#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mempolicy.h>
#include <linux/mm.h>
#include <linux/memory.h>
#include <linux/export.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/sched/deadline.h>
#include <linux/sched/mm.h>
#include <linux/sched/task.h>
#include <linux/security.h>
#include <linux/spinlock.h>
#include <linux/oom.h>
#include <linux/sched/isolation.h>
#include <linux/cgroup.h>
#include <linux/wait.h>
DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
struct fmeter {
int cnt;
int val;
time64_t time;
spinlock_t lock;
};
enum prs_errcode {
PERR_NONE = 0,
PERR_INVCPUS,
PERR_INVPARENT,
PERR_NOTPART,
PERR_NOTEXCL,
PERR_NOCPUS,
PERR_HOTPLUG,
PERR_CPUSEMPTY,
};
static const char * const perr_strings[] = {
[PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus",
[PERR_INVPARENT] = "Parent is an invalid partition root",
[PERR_NOTPART] = "Parent is not a partition root",
[PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive",
[PERR_NOCPUS] = "Parent unable to distribute cpu downstream",
[PERR_HOTPLUG] = "No cpu available due to hotplug",
[PERR_CPUSEMPTY] = "cpuset.cpus is empty",
};
struct cpuset {
struct cgroup_subsys_state css;
unsigned long flags;
cpumask_var_t cpus_allowed;
nodemask_t mems_allowed;
cpumask_var_t effective_cpus;
nodemask_t effective_mems;
cpumask_var_t subparts_cpus;
nodemask_t old_mems_allowed;
struct fmeter fmeter;
int attach_in_progress;
int pn;
int relax_domain_level;
int nr_subparts_cpus;
int partition_root_state;
int use_parent_ecpus;
int child_ecpus_count;
int nr_deadline_tasks;
int nr_migrate_dl_tasks;
u64 sum_migrate_dl_bw;
enum prs_errcode prs_err;
struct cgroup_file partition_file;
};
#define PRS_MEMBER 0
#define PRS_ROOT 1
#define PRS_ISOLATED 2
#define PRS_INVALID_ROOT -1
#define PRS_INVALID_ISOLATED -2
static inline bool is_prs_invalid(int prs_state)
{
return prs_state < 0;
}
struct tmpmasks {
cpumask_var_t addmask, delmask;
cpumask_var_t new_cpus;
};
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
{
return css ? container_of(css, struct cpuset, css) : NULL;
}
static inline struct cpuset *task_cs(struct task_struct *task)
{
return css_cs(task_css(task, cpuset_cgrp_id));
}
static inline struct cpuset *parent_cs(struct cpuset *cs)
{
return css_cs(cs->css.parent);
}
void inc_dl_tasks_cs(struct task_struct *p)
{
struct cpuset *cs = task_cs(p);
cs->nr_deadline_tasks++;
}
void dec_dl_tasks_cs(struct task_struct *p)
{
struct cpuset *cs = task_cs(p);
cs->nr_deadline_tasks--;
}
typedef enum {
CS_ONLINE,
CS_CPU_EXCLUSIVE,
CS_MEM_EXCLUSIVE,
CS_MEM_HARDWALL,
CS_MEMORY_MIGRATE,
CS_SCHED_LOAD_BALANCE,
CS_SPREAD_PAGE,
CS_SPREAD_SLAB,
} cpuset_flagbits_t;
static inline bool is_cpuset_online(struct cpuset *cs)
{
return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
}
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
}
static inline int is_mem_exclusive(const struct cpuset *cs)
{
return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
}
static inline int is_mem_hardwall(const struct cpuset *cs)
{
return test_bit(CS_MEM_HARDWALL, &cs->flags);
}
static inline int is_sched_load_balance(const struct cpuset *cs)
{
return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}
static inline int is_memory_migrate(const struct cpuset *cs)
{
return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
}
static inline int is_spread_page(const struct cpuset *cs)
{
return test_bit(CS_SPREAD_PAGE, &cs->flags);
}
static inline int is_spread_slab(const struct cpuset *cs)
{
return test_bit(CS_SPREAD_SLAB, &cs->flags);
}
static inline int is_partition_valid(const struct cpuset *cs)
{
return cs->partition_root_state > 0;
}
static inline int is_partition_invalid(const struct cpuset *cs)
{
return cs->partition_root_state < 0;
}
static inline void make_partition_invalid(struct cpuset *cs)
{
if (is_partition_valid(cs))
cs->partition_root_state = -cs->partition_root_state;
}
static inline void notify_partition_change(struct cpuset *cs, int old_prs)
{
if (old_prs == cs->partition_root_state)
return;
cgroup_file_notify(&cs->partition_file);
if (is_partition_valid(cs))
WRITE_ONCE(cs->prs_err, PERR_NONE);
}
static struct cpuset top_cpuset = {
.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
(1 << CS_MEM_EXCLUSIVE)),
.partition_root_state = PRS_ROOT,
};
#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
css_for_each_child((pos_css), &(parent_cs)->css) \
if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
static DEFINE_MUTEX(cpuset_mutex);
void cpuset_lock(void)
{
mutex_lock(&cpuset_mutex);
}
void cpuset_unlock(void)
{
mutex_unlock(&cpuset_mutex);
}
static DEFINE_SPINLOCK(callback_lock);
static struct workqueue_struct *cpuset_migrate_mm_wq;
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
static inline void check_insane_mems_config(nodemask_t *nodes)
{
if (!cpusets_insane_config() &&
movable_only_nodes(nodes)) {
static_branch_enable(&cpusets_insane_config_key);
pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
"Cpuset allocations might fail even with a lot of memory available.\n",
nodemask_pr_args(nodes));
}
}
static inline bool is_in_v2_mode(void)
{
return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
(cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
}
static inline bool partition_is_populated(struct cpuset *cs,
struct cpuset *excluded_child)
{
struct cgroup_subsys_state *css;
struct cpuset *child;
if (cs->css.cgroup->nr_populated_csets)
return true;
if (!excluded_child && !cs->nr_subparts_cpus)
return cgroup_is_populated(cs->css.cgroup);
rcu_read_lock();
cpuset_for_each_child(child, css, cs) {
if (child == excluded_child)
continue;
if (is_partition_valid(child))
continue;
if (cgroup_is_populated(child->css.cgroup)) {
rcu_read_unlock();
return true;
}
}
rcu_read_unlock();
return false;
}
static void guarantee_online_cpus(struct task_struct *tsk,
struct cpumask *pmask)
{
const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
struct cpuset *cs;
if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
cpumask_copy(pmask, cpu_online_mask);
rcu_read_lock();
cs = task_cs(tsk);
while (!cpumask_intersects(cs->effective_cpus, pmask)) {
cs = parent_cs(cs);
if (unlikely(!cs)) {
goto out_unlock;
}
}
cpumask_and(pmask, pmask, cs->effective_cpus);
out_unlock:
rcu_read_unlock();
}
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
{
while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
cs = parent_cs(cs);
nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
}
static void cpuset_update_task_spread_flags(struct cpuset *cs,
struct task_struct *tsk)
{
if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
return;
if (is_spread_page(cs))
task_set_spread_page(tsk);
else
task_clear_spread_page(tsk);
if (is_spread_slab(cs))
task_set_spread_slab(tsk);
else
task_clear_spread_slab(tsk);
}
static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
nodes_subset(p->mems_allowed, q->mems_allowed) &&
is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
is_mem_exclusive(p) <= is_mem_exclusive(q);
}
static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
{
cpumask_var_t *pmask1, *pmask2, *pmask3;
if (cs) {
pmask1 = &cs->cpus_allowed;
pmask2 = &cs->effective_cpus;
pmask3 = &cs->subparts_cpus;
} else {
pmask1 = &tmp->new_cpus;
pmask2 = &tmp->addmask;
pmask3 = &tmp->delmask;
}
if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
return -ENOMEM;
if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
goto free_one;
if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
goto free_two;
return 0;
free_two:
free_cpumask_var(*pmask2);
free_one:
free_cpumask_var(*pmask1);
return -ENOMEM;
}
static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
{
if (cs) {
free_cpumask_var(cs->cpus_allowed);
free_cpumask_var(cs->effective_cpus);
free_cpumask_var(cs->subparts_cpus);
}
if (tmp) {
free_cpumask_var(tmp->new_cpus);
free_cpumask_var(tmp->addmask);
free_cpumask_var(tmp->delmask);
}
}
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
{
struct cpuset *trial;
trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
if (!trial)
return NULL;
if (alloc_cpumasks(trial, NULL)) {
kfree(trial);
return NULL;
}
cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
cpumask_copy(trial->effective_cpus, cs->effective_cpus);
return trial;
}
static inline void free_cpuset(struct cpuset *cs)
{
free_cpumasks(cs, NULL);
kfree(cs);
}
static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
{
struct cgroup_subsys_state *css;
struct cpuset *c, *par;
int ret;
WARN_ON_ONCE(!rcu_read_lock_held());
ret = -EBUSY;
cpuset_for_each_child(c, css, cur)
if (!is_cpuset_subset(c, trial))
goto out;
ret = -EACCES;
par = parent_cs(cur);
if (par && !is_cpuset_subset(trial, par))
goto out;
ret = 0;
out:
return ret;
}
static int validate_change(struct cpuset *cur, struct cpuset *trial)
{
struct cgroup_subsys_state *css;
struct cpuset *c, *par;
int ret = 0;
rcu_read_lock();
if (!is_in_v2_mode())
ret = validate_change_legacy(cur, trial);
if (ret)
goto out;
if (cur == &top_cpuset)
goto out;
par = parent_cs(cur);
ret = -ENOSPC;
if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
if (!cpumask_empty(cur->cpus_allowed) &&
cpumask_empty(trial->cpus_allowed))
goto out;
if (!nodes_empty(cur->mems_allowed) &&
nodes_empty(trial->mems_allowed))
goto out;
}
ret = -EBUSY;
if (is_cpu_exclusive(cur) &&
!cpuset_cpumask_can_shrink(cur->cpus_allowed,
trial->cpus_allowed))
goto out;
ret = -EINVAL;
cpuset_for_each_child(c, css, par) {
if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
c != cur &&
cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
goto out;
if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
c != cur &&
nodes_intersects(trial->mems_allowed, c->mems_allowed))
goto out;
}
ret = 0;
out:
rcu_read_unlock();
return ret;
}
#ifdef CONFIG_SMP
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
return cpumask_intersects(a->effective_cpus, b->effective_cpus);
}
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
if (dattr->relax_domain_level < c->relax_domain_level)
dattr->relax_domain_level = c->relax_domain_level;
return;
}
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
struct cpuset *root_cs)
{
struct cpuset *cp;
struct cgroup_subsys_state *pos_css;
rcu_read_lock();
cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
if (cpumask_empty(cp->cpus_allowed)) {
pos_css = css_rightmost_descendant(pos_css);
continue;
}
if (is_sched_load_balance(cp))
update_domain_attr(dattr, cp);
}
rcu_read_unlock();
}
static inline int nr_cpusets(void)
{
return static_key_count(&cpusets_enabled_key.key) + 1;
}
static int generate_sched_domains(cpumask_var_t **domains,
struct sched_domain_attr **attributes)
{
struct cpuset *cp;
struct cpuset **csa;
int csn;
int i, j, k;
cpumask_var_t *doms;
struct sched_domain_attr *dattr;
int ndoms = 0;
int nslot;
struct cgroup_subsys_state *pos_css;
bool root_load_balance = is_sched_load_balance(&top_cpuset);
doms = NULL;
dattr = NULL;
csa = NULL;
if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
ndoms = 1;
doms = alloc_sched_domains(ndoms);
if (!doms)
goto done;
dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
if (dattr) {
*dattr = SD_ATTR_INIT;
update_domain_attr_tree(dattr, &top_cpuset);
}
cpumask_and(doms[0], top_cpuset.effective_cpus,
housekeeping_cpumask(HK_TYPE_DOMAIN));
goto done;
}
csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
if (!csa)
goto done;
csn = 0;
rcu_read_lock();
if (root_load_balance)
csa[csn++] = &top_cpuset;
cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
if (cp == &top_cpuset)
continue;
if (!cpumask_empty(cp->cpus_allowed) &&
!(is_sched_load_balance(cp) &&
cpumask_intersects(cp->cpus_allowed,
housekeeping_cpumask(HK_TYPE_DOMAIN))))
continue;
if (root_load_balance &&
cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
continue;
if (is_sched_load_balance(cp) &&
!cpumask_empty(cp->effective_cpus))
csa[csn++] = cp;
if (!is_partition_valid(cp))
pos_css = css_rightmost_descendant(pos_css);
}
rcu_read_unlock();
for (i = 0; i < csn; i++)
csa[i]->pn = i;
ndoms = csn;
restart:
for (i = 0; i < csn; i++) {
struct cpuset *a = csa[i];
int apn = a->pn;
for (j = 0; j < csn; j++) {
struct cpuset *b = csa[j];
int bpn = b->pn;
if (apn != bpn && cpusets_overlap(a, b)) {
for (k = 0; k < csn; k++) {
struct cpuset *c = csa[k];
if (c->pn == bpn)
c->pn = apn;
}
ndoms--;
goto restart;
}
}
}
doms = alloc_sched_domains(ndoms);
if (!doms)
goto done;
dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
GFP_KERNEL);
for (nslot = 0, i = 0; i < csn; i++) {
struct cpuset *a = csa[i];
struct cpumask *dp;
int apn = a->pn;
if (apn < 0) {
continue;
}
dp = doms[nslot];
if (nslot == ndoms) {
static int warnings = 10;
if (warnings) {
pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
nslot, ndoms, csn, i, apn);
warnings--;
}
continue;
}
cpumask_clear(dp);
if (dattr)
*(dattr + nslot) = SD_ATTR_INIT;
for (j = i; j < csn; j++) {
struct cpuset *b = csa[j];
if (apn == b->pn) {
cpumask_or(dp, dp, b->effective_cpus);
cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
if (dattr)
update_domain_attr_tree(dattr + nslot, b);
b->pn = -1;
}
}
nslot++;
}
BUG_ON(nslot != ndoms);
done:
kfree(csa);
if (doms == NULL)
ndoms = 1;
*domains = doms;
*attributes = dattr;
return ndoms;
}
static void dl_update_tasks_root_domain(struct cpuset *cs)
{
struct css_task_iter it;
struct task_struct *task;
if (cs->nr_deadline_tasks == 0)
return;
css_task_iter_start(&cs->css, 0, &it);
while ((task = css_task_iter_next(&it)))
dl_add_task_root_domain(task);
css_task_iter_end(&it);
}
static void dl_rebuild_rd_accounting(void)
{
struct cpuset *cs = NULL;
struct cgroup_subsys_state *pos_css;
lockdep_assert_held(&cpuset_mutex);
lockdep_assert_cpus_held();
lockdep_assert_held(&sched_domains_mutex);
rcu_read_lock();
dl_clear_root_domain(&def_root_domain);
cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
if (cpumask_empty(cs->effective_cpus)) {
pos_css = css_rightmost_descendant(pos_css);
continue;
}
css_get(&cs->css);
rcu_read_unlock();
dl_update_tasks_root_domain(cs);
rcu_read_lock();
css_put(&cs->css);
}
rcu_read_unlock();
}
static void
partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
struct sched_domain_attr *dattr_new)
{
mutex_lock(&sched_domains_mutex);
partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
dl_rebuild_rd_accounting();
mutex_unlock(&sched_domains_mutex);
}
static void rebuild_sched_domains_locked(void)
{
struct cgroup_subsys_state *pos_css;
struct sched_domain_attr *attr;
cpumask_var_t *doms;
struct cpuset *cs;
int ndoms;
lockdep_assert_cpus_held();
lockdep_assert_held(&cpuset_mutex);
if (!top_cpuset.nr_subparts_cpus &&
!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
return;
if (top_cpuset.nr_subparts_cpus) {
rcu_read_lock();
cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
if (!is_partition_valid(cs)) {
pos_css = css_rightmost_descendant(pos_css);
continue;
}
if (!cpumask_subset(cs->effective_cpus,
cpu_active_mask)) {
rcu_read_unlock();
return;
}
}
rcu_read_unlock();
}
ndoms = generate_sched_domains(&doms, &attr);
partition_and_rebuild_sched_domains(ndoms, doms, attr);
}
#else /* !CONFIG_SMP */
static void rebuild_sched_domains_locked(void)
{
}
#endif /* CONFIG_SMP */
void rebuild_sched_domains(void)
{
cpus_read_lock();
mutex_lock(&cpuset_mutex);
rebuild_sched_domains_locked();
mutex_unlock(&cpuset_mutex);
cpus_read_unlock();
}
static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
{
struct css_task_iter it;
struct task_struct *task;
bool top_cs = cs == &top_cpuset;
css_task_iter_start(&cs->css, 0, &it);
while ((task = css_task_iter_next(&it))) {
const struct cpumask *possible_mask = task_cpu_possible_mask(task);
if (top_cs) {
if (kthread_is_per_cpu(task))
continue;
cpumask_andnot(new_cpus, possible_mask, cs->subparts_cpus);
} else {
cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
}
set_cpus_allowed_ptr(task, new_cpus);
}
css_task_iter_end(&it);
}
static void compute_effective_cpumask(struct cpumask *new_cpus,
struct cpuset *cs, struct cpuset *parent)
{
if (parent->nr_subparts_cpus && is_partition_valid(cs)) {
cpumask_or(new_cpus, parent->effective_cpus,
parent->subparts_cpus);
cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
cpumask_and(new_cpus, new_cpus, cpu_active_mask);
} else {
cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
}
}
enum subparts_cmd {
partcmd_enable,
partcmd_disable,
partcmd_update,
partcmd_invalidate,
};
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
int turning_on);
static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
struct tmpmasks *tmp);
static int update_partition_exclusive(struct cpuset *cs, int new_prs)
{
bool exclusive = (new_prs > 0);
if (exclusive && !is_cpu_exclusive(cs)) {
if (update_flag(CS_CPU_EXCLUSIVE, cs, 1))
return PERR_NOTEXCL;
} else if (!exclusive && is_cpu_exclusive(cs)) {
update_flag(CS_CPU_EXCLUSIVE, cs, 0);
}
return 0;
}
static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
{
int new_prs = cs->partition_root_state;
bool new_lb = (new_prs != PRS_ISOLATED);
bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
if (new_lb != !!is_sched_load_balance(cs)) {
rebuild_domains = true;
if (new_lb)
set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
else
clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}
if (rebuild_domains)
rebuild_sched_domains_locked();
}
static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
struct cpumask *newmask,
struct tmpmasks *tmp)
{
struct cpuset *parent = parent_cs(cs);
int adding;
int deleting;
int old_prs, new_prs;
int part_error = PERR_NONE;
lockdep_assert_held(&cpuset_mutex);
if (!is_partition_valid(parent)) {
return is_partition_invalid(parent)
? PERR_INVPARENT : PERR_NOTPART;
}
if (!newmask && cpumask_empty(cs->cpus_allowed))
return PERR_CPUSEMPTY;
adding = deleting = false;
old_prs = new_prs = cs->partition_root_state;
if (cmd == partcmd_enable) {
if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed))
return PERR_INVCPUS;
if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) &&
partition_is_populated(parent, cs))
return PERR_NOCPUS;
cpumask_copy(tmp->addmask, cs->cpus_allowed);
adding = true;
} else if (cmd == partcmd_disable) {
deleting = !is_prs_invalid(old_prs) &&
cpumask_and(tmp->delmask, cs->cpus_allowed,
parent->subparts_cpus);
} else if (cmd == partcmd_invalidate) {
if (is_prs_invalid(old_prs))
return 0;
deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
parent->subparts_cpus);
if (old_prs > 0) {
new_prs = -old_prs;
part_error = PERR_NOTEXCL;
}
} else if (newmask) {
cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask);
deleting = cpumask_and(tmp->delmask, tmp->delmask,
parent->subparts_cpus);
cpumask_and(tmp->addmask, newmask, parent->cpus_allowed);
adding = cpumask_andnot(tmp->addmask, tmp->addmask,
parent->subparts_cpus);
if (cpumask_empty(newmask)) {
part_error = PERR_CPUSEMPTY;
} else if (adding &&
cpumask_subset(parent->effective_cpus, tmp->addmask) &&
!cpumask_intersects(tmp->delmask, cpu_active_mask) &&
partition_is_populated(parent, cs)) {
part_error = PERR_NOCPUS;
adding = false;
deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
parent->subparts_cpus);
}
} else {
cpumask_and(tmp->addmask, cs->cpus_allowed,
parent->cpus_allowed);
adding = cpumask_andnot(tmp->addmask, tmp->addmask,
parent->subparts_cpus);
if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) ||
(adding &&
cpumask_subset(parent->effective_cpus, tmp->addmask) &&
partition_is_populated(parent, cs))) {
part_error = PERR_NOCPUS;
adding = false;
}
if (part_error && is_partition_valid(cs) &&
parent->nr_subparts_cpus)
deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
parent->subparts_cpus);
}
if (part_error)
WRITE_ONCE(cs->prs_err, part_error);
if (cmd == partcmd_update) {
switch (cs->partition_root_state) {
case PRS_ROOT:
case PRS_ISOLATED:
if (part_error)
new_prs = -old_prs;
break;
case PRS_INVALID_ROOT:
case PRS_INVALID_ISOLATED:
if (!part_error)
new_prs = -old_prs;
break;
}
}
if (!adding && !deleting && (new_prs == old_prs))
return 0;
if (old_prs != new_prs) {
int err = update_partition_exclusive(cs, new_prs);
if (err)
return err;
}
spin_lock_irq(&callback_lock);
if (adding) {
cpumask_or(parent->subparts_cpus,
parent->subparts_cpus, tmp->addmask);
cpumask_andnot(parent->effective_cpus,
parent->effective_cpus, tmp->addmask);
}
if (deleting) {
cpumask_andnot(parent->subparts_cpus,
parent->subparts_cpus, tmp->delmask);
cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
cpumask_or(parent->effective_cpus,
parent->effective_cpus, tmp->delmask);
}
parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
if (old_prs != new_prs)
cs->partition_root_state = new_prs;
spin_unlock_irq(&callback_lock);
if (adding || deleting) {
update_tasks_cpumask(parent, tmp->addmask);
if (parent->child_ecpus_count)
update_sibling_cpumasks(parent, cs, tmp);
}
if ((cmd == partcmd_update) && !newmask && cpus_read_trylock()) {
update_partition_sd_lb(cs, old_prs);
cpus_read_unlock();
}
notify_partition_change(cs, old_prs);
return 0;
}
#define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */
#define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */
static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
int flags)
{
struct cpuset *cp;
struct cgroup_subsys_state *pos_css;
bool need_rebuild_sched_domains = false;
int old_prs, new_prs;
rcu_read_lock();
cpuset_for_each_descendant_pre(cp, pos_css, cs) {
struct cpuset *parent = parent_cs(cp);
bool update_parent = false;
compute_effective_cpumask(tmp->new_cpus, cp, parent);
if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
if (is_partition_valid(cp) &&
cpumask_equal(cp->cpus_allowed, cp->subparts_cpus))
goto update_parent_subparts;
cpumask_copy(tmp->new_cpus, parent->effective_cpus);
if (!cp->use_parent_ecpus) {
cp->use_parent_ecpus = true;
parent->child_ecpus_count++;
}
} else if (cp->use_parent_ecpus) {
cp->use_parent_ecpus = false;
WARN_ON_ONCE(!parent->child_ecpus_count);
parent->child_ecpus_count--;
}
if (!cp->partition_root_state && !(flags & HIER_CHECKALL) &&
cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
(is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
pos_css = css_rightmost_descendant(pos_css);
continue;
}
update_parent_subparts:
old_prs = new_prs = cp->partition_root_state;
if ((cp != cs) && old_prs) {
switch (parent->partition_root_state) {
case PRS_ROOT:
case PRS_ISOLATED:
update_parent = true;
break;
default:
if (is_partition_valid(cp))
new_prs = -cp->partition_root_state;
WRITE_ONCE(cp->prs_err,
is_partition_invalid(parent)
? PERR_INVPARENT : PERR_NOTPART);
break;
}
}
if (!css_tryget_online(&cp->css))
continue;
rcu_read_unlock();
if (update_parent) {
update_parent_subparts_cpumask(cp, partcmd_update, NULL,
tmp);
new_prs = cp->partition_root_state;
}
spin_lock_irq(&callback_lock);
if (cp->nr_subparts_cpus && !is_partition_valid(cp)) {
cpumask_or(tmp->new_cpus, tmp->new_cpus,
cp->subparts_cpus);
cpumask_and(tmp->new_cpus, tmp->new_cpus,
cpu_active_mask);
cp->nr_subparts_cpus = 0;
cpumask_clear(cp->subparts_cpus);
}
cpumask_copy(cp->effective_cpus, tmp->new_cpus);
if (cp->nr_subparts_cpus) {
cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
cp->subparts_cpus);
}
cp->partition_root_state = new_prs;
spin_unlock_irq(&callback_lock);
notify_partition_change(cp, old_prs);
WARN_ON(!is_in_v2_mode() &&
!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
update_tasks_cpumask(cp, tmp->new_cpus);
if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
!is_partition_valid(cp) &&
(is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
if (is_sched_load_balance(parent))
set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
else
clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
}
if (!cpumask_empty(cp->cpus_allowed) &&
is_sched_load_balance(cp) &&
(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
is_partition_valid(cp)))
need_rebuild_sched_domains = true;
rcu_read_lock();
css_put(&cp->css);
}
rcu_read_unlock();
if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD))
rebuild_sched_domains_locked();
}
static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
struct tmpmasks *tmp)
{
struct cpuset *sibling;
struct cgroup_subsys_state *pos_css;
lockdep_assert_held(&cpuset_mutex);
rcu_read_lock();
cpuset_for_each_child(sibling, pos_css, parent) {
if (sibling == cs)
continue;
if (!sibling->use_parent_ecpus)
continue;
if (!css_tryget_online(&sibling->css))
continue;
rcu_read_unlock();
update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD);
rcu_read_lock();
css_put(&sibling->css);
}
rcu_read_unlock();
}
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
const char *buf)
{
int retval;
struct tmpmasks tmp;
bool invalidate = false;
int old_prs = cs->partition_root_state;
if (cs == &top_cpuset)
return -EACCES;
if (!*buf) {
cpumask_clear(trialcs->cpus_allowed);
} else {
retval = cpulist_parse(buf, trialcs->cpus_allowed);
if (retval < 0)
return retval;
if (!cpumask_subset(trialcs->cpus_allowed,
top_cpuset.cpus_allowed))
return -EINVAL;
}
if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
return 0;
if (alloc_cpumasks(NULL, &tmp))
return -ENOMEM;
retval = validate_change(cs, trialcs);
if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
struct cpuset *cp, *parent;
struct cgroup_subsys_state *css;
invalidate = true;
rcu_read_lock();
parent = parent_cs(cs);
cpuset_for_each_child(cp, css, parent)
if (is_partition_valid(cp) &&
cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) {
rcu_read_unlock();
update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp);
rcu_read_lock();
}
rcu_read_unlock();
retval = 0;
}
if (retval < 0)
goto out_free;
if (cs->partition_root_state) {
if (invalidate)
update_parent_subparts_cpumask(cs, partcmd_invalidate,
NULL, &tmp);
else
update_parent_subparts_cpumask(cs, partcmd_update,
trialcs->cpus_allowed, &tmp);
}
compute_effective_cpumask(trialcs->effective_cpus, trialcs,
parent_cs(cs));
spin_lock_irq(&callback_lock);
cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
if (cs->nr_subparts_cpus) {
if (!is_partition_valid(cs) ||
(cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) &&
partition_is_populated(cs, NULL))) {
cs->nr_subparts_cpus = 0;
cpumask_clear(cs->subparts_cpus);
} else {
cpumask_and(cs->subparts_cpus, cs->subparts_cpus,
cs->cpus_allowed);
cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
}
}
spin_unlock_irq(&callback_lock);
update_cpumasks_hier(cs, &tmp, 0);
if (cs->partition_root_state) {
struct cpuset *parent = parent_cs(cs);
if (parent->child_ecpus_count)
update_sibling_cpumasks(parent, cs, &tmp);
update_partition_sd_lb(cs, old_prs);
}
out_free:
free_cpumasks(NULL, &tmp);
return 0;
}
struct cpuset_migrate_mm_work {
struct work_struct work;
struct mm_struct *mm;
nodemask_t from;
nodemask_t to;
};
static void cpuset_migrate_mm_workfn(struct work_struct *work)
{
struct cpuset_migrate_mm_work *mwork =
container_of(work, struct cpuset_migrate_mm_work, work);
do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
mmput(mwork->mm);
kfree(mwork);
}
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
const nodemask_t *to)
{
struct cpuset_migrate_mm_work *mwork;
if (nodes_equal(*from, *to)) {
mmput(mm);
return;
}
mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
if (mwork) {
mwork->mm = mm;
mwork->from = *from;
mwork->to = *to;
INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
queue_work(cpuset_migrate_mm_wq, &mwork->work);
} else {
mmput(mm);
}
}
static void cpuset_post_attach(void)
{
flush_workqueue(cpuset_migrate_mm_wq);
}
static void cpuset_change_task_nodemask(struct task_struct *tsk,
nodemask_t *newmems)
{
task_lock(tsk);
local_irq_disable();
write_seqcount_begin(&tsk->mems_allowed_seq);
nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
mpol_rebind_task(tsk, newmems);
tsk->mems_allowed = *newmems;
write_seqcount_end(&tsk->mems_allowed_seq);
local_irq_enable();
task_unlock(tsk);
}
static void *cpuset_being_rebound;
static void update_tasks_nodemask(struct cpuset *cs)
{
static nodemask_t newmems;
struct css_task_iter it;
struct task_struct *task;
cpuset_being_rebound = cs;
guarantee_online_mems(cs, &newmems);
css_task_iter_start(&cs->css, 0, &it);
while ((task = css_task_iter_next(&it))) {
struct mm_struct *mm;
bool migrate;
cpuset_change_task_nodemask(task, &newmems);
mm = get_task_mm(task);
if (!mm)
continue;
migrate = is_memory_migrate(cs);
mpol_rebind_mm(mm, &cs->mems_allowed);
if (migrate)
cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
else
mmput(mm);
}
css_task_iter_end(&it);
cs->old_mems_allowed = newmems;
cpuset_being_rebound = NULL;
}
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
{
struct cpuset *cp;
struct cgroup_subsys_state *pos_css;
rcu_read_lock();
cpuset_for_each_descendant_pre(cp, pos_css, cs) {
struct cpuset *parent = parent_cs(cp);
nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
if (is_in_v2_mode() && nodes_empty(*new_mems))
*new_mems = parent->effective_mems;
if (nodes_equal(*new_mems, cp->effective_mems)) {
pos_css = css_rightmost_descendant(pos_css);
continue;
}
if (!css_tryget_online(&cp->css))
continue;
rcu_read_unlock();
spin_lock_irq(&callback_lock);
cp->effective_mems = *new_mems;
spin_unlock_irq(&callback_lock);
WARN_ON(!is_in_v2_mode() &&
!nodes_equal(cp->mems_allowed, cp->effective_mems));
update_tasks_nodemask(cp);
rcu_read_lock();
css_put(&cp->css);
}
rcu_read_unlock();
}
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
const char *buf)
{
int retval;
if (cs == &top_cpuset) {
retval = -EACCES;
goto done;
}
if (!*buf) {
nodes_clear(trialcs->mems_allowed);
} else {
retval = nodelist_parse(buf, trialcs->mems_allowed);
if (retval < 0)
goto done;
if (!nodes_subset(trialcs->mems_allowed,
top_cpuset.mems_allowed)) {
retval = -EINVAL;
goto done;
}
}
if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
retval = 0;
goto done;
}
retval = validate_change(cs, trialcs);
if (retval < 0)
goto done;
check_insane_mems_config(&trialcs->mems_allowed);
spin_lock_irq(&callback_lock);
cs->mems_allowed = trialcs->mems_allowed;
spin_unlock_irq(&callback_lock);
update_nodemasks_hier(cs, &trialcs->mems_allowed);
done:
return retval;
}
bool current_cpuset_is_being_rebound(void)
{
bool ret;
rcu_read_lock();
ret = task_cs(current) == cpuset_being_rebound;
rcu_read_unlock();
return ret;
}
static int update_relax_domain_level(struct cpuset *cs, s64 val)
{
#ifdef CONFIG_SMP
if (val < -1 || val >= sched_domain_level_max)
return -EINVAL;
#endif
if (val != cs->relax_domain_level) {
cs->relax_domain_level = val;
if (!cpumask_empty(cs->cpus_allowed) &&
is_sched_load_balance(cs))
rebuild_sched_domains_locked();
}
return 0;
}
static void update_tasks_flags(struct cpuset *cs)
{
struct css_task_iter it;
struct task_struct *task;
css_task_iter_start(&cs->css, 0, &it);
while ((task = css_task_iter_next(&it)))
cpuset_update_task_spread_flags(cs, task);
css_task_iter_end(&it);
}
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
int turning_on)
{
struct cpuset *trialcs;
int balance_flag_changed;
int spread_flag_changed;
int err;
trialcs = alloc_trial_cpuset(cs);
if (!trialcs)
return -ENOMEM;
if (turning_on)
set_bit(bit, &trialcs->flags);
else
clear_bit(bit, &trialcs->flags);
err = validate_change(cs, trialcs);
if (err < 0)
goto out;
balance_flag_changed = (is_sched_load_balance(cs) !=
is_sched_load_balance(trialcs));
spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
|| (is_spread_page(cs) != is_spread_page(trialcs)));
spin_lock_irq(&callback_lock);
cs->flags = trialcs->flags;
spin_unlock_irq(&callback_lock);
if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
rebuild_sched_domains_locked();
if (spread_flag_changed)
update_tasks_flags(cs);
out:
free_cpuset(trialcs);
return err;
}
static int update_prstate(struct cpuset *cs, int new_prs)
{
int err = PERR_NONE, old_prs = cs->partition_root_state;
struct cpuset *parent = parent_cs(cs);
struct tmpmasks tmpmask;
if (old_prs == new_prs)
return 0;
if (new_prs && is_prs_invalid(old_prs)) {
cs->partition_root_state = -new_prs;
return 0;
}
if (alloc_cpumasks(NULL, &tmpmask))
return -ENOMEM;
err = update_partition_exclusive(cs, new_prs);
if (err)
goto out;
if (!old_prs) {
if (cpumask_empty(cs->cpus_allowed)) {
err = PERR_CPUSEMPTY;
goto out;
}
err = update_parent_subparts_cpumask(cs, partcmd_enable,
NULL, &tmpmask);
} else if (old_prs && new_prs) {
;
} else {
update_parent_subparts_cpumask(cs, partcmd_disable, NULL,
&tmpmask);
if (unlikely(cs->nr_subparts_cpus)) {
spin_lock_irq(&callback_lock);
cs->nr_subparts_cpus = 0;
cpumask_clear(cs->subparts_cpus);
compute_effective_cpumask(cs->effective_cpus, cs, parent);
spin_unlock_irq(&callback_lock);
}
}
out:
if (err) {
new_prs = -new_prs;
update_partition_exclusive(cs, new_prs);
}
spin_lock_irq(&callback_lock);
cs->partition_root_state = new_prs;
WRITE_ONCE(cs->prs_err, err);
spin_unlock_irq(&callback_lock);
if (!list_empty(&cs->css.children))
update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0);
update_partition_sd_lb(cs, old_prs);
notify_partition_change(cs, old_prs);
free_cpumasks(NULL, &tmpmask);
return 0;
}
#define FM_COEF 933 /* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
#define FM_SCALE 1000 /* faux fixed point scale */
static void fmeter_init(struct fmeter *fmp)
{
fmp->cnt = 0;
fmp->val = 0;
fmp->time = 0;
spin_lock_init(&fmp->lock);
}
static void fmeter_update(struct fmeter *fmp)
{
time64_t now;
u32 ticks;
now = ktime_get_seconds();
ticks = now - fmp->time;
if (ticks == 0)
return;
ticks = min(FM_MAXTICKS, ticks);
while (ticks-- > 0)
fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
fmp->time = now;
fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
fmp->cnt = 0;
}
static void fmeter_markevent(struct fmeter *fmp)
{
spin_lock(&fmp->lock);
fmeter_update(fmp);
fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
spin_unlock(&fmp->lock);
}
static int fmeter_getrate(struct fmeter *fmp)
{
int val;
spin_lock(&fmp->lock);
fmeter_update(fmp);
val = fmp->val;
spin_unlock(&fmp->lock);
return val;
}
static struct cpuset *cpuset_attach_old_cs;
static int cpuset_can_attach_check(struct cpuset *cs)
{
if (cpumask_empty(cs->effective_cpus) ||
(!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
return -ENOSPC;
return 0;
}
static void reset_migrate_dl_data(struct cpuset *cs)
{
cs->nr_migrate_dl_tasks = 0;
cs->sum_migrate_dl_bw = 0;
}
static int cpuset_can_attach(struct cgroup_taskset *tset)
{
struct cgroup_subsys_state *css;
struct cpuset *cs, *oldcs;
struct task_struct *task;
bool cpus_updated, mems_updated;
int ret;
cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
oldcs = cpuset_attach_old_cs;
cs = css_cs(css);
mutex_lock(&cpuset_mutex);
ret = cpuset_can_attach_check(cs);
if (ret)
goto out_unlock;
cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
cgroup_taskset_for_each(task, css, tset) {
ret = task_can_attach(task);
if (ret)
goto out_unlock;
if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
(cpus_updated || mems_updated)) {
ret = security_task_setscheduler(task);
if (ret)
goto out_unlock;
}
if (dl_task(task)) {
cs->nr_migrate_dl_tasks++;
cs->sum_migrate_dl_bw += task->dl.dl_bw;
}
}
if (!cs->nr_migrate_dl_tasks)
goto out_success;
if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
if (unlikely(cpu >= nr_cpu_ids)) {
reset_migrate_dl_data(cs);
ret = -EINVAL;
goto out_unlock;
}
ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
if (ret) {
reset_migrate_dl_data(cs);
goto out_unlock;
}
}
out_success:
cs->attach_in_progress++;
out_unlock:
mutex_unlock(&cpuset_mutex);
return ret;
}
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
{
struct cgroup_subsys_state *css;
struct cpuset *cs;
cgroup_taskset_first(tset, &css);
cs = css_cs(css);
mutex_lock(&cpuset_mutex);
cs->attach_in_progress--;
if (!cs->attach_in_progress)
wake_up(&cpuset_attach_wq);
if (cs->nr_migrate_dl_tasks) {
int cpu = cpumask_any(cs->effective_cpus);
dl_bw_free(cpu, cs->sum_migrate_dl_bw);
reset_migrate_dl_data(cs);
}
mutex_unlock(&cpuset_mutex);
}
static cpumask_var_t cpus_attach;
static nodemask_t cpuset_attach_nodemask_to;
static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
{
lockdep_assert_held(&cpuset_mutex);
if (cs != &top_cpuset)
guarantee_online_cpus(task, cpus_attach);
else
cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
cs->subparts_cpus);
WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
cpuset_update_task_spread_flags(cs, task);
}
static void cpuset_attach(struct cgroup_taskset *tset)
{
struct task_struct *task;
struct task_struct *leader;
struct cgroup_subsys_state *css;
struct cpuset *cs;
struct cpuset *oldcs = cpuset_attach_old_cs;
bool cpus_updated, mems_updated;
cgroup_taskset_first(tset, &css);
cs = css_cs(css);
lockdep_assert_cpus_held();
mutex_lock(&cpuset_mutex);
cpus_updated = !cpumask_equal(cs->effective_cpus,
oldcs->effective_cpus);
mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
!cpus_updated && !mems_updated) {
cpuset_attach_nodemask_to = cs->effective_mems;
goto out;
}
guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
cgroup_taskset_for_each(task, css, tset)
cpuset_attach_task(cs, task);
cpuset_attach_nodemask_to = cs->effective_mems;
if (!is_memory_migrate(cs) && !mems_updated)
goto out;
cgroup_taskset_for_each_leader(leader, css, tset) {
struct mm_struct *mm = get_task_mm(leader);
if (mm) {
mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
if (is_memory_migrate(cs))
cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
&cpuset_attach_nodemask_to);
else
mmput(mm);
}
}
out:
cs->old_mems_allowed = cpuset_attach_nodemask_to;
if (cs->nr_migrate_dl_tasks) {
cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
reset_migrate_dl_data(cs);
}
cs->attach_in_progress--;
if (!cs->attach_in_progress)
wake_up(&cpuset_attach_wq);
mutex_unlock(&cpuset_mutex);
}
typedef enum {
FILE_MEMORY_MIGRATE,
FILE_CPULIST,
FILE_MEMLIST,
FILE_EFFECTIVE_CPULIST,
FILE_EFFECTIVE_MEMLIST,
FILE_SUBPARTS_CPULIST,
FILE_CPU_EXCLUSIVE,
FILE_MEM_EXCLUSIVE,
FILE_MEM_HARDWALL,
FILE_SCHED_LOAD_BALANCE,
FILE_PARTITION_ROOT,
FILE_SCHED_RELAX_DOMAIN_LEVEL,
FILE_MEMORY_PRESSURE_ENABLED,
FILE_MEMORY_PRESSURE,
FILE_SPREAD_PAGE,
FILE_SPREAD_SLAB,
} cpuset_filetype_t;
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
u64 val)
{
struct cpuset *cs = css_cs(css);
cpuset_filetype_t type = cft->private;
int retval = 0;
cpus_read_lock();
mutex_lock(&cpuset_mutex);
if (!is_cpuset_online(cs)) {
retval = -ENODEV;
goto out_unlock;
}
switch (type) {
case FILE_CPU_EXCLUSIVE:
retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
break;
case FILE_MEM_EXCLUSIVE:
retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
break;
case FILE_MEM_HARDWALL:
retval = update_flag(CS_MEM_HARDWALL, cs, val);
break;
case FILE_SCHED_LOAD_BALANCE:
retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
break;
case FILE_MEMORY_MIGRATE:
retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
break;
case FILE_MEMORY_PRESSURE_ENABLED:
cpuset_memory_pressure_enabled = !!val;
break;
case FILE_SPREAD_PAGE:
retval = update_flag(CS_SPREAD_PAGE, cs, val);
break;
case FILE_SPREAD_SLAB:
retval = update_flag(CS_SPREAD_SLAB, cs, val);
break;
default:
retval = -EINVAL;
break;
}
out_unlock:
mutex_unlock(&cpuset_mutex);
cpus_read_unlock();
return retval;
}
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
s64 val)
{
struct cpuset *cs = css_cs(css);
cpuset_filetype_t type = cft->private;
int retval = -ENODEV;
cpus_read_lock();
mutex_lock(&cpuset_mutex);
if (!is_cpuset_online(cs))
goto out_unlock;
switch (type) {
case FILE_SCHED_RELAX_DOMAIN_LEVEL:
retval = update_relax_domain_level(cs, val);
break;
default:
retval = -EINVAL;
break;
}
out_unlock:
mutex_unlock(&cpuset_mutex);
cpus_read_unlock();
return retval;
}
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct cpuset *cs = css_cs(of_css(of));
struct cpuset *trialcs;
int retval = -ENODEV;
buf = strstrip(buf);
css_get(&cs->css);
kernfs_break_active_protection(of->kn);
flush_work(&cpuset_hotplug_work);
cpus_read_lock();
mutex_lock(&cpuset_mutex);
if (!is_cpuset_online(cs))
goto out_unlock;
trialcs = alloc_trial_cpuset(cs);
if (!trialcs) {
retval = -ENOMEM;
goto out_unlock;
}
switch (of_cft(of)->private) {
case FILE_CPULIST:
retval = update_cpumask(cs, trialcs, buf);
break;
case FILE_MEMLIST:
retval = update_nodemask(cs, trialcs, buf);
break;
default:
retval = -EINVAL;
break;
}
free_cpuset(trialcs);
out_unlock:
mutex_unlock(&cpuset_mutex);
cpus_read_unlock();
kernfs_unbreak_active_protection(of->kn);
css_put(&cs->css);
flush_workqueue(cpuset_migrate_mm_wq);
return retval ?: nbytes;
}
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
{
struct cpuset *cs = css_cs(seq_css(sf));
cpuset_filetype_t type = seq_cft(sf)->private;
int ret = 0;
spin_lock_irq(&callback_lock);
switch (type) {
case FILE_CPULIST:
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
break;
case FILE_MEMLIST:
seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
break;
case FILE_EFFECTIVE_CPULIST:
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
break;
case FILE_EFFECTIVE_MEMLIST:
seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
break;
case FILE_SUBPARTS_CPULIST:
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
break;
default:
ret = -EINVAL;
}
spin_unlock_irq(&callback_lock);
return ret;
}
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
{
struct cpuset *cs = css_cs(css);
cpuset_filetype_t type = cft->private;
switch (type) {
case FILE_CPU_EXCLUSIVE:
return is_cpu_exclusive(cs);
case FILE_MEM_EXCLUSIVE:
return is_mem_exclusive(cs);
case FILE_MEM_HARDWALL:
return is_mem_hardwall(cs);
case FILE_SCHED_LOAD_BALANCE:
return is_sched_load_balance(cs);
case FILE_MEMORY_MIGRATE:
return is_memory_migrate(cs);
case FILE_MEMORY_PRESSURE_ENABLED:
return cpuset_memory_pressure_enabled;
case FILE_MEMORY_PRESSURE:
return fmeter_getrate(&cs->fmeter);
case FILE_SPREAD_PAGE:
return is_spread_page(cs);
case FILE_SPREAD_SLAB:
return is_spread_slab(cs);
default:
BUG();
}
return 0;
}
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
{
struct cpuset *cs = css_cs(css);
cpuset_filetype_t type = cft->private;
switch (type) {
case FILE_SCHED_RELAX_DOMAIN_LEVEL:
return cs->relax_domain_level;
default:
BUG();
}
return 0;
}
static int sched_partition_show(struct seq_file *seq, void *v)
{
struct cpuset *cs = css_cs(seq_css(seq));
const char *err, *type = NULL;
switch (cs->partition_root_state) {
case PRS_ROOT:
seq_puts(seq, "root\n");
break;
case PRS_ISOLATED:
seq_puts(seq, "isolated\n");
break;
case PRS_MEMBER:
seq_puts(seq, "member\n");
break;
case PRS_INVALID_ROOT:
type = "root";
fallthrough;
case PRS_INVALID_ISOLATED:
if (!type)
type = "isolated";
err = perr_strings[READ_ONCE(cs->prs_err)];
if (err)
seq_printf(seq, "%s invalid (%s)\n", type, err);
else
seq_printf(seq, "%s invalid\n", type);
break;
}
return 0;
}
static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off)
{
struct cpuset *cs = css_cs(of_css(of));
int val;
int retval = -ENODEV;
buf = strstrip(buf);
if (!strcmp(buf, "root"))
val = PRS_ROOT;
else if (!strcmp(buf, "member"))
val = PRS_MEMBER;
else if (!strcmp(buf, "isolated"))
val = PRS_ISOLATED;
else
return -EINVAL;
css_get(&cs->css);
cpus_read_lock();
mutex_lock(&cpuset_mutex);
if (!is_cpuset_online(cs))
goto out_unlock;
retval = update_prstate(cs, val);
out_unlock:
mutex_unlock(&cpuset_mutex);
cpus_read_unlock();
css_put(&cs->css);
return retval ?: nbytes;
}
static struct cftype legacy_files[] = {
{
.name = "cpus",
.seq_show = cpuset_common_seq_show,
.write = cpuset_write_resmask,
.max_write_len = (100U + 6 * NR_CPUS),
.private = FILE_CPULIST,
},
{
.name = "mems",
.seq_show = cpuset_common_seq_show,
.write = cpuset_write_resmask,
.max_write_len = (100U + 6 * MAX_NUMNODES),
.private = FILE_MEMLIST,
},
{
.name = "effective_cpus",
.seq_show = cpuset_common_seq_show,
.private = FILE_EFFECTIVE_CPULIST,
},
{
.name = "effective_mems",
.seq_show = cpuset_common_seq_show,
.private = FILE_EFFECTIVE_MEMLIST,
},
{
.name = "cpu_exclusive",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_CPU_EXCLUSIVE,
},
{
.name = "mem_exclusive",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_MEM_EXCLUSIVE,
},
{
.name = "mem_hardwall",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_MEM_HARDWALL,
},
{
.name = "sched_load_balance",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_SCHED_LOAD_BALANCE,
},
{
.name = "sched_relax_domain_level",
.read_s64 = cpuset_read_s64,
.write_s64 = cpuset_write_s64,
.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
},
{
.name = "memory_migrate",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_MEMORY_MIGRATE,
},
{
.name = "memory_pressure",
.read_u64 = cpuset_read_u64,
.private = FILE_MEMORY_PRESSURE,
},
{
.name = "memory_spread_page",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_SPREAD_PAGE,
},
{
.name = "memory_spread_slab",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_SPREAD_SLAB,
},
{
.name = "memory_pressure_enabled",
.flags = CFTYPE_ONLY_ON_ROOT,
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_MEMORY_PRESSURE_ENABLED,
},
{ }
};
static struct cftype dfl_files[] = {
{
.name = "cpus",
.seq_show = cpuset_common_seq_show,
.write = cpuset_write_resmask,
.max_write_len = (100U + 6 * NR_CPUS),
.private = FILE_CPULIST,
.flags = CFTYPE_NOT_ON_ROOT,
},
{
.name = "mems",
.seq_show = cpuset_common_seq_show,
.write = cpuset_write_resmask,
.max_write_len = (100U + 6 * MAX_NUMNODES),
.private = FILE_MEMLIST,
.flags = CFTYPE_NOT_ON_ROOT,
},
{
.name = "cpus.effective",
.seq_show = cpuset_common_seq_show,
.private = FILE_EFFECTIVE_CPULIST,
},
{
.name = "mems.effective",
.seq_show = cpuset_common_seq_show,
.private = FILE_EFFECTIVE_MEMLIST,
},
{
.name = "cpus.partition",
.seq_show = sched_partition_show,
.write = sched_partition_write,
.private = FILE_PARTITION_ROOT,
.flags = CFTYPE_NOT_ON_ROOT,
.file_offset = offsetof(struct cpuset, partition_file),
},
{
.name = "cpus.subpartitions",
.seq_show = cpuset_common_seq_show,
.private = FILE_SUBPARTS_CPULIST,
.flags = CFTYPE_DEBUG,
},
{ }
};
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
{
struct cpuset *cs;
if (!parent_css)
return &top_cpuset.css;
cs = kzalloc(sizeof(*cs), GFP_KERNEL);
if (!cs)
return ERR_PTR(-ENOMEM);
if (alloc_cpumasks(cs, NULL)) {
kfree(cs);
return ERR_PTR(-ENOMEM);
}
__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
nodes_clear(cs->mems_allowed);
nodes_clear(cs->effective_mems);
fmeter_init(&cs->fmeter);
cs->relax_domain_level = -1;
if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
return &cs->css;
}
static int cpuset_css_online(struct cgroup_subsys_state *css)
{
struct cpuset *cs = css_cs(css);
struct cpuset *parent = parent_cs(cs);
struct cpuset *tmp_cs;
struct cgroup_subsys_state *pos_css;
if (!parent)
return 0;
cpus_read_lock();
mutex_lock(&cpuset_mutex);
set_bit(CS_ONLINE, &cs->flags);
if (is_spread_page(parent))
set_bit(CS_SPREAD_PAGE, &cs->flags);
if (is_spread_slab(parent))
set_bit(CS_SPREAD_SLAB, &cs->flags);
cpuset_inc();
spin_lock_irq(&callback_lock);
if (is_in_v2_mode()) {
cpumask_copy(cs->effective_cpus, parent->effective_cpus);
cs->effective_mems = parent->effective_mems;
cs->use_parent_ecpus = true;
parent->child_ecpus_count++;
}
if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
!is_sched_load_balance(parent))
clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
spin_unlock_irq(&callback_lock);
if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
goto out_unlock;
rcu_read_lock();
cpuset_for_each_child(tmp_cs, pos_css, parent) {
if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
rcu_read_unlock();
goto out_unlock;
}
}
rcu_read_unlock();
spin_lock_irq(&callback_lock);
cs->mems_allowed = parent->mems_allowed;
cs->effective_mems = parent->mems_allowed;
cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
spin_unlock_irq(&callback_lock);
out_unlock:
mutex_unlock(&cpuset_mutex);
cpus_read_unlock();
return 0;
}
static void cpuset_css_offline(struct cgroup_subsys_state *css)
{
struct cpuset *cs = css_cs(css);
cpus_read_lock();
mutex_lock(&cpuset_mutex);
if (is_partition_valid(cs))
update_prstate(cs, 0);
if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
is_sched_load_balance(cs))
update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
if (cs->use_parent_ecpus) {
struct cpuset *parent = parent_cs(cs);
cs->use_parent_ecpus = false;
parent->child_ecpus_count--;
}
cpuset_dec();
clear_bit(CS_ONLINE, &cs->flags);
mutex_unlock(&cpuset_mutex);
cpus_read_unlock();
}
static void cpuset_css_free(struct cgroup_subsys_state *css)
{
struct cpuset *cs = css_cs(css);
free_cpuset(cs);
}
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
mutex_lock(&cpuset_mutex);
spin_lock_irq(&callback_lock);
if (is_in_v2_mode()) {
cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
top_cpuset.mems_allowed = node_possible_map;
} else {
cpumask_copy(top_cpuset.cpus_allowed,
top_cpuset.effective_cpus);
top_cpuset.mems_allowed = top_cpuset.effective_mems;
}
spin_unlock_irq(&callback_lock);
mutex_unlock(&cpuset_mutex);
}
static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
{
struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
bool same_cs;
int ret;
rcu_read_lock();
same_cs = (cs == task_cs(current));
rcu_read_unlock();
if (same_cs)
return 0;
lockdep_assert_held(&cgroup_mutex);
mutex_lock(&cpuset_mutex);
ret = cpuset_can_attach_check(cs);
if (ret)
goto out_unlock;
ret = task_can_attach(task);
if (ret)
goto out_unlock;
ret = security_task_setscheduler(task);
if (ret)
goto out_unlock;
cs->attach_in_progress++;
out_unlock:
mutex_unlock(&cpuset_mutex);
return ret;
}
static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
{
struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
bool same_cs;
rcu_read_lock();
same_cs = (cs == task_cs(current));
rcu_read_unlock();
if (same_cs)
return;
mutex_lock(&cpuset_mutex);
cs->attach_in_progress--;
if (!cs->attach_in_progress)
wake_up(&cpuset_attach_wq);
mutex_unlock(&cpuset_mutex);
}
static void cpuset_fork(struct task_struct *task)
{
struct cpuset *cs;
bool same_cs;
rcu_read_lock();
cs = task_cs(task);
same_cs = (cs == task_cs(current));
rcu_read_unlock();
if (same_cs) {
if (cs == &top_cpuset)
return;
set_cpus_allowed_ptr(task, current->cpus_ptr);
task->mems_allowed = current->mems_allowed;
return;
}
mutex_lock(&cpuset_mutex);
guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
cpuset_attach_task(cs, task);
cs->attach_in_progress--;
if (!cs->attach_in_progress)
wake_up(&cpuset_attach_wq);
mutex_unlock(&cpuset_mutex);
}
struct cgroup_subsys cpuset_cgrp_subsys = {
.css_alloc = cpuset_css_alloc,
.css_online = cpuset_css_online,
.css_offline = cpuset_css_offline,
.css_free = cpuset_css_free,
.can_attach = cpuset_can_attach,
.cancel_attach = cpuset_cancel_attach,
.attach = cpuset_attach,
.post_attach = cpuset_post_attach,
.bind = cpuset_bind,
.can_fork = cpuset_can_fork,
.cancel_fork = cpuset_cancel_fork,
.fork = cpuset_fork,
.legacy_cftypes = legacy_files,
.dfl_cftypes = dfl_files,
.early_init = true,
.threaded = true,
};
int __init cpuset_init(void)
{
BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
cpumask_setall(top_cpuset.cpus_allowed);
nodes_setall(top_cpuset.mems_allowed);
cpumask_setall(top_cpuset.effective_cpus);
nodes_setall(top_cpuset.effective_mems);
fmeter_init(&top_cpuset.fmeter);
set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
top_cpuset.relax_domain_level = -1;
BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
return 0;
}
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
struct cpuset *parent;
parent = parent_cs(cs);
while (cpumask_empty(parent->cpus_allowed) ||
nodes_empty(parent->mems_allowed))
parent = parent_cs(parent);
if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
pr_cont_cgroup_name(cs->css.cgroup);
pr_cont("\n");
}
}
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
struct cpumask *new_cpus, nodemask_t *new_mems,
bool cpus_updated, bool mems_updated)
{
bool is_empty;
spin_lock_irq(&callback_lock);
cpumask_copy(cs->cpus_allowed, new_cpus);
cpumask_copy(cs->effective_cpus, new_cpus);
cs->mems_allowed = *new_mems;
cs->effective_mems = *new_mems;
spin_unlock_irq(&callback_lock);
if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
update_tasks_cpumask(cs, new_cpus);
if (mems_updated && !nodes_empty(cs->mems_allowed))
update_tasks_nodemask(cs);
is_empty = cpumask_empty(cs->cpus_allowed) ||
nodes_empty(cs->mems_allowed);
if (is_empty) {
mutex_unlock(&cpuset_mutex);
remove_tasks_in_empty_cpuset(cs);
mutex_lock(&cpuset_mutex);
}
}
static void
hotplug_update_tasks(struct cpuset *cs,
struct cpumask *new_cpus, nodemask_t *new_mems,
bool cpus_updated, bool mems_updated)
{
if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
if (nodes_empty(*new_mems))
*new_mems = parent_cs(cs)->effective_mems;
spin_lock_irq(&callback_lock);
cpumask_copy(cs->effective_cpus, new_cpus);
cs->effective_mems = *new_mems;
spin_unlock_irq(&callback_lock);
if (cpus_updated)
update_tasks_cpumask(cs, new_cpus);
if (mems_updated)
update_tasks_nodemask(cs);
}
static bool force_rebuild;
void cpuset_force_rebuild(void)
{
force_rebuild = true;
}
static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
{
static cpumask_t new_cpus;
static nodemask_t new_mems;
bool cpus_updated;
bool mems_updated;
struct cpuset *parent;
retry:
wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
mutex_lock(&cpuset_mutex);
if (cs->attach_in_progress) {
mutex_unlock(&cpuset_mutex);
goto retry;
}
parent = parent_cs(cs);
compute_effective_cpumask(&new_cpus, cs, parent);
nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
if (cs->nr_subparts_cpus)
cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
if (!tmp || !cs->partition_root_state)
goto update_tasks;
if (cs->nr_subparts_cpus && is_partition_valid(cs) &&
cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) {
spin_lock_irq(&callback_lock);
cs->nr_subparts_cpus = 0;
cpumask_clear(cs->subparts_cpus);
spin_unlock_irq(&callback_lock);
compute_effective_cpumask(&new_cpus, cs, parent);
}
if (is_partition_valid(cs) && (!parent->nr_subparts_cpus ||
(cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) {
int old_prs, parent_prs;
update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp);
if (cs->nr_subparts_cpus) {
spin_lock_irq(&callback_lock);
cs->nr_subparts_cpus = 0;
cpumask_clear(cs->subparts_cpus);
spin_unlock_irq(&callback_lock);
compute_effective_cpumask(&new_cpus, cs, parent);
}
old_prs = cs->partition_root_state;
parent_prs = parent->partition_root_state;
if (is_partition_valid(cs)) {
spin_lock_irq(&callback_lock);
make_partition_invalid(cs);
spin_unlock_irq(&callback_lock);
if (is_prs_invalid(parent_prs))
WRITE_ONCE(cs->prs_err, PERR_INVPARENT);
else if (!parent_prs)
WRITE_ONCE(cs->prs_err, PERR_NOTPART);
else
WRITE_ONCE(cs->prs_err, PERR_HOTPLUG);
notify_partition_change(cs, old_prs);
}
cpuset_force_rebuild();
}
else if (is_partition_valid(parent) && is_partition_invalid(cs)) {
update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp);
if (is_partition_valid(cs))
cpuset_force_rebuild();
}
update_tasks:
cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
mems_updated = !nodes_equal(new_mems, cs->effective_mems);
if (!cpus_updated && !mems_updated)
goto unlock;
if (mems_updated)
check_insane_mems_config(&new_mems);
if (is_in_v2_mode())
hotplug_update_tasks(cs, &new_cpus, &new_mems,
cpus_updated, mems_updated);
else
hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
cpus_updated, mems_updated);
unlock:
mutex_unlock(&cpuset_mutex);
}
static void cpuset_hotplug_workfn(struct work_struct *work)
{
static cpumask_t new_cpus;
static nodemask_t new_mems;
bool cpus_updated, mems_updated;
bool on_dfl = is_in_v2_mode();
struct tmpmasks tmp, *ptmp = NULL;
if (on_dfl && !alloc_cpumasks(NULL, &tmp))
ptmp = &tmp;
mutex_lock(&cpuset_mutex);
cpumask_copy(&new_cpus, cpu_active_mask);
new_mems = node_states[N_MEMORY];
cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
if (!cpus_updated && top_cpuset.nr_subparts_cpus)
cpus_updated = true;
if (cpus_updated) {
spin_lock_irq(&callback_lock);
if (!on_dfl)
cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
if (top_cpuset.nr_subparts_cpus) {
if (cpumask_subset(&new_cpus,
top_cpuset.subparts_cpus)) {
top_cpuset.nr_subparts_cpus = 0;
cpumask_clear(top_cpuset.subparts_cpus);
} else {
cpumask_andnot(&new_cpus, &new_cpus,
top_cpuset.subparts_cpus);
}
}
cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
spin_unlock_irq(&callback_lock);
}
if (mems_updated) {
spin_lock_irq(&callback_lock);
if (!on_dfl)
top_cpuset.mems_allowed = new_mems;
top_cpuset.effective_mems = new_mems;
spin_unlock_irq(&callback_lock);
update_tasks_nodemask(&top_cpuset);
}
mutex_unlock(&cpuset_mutex);
if (cpus_updated || mems_updated) {
struct cpuset *cs;
struct cgroup_subsys_state *pos_css;
rcu_read_lock();
cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
if (cs == &top_cpuset || !css_tryget_online(&cs->css))
continue;
rcu_read_unlock();
cpuset_hotplug_update_tasks(cs, ptmp);
rcu_read_lock();
css_put(&cs->css);
}
rcu_read_unlock();
}
if (cpus_updated || force_rebuild) {
force_rebuild = false;
rebuild_sched_domains();
}
free_cpumasks(NULL, ptmp);
}
void cpuset_update_active_cpus(void)
{
schedule_work(&cpuset_hotplug_work);
}
void cpuset_wait_for_hotplug(void)
{
flush_work(&cpuset_hotplug_work);
}
static int cpuset_track_online_nodes(struct notifier_block *self,
unsigned long action, void *arg)
{
schedule_work(&cpuset_hotplug_work);
return NOTIFY_OK;
}
void __init cpuset_init_smp(void)
{
top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
top_cpuset.effective_mems = node_states[N_MEMORY];
hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
BUG_ON(!cpuset_migrate_mm_wq);
}
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
{
unsigned long flags;
struct cpuset *cs;
spin_lock_irqsave(&callback_lock, flags);
rcu_read_lock();
cs = task_cs(tsk);
if (cs != &top_cpuset)
guarantee_online_cpus(tsk, pmask);
if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus);
if (!cpumask_intersects(pmask, cpu_online_mask))
cpumask_copy(pmask, possible_mask);
}
rcu_read_unlock();
spin_unlock_irqrestore(&callback_lock, flags);
}
bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
{
const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
const struct cpumask *cs_mask;
bool changed = false;
rcu_read_lock();
cs_mask = task_cs(tsk)->cpus_allowed;
if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
do_set_cpus_allowed(tsk, cs_mask);
changed = true;
}
rcu_read_unlock();
return changed;
}
void __init cpuset_init_current_mems_allowed(void)
{
nodes_setall(current->mems_allowed);
}
nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
nodemask_t mask;
unsigned long flags;
spin_lock_irqsave(&callback_lock, flags);
rcu_read_lock();
guarantee_online_mems(task_cs(tsk), &mask);
rcu_read_unlock();
spin_unlock_irqrestore(&callback_lock, flags);
return mask;
}
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
{
return nodes_intersects(*nodemask, current->mems_allowed);
}
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
{
while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
cs = parent_cs(cs);
return cs;
}
bool cpuset_node_allowed(int node, gfp_t gfp_mask)
{
struct cpuset *cs;
bool allowed;
unsigned long flags;
if (in_interrupt())
return true;
if (node_isset(node, current->mems_allowed))
return true;
if (unlikely(tsk_is_oom_victim(current)))
return true;
if (gfp_mask & __GFP_HARDWALL)
return false;
if (current->flags & PF_EXITING)
return true;
spin_lock_irqsave(&callback_lock, flags);
rcu_read_lock();
cs = nearest_hardwall_ancestor(task_cs(current));
allowed = node_isset(node, cs->mems_allowed);
rcu_read_unlock();
spin_unlock_irqrestore(&callback_lock, flags);
return allowed;
}
static int cpuset_spread_node(int *rotor)
{
return *rotor = next_node_in(*rotor, current->mems_allowed);
}
int cpuset_mem_spread_node(void)
{
if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
current->cpuset_mem_spread_rotor =
node_random(¤t->mems_allowed);
return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
}
int cpuset_slab_spread_node(void)
{
if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
current->cpuset_slab_spread_rotor =
node_random(¤t->mems_allowed);
return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
}
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
const struct task_struct *tsk2)
{
return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
}
void cpuset_print_current_mems_allowed(void)
{
struct cgroup *cgrp;
rcu_read_lock();
cgrp = task_cs(current)->css.cgroup;
pr_cont(",cpuset=");
pr_cont_cgroup_name(cgrp);
pr_cont(",mems_allowed=%*pbl",
nodemask_pr_args(¤t->mems_allowed));
rcu_read_unlock();
}
int cpuset_memory_pressure_enabled __read_mostly;
void __cpuset_memory_pressure_bump(void)
{
rcu_read_lock();
fmeter_markevent(&task_cs(current)->fmeter);
rcu_read_unlock();
}
#ifdef CONFIG_PROC_PID_CPUSET
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *tsk)
{
char *buf;
struct cgroup_subsys_state *css;
int retval;
retval = -ENOMEM;
buf = kmalloc(PATH_MAX, GFP_KERNEL);
if (!buf)
goto out;
css = task_get_css(tsk, cpuset_cgrp_id);
retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
current->nsproxy->cgroup_ns);
css_put(css);
if (retval >= PATH_MAX)
retval = -ENAMETOOLONG;
if (retval < 0)
goto out_free;
seq_puts(m, buf);
seq_putc(m, '\n');
retval = 0;
out_free:
kfree(buf);
out:
return retval;
}
#endif /* CONFIG_PROC_PID_CPUSET */
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
seq_printf(m, "Mems_allowed:\t%*pb\n",
nodemask_pr_args(&task->mems_allowed));
seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
nodemask_pr_args(&task->mems_allowed));
}