 0x40830E11:
		break;
	default:
		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
		if (ret > 0) {
			h->msix_vectors = ret;
			return 0;
		}

		flags |= PCI_IRQ_MSI;
		break;
	}

	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
	if (ret < 0)
		return ret;
	return 0;
}

static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
				bool *legacy_board)
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	if (legacy_board)
		*legacy_board = false;
	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id) {
			if (products[i].access != &SA5A_access &&
			    products[i].access != &SA5B_access)
				return i;
			dev_warn(&pdev->dev,
				 "legacy board ID: 0x%08x\n",
				 *board_id);
			if (legacy_board)
			    *legacy_board = true;
			return i;
		}

	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
	if (legacy_board)
		*legacy_board = true;
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
			/* addressing mode bits already removed */
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
				*memory_bar);
			return 0;
		}
	dev_warn(&pdev->dev, "no memory BAR found\n");
	return -ENODEV;
}

static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
{
	int i, iterations;
	u32 scratchpad;
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;

	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
	return -ENODEV;
}

static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

static void hpsa_free_cfgtables(struct ctlr_info *h)
{
	if (h->transtable) {
		iounmap(h->transtable);
		h->transtable = NULL;
	}
	if (h->cfgtable) {
		iounmap(h->cfgtable);
		h->cfgtable = NULL;
	}
}

/* Find and map CISS config table and transfer table
+ * several items must be unmapped (freed) later
+ * */
static int hpsa_find_cfgtables(struct ctlr_info *h)
{
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	u32 trans_offset;
	int rc;

	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
	if (!h->cfgtable) {
		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
		return -ENOMEM;
	}
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
	/* Find performant mode table. */
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
	if (!h->transtable) {
		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
		hpsa_free_cfgtables(h);
		return -ENOMEM;
	}
	return 0;
}

static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
{
#define MIN_MAX_COMMANDS 16
	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);

	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

	if (h->max_commands < MIN_MAX_COMMANDS) {
		dev_warn(&h->pdev->dev,
			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
			h->max_commands,
			MIN_MAX_COMMANDS);
		h->max_commands = MIN_MAX_COMMANDS;
	}
}

/* If the controller reports that the total max sg entries is greater than 512,
 * then we know that chained SG blocks work.  (Original smart arrays did not
 * support chained SG blocks and would return zero for max sg entries.)
 */
static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
{
	return h->maxsgentries > 512;
}

/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
static void hpsa_find_board_params(struct ctlr_info *h)
{
	hpsa_get_max_perf_mode_cmds(h);
	h->nr_cmds = h->max_commands;
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
	if (hpsa_supports_chained_sg_blocks(h)) {
		/* Limit in-command s/g elements to 32 save dma'able memory. */
		h->max_cmd_sg_entries = 32;
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
		h->maxsgentries--; /* save one for chain pointer */
	} else {
		/*
		 * Original smart arrays supported at most 31 s/g entries
		 * embedded inline in the command (trying to use more
		 * would lock up the controller)
		 */
		h->max_cmd_sg_entries = 31;
		h->maxsgentries = 31; /* default to traditional values */
		h->chainsize = 0;
	}

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
}

static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
		return false;
	}
	return true;
}

static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
{
	u32 driver_support;

	driver_support = readl(&(h->cfgtable->driver_support));
	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
#ifdef CONFIG_X86
	driver_support |= ENABLE_SCSI_PREFETCH;
#endif
	driver_support |= ENABLE_UNIT_ATTN;
	writel(driver_support, &(h->cfgtable->driver_support));
}

/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
{
	int i;
	u32 doorbell_value;
	unsigned long flags;
	/* wait until the clear_event_notify bit 6 is cleared by controller. */
	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
			goto done;
		/* delay and try again */
		msleep(CLEAR_EVENT_WAIT_INTERVAL);
	}
	return -ENODEV;
done:
	return 0;
}

static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
{
	int i;
	u32 doorbell_value;
	unsigned long flags;

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
		if (h->remove_in_progress)
			goto done;
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
		if (!(doorbell_value & CFGTBL_ChangeReq))
			goto done;
		/* delay and try again */
		msleep(MODE_CHANGE_WAIT_INTERVAL);
	}
	return -ENODEV;
done:
	return 0;
}

/* return -ENODEV or other reason on error, 0 on success */
static int hpsa_enter_simple_mode(struct ctlr_info *h)
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));

	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
	if (hpsa_wait_for_mode_change_ack(h))
		goto error;
	print_cfg_table(&h->pdev->dev, h->cfgtable);
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
		goto error;
	h->transMethod = CFGTBL_Trans_Simple;
	return 0;
error:
	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
	return -ENODEV;
}

/* free items allocated or mapped by hpsa_pci_init */
static void hpsa_free_pci_init(struct ctlr_info *h)
{
	hpsa_free_cfgtables(h);			/* pci_init 4 */
	iounmap(h->vaddr);			/* pci_init 3 */
	h->vaddr = NULL;
	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
	/*
	 * call pci_disable_device before pci_release_regions per
	 * Documentation/driver-api/pci/pci.rst
	 */
	pci_disable_device(h->pdev);		/* pci_init 1 */
	pci_release_regions(h->pdev);		/* pci_init 2 */
}

/* several items must be freed later */
static int hpsa_pci_init(struct ctlr_info *h)
{
	int prod_index, err;
	bool legacy_board;

	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
	if (prod_index < 0)
		return prod_index;
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
	h->legacy_board = legacy_board;
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

	err = pci_enable_device(h->pdev);
	if (err) {
		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
		pci_disable_device(h->pdev);
		return err;
	}

	err = pci_request_regions(h->pdev, HPSA);
	if (err) {
		dev_err(&h->pdev->dev,
			"failed to obtain PCI resources\n");
		pci_disable_device(h->pdev);
		return err;
	}

	pci_set_master(h->pdev);

	err = hpsa_interrupt_mode(h);
	if (err)
		goto clean1;

	/* setup mapping between CPU and reply queue */
	hpsa_setup_reply_map(h);

	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
	if (err)
		goto clean2;	/* intmode+region, pci */
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
	if (!h->vaddr) {
		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
		err = -ENOMEM;
		goto clean2;	/* intmode+region, pci */
	}
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
	if (err)
		goto clean3;	/* vaddr, intmode+region, pci */
	err = hpsa_find_cfgtables(h);
	if (err)
		goto clean3;	/* vaddr, intmode+region, pci */
	hpsa_find_board_params(h);

	if (!hpsa_CISS_signature_present(h)) {
		err = -ENODEV;
		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
	}
	hpsa_set_driver_support_bits(h);
	hpsa_p600_dma_prefetch_quirk(h);
	err = hpsa_enter_simple_mode(h);
	if (err)
		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
	return 0;

clean4:	/* cfgtables, vaddr, intmode+region, pci */
	hpsa_free_cfgtables(h);
clean3:	/* vaddr, intmode+region, pci */
	iounmap(h->vaddr);
	h->vaddr = NULL;
clean2:	/* intmode+region, pci */
	hpsa_disable_interrupt_mode(h);
clean1:
	/*
	 * call pci_disable_device before pci_release_regions per
	 * Documentation/driver-api/pci/pci.rst
	 */
	pci_disable_device(h->pdev);
	pci_release_regions(h->pdev);
	return err;
}

static void hpsa_hba_inquiry(struct ctlr_info *h)
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
{
	int rc, i;
	void __iomem *vaddr;

	if (!reset_devices)
		return 0;

	/* kdump kernel is loading, we don't know in which state is
	 * the pci interface. The dev->enable_cnt is equal zero
	 * so we call enable+disable, wait a while and switch it on.
	 */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
		return -ENODEV;
	}
	pci_disable_device(pdev);
	msleep(260);			/* a randomly chosen number */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		return -ENODEV;
	}

	pci_set_master(pdev);

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL) {
		rc = -ENOMEM;
		goto out_disable;
	}
	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
	iounmap(vaddr);

	/* Reset the controller with a PCI power-cycle or via doorbell */
	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);

	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
	 */
	if (rc)
		goto out_disable;

	/* Now try to get the controller to respond to a no-op */
	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}

out_disable:

	pci_disable_device(pdev);
	return rc;
}

static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	bitmap_free(h->cmd_pool_bits);
	h->cmd_pool_bits = NULL;
	if (h->cmd_pool) {
		dma_free_coherent(&h->pdev->dev,
				h->nr_cmds * sizeof(struct CommandList),
				h->cmd_pool,
				h->cmd_pool_dhandle);
		h->cmd_pool = NULL;
		h->cmd_pool_dhandle = 0;
	}
	if (h->errinfo_pool) {
		dma_free_coherent(&h->pdev->dev,
				h->nr_cmds * sizeof(struct ErrorInfo),
				h->errinfo_pool,
				h->errinfo_pool_dhandle);
		h->errinfo_pool = NULL;
		h->errinfo_pool_dhandle = 0;
	}
}

static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
{
	h->cmd_pool_bits = bitmap_zalloc(h->nr_cmds, GFP_KERNEL);
	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &h->cmd_pool_dhandle, GFP_KERNEL);
	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &h->errinfo_pool_dhandle, GFP_KERNEL);
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
		goto clean_up;
	}
	hpsa_preinitialize_commands(h);
	return 0;
clean_up:
	hpsa_free_cmd_pool(h);
	return -ENOMEM;
}

/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
static void hpsa_free_irqs(struct ctlr_info *h)
{
	int i;
	int irq_vector = 0;

	if (hpsa_simple_mode)
		irq_vector = h->intr_mode;

	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		free_irq(pci_irq_vector(h->pdev, irq_vector),
				&h->q[h->intr_mode]);
		h->q[h->intr_mode] = 0;
		return;
	}

	for (i = 0; i < h->msix_vectors; i++) {
		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
		h->q[i] = 0;
	}
	for (; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = 0;
}

/* returns 0 on success; cleans up and returns -Enn on error */
static int hpsa_request_irqs(struct ctlr_info *h,
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
	int rc, i;
	int irq_vector = 0;

	if (hpsa_simple_mode)
		irq_vector = h->intr_mode;

	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
		/* If performant mode and MSI-X, use multiple reply queues */
		for (i = 0; i < h->msix_vectors; i++) {
			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
					0, h->intrname[i],
					&h->q[i]);
			if (rc) {
				int j;

				dev_err(&h->pdev->dev,
					"failed to get irq %d for %s\n",
				       pci_irq_vector(h->pdev, i), h->devname);
				for (j = 0; j < i; j++) {
					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
					h->q[j] = 0;
				}
				for (; j < MAX_REPLY_QUEUES; j++)
					h->q[j] = 0;
				return rc;
			}
		}
	} else {
		/* Use single reply pool */
		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
			sprintf(h->intrname[0], "%s-msi%s", h->devname,
				h->msix_vectors ? "x" : "");
			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
				msixhandler, 0,
				h->intrname[0],
				&h->q[h->intr_mode]);
		} else {
			sprintf(h->intrname[h->intr_mode],
				"%s-intx", h->devname);
			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
				intxhandler, IRQF_SHARED,
				h->intrname[0],
				&h->q[h->intr_mode]);
		}
	}
	if (rc) {
		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
		       pci_irq_vector(h->pdev, irq_vector), h->devname);
		hpsa_free_irqs(h);
		return -ENODEV;
	}
	return 0;
}

static int hpsa_kdump_soft_reset(struct ctlr_info *h)
{
	int rc;
	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
	if (rc) {
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
		return rc;
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
		return rc;
	}

	return 0;
}

static void hpsa_free_reply_queues(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nreply_queues; i++) {
		if (!h->reply_queue[i].head)
			continue;
		dma_free_coherent(&h->pdev->dev,
					h->reply_queue_size,
					h->reply_queue[i].head,
					h->reply_queue[i].busaddr);
		h->reply_queue[i].head = NULL;
		h->reply_queue[i].busaddr = 0;
	}
	h->reply_queue_size = 0;
}

static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
	hpsa_free_performant_mode(h);		/* init_one 7 */
	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
	hpsa_free_cmd_pool(h);			/* init_one 5 */
	hpsa_free_irqs(h);			/* init_one 4 */
	scsi_host_put(h->scsi_host);		/* init_one 3 */
	h->scsi_host = NULL;			/* init_one 3 */
	hpsa_free_pci_init(h);			/* init_one 2_5 */
	free_percpu(h->lockup_detected);	/* init_one 2 */
	h->lockup_detected = NULL;		/* init_one 2 */
	if (h->resubmit_wq) {
		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
		h->resubmit_wq = NULL;
	}
	if (h->rescan_ctlr_wq) {
		destroy_workqueue(h->rescan_ctlr_wq);
		h->rescan_ctlr_wq = NULL;
	}
	if (h->monitor_ctlr_wq) {
		destroy_workqueue(h->monitor_ctlr_wq);
		h->monitor_ctlr_wq = NULL;
	}

	kfree(h);				/* init_one 1 */
}

/* Called when controller lockup detected. */
static void fail_all_outstanding_cmds(struct ctlr_info *h)
{
	int i, refcount;
	struct CommandList *c;
	int failcount = 0;

	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
	for (i = 0; i < h->nr_cmds; i++) {
		c = h->cmd_pool + i;
		refcount = atomic_inc_return(&c->refcount);
		if (refcount > 1) {
			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
			finish_cmd(c);
			atomic_dec(&h->commands_outstanding);
			failcount++;
		}
		cmd_free(h, c);
	}
	dev_warn(&h->pdev->dev,
		"failed %d commands in fail_all\n", failcount);
}

static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
{
	int cpu;

	for_each_online_cpu(cpu) {
		u32 *lockup_detected;
		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
		*lockup_detected = value;
	}
	wmb(); /* be sure the per-cpu variables are out to memory */
}

static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;
	u32 lockup_detected;

	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	if (!lockup_detected) {
		/* no heartbeat, but controller gave us a zero. */
		dev_warn(&h->pdev->dev,
			"lockup detected after %d but scratchpad register is zero\n",
			h->heartbeat_sample_interval / HZ);
		lockup_detected = 0xffffffff;
	}
	set_lockup_detected_for_all_cpus(h, lockup_detected);
	spin_unlock_irqrestore(&h->lock, flags);
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
			lockup_detected, h->heartbeat_sample_interval / HZ);
	if (lockup_detected == 0xffff0000) {
		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
	}
	pci_disable_device(h->pdev);
	fail_all_outstanding_cmds(h);
}

static int detect_controller_lockup(struct ctlr_info *h)
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
				(h->heartbeat_sample_interval), now))
		return false;

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
				(h->heartbeat_sample_interval), now))
		return false;

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
		return true;
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
	return false;
}

/*
 * Set ioaccel status for all ioaccel volumes.
 *
 * Called from monitor controller worker (hpsa_event_monitor_worker)
 *
 * A Volume (or Volumes that comprise an Array set) may be undergoing a
 * transformation, so we will be turning off ioaccel for all volumes that
 * make up the Array.
 */
static void hpsa_set_ioaccel_status(struct ctlr_info *h)
{
	int rc;
	int i;
	u8 ioaccel_status;
	unsigned char *buf;
	struct hpsa_scsi_dev_t *device;

	if (!h)
		return;

	buf = kmalloc(64, GFP_KERNEL);
	if (!buf)
		return;

	/*
	 * Run through current device list used during I/O requests.
	 */
	for (i = 0; i < h->ndevices; i++) {
		int offload_to_be_enabled = 0;
		int offload_config = 0;

		device = h->dev[i];

		if (!device)
			continue;
		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
						HPSA_VPD_LV_IOACCEL_STATUS))
			continue;

		memset(buf, 0, 64);

		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
					buf, 64);
		if (rc != 0)
			continue;

		ioaccel_status = buf[IOACCEL_STATUS_BYTE];

		/*
		 * Check if offload is still configured on
		 */
		offload_config =
				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
		/*
		 * If offload is configured on, check to see if ioaccel
		 * needs to be enabled.
		 */
		if (offload_config)
			offload_to_be_enabled =
				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);

		/*
		 * If ioaccel is to be re-enabled, re-enable later during the
		 * scan operation so the driver can get a fresh raidmap
		 * before turning ioaccel back on.
		 */
		if (offload_to_be_enabled)
			continue;

		/*
		 * Immediately turn off ioaccel for any volume the
		 * controller tells us to. Some of the reasons could be:
		 *    transformation - change to the LVs of an Array.
		 *    degraded volume - component failure
		 */
		hpsa_turn_off_ioaccel_for_device(device);
	}

	kfree(buf);
}

static void hpsa_ack_ctlr_events(struct ctlr_info *h)
{
	char *event_type;

	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
		return;

	/* Ask the controller to clear the events we're handling. */
	if ((h->transMethod & (CFGTBL_Trans_io_accel1
			| CFGTBL_Trans_io_accel2)) &&
		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {

		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
			event_type = "state change";
		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
			event_type = "configuration change";
		/* Stop sending new RAID offload reqs via the IO accelerator */
		scsi_block_requests(h->scsi_host);
		hpsa_set_ioaccel_status(h);
		hpsa_drain_accel_commands(h);
		/* Set 'accelerator path config change' bit */
		dev_warn(&h->pdev->dev,
			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
			h->events, event_type);
		writel(h->events, &(h->cfgtable->clear_event_notify));
		/* Set the "clear event notify field update" bit 6 */
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		/* Wait until ctlr clears 'clear event notify field', bit 6 */
		hpsa_wait_for_clear_event_notify_ack(h);
		scsi_unblock_requests(h->scsi_host);
	} else {
		/* Acknowledge controller notification events. */
		writel(h->events, &(h->cfgtable->clear_event_notify));
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_clear_event_notify_ack(h);
	}
	return;
}

/* Check a register on the controller to see if there are configuration
 * changes (added/changed/removed logical drives, etc.) which mean that
 * we should rescan the controller for devices.
 * Also check flag for driver-initiated rescan.
 */
static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
{
	if (h->drv_req_rescan) {
		h->drv_req_rescan = 0;
		return 1;
	}

	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
		return 0;

	h->events = readl(&(h->cfgtable->event_notify));
	return h->events & RESCAN_REQUIRED_EVENT_BITS;
}

/*
 * Check if any of the offline devices have become ready
 */
static int hpsa_offline_devices_ready(struct ctlr_info *h)
{
	unsigned long flags;
	struct offline_device_entry *d;
	struct list_head *this, *tmp;

	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_safe(this, tmp, &h->offline_device_list) {
		d = list_entry(this, struct offline_device_entry,
				offline_list);
		spin_unlock_irqrestore(&h->offline_device_lock, flags);
		if (!hpsa_volume_offline(h, d->scsi3addr)) {
			spin_lock_irqsave(&h->offline_device_lock, flags);
			list_del(&d->offline_list);
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
			return 1;
		}
		spin_lock_irqsave(&h->offline_device_lock, flags);
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
	return 0;
}

static int hpsa_luns_changed(struct ctlr_info *h)
{
	int rc = 1; /* assume there are changes */
	struct ReportLUNdata *logdev = NULL;

	/* if we can't find out if lun data has changed,
	 * assume that it has.
	 */

	if (!h->lastlogicals)
		return rc;

	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
	if (!logdev)
		return rc;

	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
		dev_warn(&h->pdev->dev,
			"report luns failed, can't track lun changes.\n");
		goto out;
	}
	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
		dev_info(&h->pdev->dev,
			"Lun changes detected.\n");
		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
		goto out;
	} else
		rc = 0; /* no changes detected. */
out:
	kfree(logdev);
	return rc;
}

static void hpsa_perform_rescan(struct ctlr_info *h)
{
	struct Scsi_Host *sh = NULL;
	unsigned long flags;

	/*
	 * Do the scan after the reset
	 */
	spin_lock_irqsave(&h->reset_lock, flags);
	if (h->reset_in_progress) {
		h->drv_req_rescan = 1;
		spin_unlock_irqrestore(&h->reset_lock, flags);
		return;
	}
	spin_unlock_irqrestore(&h->reset_lock, flags);

	sh = scsi_host_get(h->scsi_host);
	if (sh != NULL) {
		hpsa_scan_start(sh);
		scsi_host_put(sh);
		h->drv_req_rescan = 0;
	}
}

/*
 * watch for controller events
 */
static void hpsa_event_monitor_worker(struct work_struct *work)
{
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, event_monitor_work);
	unsigned long flags;

	spin_lock_irqsave(&h->lock, flags);
	if (h->remove_in_progress) {
		spin_unlock_irqrestore(&h->lock, flags);
		return;
	}
	spin_unlock_irqrestore(&h->lock, flags);

	if (hpsa_ctlr_needs_rescan(h)) {
		hpsa_ack_ctlr_events(h);
		hpsa_perform_rescan(h);
	}

	spin_lock_irqsave(&h->lock, flags);
	if (!h->remove_in_progress)
		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
				HPSA_EVENT_MONITOR_INTERVAL);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void hpsa_rescan_ctlr_worker(struct work_struct *work)
{
	unsigned long flags;
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, rescan_ctlr_work);

	spin_lock_irqsave(&h->lock, flags);
	if (h->remove_in_progress) {
		spin_unlock_irqrestore(&h->lock, flags);
		return;
	}
	spin_unlock_irqrestore(&h->lock, flags);

	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
		hpsa_perform_rescan(h);
	} else if (h->discovery_polling) {
		if (hpsa_luns_changed(h)) {
			dev_info(&h->pdev->dev,
				"driver discovery polling rescan.\n");
			hpsa_perform_rescan(h);
		}
	}
	spin_lock_irqsave(&h->lock, flags);
	if (!h->remove_in_progress)
		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void hpsa_monitor_ctlr_worker(struct work_struct *work)
{
	unsigned long flags;
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, monitor_ctlr_work);

	detect_controller_lockup(h);
	if (lockup_detected(h))
		return;

	spin_lock_irqsave(&h->lock, flags);
	if (!h->remove_in_progress)
		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
}

static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
						char *name)
{
	struct workqueue_struct *wq = NULL;

	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
	if (!wq)
		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);

	return wq;
}

static void hpda_free_ctlr_info(struct ctlr_info *h)
{
	kfree(h->reply_map);
	kfree(h);
}

static struct ctlr_info *hpda_alloc_ctlr_info(void)
{
	struct ctlr_info *h;

	h = kzalloc(sizeof(*h), GFP_KERNEL);
	if (!h)
		return NULL;

	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
	if (!h->reply_map) {
		kfree(h);
		return NULL;
	}
	return h;
}

static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	int rc;
	struct ctlr_info *h;
	int try_soft_reset = 0;
	unsigned long flags;
	u32 board_id;

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
	if (rc < 0) {
		dev_warn(&pdev->dev, "Board ID not found\n");
		return rc;
	}

	rc = hpsa_init_reset_devices(pdev, board_id);
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:

	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
	h = hpda_alloc_ctlr_info();
	if (!h) {
		dev_err(&pdev->dev, "Failed to allocate controller head\n");
		return -ENOMEM;
	}

	h->pdev = pdev;

	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
	INIT_LIST_HEAD(&h->offline_device_list);
	spin_lock_init(&h->lock);
	spin_lock_init(&h->offline_device_lock);
	spin_lock_init(&h->scan_lock);
	spin_lock_init(&h->reset_lock);
	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);

	/* Allocate and clear per-cpu variable lockup_detected */
	h->lockup_detected = alloc_percpu(u32);
	if (!h->lockup_detected) {
		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
		rc = -ENOMEM;
		goto clean1;	/* aer/h */
	}
	set_lockup_detected_for_all_cpus(h, 0);

	rc = hpsa_pci_init(h);
	if (rc)
		goto clean2;	/* lu, aer/h */

	/* relies on h-> settings made by hpsa_pci_init, including
	 * interrupt_mode h->intr */
	rc = hpsa_scsi_host_alloc(h);
	if (rc)
		goto clean2_5;	/* pci, lu, aer/h */

	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
	if (rc != 0) {
		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
		if (rc != 0) {
			dev_err(&pdev->dev, "no suitable DMA available\n");
			goto clean3;	/* shost, pci, lu, aer/h */
		}
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);

	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
	if (rc)
		goto clean3;	/* shost, pci, lu, aer/h */
	rc = hpsa_alloc_cmd_pool(h);
	if (rc)
		goto clean4;	/* irq, shost, pci, lu, aer/h */
	rc = hpsa_alloc_sg_chain_blocks(h);
	if (rc)
		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
	init_waitqueue_head(&h->scan_wait_queue);
	init_waitqueue_head(&h->event_sync_wait_queue);
	mutex_init(&h->reset_mutex);
	h->scan_finished = 1; /* no scan currently in progress */
	h->scan_waiting = 0;

	pci_set_drvdata(pdev, h);
	h->ndevices = 0;

	spin_lock_init(&h->devlock);
	rc = hpsa_put_ctlr_into_performant_mode(h);
	if (rc)
		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */

	/* create the resubmit workqueue */
	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
	if (!h->rescan_ctlr_wq) {
		rc = -ENOMEM;
		goto clean7;
	}

	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
	if (!h->resubmit_wq) {
		rc = -ENOMEM;
		goto clean7;	/* aer/h */
	}

	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
	if (!h->monitor_ctlr_wq) {
		rc = -ENOMEM;
		goto clean7;
	}

	/*
	 * At this point, the controller is ready to take commands.
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
		hpsa_free_irqs(h);
		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
					hpsa_intx_discard_completions);
		if (rc) {
			dev_warn(&h->pdev->dev,
				"Failed to request_irq after soft reset.\n");
			/*
			 * cannot goto clean7 or free_irqs will be called
			 * again. Instead, do its work
			 */
			hpsa_free_performant_mode(h);	/* clean7 */
			hpsa_free_sg_chain_blocks(h);	/* clean6 */
			hpsa_free_cmd_pool(h);		/* clean5 */
			/*
			 * skip hpsa_free_irqs(h) clean4 since that
			 * was just called before request_irqs failed
			 */
			goto clean3;
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
			goto clean7;

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
			/* don't goto clean, we already unallocated */
			return -ENODEV;

		goto reinit_after_soft_reset;
	}

	/* Enable Accelerated IO path at driver layer */
	h->acciopath_status = 1;
	/* Disable discovery polling.*/
	h->discovery_polling = 0;


	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

	hpsa_hba_inquiry(h);

	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
	if (!h->lastlogicals)
		dev_info(&h->pdev->dev,
			"Can't track change to report lun data\n");

	/* hook into SCSI subsystem */
	rc = hpsa_scsi_add_host(h);
	if (rc)
		goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */

	/* Monitor the controller for firmware lockups */
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
	schedule_delayed_work(&h->event_monitor_work,
				HPSA_EVENT_MONITOR_INTERVAL);
	return 0;

clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
	kfree(h->lastlogicals);
clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
	hpsa_free_performant_mode(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
	hpsa_free_sg_chain_blocks(h);
clean5: /* cmd, irq, shost, pci, lu, aer/h */
	hpsa_free_cmd_pool(h);
clean4: /* irq, shost, pci, lu, aer/h */
	hpsa_free_irqs(h);
clean3: /* shost, pci, lu, aer/h */
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
clean2_5: /* pci, lu, aer/h */
	hpsa_free_pci_init(h);
clean2: /* lu, aer/h */
	if (h->lockup_detected) {
		free_percpu(h->lockup_detected);
		h->lockup_detected = NULL;
	}
clean1:	/* wq/aer/h */
	if (h->resubmit_wq) {
		destroy_workqueue(h->resubmit_wq);
		h->resubmit_wq = NULL;
	}
	if (h->rescan_ctlr_wq) {
		destroy_workqueue(h->rescan_ctlr_wq);
		h->rescan_ctlr_wq = NULL;
	}
	if (h->monitor_ctlr_wq) {
		destroy_workqueue(h->monitor_ctlr_wq);
		h->monitor_ctlr_wq = NULL;
	}
	hpda_free_ctlr_info(h);
	return rc;
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;
	int rc;

	if (unlikely(lockup_detected(h)))
		return;
	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

	c = cmd_alloc(h);

	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
			DEFAULT_TIMEOUT);
	if (rc)
		goto out;
	if (c->err_info->CommandStatus != 0)
out:
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
	cmd_free(h, c);
	kfree(flush_buf);
}

/* Make controller gather fresh report lun data each time we
 * send down a report luns request
 */
static void hpsa_disable_rld_caching(struct ctlr_info *h)
{
	u32 *options;
	struct CommandList *c;
	int rc;

	/* Don't bother trying to set diag options if locked up */
	if (unlikely(h->lockup_detected))
		return;

	options = kzalloc(sizeof(*options), GFP_KERNEL);
	if (!options)
		return;

	c = cmd_alloc(h);

	/* first, get the current diag options settings */
	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD))
		goto errout;

	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
			NO_TIMEOUT);
	if ((rc != 0) || (c->err_info->CommandStatus != 0))
		goto errout;

	/* Now, set the bit for disabling the RLD caching */
	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;

	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD))
		goto errout;

	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
			NO_TIMEOUT);
	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
		goto errout;

	/* Now verify that it got set: */
	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD))
		goto errout;

	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
			NO_TIMEOUT);
	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
		goto errout;

	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
		goto out;

errout:
	dev_err(&h->pdev->dev,
			"Error: failed to disable report lun data caching.\n");
out:
	cmd_free(h, c);
	kfree(options);
}

static void __hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	hpsa_free_irqs(h);			/* init_one 4 */
	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	__hpsa_shutdown(pdev);
	pci_disable_device(pdev);
}

static void hpsa_free_device_info(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->ndevices; i++) {
		kfree(h->dev[i]);
		h->dev[i] = NULL;
	}
}

static void hpsa_remove_one(struct pci_dev *pdev)
{
	struct ctlr_info *h;
	unsigned long flags;

	if (pci_get_drvdata(pdev) == NULL) {
		dev_err(&pdev->dev, "unable to remove device\n");
		return;
	}
	h = pci_get_drvdata(pdev);

	/* Get rid of any controller monitoring work items */
	spin_lock_irqsave(&h->lock, flags);
	h->remove_in_progress = 1;
	spin_unlock_irqrestore(&h->lock, flags);
	cancel_delayed_work_sync(&h->monitor_ctlr_work);
	cancel_delayed_work_sync(&h->rescan_ctlr_work);
	cancel_delayed_work_sync(&h->event_monitor_work);
	destroy_workqueue(h->rescan_ctlr_wq);
	destroy_workqueue(h->resubmit_wq);
	destroy_workqueue(h->monitor_ctlr_wq);

	hpsa_delete_sas_host(h);

	/*
	 * Call before disabling interrupts.
	 * scsi_remove_host can trigger I/O operations especially
	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
	 * operations which cannot complete and will hang the system.
	 */
	if (h->scsi_host)
		scsi_remove_host(h->scsi_host);		/* init_one 8 */
	/* includes hpsa_free_irqs - init_one 4 */
	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
	__hpsa_shutdown(pdev);

	hpsa_free_device_info(h);		/* scan */

	kfree(h->hba_inquiry_data);			/* init_one 10 */
	h->hba_inquiry_data = NULL;			/* init_one 10 */
	hpsa_free_ioaccel2_sg_chain_blocks(h);
	hpsa_free_performant_mode(h);			/* init_one 7 */
	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
	hpsa_free_cmd_pool(h);				/* init_one 5 */
	kfree(h->lastlogicals);

	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */

	scsi_host_put(h->scsi_host);			/* init_one 3 */
	h->scsi_host = NULL;				/* init_one 3 */

	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
	hpsa_free_pci_init(h);				/* init_one 2.5 */

	free_percpu(h->lockup_detected);		/* init_one 2 */
	h->lockup_detected = NULL;			/* init_one 2 */

	hpda_free_ctlr_info(h);				/* init_one 1 */
}

static int __maybe_unused hpsa_suspend(
	__attribute__((unused)) struct device *dev)
{
	return -ENOSYS;
}

static int __maybe_unused hpsa_resume
	(__attribute__((unused)) struct device *dev)
{
	return -ENOSYS;
}

static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);

static struct pci_driver hpsa_pci_driver = {
	.name = HPSA,
	.probe = hpsa_init_one,
	.remove = hpsa_remove_one,
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.driver.pm = &hpsa_pm_ops,
};

/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
	int nsgs, int min_blocks, u32 *bucket_map)
{
	int i, j, b, size;

	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
		size = i + min_blocks;
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
		for (j = 0; j < num_buckets; j++) {
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

/*
 * return -ENODEV on err, 0 on success (or no action)
 * allocates numerous items that must be freed later
 */
static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
{
	int i;
	unsigned long register_value;
	unsigned long transMethod = CFGTBL_Trans_Performant |
			(trans_support & CFGTBL_Trans_use_short_tags) |
				CFGTBL_Trans_enable_directed_msix |
			(trans_support & (CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_io_accel2));
	struct access_method access = SA5_performant_access;

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
#define MIN_IOACCEL2_BFT_ENTRY 5
#define HPSA_IOACCEL2_HEADER_SZ 4
	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
			13, 14, 15, 16, 17, 18, 19,
			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
				 16 * MIN_IOACCEL2_BFT_ENTRY);
	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

	/* If the controller supports either ioaccel method then
	 * we can also use the RAID stack submit path that does not
	 * perform the superfluous readl() after each command submission.
	 */
	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
		access = SA5_performant_access_no_read;

	/* Controller spec: zero out this buffer. */
	for (i = 0; i < h->nreply_queues; i++)
		memset(h->reply_queue[i].head, 0, h->reply_queue_size);

	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
	writel(h->nreply_queues, &h->transtable->RepQCount);
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
		writel(h->reply_queue[i].busaddr,
			&h->transtable->RepQAddr[i].lower);
	}

	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
	/*
	 * enable outbound interrupt coalescing in accelerator mode;
	 */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		access = SA5_ioaccel_mode1_access;
		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
	} else
		if (trans_support & CFGTBL_Trans_io_accel2)
			access = SA5_ioaccel_mode2_access;
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - doorbell timeout\n");
		return -ENODEV;
	}
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - transport not active\n");
		return -ENODEV;
	}
	/* Change the access methods to the performant access methods */
	h->access = access;
	h->transMethod = transMethod;

	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
		(trans_support & CFGTBL_Trans_io_accel2)))
		return 0;

	if (trans_support & CFGTBL_Trans_io_accel1) {
		/* Set up I/O accelerator mode */
		for (i = 0; i < h->nreply_queues; i++) {
			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
			h->reply_queue[i].current_entry =
				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
		}
		bft[7] = h->ioaccel_maxsg + 8;
		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
				h->ioaccel1_blockFetchTable);

		/* initialize all reply queue entries to unused */
		for (i = 0; i < h->nreply_queues; i++)
			memset(h->reply_queue[i].head,
				(u8) IOACCEL_MODE1_REPLY_UNUSED,
				h->reply_queue_size);

		/* set all the constant fields in the accelerator command
		 * frames once at init time to save CPU cycles later.
		 */
		for (i = 0; i < h->nr_cmds; i++) {
			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];

			cp->function = IOACCEL1_FUNCTION_SCSIIO;
			cp->err_info = (u32) (h->errinfo_pool_dhandle +
					(i * sizeof(struct ErrorInfo)));
			cp->err_info_len = sizeof(struct ErrorInfo);
			cp->sgl_offset = IOACCEL1_SGLOFFSET;
			cp->host_context_flags =
				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
			cp->timeout_sec = 0;
			cp->ReplyQueue = 0;
			cp->tag =
				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
			cp->host_addr =
				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
					(i * sizeof(struct io_accel1_cmd)));
		}
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		u64 cfg_offset, cfg_base_addr_index;
		u32 bft2_offset, cfg_base_addr;

		hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
				    &cfg_base_addr_index, &cfg_offset);
		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
				4, h->ioaccel2_blockFetchTable);
		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
		BUILD_BUG_ON(offsetof(struct CfgTable,
				io_accel_request_size_offset) != 0xb8);
		h->ioaccel2_bft2_regs =
			remap_pci_mem(pci_resource_start(h->pdev,
					cfg_base_addr_index) +
					cfg_offset + bft2_offset,
					ARRAY_SIZE(bft2) *
					sizeof(*h->ioaccel2_bft2_regs));
		for (i = 0; i < ARRAY_SIZE(bft2); i++)
			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
	}
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - enabling ioaccel mode\n");
		return -ENODEV;
	}
	return 0;
}

/* Free ioaccel1 mode command blocks and block fetch table */
static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
{
	if (h->ioaccel_cmd_pool) {
		dma_free_coherent(&h->pdev->dev,
				  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
				  h->ioaccel_cmd_pool,
				  h->ioaccel_cmd_pool_dhandle);
		h->ioaccel_cmd_pool = NULL;
		h->ioaccel_cmd_pool_dhandle = 0;
	}
	kfree(h->ioaccel1_blockFetchTable);
	h->ioaccel1_blockFetchTable = NULL;
}

/* Allocate ioaccel1 mode command blocks and block fetch table */
static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
{
	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;

	/* Command structures must be aligned on a 128-byte boundary
	 * because the 7 lower bits of the address are used by the
	 * hardware.
	 */
	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
			IOACCEL1_COMMANDLIST_ALIGNMENT);
	h->ioaccel_cmd_pool =
		dma_alloc_coherent(&h->pdev->dev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);

	h->ioaccel1_blockFetchTable =
		kmalloc(((h->ioaccel_maxsg + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel_cmd_pool == NULL) ||
		(h->ioaccel1_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
	return 0;

clean_up:
	hpsa_free_ioaccel1_cmd_and_bft(h);
	return -ENOMEM;
}

/* Free ioaccel2 mode command blocks and block fetch table */
static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
{
	hpsa_free_ioaccel2_sg_chain_blocks(h);

	if (h->ioaccel2_cmd_pool) {
		dma_free_coherent(&h->pdev->dev,
				  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
				  h->ioaccel2_cmd_pool,
				  h->ioaccel2_cmd_pool_dhandle);
		h->ioaccel2_cmd_pool = NULL;
		h->ioaccel2_cmd_pool_dhandle = 0;
	}
	kfree(h->ioaccel2_blockFetchTable);
	h->ioaccel2_blockFetchTable = NULL;
}

/* Allocate ioaccel2 mode command blocks and block fetch table */
static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
{
	int rc;

	/* Allocate ioaccel2 mode command blocks and block fetch table */

	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;

	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
			IOACCEL2_COMMANDLIST_ALIGNMENT);
	h->ioaccel2_cmd_pool =
		dma_alloc_coherent(&h->pdev->dev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);

	h->ioaccel2_blockFetchTable =
		kmalloc(((h->ioaccel_maxsg + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel2_cmd_pool == NULL) ||
		(h->ioaccel2_blockFetchTable == NULL)) {
		rc = -ENOMEM;
		goto clean_up;
	}

	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
	if (rc)
		goto clean_up;

	memset(h->ioaccel2_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
	return 0;

clean_up:
	hpsa_free_ioaccel2_cmd_and_bft(h);
	return rc;
}

/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
static void hpsa_free_performant_mode(struct ctlr_info *h)
{
	kfree(h->blockFetchTable);
	h->blockFetchTable = NULL;
	hpsa_free_reply_queues(h);
	hpsa_free_ioaccel1_cmd_and_bft(h);
	hpsa_free_ioaccel2_cmd_and_bft(h);
}

/* return -ENODEV on error, 0 on success (or no action)
 * allocates numerous items that must be freed later
 */
static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
{
	u32 trans_support;
	int i, rc;

	if (hpsa_simple_mode)
		return 0;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
		return 0;

	/* Check for I/O accelerator mode support */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
		if (rc)
			return rc;
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
		if (rc)
			return rc;
	}

	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
	hpsa_get_max_perf_mode_cmds(h);
	/* Performant mode ring buffer and supporting data structures */
	h->reply_queue_size = h->max_commands * sizeof(u64);

	for (i = 0; i < h->nreply_queues; i++) {
		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
						h->reply_queue_size,
						&h->reply_queue[i].busaddr,
						GFP_KERNEL);
		if (!h->reply_queue[i].head) {
			rc = -ENOMEM;
			goto clean1;	/* rq, ioaccel */
		}
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

	/* Need a block fetch table for performant mode */
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
				sizeof(u32)), GFP_KERNEL);
	if (!h->blockFetchTable) {
		rc = -ENOMEM;
		goto clean1;	/* rq, ioaccel */
	}

	rc = hpsa_enter_performant_mode(h, trans_support);
	if (rc)
		goto clean2;	/* bft, rq, ioaccel */
	return 0;

clean2:	/* bft, rq, ioaccel */
	kfree(h->blockFetchTable);
	h->blockFetchTable = NULL;
clean1:	/* rq, ioaccel */
	hpsa_free_reply_queues(h);
	hpsa_free_ioaccel1_cmd_and_bft(h);
	hpsa_free_ioaccel2_cmd_and_bft(h);
	return rc;
}

static int is_accelerated_cmd(struct CommandList *c)
{
	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
}

static void hpsa_drain_accel_commands(struct ctlr_info *h)
{
	struct CommandList *c = NULL;
	int i, accel_cmds_out;
	int refcount;

	do { /* wait for all outstanding ioaccel commands to drain out */
		accel_cmds_out = 0;
		for (i = 0; i < h->nr_cmds; i++) {
			c = h->cmd_pool + i;
			refcount = atomic_inc_return(&c->refcount);
			if (refcount > 1) /* Command is allocated */
				accel_cmds_out += is_accelerated_cmd(c);
			cmd_free(h, c);
		}
		if (accel_cmds_out <= 0)
			break;
		msleep(100);
	} while (1);
}

static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
				struct hpsa_sas_port *hpsa_sas_port)
{
	struct hpsa_sas_phy *hpsa_sas_phy;
	struct sas_phy *phy;

	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
	if (!hpsa_sas_phy)
		return NULL;

	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
		hpsa_sas_port->next_phy_index);
	if (!phy) {
		kfree(hpsa_sas_phy);
		return NULL;
	}

	hpsa_sas_port->next_phy_index++;
	hpsa_sas_phy->phy = phy;
	hpsa_sas_phy->parent_port = hpsa_sas_port;

	return hpsa_sas_phy;
}

static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
{
	struct sas_phy *phy = hpsa_sas_phy->phy;

	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
	if (hpsa_sas_phy->added_to_port)
		list_del(&hpsa_sas_phy->phy_list_entry);
	sas_phy_delete(phy);
	kfree(hpsa_sas_phy);
}

static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
{
	int rc;
	struct hpsa_sas_port *hpsa_sas_port;
	struct sas_phy *phy;
	struct sas_identify *identify;

	hpsa_sas_port = hpsa_sas_phy->parent_port;
	phy = hpsa_sas_phy->phy;

	identify = &phy->identify;
	memset(identify, 0, sizeof(*identify));
	identify->sas_address = hpsa_sas_port->sas_address;
	identify->device_type = SAS_END_DEVICE;
	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
	identify->target_port_protocols = SAS_PROTOCOL_STP;
	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;

	rc = sas_phy_add(hpsa_sas_phy->phy);
	if (rc)
		return rc;

	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
	list_add_tail(&hpsa_sas_phy->phy_list_entry,
			&hpsa_sas_port->phy_list_head);
	hpsa_sas_phy->added_to_port = true;

	return 0;
}

static int
	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
				struct sas_rphy *rphy)
{
	struct sas_identify *identify;

	identify = &rphy->identify;
	identify->sas_address = hpsa_sas_port->sas_address;
	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
	identify->target_port_protocols = SAS_PROTOCOL_STP;

	return sas_rphy_add(rphy);
}

static struct hpsa_sas_port
	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
				u64 sas_address)
{
	int rc;
	struct hpsa_sas_port *hpsa_sas_port;
	struct sas_port *port;

	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
	if (!hpsa_sas_port)
		return NULL;

	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
	hpsa_sas_port->parent_node = hpsa_sas_node;

	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
	if (!port)
		goto free_hpsa_port;

	rc = sas_port_add(port);
	if (rc)
		goto free_sas_port;

	hpsa_sas_port->port = port;
	hpsa_sas_port->sas_address = sas_address;
	list_add_tail(&hpsa_sas_port->port_list_entry,
			&hpsa_sas_node->port_list_head);

	return hpsa_sas_port;

free_sas_port:
	sas_port_free(port);
free_hpsa_port:
	kfree(hpsa_sas_port);

	return NULL;
}

static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
{
	struct hpsa_sas_phy *hpsa_sas_phy;
	struct hpsa_sas_phy *next;

	list_for_each_entry_safe(hpsa_sas_phy, next,
			&hpsa_sas_port->phy_list_head, phy_list_entry)
		hpsa_free_sas_phy(hpsa_sas_phy);

	sas_port_delete(hpsa_sas_port->port);
	list_del(&hpsa_sas_port->port_list_entry);
	kfree(hpsa_sas_port);
}

static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
{
	struct hpsa_sas_node *hpsa_sas_node;

	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
	if (hpsa_sas_node) {
		hpsa_sas_node->parent_dev = parent_dev;
		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
	}

	return hpsa_sas_node;
}

static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
{
	struct hpsa_sas_port *hpsa_sas_port;
	struct hpsa_sas_port *next;

	if (!hpsa_sas_node)
		return;

	list_for_each_entry_safe(hpsa_sas_port, next,
			&hpsa_sas_node->port_list_head, port_list_entry)
		hpsa_free_sas_port(hpsa_sas_port);

	kfree(hpsa_sas_node);
}

static struct hpsa_scsi_dev_t
	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
					struct sas_rphy *rphy)
{
	int i;
	struct hpsa_scsi_dev_t *device;

	for (i = 0; i < h->ndevices; i++) {
		device = h->dev[i];
		if (!device->sas_port)
			continue;
		if (device->sas_port->rphy == rphy)
			return device;
	}

	return NULL;
}

static int hpsa_add_sas_host(struct ctlr_info *h)
{
	int rc;
	struct device *parent_dev;
	struct hpsa_sas_node *hpsa_sas_node;
	struct hpsa_sas_port *hpsa_sas_port;
	struct hpsa_sas_phy *hpsa_sas_phy;

	parent_dev = &h->scsi_host->shost_dev;

	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
	if (!hpsa_sas_node)
		return -ENOMEM;

	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
	if (!hpsa_sas_port) {
		rc = -ENODEV;
		goto free_sas_node;
	}

	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
	if (!hpsa_sas_phy) {
		rc = -ENODEV;
		goto free_sas_port;
	}

	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
	if (rc)
		goto free_sas_phy;

	h->sas_host = hpsa_sas_node;

	return 0;

free_sas_phy:
	sas_phy_free(hpsa_sas_phy->phy);
	kfree(hpsa_sas_phy);
free_sas_port:
	hpsa_free_sas_port(hpsa_sas_port);
free_sas_node:
	hpsa_free_sas_node(hpsa_sas_node);

	return rc;
}

static void hpsa_delete_sas_host(struct ctlr_info *h)
{
	hpsa_free_sas_node(h->sas_host);
}

static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
				struct hpsa_scsi_dev_t *device)
{
	int rc;
	struct hpsa_sas_port *hpsa_sas_port;
	struct sas_rphy *rphy;

	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
	if (!hpsa_sas_port)
		return -ENOMEM;

	rphy = sas_end_device_alloc(hpsa_sas_port->port);
	if (!rphy) {
		rc = -ENODEV;
		goto free_sas_port;
	}

	hpsa_sas_port->rphy = rphy;
	device->sas_port = hpsa_sas_port;

	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
	if (rc)
		goto free_sas_rphy;

	return 0;

free_sas_rphy:
	sas_rphy_free(rphy);
free_sas_port:
	hpsa_free_sas_port(hpsa_sas_port);
	device->sas_port = NULL;

	return rc;
}

static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
{
	if (device->sas_port) {
		hpsa_free_sas_port(device->sas_port);
		device->sas_port = NULL;
	}
}

static int
hpsa_sas_get_linkerrors(struct sas_phy *phy)
{
	return 0;
}

static int
hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
{
	struct Scsi_Host *shost = phy_to_shost(rphy);
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *sd;

	if (!shost)
		return -ENXIO;

	h = shost_to_hba(shost);

	if (!h)
		return -ENXIO;

	sd = hpsa_find_device_by_sas_rphy(h, rphy);
	if (!sd)
		return -ENXIO;

	*identifier = sd->eli;

	return 0;
}

static int
hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
{
	return -ENXIO;
}

static int
hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
{
	return 0;
}

static int
hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
{
	return 0;
}

static int
hpsa_sas_phy_setup(struct sas_phy *phy)
{
	return 0;
}

static void
hpsa_sas_phy_release(struct sas_phy *phy)
{
}

static int
hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
{
	return -EINVAL;
}

static struct sas_function_template hpsa_sas_transport_functions = {
	.get_linkerrors = hpsa_sas_get_linkerrors,
	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
	.get_bay_identifier = hpsa_sas_get_bay_identifier,
	.phy_reset = hpsa_sas_phy_reset,
	.phy_enable = hpsa_sas_phy_enable,
	.phy_setup = hpsa_sas_phy_setup,
	.phy_release = hpsa_sas_phy_release,
	.set_phy_speed = hpsa_sas_phy_speed,
};

/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
	int rc;

	hpsa_sas_transport_template =
		sas_attach_transport(&hpsa_sas_transport_functions);
	if (!hpsa_sas_transport_template)
		return -ENODEV;

	rc = pci_register_driver(&hpsa_pci_driver);

	if (rc)
		sas_release_transport(hpsa_sas_transport_template);

	return rc;
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
	sas_release_transport(hpsa_sas_transport_template);
}

static void __attribute__((unused)) verify_offsets(void)
{
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)

	VERIFY_OFFSET(structure_size, 0);
	VERIFY_OFFSET(volume_blk_size, 4);
	VERIFY_OFFSET(volume_blk_cnt, 8);
	VERIFY_OFFSET(phys_blk_shift, 16);
	VERIFY_OFFSET(parity_rotation_shift, 17);
	VERIFY_OFFSET(strip_size, 18);
	VERIFY_OFFSET(disk_starting_blk, 20);
	VERIFY_OFFSET(disk_blk_cnt, 28);
	VERIFY_OFFSET(data_disks_per_row, 36);
	VERIFY_OFFSET(metadata_disks_per_row, 38);
	VERIFY_OFFSET(row_cnt, 40);
	VERIFY_OFFSET(layout_map_count, 42);
	VERIFY_OFFSET(flags, 44);
	VERIFY_OFFSET(dekindex, 46);
	/* VERIFY_OFFSET(reserved, 48 */
	VERIFY_OFFSET(data, 64);

#undef VERIFY_OFFSET

#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)

	VERIFY_OFFSET(IU_type, 0);
	VERIFY_OFFSET(direction, 1);
	VERIFY_OFFSET(reply_queue, 2);
	/* VERIFY_OFFSET(reserved1, 3);  */
	VERIFY_OFFSET(scsi_nexus, 4);
	VERIFY_OFFSET(Tag, 8);
	VERIFY_OFFSET(cdb, 16);
	VERIFY_OFFSET(cciss_lun, 32);
	VERIFY_OFFSET(data_len, 40);
	VERIFY_OFFSET(cmd_priority_task_attr, 44);
	VERIFY_OFFSET(sg_count, 45);
	/* VERIFY_OFFSET(reserved3 */
	VERIFY_OFFSET(err_ptr, 48);
	VERIFY_OFFSET(err_len, 56);
	/* VERIFY_OFFSET(reserved4  */
	VERIFY_OFFSET(sg, 64);

#undef VERIFY_OFFSET

#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)

	VERIFY_OFFSET(dev_handle, 0x00);
	VERIFY_OFFSET(reserved1, 0x02);
	VERIFY_OFFSET(function, 0x03);
	VERIFY_OFFSET(reserved2, 0x04);
	VERIFY_OFFSET(err_info, 0x0C);
	VERIFY_OFFSET(reserved3, 0x10);
	VERIFY_OFFSET(err_info_len, 0x12);
	VERIFY_OFFSET(reserved4, 0x13);
	VERIFY_OFFSET(sgl_offset, 0x14);
	VERIFY_OFFSET(reserved5, 0x15);
	VERIFY_OFFSET(transfer_len, 0x1C);
	VERIFY_OFFSET(reserved6, 0x20);
	VERIFY_OFFSET(io_flags, 0x24);
	VERIFY_OFFSET(reserved7, 0x26);
	VERIFY_OFFSET(LUN, 0x34);
	VERIFY_OFFSET(control, 0x3C);
	VERIFY_OFFSET(CDB, 0x40);
	VERIFY_OFFSET(reserved8, 0x50);
	VERIFY_OFFSET(host_context_flags, 0x60);
	VERIFY_OFFSET(timeout_sec, 0x62);
	VERIFY_OFFSET(ReplyQueue, 0x64);
	VERIFY_OFFSET(reserved9, 0x65);
	VERIFY_OFFSET(tag, 0x68);
	VERIFY_OFFSET(host_addr, 0x70);
	VERIFY_OFFSET(CISS_LUN, 0x78);
	VERIFY_OFFSET(SG, 0x78 + 8);
#undef VERIFY_OFFSET
}

module_init(hpsa_init);
module_exit