#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/can/dev.h>
#include <linux/clk.h>
#include <linux/errno.h>
#include <linux/ethtool.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/types.h>
#define RCANFD_DRV_NAME "rcar_canfd"
#define RCANFD_GRMCFG_RCMC BIT(0)
#define RCANFD_GCFG_EEFE BIT(6)
#define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */
#define RCANFD_GCFG_DCS BIT(4)
#define RCANFD_GCFG_DCE BIT(1)
#define RCANFD_GCFG_TPRI BIT(0)
#define RCANFD_GCTR_TSRST BIT(16)
#define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */
#define RCANFD_GCTR_THLEIE BIT(10)
#define RCANFD_GCTR_MEIE BIT(9)
#define RCANFD_GCTR_DEIE BIT(8)
#define RCANFD_GCTR_GSLPR BIT(2)
#define RCANFD_GCTR_GMDC_MASK (0x3)
#define RCANFD_GCTR_GMDC_GOPM (0x0)
#define RCANFD_GCTR_GMDC_GRESET (0x1)
#define RCANFD_GCTR_GMDC_GTEST (0x2)
#define RCANFD_GSTS_GRAMINIT BIT(3)
#define RCANFD_GSTS_GSLPSTS BIT(2)
#define RCANFD_GSTS_GHLTSTS BIT(1)
#define RCANFD_GSTS_GRSTSTS BIT(0)
#define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3))
#define RCANFD_GERFL_EEF0_7 GENMASK(23, 16)
#define RCANFD_GERFL_EEF(ch) BIT(16 + (ch))
#define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */
#define RCANFD_GERFL_THLES BIT(2)
#define RCANFD_GERFL_MES BIT(1)
#define RCANFD_GERFL_DEF BIT(0)
#define RCANFD_GERFL_ERR(gpriv, x) \
((x) & (reg_gen4(gpriv, RCANFD_GERFL_EEF0_7, \
RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \
RCANFD_GERFL_MES | \
((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
#define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
(((x) & reg_gen4(gpriv, 0x1ff, 0xff)) << \
(reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8)))
#define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
(((x) >> (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) & \
reg_gen4(gpriv, 0x1ff, 0xff))
#define RCANFD_GAFLECTR_AFLDAE BIT(8)
#define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_gen4(gpriv, 0x7f, 0x1f))
#define RCANFD_GAFLID_GAFLLB BIT(29)
#define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x))
#define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24)
#define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20)
#define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16)
#define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0)
#define RCANFD_NCFG_NTSEG2(gpriv, x) \
(((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 25, 24))
#define RCANFD_NCFG_NTSEG1(gpriv, x) \
(((x) & reg_gen4(gpriv, 0xff, 0x7f)) << reg_gen4(gpriv, 17, 16))
#define RCANFD_NCFG_NSJW(gpriv, x) \
(((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 10, 11))
#define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0)
#define RCANFD_CCTR_CTME BIT(24)
#define RCANFD_CCTR_ERRD BIT(23)
#define RCANFD_CCTR_BOM_MASK (0x3 << 21)
#define RCANFD_CCTR_BOM_ISO (0x0 << 21)
#define RCANFD_CCTR_BOM_BENTRY (0x1 << 21)
#define RCANFD_CCTR_BOM_BEND (0x2 << 21)
#define RCANFD_CCTR_TDCVFIE BIT(19)
#define RCANFD_CCTR_SOCOIE BIT(18)
#define RCANFD_CCTR_EOCOIE BIT(17)
#define RCANFD_CCTR_TAIE BIT(16)
#define RCANFD_CCTR_ALIE BIT(15)
#define RCANFD_CCTR_BLIE BIT(14)
#define RCANFD_CCTR_OLIE BIT(13)
#define RCANFD_CCTR_BORIE BIT(12)
#define RCANFD_CCTR_BOEIE BIT(11)
#define RCANFD_CCTR_EPIE BIT(10)
#define RCANFD_CCTR_EWIE BIT(9)
#define RCANFD_CCTR_BEIE BIT(8)
#define RCANFD_CCTR_CSLPR BIT(2)
#define RCANFD_CCTR_CHMDC_MASK (0x3)
#define RCANFD_CCTR_CHDMC_COPM (0x0)
#define RCANFD_CCTR_CHDMC_CRESET (0x1)
#define RCANFD_CCTR_CHDMC_CHLT (0x2)
#define RCANFD_CSTS_COMSTS BIT(7)
#define RCANFD_CSTS_RECSTS BIT(6)
#define RCANFD_CSTS_TRMSTS BIT(5)
#define RCANFD_CSTS_BOSTS BIT(4)
#define RCANFD_CSTS_EPSTS BIT(3)
#define RCANFD_CSTS_SLPSTS BIT(2)
#define RCANFD_CSTS_HLTSTS BIT(1)
#define RCANFD_CSTS_CRSTSTS BIT(0)
#define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff)
#define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff)
#define RCANFD_CERFL_ADERR BIT(14)
#define RCANFD_CERFL_B0ERR BIT(13)
#define RCANFD_CERFL_B1ERR BIT(12)
#define RCANFD_CERFL_CERR BIT(11)
#define RCANFD_CERFL_AERR BIT(10)
#define RCANFD_CERFL_FERR BIT(9)
#define RCANFD_CERFL_SERR BIT(8)
#define RCANFD_CERFL_ALF BIT(7)
#define RCANFD_CERFL_BLF BIT(6)
#define RCANFD_CERFL_OVLF BIT(5)
#define RCANFD_CERFL_BORF BIT(4)
#define RCANFD_CERFL_BOEF BIT(3)
#define RCANFD_CERFL_EPF BIT(2)
#define RCANFD_CERFL_EWF BIT(1)
#define RCANFD_CERFL_BEF BIT(0)
#define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */
#define RCANFD_DCFG_DSJW(gpriv, x) (((x) & reg_gen4(gpriv, 0xf, 0x7)) << 24)
#define RCANFD_DCFG_DTSEG2(gpriv, x) \
(((x) & reg_gen4(gpriv, 0x0f, 0x7)) << reg_gen4(gpriv, 16, 20))
#define RCANFD_DCFG_DTSEG1(gpriv, x) \
(((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 8, 16))
#define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0)
#define RCANFD_GEN4_FDCFG_CLOE BIT(30)
#define RCANFD_GEN4_FDCFG_FDOE BIT(28)
#define RCANFD_FDCFG_TDCE BIT(9)
#define RCANFD_FDCFG_TDCOC BIT(8)
#define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16)
#define RCANFD_RFCC_RFIM BIT(12)
#define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8)
#define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4)
#define RCANFD_RFCC_RFIE BIT(1)
#define RCANFD_RFCC_RFE BIT(0)
#define RCANFD_RFSTS_RFIF BIT(3)
#define RCANFD_RFSTS_RFMLT BIT(2)
#define RCANFD_RFSTS_RFFLL BIT(1)
#define RCANFD_RFSTS_RFEMP BIT(0)
#define RCANFD_RFID_RFIDE BIT(31)
#define RCANFD_RFID_RFRTR BIT(30)
#define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf)
#define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff)
#define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff)
#define RCANFD_RFFDSTS_RFFDF BIT(2)
#define RCANFD_RFFDSTS_RFBRS BIT(1)
#define RCANFD_RFFDSTS_RFESI BIT(0)
#define RCANFD_CFCC_CFTML(gpriv, x) \
(((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 16, 20))
#define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << reg_gen4(gpriv, 8, 16))
#define RCANFD_CFCC_CFIM BIT(12)
#define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << reg_gen4(gpriv, 21, 8))
#define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4)
#define RCANFD_CFCC_CFTXIE BIT(2)
#define RCANFD_CFCC_CFE BIT(0)
#define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff)
#define RCANFD_CFSTS_CFTXIF BIT(4)
#define RCANFD_CFSTS_CFMLT BIT(2)
#define RCANFD_CFSTS_CFFLL BIT(1)
#define RCANFD_CFSTS_CFEMP BIT(0)
#define RCANFD_CFID_CFIDE BIT(31)
#define RCANFD_CFID_CFRTR BIT(30)
#define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff)
#define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28)
#define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16)
#define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0)
#define RCANFD_CFFDCSTS_CFFDF BIT(2)
#define RCANFD_CFFDCSTS_CFBRS BIT(1)
#define RCANFD_CFFDCSTS_CFESI BIT(0)
#define RCANFD_CCFG(m) (0x0000 + (0x10 * (m)))
#define RCANFD_CCTR(m) (0x0004 + (0x10 * (m)))
#define RCANFD_CSTS(m) (0x0008 + (0x10 * (m)))
#define RCANFD_CERFL(m) (0x000C + (0x10 * (m)))
#define RCANFD_GCFG (0x0084)
#define RCANFD_GCTR (0x0088)
#define RCANFD_GSTS (0x008c)
#define RCANFD_GERFL (0x0090)
#define RCANFD_GTSC (0x0094)
#define RCANFD_GAFLECTR (0x0098)
#define RCANFD_GAFLCFG(ch) (0x009c + (0x04 * ((ch) / 2)))
#define RCANFD_RMNB (0x00a4)
#define RCANFD_RMND(y) (0x00a8 + (0x04 * (y)))
#define RCANFD_RFCC(gpriv, x) (reg_gen4(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
#define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20)
#define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40)
#define RCANFD_CFCC(gpriv, ch, idx) \
(reg_gen4(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
#define RCANFD_CFSTS(gpriv, ch, idx) \
(reg_gen4(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
#define RCANFD_CFPCTR(gpriv, ch, idx) \
(reg_gen4(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
#define RCANFD_FESTS (0x0238)
#define RCANFD_FFSTS (0x023c)
#define RCANFD_FMSTS (0x0240)
#define RCANFD_RFISTS (0x0244)
#define RCANFD_CFRISTS (0x0248)
#define RCANFD_CFTISTS (0x024c)
#define RCANFD_TMC(p) (0x0250 + (0x01 * (p)))
#define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p)))
#define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y)))
#define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y)))
#define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y)))
#define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y)))
#define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y)))
#define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m)))
#define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m)))
#define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m)))
#define RCANFD_THLCC(m) (0x0400 + (0x04 * (m)))
#define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m)))
#define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m)))
#define RCANFD_GTINTSTS0 (0x0460)
#define RCANFD_GTINTSTS1 (0x0464)
#define RCANFD_GTSTCFG (0x0468)
#define RCANFD_GTSTCTR (0x046c)
#define RCANFD_GLOCKK (0x047c)
#define RCANFD_GRMCFG (0x04fc)
#define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j)))
#define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j)))
#define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j)))
#define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j)))
#define RCANFD_C_GAFL_OFFSET (0x0500)
#define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q)))
#define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q)))
#define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q)))
#define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q)))
#define RCANFD_C_RFOFFSET (0x0e00)
#define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x)))
#define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
#define RCANFD_C_RFDF(x, df) \
(RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
#define RCANFD_C_CFOFFSET (0x0e80)
#define RCANFD_C_CFID(ch, idx) \
(RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
#define RCANFD_C_CFPTR(ch, idx) \
(RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
#define RCANFD_C_CFDF(ch, idx, df) \
(RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
#define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p)))
#define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p)))
#define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p)))
#define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p)))
#define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m)))
#define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r)))
#define RCANFD_GEN4_FDCFG(m) (0x1404 + (0x20 * (m)))
#define RCANFD_GEN4_GAFL_OFFSET (0x1800)
#define RCANFD_F_DCFG(gpriv, m) (reg_gen4(gpriv, 0x1400, 0x0500) + (0x20 * (m)))
#define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m)))
#define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m)))
#define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m)))
#define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m)))
#define RCANFD_F_GAFL_OFFSET (0x1000)
#define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q)))
#define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q)))
#define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q)))
#define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q)))
#define RCANFD_F_RFOFFSET(gpriv) reg_gen4(gpriv, 0x6000, 0x3000)
#define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
#define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
#define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
#define RCANFD_F_RFDF(gpriv, x, df) \
(RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
#define RCANFD_F_CFOFFSET(gpriv) reg_gen4(gpriv, 0x6400, 0x3400)
#define RCANFD_F_CFID(gpriv, ch, idx) \
(RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
#define RCANFD_F_CFPTR(gpriv, ch, idx) \
(RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
#define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
(RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
#define RCANFD_F_CFDF(gpriv, ch, idx, df) \
(RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
(0x04 * (df)))
#define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p)))
#define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p)))
#define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p)))
#define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b)))
#define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m)))
#define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r)))
#define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */
#define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */
#define RCANFD_NUM_CHANNELS 8 /* Eight channels max */
#define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1)
#define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16)
#define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */
#define RCANFD_RFFIFO_IDX 0
#define RCANFD_CFFIFO_IDX 0
enum rcar_canfd_fcanclk {
RCANFD_CANFDCLK = 0,
RCANFD_EXTCLK,
};
struct rcar_canfd_global;
struct rcar_canfd_hw_info {
u8 max_channels;
u8 postdiv;
unsigned shared_global_irqs:1;
unsigned multi_channel_irqs:1;
};
struct rcar_canfd_channel {
struct can_priv can;
struct net_device *ndev;
struct rcar_canfd_global *gpriv;
void __iomem *base;
struct phy *transceiver;
struct napi_struct napi;
u32 tx_head;
u32 tx_tail;
u32 channel;
spinlock_t tx_lock;
};
struct rcar_canfd_global {
struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
void __iomem *base;
struct platform_device *pdev;
struct clk *clkp;
struct clk *can_clk;
enum rcar_canfd_fcanclk fcan;
unsigned long channels_mask;
bool fdmode;
struct reset_control *rstc1;
struct reset_control *rstc2;
const struct rcar_canfd_hw_info *info;
};
static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
.name = RCANFD_DRV_NAME,
.tseg1_min = 2,
.tseg1_max = 128,
.tseg2_min = 2,
.tseg2_max = 32,
.sjw_max = 32,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
};
static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
.name = RCANFD_DRV_NAME,
.tseg1_min = 2,
.tseg1_max = 16,
.tseg2_min = 2,
.tseg2_max = 8,
.sjw_max = 8,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
};
static const struct can_bittiming_const rcar_canfd_bittiming_const = {
.name = RCANFD_DRV_NAME,
.tseg1_min = 4,
.tseg1_max = 16,
.tseg2_min = 2,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
};
static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
.max_channels = 2,
.postdiv = 2,
.shared_global_irqs = 1,
};
static const struct rcar_canfd_hw_info rcar_gen4_hw_info = {
.max_channels = 8,
.postdiv = 2,
.shared_global_irqs = 1,
};
static const struct rcar_canfd_hw_info rzg2l_hw_info = {
.max_channels = 2,
.postdiv = 1,
.multi_channel_irqs = 1,
};
static inline bool is_gen4(struct rcar_canfd_global *gpriv)
{
return gpriv->info == &rcar_gen4_hw_info;
}
static inline u32 reg_gen4(struct rcar_canfd_global *gpriv,
u32 gen4, u32 not_gen4)
{
return is_gen4(gpriv) ? gen4 : not_gen4;
}
static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
{
u32 data = readl(reg);
data &= ~mask;
data |= (val & mask);
writel(data, reg);
}
static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
{
return readl(base + (offset));
}
static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
{
writel(val, base + (offset));
}
static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
{
rcar_canfd_update(val, val, base + (reg));
}
static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
{
rcar_canfd_update(val, 0, base + (reg));
}
static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
u32 mask, u32 val)
{
rcar_canfd_update(mask, val, base + (reg));
}
static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
struct canfd_frame *cf, u32 off)
{
u32 i, lwords;
lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
for (i = 0; i < lwords; i++)
*((u32 *)cf->data + i) =
rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
}
static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
struct canfd_frame *cf, u32 off)
{
u32 i, lwords;
lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
for (i = 0; i < lwords; i++)
rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
*((u32 *)cf->data + i));
}
static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
{
u32 i;
for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
can_free_echo_skb(ndev, i, NULL);
}
static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
{
if (is_gen4(gpriv)) {
u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE
: RCANFD_GEN4_FDCFG_CLOE;
for_each_set_bit(ch, &gpriv->channels_mask,
gpriv->info->max_channels)
rcar_canfd_set_bit(gpriv->base, RCANFD_GEN4_FDCFG(ch),
val);
} else {
if (gpriv->fdmode)
rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
RCANFD_GRMCFG_RCMC);
else
rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
RCANFD_GRMCFG_RCMC);
}
}
static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
{
u32 sts, ch;
int err;
err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
!(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
if (err) {
dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
return err;
}
rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
(sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
if (err) {
dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
return err;
}
rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
rcar_canfd_set_mode(gpriv);
for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
rcar_canfd_clear_bit(gpriv->base,
RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_CHMDC_MASK,
RCANFD_CCTR_CHDMC_CRESET);
err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
(sts & RCANFD_CSTS_CRSTSTS),
2, 500000);
if (err) {
dev_dbg(&gpriv->pdev->dev,
"channel %u reset failed\n", ch);
return err;
}
}
return 0;
}
static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
{
u32 cfg, ch;
cfg = RCANFD_GCFG_EEFE;
if (gpriv->fdmode)
cfg |= RCANFD_GCFG_CMPOC;
if (gpriv->fcan != RCANFD_CANFDCLK)
cfg |= RCANFD_GCFG_DCS;
rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_ERRD);
rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_BOM_MASK,
RCANFD_CCTR_BOM_BENTRY);
}
}
static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
u32 ch)
{
u32 cfg;
int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
if (ch == 0) {
start = 0;
} else {
cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch));
start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg);
}
page = RCANFD_GAFL_PAGENUM(start);
rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
(RCANFD_GAFLECTR_AFLPN(gpriv, page) |
RCANFD_GAFLECTR_AFLDAE));
rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
if (is_gen4(gpriv))
offset = RCANFD_GEN4_GAFL_OFFSET;
else if (gpriv->fdmode)
offset = RCANFD_F_GAFL_OFFSET;
else
offset = RCANFD_C_GAFL_OFFSET;
rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start),
RCANFD_GAFLP1_GAFLFDP(ridx));
rcar_canfd_clear_bit(gpriv->base,
RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
}
static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
{
u32 cfg;
u16 rfdc, rfpls;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
rfdc = 2;
if (gpriv->fdmode)
rfpls = 7;
else
rfpls = 0;
cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
}
static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
{
u32 cfg;
u16 cftml, cfm, cfdc, cfpls;
cftml = 0;
cfm = 1;
cfdc = 2;
if (gpriv->fdmode)
cfpls = 7;
else
cfpls = 0;
cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
if (gpriv->fdmode)
rcar_canfd_write(gpriv->base,
RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
}
static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
{
u32 ctr;
rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
ctr = RCANFD_GCTR_MEIE;
if (gpriv->fdmode)
ctr |= RCANFD_GCTR_CFMPOFIE;
rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
}
static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
*gpriv)
{
rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
}
static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
*priv)
{
u32 ctr, ch = priv->channel;
rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
ctr = (RCANFD_CCTR_TAIE |
RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
}
static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
*priv)
{
u32 ctr, ch = priv->channel;
ctr = (RCANFD_CCTR_TAIE |
RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
}
static void rcar_canfd_global_error(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct rcar_canfd_global *gpriv = priv->gpriv;
struct net_device_stats *stats = &ndev->stats;
u32 ch = priv->channel;
u32 gerfl, sts;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
if (gerfl & RCANFD_GERFL_EEF(ch)) {
netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
stats->tx_dropped++;
}
if (gerfl & RCANFD_GERFL_MES) {
sts = rcar_canfd_read(priv->base,
RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
if (sts & RCANFD_CFSTS_CFMLT) {
netdev_dbg(ndev, "Tx Message Lost flag\n");
stats->tx_dropped++;
rcar_canfd_write(priv->base,
RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
sts & ~RCANFD_CFSTS_CFMLT);
}
sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
if (sts & RCANFD_RFSTS_RFMLT) {
netdev_dbg(ndev, "Rx Message Lost flag\n");
stats->rx_dropped++;
rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
sts & ~RCANFD_RFSTS_RFMLT);
}
}
if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
netdev_dbg(ndev, "global payload overflow interrupt\n");
}
rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
}
static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
u16 txerr, u16 rxerr)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
struct can_frame *cf;
struct sk_buff *skb;
u32 ch = priv->channel;
netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
skb = alloc_can_err_skb(ndev, &cf);
if (!skb) {
stats->rx_dropped++;
return;
}
if (cerfl & RCANFD_CERFL_BEF) {
netdev_dbg(ndev, "Bus error\n");
cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
cf->data[2] = CAN_ERR_PROT_UNSPEC;
priv->can.can_stats.bus_error++;
}
if (cerfl & RCANFD_CERFL_ADERR) {
netdev_dbg(ndev, "ACK Delimiter Error\n");
stats->tx_errors++;
cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
}
if (cerfl & RCANFD_CERFL_B0ERR) {
netdev_dbg(ndev, "Bit Error (dominant)\n");
stats->tx_errors++;
cf->data[2] |= CAN_ERR_PROT_BIT0;
}
if (cerfl & RCANFD_CERFL_B1ERR) {
netdev_dbg(ndev, "Bit Error (recessive)\n");
stats->tx_errors++;
cf->data[2] |= CAN_ERR_PROT_BIT1;
}
if (cerfl & RCANFD_CERFL_CERR) {
netdev_dbg(ndev, "CRC Error\n");
stats->rx_errors++;
cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
}
if (cerfl & RCANFD_CERFL_AERR) {
netdev_dbg(ndev, "ACK Error\n");
stats->tx_errors++;
cf->can_id |= CAN_ERR_ACK;
cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
}
if (cerfl & RCANFD_CERFL_FERR) {
netdev_dbg(ndev, "Form Error\n");
stats->rx_errors++;
cf->data[2] |= CAN_ERR_PROT_FORM;
}
if (cerfl & RCANFD_CERFL_SERR) {
netdev_dbg(ndev, "Stuff Error\n");
stats->rx_errors++;
cf->data[2] |= CAN_ERR_PROT_STUFF;
}
if (cerfl & RCANFD_CERFL_ALF) {
netdev_dbg(ndev, "Arbitration lost Error\n");
priv->can.can_stats.arbitration_lost++;
cf->can_id |= CAN_ERR_LOSTARB;
cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
}
if (cerfl & RCANFD_CERFL_BLF) {
netdev_dbg(ndev, "Bus Lock Error\n");
stats->rx_errors++;
cf->can_id |= CAN_ERR_BUSERROR;
}
if (cerfl & RCANFD_CERFL_EWF) {
netdev_dbg(ndev, "Error warning interrupt\n");
priv->can.state = CAN_STATE_ERROR_WARNING;
priv->can.can_stats.error_warning++;
cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
CAN_ERR_CRTL_RX_WARNING;
cf->data[6] = txerr;
cf->data[7] = rxerr;
}
if (cerfl & RCANFD_CERFL_EPF) {
netdev_dbg(ndev, "Error passive interrupt\n");
priv->can.state = CAN_STATE_ERROR_PASSIVE;
priv->can.can_stats.error_passive++;
cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
CAN_ERR_CRTL_RX_PASSIVE;
cf->data[6] = txerr;
cf->data[7] = rxerr;
}
if (cerfl & RCANFD_CERFL_BOEF) {
netdev_dbg(ndev, "Bus-off entry interrupt\n");
rcar_canfd_tx_failure_cleanup(ndev);
priv->can.state = CAN_STATE_BUS_OFF;
priv->can.can_stats.bus_off++;
can_bus_off(ndev);
cf->can_id |= CAN_ERR_BUSOFF;
}
if (cerfl & RCANFD_CERFL_OVLF) {
netdev_dbg(ndev,
"Overload Frame Transmission error interrupt\n");
stats->tx_errors++;
cf->can_id |= CAN_ERR_PROT;
cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
}
rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
RCANFD_CERFL_ERR(~cerfl));
netif_rx(skb);
}
static void rcar_canfd_tx_done(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct rcar_canfd_global *gpriv = priv->gpriv;
struct net_device_stats *stats = &ndev->stats;
u32 sts;
unsigned long flags;
u32 ch = priv->channel;
do {
u8 unsent, sent;
sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
stats->tx_packets++;
stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
spin_lock_irqsave(&priv->tx_lock, flags);
priv->tx_tail++;
sts = rcar_canfd_read(priv->base,
RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
unsent = RCANFD_CFSTS_CFMC(sts);
if (unsent != RCANFD_FIFO_DEPTH)
netif_wake_queue(ndev);
if (priv->tx_head - priv->tx_tail <= unsent) {
spin_unlock_irqrestore(&priv->tx_lock, flags);
break;
}
spin_unlock_irqrestore(&priv->tx_lock, flags);
} while (1);
rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
sts & ~RCANFD_CFSTS_CFTXIF);
}
static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
{
struct rcar_canfd_channel *priv = gpriv->ch[ch];
struct net_device *ndev = priv->ndev;
u32 gerfl;
gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
rcar_canfd_global_error(ndev);
}
static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
{
struct rcar_canfd_global *gpriv = dev_id;
u32 ch;
for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
rcar_canfd_handle_global_err(gpriv, ch);
return IRQ_HANDLED;
}
static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
{
struct rcar_canfd_channel *priv = gpriv->ch[ch];
u32 ridx = ch + RCANFD_RFFIFO_IDX;
u32 sts, cc;
sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
if (likely(sts & RCANFD_RFSTS_RFIF &&
cc & RCANFD_RFCC_RFIE)) {
if (napi_schedule_prep(&priv->napi)) {
rcar_canfd_clear_bit(priv->base,
RCANFD_RFCC(gpriv, ridx),
RCANFD_RFCC_RFIE);
__napi_schedule(&priv->napi);
}
}
}
static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
{
struct rcar_canfd_global *gpriv = dev_id;
u32 ch;
for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
rcar_canfd_handle_global_receive(gpriv, ch);
return IRQ_HANDLED;
}
static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
{
struct rcar_canfd_global *gpriv = dev_id;
u32 ch;
for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
rcar_canfd_handle_global_err(gpriv, ch);
rcar_canfd_handle_global_receive(gpriv, ch);
}
return IRQ_HANDLED;
}
static void rcar_canfd_state_change(struct net_device *ndev,
u16 txerr, u16 rxerr)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
enum can_state rx_state, tx_state, state = priv->can.state;
struct can_frame *cf;
struct sk_buff *skb;
if (txerr < 96 && rxerr < 96)
state = CAN_STATE_ERROR_ACTIVE;
else if (txerr < 128 && rxerr < 128)
state = CAN_STATE_ERROR_WARNING;
if (state != priv->can.state) {
netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
state, priv->can.state, txerr, rxerr);
skb = alloc_can_err_skb(ndev, &cf);
if (!skb) {
stats->rx_dropped++;
return;
}
tx_state = txerr >= rxerr ? state : 0;
rx_state = txerr <= rxerr ? state : 0;
can_change_state(ndev, cf, tx_state, rx_state);
netif_rx(skb);
}
}
static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
{
struct rcar_canfd_channel *priv = gpriv->ch[ch];
struct net_device *ndev = priv->ndev;
u32 sts;
sts = rcar_canfd_read(priv->base,
RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
if (likely(sts & RCANFD_CFSTS_CFTXIF))
rcar_canfd_tx_done(ndev);
}
static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
{
struct rcar_canfd_channel *priv = dev_id;
rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
return IRQ_HANDLED;
}
static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
{
struct rcar_canfd_channel *priv = gpriv->ch[ch];
struct net_device *ndev = priv->ndev;
u16 txerr, rxerr;
u32 sts, cerfl;
cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
txerr = RCANFD_CSTS_TECCNT(sts);
rxerr = RCANFD_CSTS_RECCNT(sts);
if (unlikely(RCANFD_CERFL_ERR(cerfl)))
rcar_canfd_error(ndev, cerfl, txerr, rxerr);
if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
priv->can.state != CAN_STATE_BUS_OFF))
rcar_canfd_state_change(ndev, txerr, rxerr);
}
static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
{
struct rcar_canfd_channel *priv = dev_id;
rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
return IRQ_HANDLED;
}
static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
{
struct rcar_canfd_global *gpriv = dev_id;
u32 ch;
for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
rcar_canfd_handle_channel_err(gpriv, ch);
rcar_canfd_handle_channel_tx(gpriv, ch);
}
return IRQ_HANDLED;
}
static void rcar_canfd_set_bittiming(struct net_device *dev)
{
struct rcar_canfd_channel *priv = netdev_priv(dev);
struct rcar_canfd_global *gpriv = priv->gpriv;
const struct can_bittiming *bt = &priv->can.bittiming;
const struct can_bittiming *dbt = &priv->can.data_bittiming;
u16 brp, sjw, tseg1, tseg2;
u32 cfg;
u32 ch = priv->channel;
brp = bt->brp - 1;
sjw = bt->sjw - 1;
tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
tseg2 = bt->phase_seg2 - 1;
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
brp, sjw, tseg1, tseg2);
brp = dbt->brp - 1;
sjw = dbt->sjw - 1;
tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
tseg2 = dbt->phase_seg2 - 1;
cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
rcar_canfd_write(priv->base, RCANFD_F_DCFG(gpriv, ch), cfg);
netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
brp, sjw, tseg1, tseg2);
} else {
if (is_gen4(gpriv)) {
cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
RCANFD_NCFG_NBRP(brp) |
RCANFD_NCFG_NSJW(gpriv, sjw) |
RCANFD_NCFG_NTSEG2(gpriv, tseg2));
} else {
cfg = (RCANFD_CFG_TSEG1(tseg1) |
RCANFD_CFG_BRP(brp) |
RCANFD_CFG_SJW(sjw) |
RCANFD_CFG_TSEG2(tseg2));
}
rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
netdev_dbg(priv->ndev,
"rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
brp, sjw, tseg1, tseg2);
}
}
static int rcar_canfd_start(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct rcar_canfd_global *gpriv = priv->gpriv;
int err = -EOPNOTSUPP;
u32 sts, ch = priv->channel;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
rcar_canfd_set_bittiming(ndev);
rcar_canfd_enable_channel_interrupts(priv);
rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
(sts & RCANFD_CSTS_COMSTS), 2, 500000);
if (err) {
netdev_err(ndev, "channel %u communication state failed\n", ch);
goto fail_mode_change;
}
rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
RCANFD_CFCC_CFE);
rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
return 0;
fail_mode_change:
rcar_canfd_disable_channel_interrupts(priv);
return err;
}
static int rcar_canfd_open(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct rcar_canfd_global *gpriv = priv->gpriv;
int err;
err = phy_power_on(priv->transceiver);
if (err) {
netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err));
return err;
}
err = clk_prepare_enable(gpriv->can_clk);
if (err) {
netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err));
goto out_phy;
}
err = open_candev(ndev);
if (err) {
netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err));
goto out_can_clock;
}
napi_enable(&priv->napi);
err = rcar_canfd_start(ndev);
if (err)
goto out_close;
netif_start_queue(ndev);
return 0;
out_close:
napi_disable(&priv->napi);
close_candev(ndev);
out_can_clock:
clk_disable_unprepare(gpriv->can_clk);
out_phy:
phy_power_off(priv->transceiver);
return err;
}
static void rcar_canfd_stop(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct rcar_canfd_global *gpriv = priv->gpriv;
int err;
u32 sts, ch = priv->channel;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
(sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
if (err)
netdev_err(ndev, "channel %u reset failed\n", ch);
rcar_canfd_disable_channel_interrupts(priv);
rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
RCANFD_CFCC_CFE);
rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
priv->can.state = CAN_STATE_STOPPED;
}
static int rcar_canfd_close(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct rcar_canfd_global *gpriv = priv->gpriv;
netif_stop_queue(ndev);
rcar_canfd_stop(ndev);
napi_disable(&priv->napi);
clk_disable_unprepare(gpriv->can_clk);
close_candev(ndev);
phy_power_off(priv->transceiver);
return 0;
}
static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct rcar_canfd_global *gpriv = priv->gpriv;
struct canfd_frame *cf = (struct canfd_frame *)skb->data;
u32 sts = 0, id, dlc;
unsigned long flags;
u32 ch = priv->channel;
if (can_dev_dropped_skb(ndev, skb))
return NETDEV_TX_OK;
if (cf->can_id & CAN_EFF_FLAG) {
id = cf->can_id & CAN_EFF_MASK;
id |= RCANFD_CFID_CFIDE;
} else {
id = cf->can_id & CAN_SFF_MASK;
}
if (cf->can_id & CAN_RTR_FLAG)
id |= RCANFD_CFID_CFRTR;
dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
rcar_canfd_write(priv->base,
RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
rcar_canfd_write(priv->base,
RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
if (can_is_canfd_skb(skb)) {
sts |= RCANFD_CFFDCSTS_CFFDF;
if (cf->flags & CANFD_BRS)
sts |= RCANFD_CFFDCSTS_CFBRS;
if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
sts |= RCANFD_CFFDCSTS_CFESI;
}
rcar_canfd_write(priv->base,
RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
rcar_canfd_put_data(priv, cf,
RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
} else {
rcar_canfd_write(priv->base,
RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
rcar_canfd_write(priv->base,
RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
rcar_canfd_put_data(priv, cf,
RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
}
can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
spin_lock_irqsave(&priv->tx_lock, flags);
priv->tx_head++;
if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
netif_stop_queue(ndev);
rcar_canfd_write(priv->base,
RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
spin_unlock_irqrestore(&priv->tx_lock, flags);
return NETDEV_TX_OK;
}
static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
{
struct net_device_stats *stats = &priv->ndev->stats;
struct rcar_canfd_global *gpriv = priv->gpriv;
struct canfd_frame *cf;
struct sk_buff *skb;
u32 sts = 0, id, dlc;
u32 ch = priv->channel;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
sts & RCANFD_RFFDSTS_RFFDF)
skb = alloc_canfd_skb(priv->ndev, &cf);
else
skb = alloc_can_skb(priv->ndev,
(struct can_frame **)&cf);
} else {
id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
}
if (!skb) {
stats->rx_dropped++;
return;
}
if (id & RCANFD_RFID_RFIDE)
cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
else
cf->can_id = id & CAN_SFF_MASK;
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
if (sts & RCANFD_RFFDSTS_RFFDF)
cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
else
cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
if (sts & RCANFD_RFFDSTS_RFESI) {
cf->flags |= CANFD_ESI;
netdev_dbg(priv->ndev, "ESI Error\n");
}
if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
cf->can_id |= CAN_RTR_FLAG;
} else {
if (sts & RCANFD_RFFDSTS_RFBRS)
cf->flags |= CANFD_BRS;
rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
}
} else {
cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
if (id & RCANFD_RFID_RFRTR)
cf->can_id |= CAN_RTR_FLAG;
else if (is_gen4(gpriv))
rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
else
rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
}
rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
if (!(cf->can_id & CAN_RTR_FLAG))
stats->rx_bytes += cf->len;
stats->rx_packets++;
netif_receive_skb(skb);
}
static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
{
struct rcar_canfd_channel *priv =
container_of(napi, struct rcar_canfd_channel, napi);
struct rcar_canfd_global *gpriv = priv->gpriv;
int num_pkts;
u32 sts;
u32 ch = priv->channel;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
for (num_pkts = 0; num_pkts < quota; num_pkts++) {
sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
if (sts & RCANFD_RFSTS_RFEMP)
break;
rcar_canfd_rx_pkt(priv);
if (sts & RCANFD_RFSTS_RFIF)
rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
sts & ~RCANFD_RFSTS_RFIF);
}
if (num_pkts < quota) {
if (napi_complete_done(napi, num_pkts)) {
rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
RCANFD_RFCC_RFIE);
}
}
return num_pkts;
}
static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
{
int err;
switch (mode) {
case CAN_MODE_START:
err = rcar_canfd_start(ndev);
if (err)
return err;
netif_wake_queue(ndev);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int rcar_canfd_get_berr_counter(const struct net_device *dev,
struct can_berr_counter *bec)
{
struct rcar_canfd_channel *priv = netdev_priv(dev);
u32 val, ch = priv->channel;
val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
bec->txerr = RCANFD_CSTS_TECCNT(val);
bec->rxerr = RCANFD_CSTS_RECCNT(val);
return 0;
}
static const struct net_device_ops rcar_canfd_netdev_ops = {
.ndo_open = rcar_canfd_open,
.ndo_stop = rcar_canfd_close,
.ndo_start_xmit = rcar_canfd_start_xmit,
.ndo_change_mtu = can_change_mtu,
};
static const struct ethtool_ops rcar_canfd_ethtool_ops = {
.get_ts_info = ethtool_op_get_ts_info,
};
static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
u32 fcan_freq, struct phy *transceiver)
{
const struct rcar_canfd_hw_info *info = gpriv->info;
struct platform_device *pdev = gpriv->pdev;
struct device *dev = &pdev->dev;
struct rcar_canfd_channel *priv;
struct net_device *ndev;
int err = -ENODEV;
ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
if (!ndev)
return -ENOMEM;
priv = netdev_priv(ndev);
ndev->netdev_ops = &rcar_canfd_netdev_ops;
ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
ndev->flags |= IFF_ECHO;
priv->ndev = ndev;
priv->base = gpriv->base;
priv->transceiver = transceiver;
priv->channel = ch;
priv->gpriv = gpriv;
if (transceiver)
priv->can.bitrate_max = transceiver->attrs.max_link_rate;
priv->can.clock.freq = fcan_freq;
dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq);
if (info->multi_channel_irqs) {
char *irq_name;
int err_irq;
int tx_irq;
err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
if (err_irq < 0) {
err = err_irq;
goto fail;
}
tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
if (tx_irq < 0) {
err = tx_irq;
goto fail;
}
irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err",
ch);
if (!irq_name) {
err = -ENOMEM;
goto fail;
}
err = devm_request_irq(dev, err_irq,
rcar_canfd_channel_err_interrupt, 0,
irq_name, priv);
if (err) {
dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n",
err_irq, ERR_PTR(err));
goto fail;
}
irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx",
ch);
if (!irq_name) {
err = -ENOMEM;
goto fail;
}
err = devm_request_irq(dev, tx_irq,
rcar_canfd_channel_tx_interrupt, 0,
irq_name, priv);
if (err) {
dev_err(dev, "devm_request_irq Tx %d failed: %pe\n",
tx_irq, ERR_PTR(err));
goto fail;
}
}
if (gpriv->fdmode) {
priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
priv->can.data_bittiming_const =
&rcar_canfd_data_bittiming_const;
err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
if (err)
goto fail;
priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
} else {
priv->can.bittiming_const = &rcar_canfd_bittiming_const;
priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
}
priv->can.do_set_mode = rcar_canfd_do_set_mode;
priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
SET_NETDEV_DEV(ndev, dev);
netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
RCANFD_NAPI_WEIGHT);
spin_lock_init(&priv->tx_lock);
gpriv->ch[priv->channel] = priv;
err = register_candev(ndev);
if (err) {
dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err));
goto fail_candev;
}
dev_info(dev, "device registered (channel %u)\n", priv->channel);
return 0;
fail_candev:
netif_napi_del(&priv->napi);
fail:
free_candev(ndev);
return err;
}
static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
{
struct rcar_canfd_channel *priv = gpriv->ch[ch];
if (priv) {
unregister_candev(priv->ndev);
netif_napi_del(&priv->napi);
free_candev(priv->ndev);
}
}
static int rcar_canfd_probe(struct platform_device *pdev)
{
struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, };
const struct rcar_canfd_hw_info *info;
struct device *dev = &pdev->dev;
void __iomem *addr;
u32 sts, ch, fcan_freq;
struct rcar_canfd_global *gpriv;
struct device_node *of_child;
unsigned long channels_mask = 0;
int err, ch_irq, g_irq;
int g_err_irq, g_recc_irq;
bool fdmode = true;
char name[9] = "channelX";
int i;
info = of_device_get_match_data(dev);
if (of_property_read_bool(dev->of_node, "renesas,no-can-fd"))
fdmode = false;
for (i = 0; i < info->max_channels; ++i) {
name[7] = '0' + i;
of_child = of_get_child_by_name(dev->of_node, name);
if (of_child && of_device_is_available(of_child)) {
channels_mask |= BIT(i);
transceivers[i] = devm_of_phy_optional_get(dev,
of_child, NULL);
}
of_node_put(of_child);
if (IS_ERR(transceivers[i]))
return PTR_ERR(transceivers[i]);
}
if (info->shared_global_irqs) {
ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
if (ch_irq < 0) {
ch_irq = platform_get_irq(pdev, 0);
if (ch_irq < 0)
return ch_irq;
}
g_irq = platform_get_irq_byname_optional(pdev, "g_int");
if (g_irq < 0) {
g_irq = platform_get_irq(pdev, 1);
if (g_irq < 0)
return g_irq;
}
} else {
g_err_irq = platform_get_irq_byname(pdev, "g_err");
if (g_err_irq < 0)
return g_err_irq;
g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
if (g_recc_irq < 0)
return g_recc_irq;
}
gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL);
if (!gpriv)
return -ENOMEM;
gpriv->pdev = pdev;
gpriv->channels_mask = channels_mask;
gpriv->fdmode = fdmode;
gpriv->info = info;
gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n");
if (IS_ERR(gpriv->rstc1))
return dev_err_probe(dev, PTR_ERR(gpriv->rstc1),
"failed to get rstp_n\n");
gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n");
if (IS_ERR(gpriv->rstc2))
return dev_err_probe(dev, PTR_ERR(gpriv->rstc2),
"failed to get rstc_n\n");
gpriv->clkp = devm_clk_get(dev, "fck");
if (IS_ERR(gpriv->clkp))
return dev_err_probe(dev, PTR_ERR(gpriv->clkp),
"cannot get peripheral clock\n");
gpriv->can_clk = devm_clk_get(dev, "can_clk");
if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
gpriv->can_clk = devm_clk_get(dev, "canfd");
if (IS_ERR(gpriv->can_clk))
return dev_err_probe(dev, PTR_ERR(gpriv->can_clk),
"cannot get canfd clock\n");
gpriv->fcan = RCANFD_CANFDCLK;
} else {
gpriv->fcan = RCANFD_EXTCLK;
}
fcan_freq = clk_get_rate(gpriv->can_clk);
if (gpriv->fcan == RCANFD_CANFDCLK)
fcan_freq /= info->postdiv;
addr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(addr)) {
err = PTR_ERR(addr);
goto fail_dev;
}
gpriv->base = addr;
if (info->shared_global_irqs) {
err = devm_request_irq(dev, ch_irq,
rcar_canfd_channel_interrupt, 0,
"canfd.ch_int", gpriv);
if (err) {
dev_err(dev, "devm_request_irq %d failed: %pe\n",
ch_irq, ERR_PTR(err));
goto fail_dev;
}
err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt,
0, "canfd.g_int", gpriv);
if (err) {
dev_err(dev, "devm_request_irq %d failed: %pe\n",
g_irq, ERR_PTR(err));
goto fail_dev;
}
} else {
err = devm_request_irq(dev, g_recc_irq,
rcar_canfd_global_receive_fifo_interrupt, 0,
"canfd.g_recc", gpriv);
if (err) {
dev_err(dev, "devm_request_irq %d failed: %pe\n",
g_recc_irq, ERR_PTR(err));
goto fail_dev;
}
err = devm_request_irq(dev, g_err_irq,
rcar_canfd_global_err_interrupt, 0,
"canfd.g_err", gpriv);
if (err) {
dev_err(dev, "devm_request_irq %d failed: %pe\n",
g_err_irq, ERR_PTR(err));
goto fail_dev;
}
}
err = reset_control_reset(gpriv->rstc1);
if (err)
goto fail_dev;
err = reset_control_reset(gpriv->rstc2);
if (err) {
reset_control_assert(gpriv->rstc1);
goto fail_dev;
}
err = clk_prepare_enable(gpriv->clkp);
if (err) {
dev_err(dev, "failed to enable peripheral clock: %pe\n",
ERR_PTR(err));
goto fail_reset;
}
err = rcar_canfd_reset_controller(gpriv);
if (err) {
dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err));
goto fail_clk;
}
rcar_canfd_configure_controller(gpriv);
for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
rcar_canfd_configure_rx(gpriv, ch);
rcar_canfd_configure_tx(gpriv, ch);
rcar_canfd_configure_afl_rules(gpriv, ch);
}
rcar_canfd_enable_global_interrupts(gpriv);
rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
RCANFD_GCTR_GMDC_GOPM);
err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
!(sts & RCANFD_GSTS_GNOPM), 2, 500000);
if (err) {
dev_err(dev, "global operational mode failed\n");
goto fail_mode;
}
for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq,
transceivers[ch]);
if (err)
goto fail_channel;
}
platform_set_drvdata(pdev, gpriv);
dev_info(dev, "global operational state (clk %d, fdmode %d)\n",
gpriv->fcan, gpriv->fdmode);
return 0;
fail_channel:
for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
rcar_canfd_channel_remove(gpriv, ch);
fail_mode:
rcar_canfd_disable_global_interrupts(gpriv);
fail_clk:
clk_disable_unprepare(gpriv->clkp);
fail_reset:
reset_control_assert(gpriv->rstc1);
reset_control_assert(gpriv->rstc2);
fail_dev:
return err;
}
static void rcar_canfd_remove(struct platform_device *pdev)
{
struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
u32 ch;
rcar_canfd_reset_controller(gpriv);
rcar_canfd_disable_global_interrupts(gpriv);
for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
rcar_canfd_channel_remove(gpriv, ch);
}
rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
clk_disable_unprepare(gpriv->clkp);
reset_control_assert(gpriv->rstc1);
reset_control_assert(gpriv->rstc2);
}
static int __maybe_unused rcar_canfd_suspend(struct device *dev)
{
return 0;
}
static int __maybe_unused rcar_canfd_resume(struct device *dev)
{
return 0;
}
static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
rcar_canfd_resume);
static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
{ .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info },
{ .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
{ .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info },
{ .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
{ }
};
MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
static struct platform_driver rcar_canfd_driver = {
.driver = {
.name = RCANFD_DRV_NAME,
.of_match_table = of_match_ptr(rcar_canfd_of_table),
.pm = &rcar_canfd_pm_ops,
},
.probe = rcar_canfd_probe,
.remove_new = rcar_canfd_remove,
};
module_platform_driver(rcar_canfd_driver);
MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
MODULE_ALIAS("platform:" RCANFD_DRV_NAME