#include <linux/clocksource.h>
#include <linux/highmem.h>
#include <linux/log2.h>
#include <linux/ptp_clock_kernel.h>
#include <rdma/mlx5-abi.h>
#include "lib/eq.h"
#include "en.h"
#include "clock.h"
enum {
MLX5_PIN_MODE_IN = 0x0,
MLX5_PIN_MODE_OUT = 0x1,
};
enum {
MLX5_OUT_PATTERN_PULSE = 0x0,
MLX5_OUT_PATTERN_PERIODIC = 0x1,
};
enum {
MLX5_EVENT_MODE_DISABLE = 0x0,
MLX5_EVENT_MODE_REPETETIVE = 0x1,
MLX5_EVENT_MODE_ONCE_TILL_ARM = 0x2,
};
enum {
MLX5_MTPPS_FS_ENABLE = BIT(0x0),
MLX5_MTPPS_FS_PATTERN = BIT(0x2),
MLX5_MTPPS_FS_PIN_MODE = BIT(0x3),
MLX5_MTPPS_FS_TIME_STAMP = BIT(0x4),
MLX5_MTPPS_FS_OUT_PULSE_DURATION = BIT(0x5),
MLX5_MTPPS_FS_ENH_OUT_PER_ADJ = BIT(0x7),
MLX5_MTPPS_FS_NPPS_PERIOD = BIT(0x9),
MLX5_MTPPS_FS_OUT_PULSE_DURATION_NS = BIT(0xa),
};
enum {
MLX5_MTUTC_OPERATION_ADJUST_TIME_MIN = S16_MIN,
MLX5_MTUTC_OPERATION_ADJUST_TIME_MAX = S16_MAX,
MLX5_MTUTC_OPERATION_ADJUST_TIME_EXTENDED_MIN = -200000,
MLX5_MTUTC_OPERATION_ADJUST_TIME_EXTENDED_MAX = 200000,
};
static bool mlx5_real_time_mode(struct mlx5_core_dev *mdev)
{
return (mlx5_is_real_time_rq(mdev) || mlx5_is_real_time_sq(mdev));
}
static bool mlx5_npps_real_time_supported(struct mlx5_core_dev *mdev)
{
return (mlx5_real_time_mode(mdev) &&
MLX5_CAP_MCAM_FEATURE(mdev, npps_period) &&
MLX5_CAP_MCAM_FEATURE(mdev, out_pulse_duration_ns));
}
static bool mlx5_modify_mtutc_allowed(struct mlx5_core_dev *mdev)
{
return MLX5_CAP_MCAM_FEATURE(mdev, ptpcyc2realtime_modify);
}
static u32 mlx5_ptp_shift_constant(u32 dev_freq_khz)
{
return min(ilog2(dev_freq_khz) + 16,
ilog2((U32_MAX / NSEC_PER_MSEC) * dev_freq_khz));
}
static s32 mlx5_ptp_getmaxphase(struct ptp_clock_info *ptp)
{
struct mlx5_clock *clock = container_of(ptp, struct mlx5_clock, ptp_info);
struct mlx5_core_dev *mdev;
mdev = container_of(clock, struct mlx5_core_dev, clock);
return MLX5_CAP_MCAM_FEATURE(mdev, mtutc_time_adjustment_extended_range) ?
MLX5_MTUTC_OPERATION_ADJUST_TIME_EXTENDED_MAX :
MLX5_MTUTC_OPERATION_ADJUST_TIME_MAX;
}
static bool mlx5_is_mtutc_time_adj_cap(struct mlx5_core_dev *mdev, s64 delta)
{
s64 max = mlx5_ptp_getmaxphase(&mdev->clock.ptp_info);
if (delta < -max || delta > max)
return false;
return true;
}
static int mlx5_set_mtutc(struct mlx5_core_dev *dev, u32 *mtutc, u32 size)
{
u32 out[MLX5_ST_SZ_DW(mtutc_reg)] = {};
if (!MLX5_CAP_MCAM_REG(dev, mtutc))
return -EOPNOTSUPP;
return mlx5_core_access_reg(dev, mtutc, size, out, sizeof(out),
MLX5_REG_MTUTC, 0, 1);
}
static u64 mlx5_read_time(struct mlx5_core_dev *dev,
struct ptp_system_timestamp *sts,
bool real_time)
{
u32 timer_h, timer_h1, timer_l;
timer_h = ioread32be(real_time ? &dev->iseg->real_time_h :
&dev->iseg->internal_timer_h);
ptp_read_system_prets(sts);
timer_l = ioread32be(real_time ? &dev->iseg->real_time_l :
&dev->iseg->internal_timer_l);
ptp_read_system_postts(sts);
timer_h1 = ioread32be(real_time ? &dev->iseg->real_time_h :
&dev->iseg->internal_timer_h);
if (timer_h != timer_h1) {
ptp_read_system_prets(sts);
timer_l = ioread32be(real_time ? &dev->iseg->real_time_l :
&dev->iseg->internal_timer_l);
ptp_read_system_postts(sts);
}
return real_time ? REAL_TIME_TO_NS(timer_h1, timer_l) :
(u64)timer_l | (u64)timer_h1 << 32;
}
static u64 read_internal_timer(const struct cyclecounter *cc)
{
struct mlx5_timer *timer = container_of(cc, struct mlx5_timer, cycles);
struct mlx5_clock *clock = container_of(timer, struct mlx5_clock, timer);
struct mlx5_core_dev *mdev = container_of(clock, struct mlx5_core_dev,
clock);
return mlx5_read_time(mdev, NULL, false) & cc->mask;
}
static void mlx5_update_clock_info_page(struct mlx5_core_dev *mdev)
{
struct mlx5_ib_clock_info *clock_info = mdev->clock_info;
struct mlx5_clock *clock = &mdev->clock;
struct mlx5_timer *timer;
u32 sign;
if (!clock_info)
return;
sign = smp_load_acquire(&clock_info->sign);
smp_store_mb(clock_info->sign,
sign | MLX5_IB_CLOCK_INFO_KERNEL_UPDATING);
timer = &clock->timer;
clock_info->cycles = timer->tc.cycle_last;
clock_info->mult = timer->cycles.mult;
clock_info->nsec = timer->tc.nsec;
clock_info->frac = timer->tc.frac;
smp_store_release(&clock_info->sign,
sign + MLX5_IB_CLOCK_INFO_KERNEL_UPDATING * 2);
}
static void mlx5_pps_out(struct work_struct *work)
{
struct mlx5_pps *pps_info = container_of(work, struct mlx5_pps,
out_work);
struct mlx5_clock *clock = container_of(pps_info, struct mlx5_clock,
pps_info);
struct mlx5_core_dev *mdev = container_of(clock, struct mlx5_core_dev,
clock);
u32 in[MLX5_ST_SZ_DW(mtpps_reg)] = {0};
unsigned long flags;
int i;
for (i = 0; i < clock->ptp_info.n_pins; i++) {
u64 tstart;
write_seqlock_irqsave(&clock->lock, flags);
tstart = clock->pps_info.start[i];
clock->pps_info.start[i] = 0;
write_sequnlock_irqrestore(&clock->lock, flags);
if (!tstart)
continue;
MLX5_SET(mtpps_reg, in, pin, i);
MLX5_SET64(mtpps_reg, in, time_stamp, tstart);
MLX5_SET(mtpps_reg, in, field_select, MLX5_MTPPS_FS_TIME_STAMP);
mlx5_set_mtpps(mdev, in, sizeof(in));
}
}
static void mlx5_timestamp_overflow(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct mlx5_core_dev *mdev;
struct mlx5_timer *timer;
struct mlx5_clock *clock;
unsigned long flags;
timer = container_of(dwork, struct mlx5_timer, overflow_work);
clock = container_of(timer, struct mlx5_clock, timer);
mdev = container_of(clock, struct mlx5_core_dev, clock);
if (mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
goto out;
write_seqlock_irqsave(&clock->lock, flags);
timecounter_read(&timer->tc);
mlx5_update_clock_info_page(mdev);
write_sequnlock_irqrestore(&clock->lock, flags);
out:
schedule_delayed_work(&timer->overflow_work, timer->overflow_period);
}
static int mlx5_ptp_settime_real_time(struct mlx5_core_dev *mdev,
const struct timespec64 *ts)
{
u32 in[MLX5_ST_SZ_DW(mtutc_reg)] = {};
if (!mlx5_modify_mtutc_allowed(mdev))
return 0;
if (ts->tv_sec < 0 || ts->tv_sec > U32_MAX ||
ts->tv_nsec < 0 || ts->tv_nsec > NSEC_PER_SEC)
return -EINVAL;
MLX5_SET(mtutc_reg, in, operation, MLX5_MTUTC_OPERATION_SET_TIME_IMMEDIATE);
MLX5_SET(mtutc_reg, in, utc_sec, ts->tv_sec);
MLX5_SET(mtutc_reg, in, utc_nsec, ts->tv_nsec);
return mlx5_set_mtutc(mdev, in, sizeof(in));
}
static int mlx5_ptp_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts)
{
struct mlx5_clock *clock = container_of(ptp, struct mlx5_clock, ptp_info);
struct mlx5_timer *timer = &clock->timer;
struct mlx5_core_dev *mdev;
unsigned long flags;
int err;
mdev = container_of(clock, struct mlx5_core_dev, clock);
err = mlx5_ptp_settime_real_time(mdev, ts);
if (err)
return err;
write_seqlock_irqsave(&clock->lock, flags);
timecounter_init(&timer->tc, &timer->cycles, timespec64_to_ns(ts));
mlx5_update_clock_info_page(mdev);
write_sequnlock_irqrestore(&clock->lock, flags);
return 0;
}
static
struct timespec64 mlx5_ptp_gettimex_real_time(struct mlx5_core_dev *mdev,
struct ptp_system_timestamp *sts)
{
struct timespec64 ts;
u64 time;
time = mlx5_read_time(mdev, sts, true);
ts = ns_to_timespec64(time);
return ts;
}
static int mlx5_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct mlx5_clock *clock = container_of(ptp, struct mlx5_clock, ptp_info);
struct mlx5_timer *timer = &clock->timer;
struct mlx5_core_dev *mdev;
unsigned long flags;
u64 cycles, ns;
mdev = container_of(clock, struct mlx5_core_dev, clock);
if (mlx5_real_time_mode(mdev)) {
*ts = mlx5_ptp_gettimex_real_time(mdev, sts);
goto out;
}
write_seqlock_irqsave(&clock->lock, flags);
cycles = mlx5_read_time(mdev, sts, false);
ns = timecounter_cyc2time(&timer->tc, cycles);
write_sequnlock_irqrestore(&clock->lock, flags);
*ts = ns_to_timespec64(ns);
out:
return 0;
}
static int mlx5_ptp_adjtime_real_time(struct mlx5_core_dev *mdev, s64 delta)
{
u32 in[MLX5_ST_SZ_DW(mtutc_reg)] = {};
if (!mlx5_modify_mtutc_allowed(mdev))
return 0;
if (!mlx5_is_mtutc_time_adj_cap(mdev, delta)) {
struct timespec64 ts;
s64 ns;
ts = mlx5_ptp_gettimex_real_time(mdev, NULL);
ns = timespec64_to_ns(&ts) + delta;
ts = ns_to_timespec64(ns);
return mlx5_ptp_settime_real_time(mdev, &ts);
}
MLX5_SET(mtutc_reg, in, operation, MLX5_MTUTC_OPERATION_ADJUST_TIME);
MLX5_SET(mtutc_reg, in, time_adjustment, delta);
return mlx5_set_mtutc(mdev, in, sizeof(in));
}
static int mlx5_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct mlx5_clock *clock = container_of(ptp, struct mlx5_clock, ptp_info);
struct mlx5_timer *timer = &clock->timer;
struct mlx5_core_dev *mdev;
unsigned long flags;
int err;
mdev = container_of(clock, struct mlx5_core_dev, clock);
err = mlx5_ptp_adjtime_real_time(mdev, delta);
if (err)
return err;
write_seqlock_irqsave(&clock->lock, flags);
timecounter_adjtime(&timer->tc, delta);
mlx5_update_clock_info_page(mdev);
write_sequnlock_irqrestore(&clock->lock, flags);
return 0;
}
static int mlx5_ptp_adjphase(struct ptp_clock_info *ptp, s32 delta)
{
return mlx5_ptp_adjtime(ptp, delta);
}
static int mlx5_ptp_freq_adj_real_time(struct mlx5_core_dev *mdev, long scaled_ppm)
{
u32 in[MLX5_ST_SZ_DW(mtutc_reg)] = {};
if (!mlx5_modify_mtutc_allowed(mdev))
return 0;
MLX5_SET(mtutc_reg, in, operation, MLX5_MTUTC_OPERATION_ADJUST_FREQ_UTC);
if (MLX5_CAP_MCAM_FEATURE(mdev, mtutc_freq_adj_units)) {
MLX5_SET(mtutc_reg, in, freq_adj_units,
MLX5_MTUTC_FREQ_ADJ_UNITS_SCALED_PPM);
MLX5_SET(mtutc_reg, in, freq_adjustment, scaled_ppm);
} else {
MLX5_SET(mtutc_reg, in, freq_adj_units, MLX5_MTUTC_FREQ_ADJ_UNITS_PPB);
MLX5_SET(mtutc_reg, in, freq_adjustment, scaled_ppm_to_ppb(scaled_ppm));
}
return mlx5_set_mtutc(mdev, in, sizeof(in));
}
static int mlx5_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct mlx5_clock *clock = container_of(ptp, struct mlx5_clock, ptp_info);
struct mlx5_timer *timer = &clock->timer;
struct mlx5_core_dev *mdev;
unsigned long flags;
u32 mult;
int err;
mdev = container_of(clock, struct mlx5_core_dev, clock);
err = mlx5_ptp_freq_adj_real_time(mdev, scaled_ppm);
if (err)
return err;
mult = (u32)adjust_by_scaled_ppm(timer->nominal_c_mult, scaled_ppm);
write_seqlock_irqsave(&clock->lock, flags);
timecounter_read(&timer->tc);
timer->cycles.mult = mult;
mlx5_update_clock_info_page(mdev);
write_sequnlock_irqrestore(&clock->lock, flags);
return 0;
}
static int mlx5_extts_configure(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq,
int on)
{
struct mlx5_clock *clock =
container_of(ptp, struct mlx5_clock, ptp_info);
struct mlx5_core_dev *mdev =
container_of(clock, struct mlx5_core_dev, clock);
u32 in[MLX5_ST_SZ_DW(mtpps_reg)] = {0};
u32 field_select = 0;
u8 pin_mode = 0;
u8 pattern = 0;
int pin = -1;
int err = 0;
if (!MLX5_PPS_CAP(mdev))
return -EOPNOTSUPP;
if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
PTP_RISING_EDGE |
PTP_FALLING_EDGE |
PTP_STRICT_FLAGS))
return -EOPNOTSUPP;
if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
(rq->extts.flags & PTP_ENABLE_FEATURE) &&
(rq->extts.flags & PTP_EXTTS_EDGES) == PTP_EXTTS_EDGES)
return -EOPNOTSUPP;
if (rq->extts.index >= clock->ptp_info.n_pins)
return -EINVAL;
pin = ptp_find_pin(clock->ptp, PTP_PF_EXTTS, rq->extts.index);
if (pin < 0)
return -EBUSY;
if (on) {
pin_mode = MLX5_PIN_MODE_IN;
pattern = !!(rq->extts.flags & PTP_FALLING_EDGE);
field_select = MLX5_MTPPS_FS_PIN_MODE |
MLX5_MTPPS_FS_PATTERN |
MLX5_MTPPS_FS_ENABLE;
} else {
field_select = MLX5_MTPPS_FS_ENABLE;
}
MLX5_SET(mtpps_reg, in, pin, pin);
MLX5_SET(mtpps_reg, in, pin_mode, pin_mode);
MLX5_SET(mtpps_reg, in, pattern, pattern);
MLX5_SET(mtpps_reg, in, enable, on);
MLX5_SET(mtpps_reg, in, field_select, field_select);
err = mlx5_set_mtpps(mdev, in, sizeof(in));
if (err)
return err;
return mlx5_set_mtppse(mdev, pin, 0,
MLX5_EVENT_MODE_REPETETIVE & on);
}
static u64 find_target_cycles(struct mlx5_core_dev *mdev, s64 target_ns)
{
struct mlx5_clock *clock = &mdev->clock;
u64 cycles_now, cycles_delta;
u64 nsec_now, nsec_delta;
struct mlx5_timer *timer;
unsigned long flags;
timer = &clock->timer;
cycles_now = mlx5_read_time(mdev, NULL, false);
write_seqlock_irqsave(&clock->lock, flags);
nsec_now = timecounter_cyc2time(&timer->tc, cycles_now);
nsec_delta = target_ns - nsec_now;
cycles_delta = div64_u64(nsec_delta << timer->cycles.shift,
timer->cycles.mult);
write_sequnlock_irqrestore(&clock->lock, flags);
return cycles_now + cycles_delta;
}
static u64 perout_conf_internal_timer(struct mlx5_core_dev *mdev, s64 sec)
{
struct timespec64 ts = {};
s64 target_ns;
ts.tv_sec = sec;
target_ns = timespec64_to_ns(&ts);
return find_target_cycles(mdev, target_ns);
}
static u64 perout_conf_real_time(s64 sec, u32 nsec)
{
return (u64)nsec | (u64)sec << 32;
}
static int perout_conf_1pps(struct mlx5_core_dev *mdev, struct ptp_clock_request *rq,
u64 *time_stamp, bool real_time)
{
struct timespec64 ts;
s64 ns;
ts.tv_nsec = rq->perout.period.nsec;
ts.tv_sec = rq->perout.period.sec;
ns = timespec64_to_ns(&ts);
if ((ns >> 1) != 500000000LL)
return -EINVAL;
*time_stamp = real_time ? perout_conf_real_time(rq->perout.start.sec, 0) :
perout_conf_internal_timer(mdev, rq->perout.start.sec);
return 0;
}
#define MLX5_MAX_PULSE_DURATION (BIT(__mlx5_bit_sz(mtpps_reg, out_pulse_duration_ns)) - 1)
static int mlx5_perout_conf_out_pulse_duration(struct mlx5_core_dev *mdev,
struct ptp_clock_request *rq,
u32 *out_pulse_duration_ns)
{
struct mlx5_pps *pps_info = &mdev->clock.pps_info;
u32 out_pulse_duration;
struct timespec64 ts;
if (rq->perout.flags & PTP_PEROUT_DUTY_CYCLE) {
ts.tv_sec = rq->perout.on.sec;
ts.tv_nsec = rq->perout.on.nsec;
out_pulse_duration = (u32)timespec64_to_ns(&ts);
} else {
ts.tv_sec = rq->perout.period.sec;
ts.tv_nsec = rq->perout.period.nsec;
out_pulse_duration = (u32)timespec64_to_ns(&ts) >> 1;
}
if (out_pulse_duration < pps_info->min_out_pulse_duration_ns ||
out_pulse_duration > MLX5_MAX_PULSE_DURATION) {
mlx5_core_err(mdev, "NPPS pulse duration %u is not in [%llu, %lu]\n",
out_pulse_duration, pps_info->min_out_pulse_duration_ns,
MLX5_MAX_PULSE_DURATION);
return -EINVAL;
}
*out_pulse_duration_ns = out_pulse_duration;
return 0;
}
static int perout_conf_npps_real_time(struct mlx5_core_dev *mdev, struct ptp_clock_request *rq,
u32 *field_select, u32 *out_pulse_duration_ns,
u64 *period, u64 *time_stamp)
{
struct mlx5_pps *pps_info = &mdev->clock.pps_info;
struct ptp_clock_time *time = &rq->perout.start;
struct timespec64 ts;
ts.tv_sec = rq->perout.period.sec;
ts.tv_nsec = rq->perout.period.nsec;
if (timespec64_to_ns(&ts) < pps_info->min_npps_period) {
mlx5_core_err(mdev, "NPPS period is lower than minimal npps period %llu\n",
pps_info->min_npps_period);
return -EINVAL;
}
*period = perout_conf_real_time(rq->perout.period.sec, rq->perout.period.nsec);
if (mlx5_perout_conf_out_pulse_duration(mdev, rq, out_pulse_duration_ns))
return -EINVAL;
*time_stamp = perout_conf_real_time(time->sec, time->nsec);
*field_select |= MLX5_MTPPS_FS_NPPS_PERIOD |
MLX5_MTPPS_FS_OUT_PULSE_DURATION_NS;
return 0;
}
static bool mlx5_perout_verify_flags(struct mlx5_core_dev *mdev, unsigned int flags)
{
return ((!mlx5_npps_real_time_supported(mdev) && flags) ||
(mlx5_npps_real_time_supported(mdev) && flags & ~PTP_PEROUT_DUTY_CYCLE));
}
static int mlx5_perout_configure(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq,
int on)
{
struct mlx5_clock *clock =
container_of(ptp, struct mlx5_clock, ptp_info);
struct mlx5_core_dev *mdev =
container_of(clock, struct mlx5_core_dev, clock);
bool rt_mode = mlx5_real_time_mode(mdev);
u32 in[MLX5_ST_SZ_DW(mtpps_reg)] = {0};
u32 out_pulse_duration_ns = 0;
u32 field_select = 0;
u64 npps_period = 0;
u64 time_stamp = 0;
u8 pin_mode = 0;
u8 pattern = 0;
int pin = -1;
int err = 0;
if (!MLX5_PPS_CAP(mdev))
return -EOPNOTSUPP;
if (mlx5_perout_verify_flags(mdev, rq->perout.flags))
return -EOPNOTSUPP;
if (rq->perout.index >= clock->ptp_info.n_pins)
return -EINVAL;
field_select = MLX5_MTPPS_FS_ENABLE;
pin = ptp_find_pin(clock->ptp, PTP_PF_PEROUT, rq->perout.index);
if (pin < 0)
return -EBUSY;
if (on) {
bool rt_mode = mlx5_real_time_mode(mdev);
pin_mode = MLX5_PIN_MODE_OUT;
pattern = MLX5_OUT_PATTERN_PERIODIC;
if (rt_mode && rq->perout.start.sec > U32_MAX)
return -EINVAL;
field_select |= MLX5_MTPPS_FS_PIN_MODE |
MLX5_MTPPS_FS_PATTERN |
MLX5_MTPPS_FS_TIME_STAMP;
if (mlx5_npps_real_time_supported(mdev))
err = perout_conf_npps_real_time(mdev, rq, &field_select,
&out_pulse_duration_ns, &npps_period,
&time_stamp);
else
err = perout_conf_1pps(mdev, rq, &time_stamp, rt_mode);
if (err)
return err;
}
MLX5_SET(mtpps_reg, in, pin, pin);
MLX5_SET(mtpps_reg, in, pin_mode, pin_mode);
MLX5_SET(mtpps_reg, in, pattern, pattern);
MLX5_SET(mtpps_reg, in, enable, on);
MLX5_SET64(mtpps_reg, in, time_stamp, time_stamp);
MLX5_SET(mtpps_reg, in, field_select, field_select);
MLX5_SET64(mtpps_reg, in, npps_period, npps_period);
MLX5_SET(mtpps_reg, in, out_pulse_duration_ns, out_pulse_duration_ns);
err = mlx5_set_mtpps(mdev, in, sizeof(in));
if (err)
return err;
if (rt_mode)
return 0;
return mlx5_set_mtppse(mdev, pin, 0,
MLX5_EVENT_MODE_REPETETIVE & on);
}
static int mlx5_pps_configure(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq,
int on)
{
struct mlx5_clock *clock =
container_of(ptp, struct mlx5_clock, ptp_info);
clock->pps_info.enabled = !!on;
return 0;
}
static int mlx5_ptp_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq,
int on)
{
switch (rq->type) {
case PTP_CLK_REQ_EXTTS:
return mlx5_extts_configure(ptp, rq, on);
case PTP_CLK_REQ_PEROUT:
return mlx5_perout_configure(ptp, rq, on);
case PTP_CLK_REQ_PPS:
return mlx5_pps_configure(ptp, rq, on);
default:
return -EOPNOTSUPP;
}
return 0;
}
enum {
MLX5_MTPPS_REG_CAP_PIN_X_MODE_SUPPORT_PPS_IN = BIT(0),
MLX5_MTPPS_REG_CAP_PIN_X_MODE_SUPPORT_PPS_OUT = BIT(1),
};
static int mlx5_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
struct mlx5_clock *clock = container_of(ptp, struct mlx5_clock,
ptp_info);
switch (func) {
case PTP_PF_NONE:
return 0;
case PTP_PF_EXTTS:
return !(clock->pps_info.pin_caps[pin] &
MLX5_MTPPS_REG_CAP_PIN_X_MODE_SUPPORT_PPS_IN);
case PTP_PF_PEROUT:
return !(clock->pps_info.pin_caps[pin] &
MLX5_MTPPS_REG_CAP_PIN_X_MODE_SUPPORT_PPS_OUT);
default:
return -EOPNOTSUPP;
}
}
static const struct ptp_clock_info mlx5_ptp_clock_info = {
.owner = THIS_MODULE,
.name = "mlx5_ptp",
.max_adj = 50000000,
.n_alarm = 0,
.n_ext_ts = 0,
.n_per_out = 0,
.n_pins = 0,
.pps = 0,
.adjfine = mlx5_ptp_adjfine,
.adjphase = mlx5_ptp_adjphase,
.getmaxphase = mlx5_ptp_getmaxphase,
.adjtime = mlx5_ptp_adjtime,
.gettimex64 = mlx5_ptp_gettimex,
.settime64 = mlx5_ptp_settime,
.enable = NULL,
.verify = NULL,
};
static int mlx5_query_mtpps_pin_mode(struct mlx5_core_dev *mdev, u8 pin,
u32 *mtpps, u32 mtpps_size)
{
u32 in[MLX5_ST_SZ_DW(mtpps_reg)] = {};
MLX5_SET(mtpps_reg, in, pin, pin);
return mlx5_core_access_reg(mdev, in, sizeof(in), mtpps,
mtpps_size, MLX5_REG_MTPPS, 0, 0);
}
static int mlx5_get_pps_pin_mode(struct mlx5_clock *clock, u8 pin)
{
struct mlx5_core_dev *mdev = container_of(clock, struct mlx5_core_dev, clock);
u32 out[MLX5_ST_SZ_DW(mtpps_reg)] = {};
u8 mode;
int err;
err = mlx5_query_mtpps_pin_mode(mdev, pin, out, sizeof(out));
if (err || !MLX5_GET(mtpps_reg, out, enable))
return PTP_PF_NONE;
mode = MLX5_GET(mtpps_reg, out, pin_mode);
if (mode == MLX5_PIN_MODE_IN)
return PTP_PF_EXTTS;
else if (mode == MLX5_PIN_MODE_OUT)
return PTP_PF_PEROUT;
return PTP_PF_NONE;
}
static void mlx5_init_pin_config(struct mlx5_clock *clock)
{
int i;
if (!clock->ptp_info.n_pins)
return;
clock->ptp_info.pin_config =
kcalloc(clock->ptp_info.n_pins,
sizeof(*clock->ptp_info.pin_config),
GFP_KERNEL);
if (!clock->ptp_info.pin_config)
return;
clock->ptp_info.enable = mlx5_ptp_enable;
clock->ptp_info.verify = mlx5_ptp_verify;
clock->ptp_info.pps = 1;
for (i = 0; i < clock->ptp_info.n_pins; i++) {
snprintf(clock->ptp_info.pin_config[i].name,
sizeof(clock->ptp_info.pin_config[i].name),
"mlx5_pps%d", i);
clock->ptp_info.pin_config[i].index = i;
clock->ptp_info.pin_config[i].func = mlx5_get_pps_pin_mode(clock, i);
clock->ptp_info.pin_config[i].chan = 0;
}
}
static void mlx5_get_pps_caps(struct mlx5_core_dev *mdev)
{
struct mlx5_clock *clock = &mdev->clock;
u32 out[MLX5_ST_SZ_DW(mtpps_reg)] = {0};
mlx5_query_mtpps(mdev, out, sizeof(out));
clock->ptp_info.n_pins = MLX5_GET(mtpps_reg, out,
cap_number_of_pps_pins);
clock->ptp_info.n_ext_ts = MLX5_GET(mtpps_reg, out,
cap_max_num_of_pps_in_pins);
clock->ptp_info.n_per_out = MLX5_GET(mtpps_reg, out,
cap_max_num_of_pps_out_pins);
if (MLX5_CAP_MCAM_FEATURE(mdev, npps_period))
clock->pps_info.min_npps_period = 1 << MLX5_GET(mtpps_reg, out,
cap_log_min_npps_period);
if (MLX5_CAP_MCAM_FEATURE(mdev, out_pulse_duration_ns))
clock->pps_info.min_out_pulse_duration_ns = 1 << MLX5_GET(mtpps_reg, out,
cap_log_min_out_pulse_duration_ns);
clock->pps_info.pin_caps[0] = MLX5_GET(mtpps_reg, out, cap_pin_0_mode);
clock->pps_info.pin_caps[1] = MLX5_GET(mtpps_reg, out, cap_pin_1_mode);
clock->pps_info.pin_caps[2] = MLX5_GET(mtpps_reg, out, cap_pin_2_mode);
clock->pps_info.pin_caps[3] = MLX5_GET(mtpps_reg, out, cap_pin_3_mode);
clock->pps_info.pin_caps[4] = MLX5_GET(mtpps_reg, out, cap_pin_4_mode);
clock->pps_info.pin_caps[5] = MLX5_GET(mtpps_reg, out, cap_pin_5_mode);
clock->pps_info.pin_caps[6] = MLX5_GET(mtpps_reg, out, cap_pin_6_mode);
clock->pps_info.pin_caps[7] = MLX5_GET(mtpps_reg, out, cap_pin_7_mode);
}
static void ts_next_sec(struct timespec64 *ts)
{
ts->tv_sec += 1;
ts->tv_nsec = 0;
}
static u64 perout_conf_next_event_timer(struct mlx5_core_dev *mdev,
struct mlx5_clock *clock)
{
struct timespec64 ts;
s64 target_ns;
mlx5_ptp_gettimex(&clock->ptp_info, &ts, NULL);
ts_next_sec(&ts);
target_ns = timespec64_to_ns(&ts);
return find_target_cycles(mdev, target_ns);
}
static int mlx5_pps_event(struct notifier_block *nb,
unsigned long type, void *data)
{
struct mlx5_clock *clock = mlx5_nb_cof(nb, struct mlx5_clock, pps_nb);
struct ptp_clock_event ptp_event;
struct mlx5_eqe *eqe = data;
int pin = eqe->data.pps.pin;
struct mlx5_core_dev *mdev;
unsigned long flags;
u64 ns;
mdev = container_of(clock, struct mlx5_core_dev, clock);
switch (clock->ptp_info.pin_config[pin].func) {
case PTP_PF_EXTTS:
ptp_event.index = pin;
ptp_event.timestamp = mlx5_real_time_mode(mdev) ?
mlx5_real_time_cyc2time(clock,
be64_to_cpu(eqe->data.pps.time_stamp)) :
mlx5_timecounter_cyc2time(clock,
be64_to_cpu(eqe->data.pps.time_stamp));
if (clock->pps_info.enabled) {
ptp_event.type = PTP_CLOCK_PPSUSR;
ptp_event.pps_times.ts_real =
ns_to_timespec64(ptp_event.timestamp);
} else {
ptp_event.type = PTP_CLOCK_EXTTS;
}
ptp_clock_event(clock->ptp, &ptp_event);
break;
case PTP_PF_PEROUT:
ns = perout_conf_next_event_timer(mdev, clock);
write_seqlock_irqsave(&clock->lock, flags);
clock->pps_info.start[pin] = ns;
write_sequnlock_irqrestore(&clock->lock, flags);
schedule_work(&clock->pps_info.out_work);
break;
default:
mlx5_core_err(mdev, " Unhandled clock PPS event, func %d\n",
clock->ptp_info.pin_config[pin].func);
}
return NOTIFY_OK;
}
static void mlx5_timecounter_init(struct mlx5_core_dev *mdev)
{
struct mlx5_clock *clock = &mdev->clock;
struct mlx5_timer *timer = &clock->timer;
u32 dev_freq;
dev_freq = MLX5_CAP_GEN(mdev, device_frequency_khz);
timer->cycles.read = read_internal_timer;
timer->cycles.shift = mlx5_ptp_shift_constant(dev_freq);
timer->cycles.mult = clocksource_khz2mult(dev_freq,
timer->cycles.shift);
timer->nominal_c_mult = timer->cycles.mult;
timer->cycles.mask = CLOCKSOURCE_MASK(41);
timecounter_init(&timer->tc, &timer->cycles,
ktime_to_ns(ktime_get_real()));
}
static void mlx5_init_overflow_period(struct mlx5_clock *clock)
{
struct mlx5_core_dev *mdev = container_of(clock, struct mlx5_core_dev, clock);
struct mlx5_ib_clock_info *clock_info = mdev->clock_info;
struct mlx5_timer *timer = &clock->timer;
u64 overflow_cycles;
u64 frac = 0;
u64 ns;
overflow_cycles = div64_u64(~0ULL >> 1, timer->cycles.mult);
overflow_cycles = min(overflow_cycles, div_u64(timer->cycles.mask, 3));
ns = cyclecounter_cyc2ns(&timer->cycles, overflow_cycles,
frac, &frac);
do_div(ns, NSEC_PER_SEC / HZ);
timer->overflow_period = ns;
INIT_DELAYED_WORK(&timer->overflow_work, mlx5_timestamp_overflow);
if (timer->overflow_period)
schedule_delayed_work(&timer->overflow_work, 0);
else
mlx5_core_warn(mdev,
"invalid overflow period, overflow_work is not scheduled\n");
if (clock_info)
clock_info->overflow_period = timer->overflow_period;
}
static void mlx5_init_clock_info(struct mlx5_core_dev *mdev)
{
struct mlx5_clock *clock = &mdev->clock;
struct mlx5_ib_clock_info *info;
struct mlx5_timer *timer;
mdev->clock_info = (struct mlx5_ib_clock_info *)get_zeroed_page(GFP_KERNEL);
if (!mdev->clock_info) {
mlx5_core_warn(mdev, "Failed to allocate IB clock info page\n");
return;
}
info = mdev->clock_info;
timer = &clock->timer;
info->nsec = timer->tc.nsec;
info->cycles = timer->tc.cycle_last;
info->mask = timer->cycles.mask;
info->mult = timer->nominal_c_mult;
info->shift = timer->cycles.shift;
info->frac = timer->tc.frac;
}
static void mlx5_init_timer_clock(struct mlx5_core_dev *mdev)
{
struct mlx5_clock *clock = &mdev->clock;
mlx5_timecounter_init(mdev);
mlx5_init_clock_info(mdev);
mlx5_init_overflow_period(clock);
clock->ptp_info = mlx5_ptp_clock_info;
if (mlx5_real_time_mode(mdev)) {
struct timespec64 ts;
ktime_get_real_ts64(&ts);
mlx5_ptp_settime(&clock->ptp_info, &ts);
}
}
static void mlx5_init_pps(struct mlx5_core_dev *mdev)
{
struct mlx5_clock *clock = &mdev->clock;
if (!MLX5_PPS_CAP(mdev))
return;
mlx5_get_pps_caps(mdev);
mlx5_init_pin_config(clock);
}
void mlx5_init_clock(struct mlx5_core_dev *mdev)
{
struct mlx5_clock *clock = &mdev->clock;
if (!MLX5_CAP_GEN(mdev, device_frequency_khz)) {
mlx5_core_warn(mdev, "invalid device_frequency_khz, aborting HW clock init\n");
return;
}
seqlock_init(&clock->lock);
mlx5_init_timer_clock(mdev);
INIT_WORK(&clock->pps_info.out_work, mlx5_pps_out);
clock->ptp_info = mlx5_ptp_clock_info;
mlx5_init_pps(mdev);
clock->ptp = ptp_clock_register(&clock->ptp_info,
&mdev->pdev->dev);
if (IS_ERR(clock->ptp)) {
mlx5_core_warn(mdev, "ptp_clock_register failed %ld\n",
PTR_ERR(clock->ptp));
clock->ptp = NULL;
}
MLX5_NB_INIT(&clock->pps_nb, mlx5_pps_event, PPS_EVENT);
mlx5_eq_notifier_register(mdev, &clock->pps_nb);
}
void mlx5_cleanup_clock(struct mlx5_core_dev *mdev)
{
struct mlx5_clock *clock = &mdev->clock;
if (!MLX5_CAP_GEN(mdev, device_frequency_khz))
return;
mlx5_eq_notifier_unregister(mdev, &clock->pps_nb);
if (clock->ptp) {
ptp_clock_unregister(clock->ptp);
clock->ptp = NULL;
}
cancel_work_sync(&clock->pps_info.out_work);
cancel_delayed_work_sync(&clock->timer.overflow_work);
if (mdev->clock_info) {
free_page((unsigned long)mdev->clock_info);
mdev->clock_info = NULL;
}
kfree(clock->ptp_info.pin_config);
}