#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/console.h>
#ifdef CONFIG_MTRR
#include <asm/mtrr.h>
#endif
#include <linux/platform_device.h>
#include <linux/sizes.h>
#include "sm750.h"
#include "ddk750.h"
#include "sm750_accel.h"
void __iomem *mmio750;
int hw_sm750_map(struct sm750_dev *sm750_dev, struct pci_dev *pdev)
{
int ret;
ret = 0;
sm750_dev->vidreg_start = pci_resource_start(pdev, 1);
sm750_dev->vidreg_size = SZ_2M;
pr_info("mmio phyAddr = %lx\n", sm750_dev->vidreg_start);
ret = pci_request_region(pdev, 1, "sm750fb");
if (ret) {
pr_err("Can not request PCI regions.\n");
goto exit;
}
sm750_dev->pvReg =
ioremap(sm750_dev->vidreg_start, sm750_dev->vidreg_size);
if (!sm750_dev->pvReg) {
pr_err("mmio failed\n");
ret = -EFAULT;
goto exit;
} else {
pr_info("mmio virtual addr = %p\n", sm750_dev->pvReg);
}
sm750_dev->accel.dprBase = sm750_dev->pvReg + DE_BASE_ADDR_TYPE1;
sm750_dev->accel.dpPortBase = sm750_dev->pvReg + DE_PORT_ADDR_TYPE1;
mmio750 = sm750_dev->pvReg;
sm750_set_chip_type(sm750_dev->devid, sm750_dev->revid);
sm750_dev->vidmem_start = pci_resource_start(pdev, 0);
sm750_dev->vidmem_size = ddk750_get_vm_size();
pr_info("video memory phyAddr = %lx, size = %u bytes\n",
sm750_dev->vidmem_start, sm750_dev->vidmem_size);
sm750_dev->pvMem =
ioremap_wc(sm750_dev->vidmem_start, sm750_dev->vidmem_size);
if (!sm750_dev->pvMem) {
iounmap(sm750_dev->pvReg);
pr_err("Map video memory failed\n");
ret = -EFAULT;
goto exit;
} else {
pr_info("video memory vaddr = %p\n", sm750_dev->pvMem);
}
exit:
return ret;
}
int hw_sm750_inithw(struct sm750_dev *sm750_dev, struct pci_dev *pdev)
{
struct init_status *parm;
parm = &sm750_dev->initParm;
if (parm->chip_clk == 0)
parm->chip_clk = (sm750_get_chip_type() == SM750LE) ?
DEFAULT_SM750LE_CHIP_CLOCK :
DEFAULT_SM750_CHIP_CLOCK;
if (parm->mem_clk == 0)
parm->mem_clk = parm->chip_clk;
if (parm->master_clk == 0)
parm->master_clk = parm->chip_clk / 3;
ddk750_init_hw((struct initchip_param *)&sm750_dev->initParm);
if (sm750_dev->devid == 0x718) {
poke32(SYSTEM_CTRL,
peek32(SYSTEM_CTRL) | SYSTEM_CTRL_PCI_BURST);
}
if (sm750_get_chip_type() != SM750LE) {
unsigned int val;
if (sm750_dev->nocrt) {
poke32(MISC_CTRL,
peek32(MISC_CTRL) | MISC_CTRL_DAC_POWER_OFF);
val = peek32(SYSTEM_CTRL) & ~SYSTEM_CTRL_DPMS_MASK;
val |= SYSTEM_CTRL_DPMS_VPHN;
poke32(SYSTEM_CTRL, val);
} else {
poke32(MISC_CTRL,
peek32(MISC_CTRL) & ~MISC_CTRL_DAC_POWER_OFF);
val = peek32(SYSTEM_CTRL) & ~SYSTEM_CTRL_DPMS_MASK;
val |= SYSTEM_CTRL_DPMS_VPHP;
poke32(SYSTEM_CTRL, val);
}
val = peek32(PANEL_DISPLAY_CTRL) &
~(PANEL_DISPLAY_CTRL_DUAL_DISPLAY |
PANEL_DISPLAY_CTRL_DOUBLE_PIXEL);
switch (sm750_dev->pnltype) {
case sm750_24TFT:
break;
case sm750_doubleTFT:
val |= PANEL_DISPLAY_CTRL_DOUBLE_PIXEL;
break;
case sm750_dualTFT:
val |= PANEL_DISPLAY_CTRL_DUAL_DISPLAY;
break;
}
poke32(PANEL_DISPLAY_CTRL, val);
} else {
sm750_sw_i2c_init(0, 1);
if (sm750_sw_i2c_read_reg(0xec, 0x4a) == 0x95) {
pr_info("yes,CH7301 DVI chip found\n");
sm750_sw_i2c_write_reg(0xec, 0x1d, 0x16);
sm750_sw_i2c_write_reg(0xec, 0x21, 0x9);
sm750_sw_i2c_write_reg(0xec, 0x49, 0xC0);
pr_info("okay,CH7301 DVI chip setup done\n");
}
}
if (!sm750_dev->accel_off)
hw_sm750_initAccel(sm750_dev);
return 0;
}
int hw_sm750_output_setMode(struct lynxfb_output *output,
struct fb_var_screeninfo *var,
struct fb_fix_screeninfo *fix)
{
int ret;
enum disp_output disp_set;
int channel;
ret = 0;
disp_set = 0;
channel = *output->channel;
if (sm750_get_chip_type() != SM750LE) {
if (channel == sm750_primary) {
pr_info("primary channel\n");
if (output->paths & sm750_panel)
disp_set |= do_LCD1_PRI;
if (output->paths & sm750_crt)
disp_set |= do_CRT_PRI;
} else {
pr_info("secondary channel\n");
if (output->paths & sm750_panel)
disp_set |= do_LCD1_SEC;
if (output->paths & sm750_crt)
disp_set |= do_CRT_SEC;
}
ddk750_set_logical_disp_out(disp_set);
} else {
u32 reg;
reg = peek32(DISPLAY_CONTROL_750LE);
reg |= 0xf;
poke32(DISPLAY_CONTROL_750LE, reg);
}
pr_info("ddk setlogicdispout done\n");
return ret;
}
int hw_sm750_crtc_checkMode(struct lynxfb_crtc *crtc,
struct fb_var_screeninfo *var)
{
struct sm750_dev *sm750_dev;
struct lynxfb_par *par = container_of(crtc, struct lynxfb_par, crtc);
sm750_dev = par->dev;
switch (var->bits_per_pixel) {
case 8:
case 16:
break;
case 32:
if (sm750_dev->revid == SM750LE_REVISION_ID) {
pr_debug("750le do not support 32bpp\n");
return -EINVAL;
}
break;
default:
return -EINVAL;
}
return 0;
}
int hw_sm750_crtc_setMode(struct lynxfb_crtc *crtc,
struct fb_var_screeninfo *var,
struct fb_fix_screeninfo *fix)
{
int ret, fmt;
u32 reg;
struct mode_parameter modparm;
enum clock_type clock;
struct sm750_dev *sm750_dev;
struct lynxfb_par *par;
ret = 0;
par = container_of(crtc, struct lynxfb_par, crtc);
sm750_dev = par->dev;
if (!sm750_dev->accel_off) {
switch (var->bits_per_pixel) {
case 8:
fmt = 0;
break;
case 16:
fmt = 1;
break;
case 32:
default:
fmt = 2;
break;
}
sm750_hw_set2dformat(&sm750_dev->accel, fmt);
}
modparm.pixel_clock = ps_to_hz(var->pixclock);
modparm.vertical_sync_polarity =
(var->sync & FB_SYNC_HOR_HIGH_ACT) ? POS : NEG;
modparm.horizontal_sync_polarity =
(var->sync & FB_SYNC_VERT_HIGH_ACT) ? POS : NEG;
modparm.clock_phase_polarity =
(var->sync & FB_SYNC_COMP_HIGH_ACT) ? POS : NEG;
modparm.horizontal_display_end = var->xres;
modparm.horizontal_sync_width = var->hsync_len;
modparm.horizontal_sync_start = var->xres + var->right_margin;
modparm.horizontal_total = var->xres + var->left_margin +
var->right_margin + var->hsync_len;
modparm.vertical_display_end = var->yres;
modparm.vertical_sync_height = var->vsync_len;
modparm.vertical_sync_start = var->yres + var->lower_margin;
modparm.vertical_total = var->yres + var->upper_margin +
var->lower_margin + var->vsync_len;
if (crtc->channel != sm750_secondary)
clock = PRIMARY_PLL;
else
clock = SECONDARY_PLL;
pr_debug("Request pixel clock = %lu\n", modparm.pixel_clock);
ret = ddk750_setModeTiming(&modparm, clock);
if (ret) {
pr_err("Set mode timing failed\n");
goto exit;
}
if (crtc->channel != sm750_secondary) {
poke32(PANEL_FB_ADDRESS,
crtc->o_screen & PANEL_FB_ADDRESS_ADDRESS_MASK);
reg = var->xres * (var->bits_per_pixel >> 3);
reg = ALIGN(reg, crtc->line_pad);
reg = (reg << PANEL_FB_WIDTH_WIDTH_SHIFT) &
PANEL_FB_WIDTH_WIDTH_MASK;
reg |= (fix->line_length & PANEL_FB_WIDTH_OFFSET_MASK);
poke32(PANEL_FB_WIDTH, reg);
reg = ((var->xres - 1) << PANEL_WINDOW_WIDTH_WIDTH_SHIFT) &
PANEL_WINDOW_WIDTH_WIDTH_MASK;
reg |= (var->xoffset & PANEL_WINDOW_WIDTH_X_MASK);
poke32(PANEL_WINDOW_WIDTH, reg);
reg = (var->yres_virtual - 1)
<< PANEL_WINDOW_HEIGHT_HEIGHT_SHIFT;
reg &= PANEL_WINDOW_HEIGHT_HEIGHT_MASK;
reg |= (var->yoffset & PANEL_WINDOW_HEIGHT_Y_MASK);
poke32(PANEL_WINDOW_HEIGHT, reg);
poke32(PANEL_PLANE_TL, 0);
reg = ((var->yres - 1) << PANEL_PLANE_BR_BOTTOM_SHIFT) &
PANEL_PLANE_BR_BOTTOM_MASK;
reg |= ((var->xres - 1) & PANEL_PLANE_BR_RIGHT_MASK);
poke32(PANEL_PLANE_BR, reg);
reg = peek32(PANEL_DISPLAY_CTRL);
poke32(PANEL_DISPLAY_CTRL, reg | (var->bits_per_pixel >> 4));
} else {
poke32(CRT_FB_ADDRESS, crtc->o_screen);
reg = var->xres * (var->bits_per_pixel >> 3);
reg = ALIGN(reg, crtc->line_pad) << CRT_FB_WIDTH_WIDTH_SHIFT;
reg &= CRT_FB_WIDTH_WIDTH_MASK;
reg |= (fix->line_length & CRT_FB_WIDTH_OFFSET_MASK);
poke32(CRT_FB_WIDTH, reg);
reg = peek32(CRT_DISPLAY_CTRL);
reg |= ((var->bits_per_pixel >> 4) &
CRT_DISPLAY_CTRL_FORMAT_MASK);
poke32(CRT_DISPLAY_CTRL, reg);
}
exit:
return ret;
}
int hw_sm750_setColReg(struct lynxfb_crtc *crtc, ushort index, ushort red,
ushort green, ushort blue)
{
static unsigned int add[] = { PANEL_PALETTE_RAM, CRT_PALETTE_RAM };
poke32(add[crtc->channel] + index * 4,
(red << 16) | (green << 8) | blue);
return 0;
}
int hw_sm750le_setBLANK(struct lynxfb_output *output, int blank)
{
int dpms, crtdb;
switch (blank) {
case FB_BLANK_UNBLANK:
dpms = CRT_DISPLAY_CTRL_DPMS_0;
crtdb = 0;
break;
case FB_BLANK_NORMAL:
dpms = CRT_DISPLAY_CTRL_DPMS_0;
crtdb = CRT_DISPLAY_CTRL_BLANK;
break;
case FB_BLANK_VSYNC_SUSPEND:
dpms = CRT_DISPLAY_CTRL_DPMS_2;
crtdb = CRT_DISPLAY_CTRL_BLANK;
break;
case FB_BLANK_HSYNC_SUSPEND:
dpms = CRT_DISPLAY_CTRL_DPMS_1;
crtdb = CRT_DISPLAY_CTRL_BLANK;
break;
case FB_BLANK_POWERDOWN:
dpms = CRT_DISPLAY_CTRL_DPMS_3;
crtdb = CRT_DISPLAY_CTRL_BLANK;
break;
default:
return -EINVAL;
}
if (output->paths & sm750_crt) {
unsigned int val;
val = peek32(CRT_DISPLAY_CTRL) & ~CRT_DISPLAY_CTRL_DPMS_MASK;
poke32(CRT_DISPLAY_CTRL, val | dpms);
val = peek32(CRT_DISPLAY_CTRL) & ~CRT_DISPLAY_CTRL_BLANK;
poke32(CRT_DISPLAY_CTRL, val | crtdb);
}
return 0;
}
int hw_sm750_setBLANK(struct lynxfb_output *output, int blank)
{
unsigned int dpms, pps, crtdb;
dpms = 0;
pps = 0;
crtdb = 0;
switch (blank) {
case FB_BLANK_UNBLANK:
pr_debug("flag = FB_BLANK_UNBLANK\n");
dpms = SYSTEM_CTRL_DPMS_VPHP;
pps = PANEL_DISPLAY_CTRL_DATA;
break;
case FB_BLANK_NORMAL:
pr_debug("flag = FB_BLANK_NORMAL\n");
dpms = SYSTEM_CTRL_DPMS_VPHP;
crtdb = CRT_DISPLAY_CTRL_BLANK;
break;
case FB_BLANK_VSYNC_SUSPEND:
dpms = SYSTEM_CTRL_DPMS_VNHP;
crtdb = CRT_DISPLAY_CTRL_BLANK;
break;
case FB_BLANK_HSYNC_SUSPEND:
dpms = SYSTEM_CTRL_DPMS_VPHN;
crtdb = CRT_DISPLAY_CTRL_BLANK;
break;
case FB_BLANK_POWERDOWN:
dpms = SYSTEM_CTRL_DPMS_VNHN;
crtdb = CRT_DISPLAY_CTRL_BLANK;
break;
}
if (output->paths & sm750_crt) {
unsigned int val = peek32(SYSTEM_CTRL) & ~SYSTEM_CTRL_DPMS_MASK;
poke32(SYSTEM_CTRL, val | dpms);
val = peek32(CRT_DISPLAY_CTRL) & ~CRT_DISPLAY_CTRL_BLANK;
poke32(CRT_DISPLAY_CTRL, val | crtdb);
}
if (output->paths & sm750_panel) {
unsigned int val = peek32(PANEL_DISPLAY_CTRL);
val &= ~PANEL_DISPLAY_CTRL_DATA;
val |= pps;
poke32(PANEL_DISPLAY_CTRL, val);
}
return 0;
}
void hw_sm750_initAccel(struct sm750_dev *sm750_dev)
{
u32 reg;
sm750_enable_2d_engine(1);
if (sm750_get_chip_type() == SM750LE) {
reg = peek32(DE_STATE1);
reg |= DE_STATE1_DE_ABORT;
poke32(DE_STATE1, reg);
reg = peek32(DE_STATE1);
reg &= ~DE_STATE1_DE_ABORT;
poke32(DE_STATE1, reg);
} else {
reg = peek32(SYSTEM_CTRL);
reg |= SYSTEM_CTRL_DE_ABORT;
poke32(SYSTEM_CTRL, reg);
reg = peek32(SYSTEM_CTRL);
reg &= ~SYSTEM_CTRL_DE_ABORT;
poke32(SYSTEM_CTRL, reg);
}
sm750_dev->accel.de_init(&sm750_dev->accel);
}
int hw_sm750le_deWait(void)
{
int i = 0x10000000;
unsigned int mask = DE_STATE2_DE_STATUS_BUSY | DE_STATE2_DE_FIFO_EMPTY |
DE_STATE2_DE_MEM_FIFO_EMPTY;
while (i--) {
unsigned int val = peek32(DE_STATE2);
if ((val & mask) ==
(DE_STATE2_DE_FIFO_EMPTY | DE_STATE2_DE_MEM_FIFO_EMPTY))
return 0;
}
return -1;
}
int hw_sm750_deWait(void)
{
int i = 0x10000000;
unsigned int mask = SYSTEM_CTRL_DE_STATUS_BUSY |
SYSTEM_CTRL_DE_FIFO_EMPTY |
SYSTEM_CTRL_DE_MEM_FIFO_EMPTY;
while (i--) {
unsigned int val = peek32(SYSTEM_CTRL);
if ((val & mask) ==
(SYSTEM_CTRL_DE_FIFO_EMPTY | SYSTEM_CTRL_DE_MEM_FIFO_EMPTY))
return 0;
}
return -1;
}
int hw_sm750_pan_display(struct lynxfb_crtc *crtc,
const struct fb_var_screeninfo *var,
const struct fb_info *info)
{
u32 total;
if ((var->xoffset + var->xres > var->xres_virtual) ||
(var->yoffset + var->yres > var->yres_virtual)) {
return -EINVAL;
}
total = var->yoffset * info->fix.line_length +
((var->xoffset * var->bits_per_pixel) >> 3);
total += crtc->o_screen;
if (crtc->channel == sm750_primary) {
poke32(PANEL_FB_ADDRESS,
peek32(PANEL_FB_ADDRESS) |
(total & PANEL_FB_ADDRESS_ADDRESS_MASK));
} else {
poke32(CRT_FB_ADDRESS,
peek32(CRT_FB_ADDRESS) |
(total & CRT_FB_ADDRESS_ADDRESS_MASK));
}
return 0;
}