#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpu_cooling.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pm_qos.h>
#include <linux/slab.h>
#include <linux/suspend.h>
#include <linux/syscore_ops.h>
#include <linux/tick.h>
#include <linux/units.h>
#include <trace/events/power.h>
static LIST_HEAD(cpufreq_policy_list);
#define for_each_suitable_policy(__policy, __active) \
list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
if ((__active) == !policy_is_inactive(__policy))
#define for_each_active_policy(__policy) \
for_each_suitable_policy(__policy, true)
#define for_each_inactive_policy(__policy) \
for_each_suitable_policy(__policy, false)
static LIST_HEAD(cpufreq_governor_list);
#define for_each_governor(__governor) \
list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
static char default_governor[CPUFREQ_NAME_LEN];
static struct cpufreq_driver *cpufreq_driver;
static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
static DEFINE_RWLOCK(cpufreq_driver_lock);
static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
bool cpufreq_supports_freq_invariance(void)
{
return static_branch_likely(&cpufreq_freq_invariance);
}
static bool cpufreq_suspended;
static inline bool has_target(void)
{
return cpufreq_driver->target_index || cpufreq_driver->target;
}
bool has_target_index(void)
{
return !!cpufreq_driver->target_index;
}
static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
static int cpufreq_init_governor(struct cpufreq_policy *policy);
static void cpufreq_exit_governor(struct cpufreq_policy *policy);
static void cpufreq_governor_limits(struct cpufreq_policy *policy);
static int cpufreq_set_policy(struct cpufreq_policy *policy,
struct cpufreq_governor *new_gov,
unsigned int new_pol);
static bool cpufreq_boost_supported(void);
static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
static int off __read_mostly;
static int cpufreq_disabled(void)
{
return off;
}
void disable_cpufreq(void)
{
off = 1;
}
static DEFINE_MUTEX(cpufreq_governor_mutex);
bool have_governor_per_policy(void)
{
return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
}
EXPORT_SYMBOL_GPL(have_governor_per_policy);
static struct kobject *cpufreq_global_kobject;
struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
{
if (have_governor_per_policy())
return &policy->kobj;
else
return cpufreq_global_kobject;
}
EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
{
struct kernel_cpustat kcpustat;
u64 cur_wall_time;
u64 idle_time;
u64 busy_time;
cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
kcpustat_cpu_fetch(&kcpustat, cpu);
busy_time = kcpustat.cpustat[CPUTIME_USER];
busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
busy_time += kcpustat.cpustat[CPUTIME_IRQ];
busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
busy_time += kcpustat.cpustat[CPUTIME_STEAL];
busy_time += kcpustat.cpustat[CPUTIME_NICE];
idle_time = cur_wall_time - busy_time;
if (wall)
*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
return div_u64(idle_time, NSEC_PER_USEC);
}
u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
{
u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
if (idle_time == -1ULL)
return get_cpu_idle_time_jiffy(cpu, wall);
else if (!io_busy)
idle_time += get_cpu_iowait_time_us(cpu, wall);
return idle_time;
}
EXPORT_SYMBOL_GPL(get_cpu_idle_time);
void cpufreq_generic_init(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table,
unsigned int transition_latency)
{
policy->freq_table = table;
policy->cpuinfo.transition_latency = transition_latency;
cpumask_setall(policy->cpus);
}
EXPORT_SYMBOL_GPL(cpufreq_generic_init);
struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
{
struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
}
EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
unsigned int cpufreq_generic_get(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
if (!policy || IS_ERR(policy->clk)) {
pr_err("%s: No %s associated to cpu: %d\n",
__func__, policy ? "clk" : "policy", cpu);
return 0;
}
return clk_get_rate(policy->clk) / 1000;
}
EXPORT_SYMBOL_GPL(cpufreq_generic_get);
struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
{
struct cpufreq_policy *policy = NULL;
unsigned long flags;
if (WARN_ON(cpu >= nr_cpu_ids))
return NULL;
read_lock_irqsave(&cpufreq_driver_lock, flags);
if (cpufreq_driver) {
policy = cpufreq_cpu_get_raw(cpu);
if (policy)
kobject_get(&policy->kobj);
}
read_unlock_irqrestore(&cpufreq_driver_lock, flags);
return policy;
}
EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
void cpufreq_cpu_put(struct cpufreq_policy *policy)
{
kobject_put(&policy->kobj);
}
EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
void cpufreq_cpu_release(struct cpufreq_policy *policy)
{
if (WARN_ON(!policy))
return;
lockdep_assert_held(&policy->rwsem);
up_write(&policy->rwsem);
cpufreq_cpu_put(policy);
}
struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
if (!policy)
return NULL;
down_write(&policy->rwsem);
if (policy_is_inactive(policy)) {
cpufreq_cpu_release(policy);
return NULL;
}
return policy;
}
static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
{
#ifndef CONFIG_SMP
static unsigned long l_p_j_ref;
static unsigned int l_p_j_ref_freq;
if (ci->flags & CPUFREQ_CONST_LOOPS)
return;
if (!l_p_j_ref_freq) {
l_p_j_ref = loops_per_jiffy;
l_p_j_ref_freq = ci->old;
pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
l_p_j_ref, l_p_j_ref_freq);
}
if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
ci->new);
pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
loops_per_jiffy, ci->new);
}
#endif
}
static void cpufreq_notify_transition(struct cpufreq_policy *policy,
struct cpufreq_freqs *freqs,
unsigned int state)
{
int cpu;
BUG_ON(irqs_disabled());
if (cpufreq_disabled())
return;
freqs->policy = policy;
freqs->flags = cpufreq_driver->flags;
pr_debug("notification %u of frequency transition to %u kHz\n",
state, freqs->new);
switch (state) {
case CPUFREQ_PRECHANGE:
if (policy->cur && policy->cur != freqs->old) {
pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
freqs->old, policy->cur);
freqs->old = policy->cur;
}
srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
CPUFREQ_PRECHANGE, freqs);
adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
break;
case CPUFREQ_POSTCHANGE:
adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
cpumask_pr_args(policy->cpus));
for_each_cpu(cpu, policy->cpus)
trace_cpu_frequency(freqs->new, cpu);
srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
CPUFREQ_POSTCHANGE, freqs);
cpufreq_stats_record_transition(policy, freqs->new);
policy->cur = freqs->new;
}
}
static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
struct cpufreq_freqs *freqs, int transition_failed)
{
cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
if (!transition_failed)
return;
swap(freqs->old, freqs->new);
cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
}
void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
struct cpufreq_freqs *freqs)
{
WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
&& current == policy->transition_task);
wait:
wait_event(policy->transition_wait, !policy->transition_ongoing);
spin_lock(&policy->transition_lock);
if (unlikely(policy->transition_ongoing)) {
spin_unlock(&policy->transition_lock);
goto wait;
}
policy->transition_ongoing = true;
policy->transition_task = current;
spin_unlock(&policy->transition_lock);
cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
}
EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
struct cpufreq_freqs *freqs, int transition_failed)
{
if (WARN_ON(!policy->transition_ongoing))
return;
cpufreq_notify_post_transition(policy, freqs, transition_failed);
arch_set_freq_scale(policy->related_cpus,
policy->cur,
policy->cpuinfo.max_freq);
spin_lock(&policy->transition_lock);
policy->transition_ongoing = false;
policy->transition_task = NULL;
spin_unlock(&policy->transition_lock);
wake_up(&policy->transition_wait);
}
EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
static int cpufreq_fast_switch_count;
static DEFINE_MUTEX(cpufreq_fast_switch_lock);
static void cpufreq_list_transition_notifiers(void)
{
struct notifier_block *nb;
pr_info("Registered transition notifiers:\n");
mutex_lock(&cpufreq_transition_notifier_list.mutex);
for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
pr_info("%pS\n", nb->notifier_call);
mutex_unlock(&cpufreq_transition_notifier_list.mutex);
}
void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
{
lockdep_assert_held(&policy->rwsem);
if (!policy->fast_switch_possible)
return;
mutex_lock(&cpufreq_fast_switch_lock);
if (cpufreq_fast_switch_count >= 0) {
cpufreq_fast_switch_count++;
policy->fast_switch_enabled = true;
} else {
pr_warn("CPU%u: Fast frequency switching not enabled\n",
policy->cpu);
cpufreq_list_transition_notifiers();
}
mutex_unlock(&cpufreq_fast_switch_lock);
}
EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
{
mutex_lock(&cpufreq_fast_switch_lock);
if (policy->fast_switch_enabled) {
policy->fast_switch_enabled = false;
if (!WARN_ON(cpufreq_fast_switch_count <= 0))
cpufreq_fast_switch_count--;
}
mutex_unlock(&cpufreq_fast_switch_lock);
}
EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
static unsigned int __resolve_freq(struct cpufreq_policy *policy,
unsigned int target_freq, unsigned int relation)
{
unsigned int idx;
target_freq = clamp_val(target_freq, policy->min, policy->max);
if (!policy->freq_table)
return target_freq;
idx = cpufreq_frequency_table_target(policy, target_freq, relation);
policy->cached_resolved_idx = idx;
policy->cached_target_freq = target_freq;
return policy->freq_table[idx].frequency;
}
unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
unsigned int target_freq)
{
return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
}
EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
{
unsigned int latency;
if (policy->transition_delay_us)
return policy->transition_delay_us;
latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
if (latency) {
return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
}
return LATENCY_MULTIPLIER;
}
EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
static ssize_t show_boost(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
}
static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
int ret, enable;
ret = sscanf(buf, "%d", &enable);
if (ret != 1 || enable < 0 || enable > 1)
return -EINVAL;
if (cpufreq_boost_trigger_state(enable)) {
pr_err("%s: Cannot %s BOOST!\n",
__func__, enable ? "enable" : "disable");
return -EINVAL;
}
pr_debug("%s: cpufreq BOOST %s\n",
__func__, enable ? "enabled" : "disabled");
return count;
}
define_one_global_rw(boost);
static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
{
return sysfs_emit(buf, "%d\n", policy->boost_enabled);
}
static ssize_t store_local_boost(struct cpufreq_policy *policy,
const char *buf, size_t count)
{
int ret, enable;
ret = kstrtoint(buf, 10, &enable);
if (ret || enable < 0 || enable > 1)
return -EINVAL;
if (!cpufreq_driver->boost_enabled)
return -EINVAL;
if (policy->boost_enabled == enable)
return count;
cpus_read_lock();
ret = cpufreq_driver->set_boost(policy, enable);
cpus_read_unlock();
if (ret)
return ret;
policy->boost_enabled = enable;
return count;
}
static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
static struct cpufreq_governor *find_governor(const char *str_governor)
{
struct cpufreq_governor *t;
for_each_governor(t)
if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
return t;
return NULL;
}
static struct cpufreq_governor *get_governor(const char *str_governor)
{
struct cpufreq_governor *t;
mutex_lock(&cpufreq_governor_mutex);
t = find_governor(str_governor);
if (!t)
goto unlock;
if (!try_module_get(t->owner))
t = NULL;
unlock:
mutex_unlock(&cpufreq_governor_mutex);
return t;
}
static unsigned int cpufreq_parse_policy(char *str_governor)
{
if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
return CPUFREQ_POLICY_PERFORMANCE;
if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
return CPUFREQ_POLICY_POWERSAVE;
return CPUFREQ_POLICY_UNKNOWN;
}
static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
{
struct cpufreq_governor *t;
t = get_governor(str_governor);
if (t)
return t;
if (request_module("cpufreq_%s", str_governor))
return NULL;
return get_governor(str_governor);
}
#define show_one(file_name, object) \
static ssize_t show_##file_name \
(struct cpufreq_policy *policy, char *buf) \
{ \
return sprintf(buf, "%u\n", policy->object); \
}
show_one(cpuinfo_min_freq, cpuinfo.min_freq);
show_one(cpuinfo_max_freq, cpuinfo.max_freq);
show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
show_one(scaling_min_freq, min);
show_one(scaling_max_freq, max);
__weak unsigned int arch_freq_get_on_cpu(int cpu)
{
return 0;
}
static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
{
ssize_t ret;
unsigned int freq;
freq = arch_freq_get_on_cpu(policy->cpu);
if (freq)
ret = sprintf(buf, "%u\n", freq);
else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
else
ret = sprintf(buf, "%u\n", policy->cur);
return ret;
}
#define store_one(file_name, object) \
static ssize_t store_##file_name \
(struct cpufreq_policy *policy, const char *buf, size_t count) \
{ \
unsigned long val; \
int ret; \
\
ret = kstrtoul(buf, 0, &val); \
if (ret) \
return ret; \
\
ret = freq_qos_update_request(policy->object##_freq_req, val);\
return ret >= 0 ? count : ret; \
}
store_one(scaling_min_freq, min);
store_one(scaling_max_freq, max);
static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
char *buf)
{
unsigned int cur_freq = __cpufreq_get(policy);
if (cur_freq)
return sprintf(buf, "%u\n", cur_freq);
return sprintf(buf, "<unknown>\n");
}
static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
{
if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
return sprintf(buf, "powersave\n");
else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
return sprintf(buf, "performance\n");
else if (policy->governor)
return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
policy->governor->name);
return -EINVAL;
}
static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
const char *buf, size_t count)
{
char str_governor[16];
int ret;
ret = sscanf(buf, "%15s", str_governor);
if (ret != 1)
return -EINVAL;
if (cpufreq_driver->setpolicy) {
unsigned int new_pol;
new_pol = cpufreq_parse_policy(str_governor);
if (!new_pol)
return -EINVAL;
ret = cpufreq_set_policy(policy, NULL, new_pol);
} else {
struct cpufreq_governor *new_gov;
new_gov = cpufreq_parse_governor(str_governor);
if (!new_gov)
return -EINVAL;
ret = cpufreq_set_policy(policy, new_gov,
CPUFREQ_POLICY_UNKNOWN);
module_put(new_gov->owner);
}
return ret ? ret : count;
}
static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
{
return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
}
static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
char *buf)
{
ssize_t i = 0;
struct cpufreq_governor *t;
if (!has_target()) {
i += sprintf(buf, "performance powersave");
goto out;
}
mutex_lock(&cpufreq_governor_mutex);
for_each_governor(t) {
if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
- (CPUFREQ_NAME_LEN + 2)))
break;
i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
}
mutex_unlock(&cpufreq_governor_mutex);
out:
i += sprintf(&buf[i], "\n");
return i;
}
ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
{
ssize_t i = 0;
unsigned int cpu;
for_each_cpu(cpu, mask) {
i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
if (i >= (PAGE_SIZE - 5))
break;
}
i--;
i += sprintf(&buf[i], "\n");
return i;
}
EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
{
return cpufreq_show_cpus(policy->related_cpus, buf);
}
static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
{
return cpufreq_show_cpus(policy->cpus, buf);
}
static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
const char *buf, size_t count)
{
unsigned int freq = 0;
unsigned int ret;
if (!policy->governor || !policy->governor->store_setspeed)
return -EINVAL;
ret = sscanf(buf, "%u", &freq);
if (ret != 1)
return -EINVAL;
policy->governor->store_setspeed(policy, freq);
return count;
}
static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
{
if (!policy->governor || !policy->governor->show_setspeed)
return sprintf(buf, "<unsupported>\n");
return policy->governor->show_setspeed(policy, buf);
}
static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
{
unsigned int limit;
int ret;
ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
if (!ret)
return sprintf(buf, "%u\n", limit);
return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
}
cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
cpufreq_freq_attr_ro(cpuinfo_min_freq);
cpufreq_freq_attr_ro(cpuinfo_max_freq);
cpufreq_freq_attr_ro(cpuinfo_transition_latency);
cpufreq_freq_attr_ro(scaling_available_governors);
cpufreq_freq_attr_ro(scaling_driver);
cpufreq_freq_attr_ro(scaling_cur_freq);
cpufreq_freq_attr_ro(bios_limit);
cpufreq_freq_attr_ro(related_cpus);
cpufreq_freq_attr_ro(affected_cpus);
cpufreq_freq_attr_rw(scaling_min_freq);
cpufreq_freq_attr_rw(scaling_max_freq);
cpufreq_freq_attr_rw(scaling_governor);
cpufreq_freq_attr_rw(scaling_setspeed);
static struct attribute *cpufreq_attrs[] = {
&cpuinfo_min_freq.attr,
&cpuinfo_max_freq.attr,
&cpuinfo_transition_latency.attr,
&scaling_min_freq.attr,
&scaling_max_freq.attr,
&affected_cpus.attr,
&related_cpus.attr,
&scaling_governor.attr,
&scaling_driver.attr,
&scaling_available_governors.attr,
&scaling_setspeed.attr,
NULL
};
ATTRIBUTE_GROUPS(cpufreq);
#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
#define to_attr(a) container_of(a, struct freq_attr, attr)
static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
{
struct cpufreq_policy *policy = to_policy(kobj);
struct freq_attr *fattr = to_attr(attr);
ssize_t ret = -EBUSY;
if (!fattr->show)
return -EIO;
down_read(&policy->rwsem);
if (likely(!policy_is_inactive(policy)))
ret = fattr->show(policy, buf);
up_read(&policy->rwsem);
return ret;
}
static ssize_t store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct cpufreq_policy *policy = to_policy(kobj);
struct freq_attr *fattr = to_attr(attr);
ssize_t ret = -EBUSY;
if (!fattr->store)
return -EIO;
down_write(&policy->rwsem);
if (likely(!policy_is_inactive(policy)))
ret = fattr->store(policy, buf, count);
up_write(&policy->rwsem);
return ret;
}
static void cpufreq_sysfs_release(struct kobject *kobj)
{
struct cpufreq_policy *policy = to_policy(kobj);
pr_debug("last reference is dropped\n");
complete(&policy->kobj_unregister);
}
static const struct sysfs_ops sysfs_ops = {
.show = show,
.store = store,
};
static const struct kobj_type ktype_cpufreq = {
.sysfs_ops = &sysfs_ops,
.default_groups = cpufreq_groups,
.release = cpufreq_sysfs_release,
};
static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
struct device *dev)
{
if (unlikely(!dev))
return;
if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
return;
dev_dbg(dev, "%s: Adding symlink\n", __func__);
if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
dev_err(dev, "cpufreq symlink creation failed\n");
}
static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
struct device *dev)
{
dev_dbg(dev, "%s: Removing symlink\n", __func__);
sysfs_remove_link(&dev->kobj, "cpufreq");
cpumask_clear_cpu(cpu, policy->real_cpus);
}
static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
{
struct freq_attr **drv_attr;
int ret = 0;
drv_attr = cpufreq_driver->attr;
while (drv_attr && *drv_attr) {
ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
if (ret)
return ret;
drv_attr++;
}
if (cpufreq_driver->get) {
ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
if (ret)
return ret;
}
ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
if (ret)
return ret;
if (cpufreq_driver->bios_limit) {
ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
if (ret)
return ret;
}
if (cpufreq_boost_supported()) {
ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
if (ret)
return ret;
}
return 0;
}
static int cpufreq_init_policy(struct cpufreq_policy *policy)
{
struct cpufreq_governor *gov = NULL;
unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
int ret;
if (has_target()) {
gov = get_governor(policy->last_governor);
if (gov) {
pr_debug("Restoring governor %s for cpu %d\n",
gov->name, policy->cpu);
} else {
gov = get_governor(default_governor);
}
if (!gov) {
gov = cpufreq_default_governor();
__module_get(gov->owner);
}
} else {
if (policy->last_policy) {
pol = policy->last_policy;
} else {
pol = cpufreq_parse_policy(default_governor);
if (pol == CPUFREQ_POLICY_UNKNOWN)
pol = policy->policy;
}
if (pol != CPUFREQ_POLICY_PERFORMANCE &&
pol != CPUFREQ_POLICY_POWERSAVE)
return -ENODATA;
}
ret = cpufreq_set_policy(policy, gov, pol);
if (gov)
module_put(gov->owner);
return ret;
}
static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
{
int ret = 0;
if (cpumask_test_cpu(cpu, policy->cpus))
return 0;
down_write(&policy->rwsem);
if (has_target())
cpufreq_stop_governor(policy);
cpumask_set_cpu(cpu, policy->cpus);
if (has_target()) {
ret = cpufreq_start_governor(policy);
if (ret)
pr_err("%s: Failed to start governor\n", __func__);
}
up_write(&policy->rwsem);
return ret;
}
void refresh_frequency_limits(struct cpufreq_policy *policy)
{
if (!policy_is_inactive(policy)) {
pr_debug("updating policy for CPU %u\n", policy->cpu);
cpufreq_set_policy(policy, policy->governor, policy->policy);
}
}
EXPORT_SYMBOL(refresh_frequency_limits);
static void handle_update(struct work_struct *work)
{
struct cpufreq_policy *policy =
container_of(work, struct cpufreq_policy, update);
pr_debug("handle_update for cpu %u called\n", policy->cpu);
down_write(&policy->rwsem);
refresh_frequency_limits(policy);
up_write(&policy->rwsem);
}
static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
void *data)
{
struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
schedule_work(&policy->update);
return 0;
}
static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
void *data)
{
struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
schedule_work(&policy->update);
return 0;
}
static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
{
struct kobject *kobj;
struct completion *cmp;
down_write(&policy->rwsem);
cpufreq_stats_free_table(policy);
kobj = &policy->kobj;
cmp = &policy->kobj_unregister;
up_write(&policy->rwsem);
kobject_put(kobj);
pr_debug("waiting for dropping of refcount\n");
wait_for_completion(cmp);
pr_debug("wait complete\n");
}
static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
{
struct cpufreq_policy *policy;
struct device *dev = get_cpu_device(cpu);
int ret;
if (!dev)
return NULL;
policy = kzalloc(sizeof(*policy), GFP_KERNEL);
if (!policy)
return NULL;
if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
goto err_free_policy;
if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
goto err_free_cpumask;
if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
goto err_free_rcpumask;
init_completion(&policy->kobj_unregister);
ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
cpufreq_global_kobject, "policy%u", cpu);
if (ret) {
dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
kobject_put(&policy->kobj);
goto err_free_real_cpus;
}
freq_constraints_init(&policy->constraints);
policy->nb_min.notifier_call = cpufreq_notifier_min;
policy->nb_max.notifier_call = cpufreq_notifier_max;
ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
&policy->nb_min);
if (ret) {
dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
ret, cpu);
goto err_kobj_remove;
}
ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
&policy->nb_max);
if (ret) {
dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
ret, cpu);
goto err_min_qos_notifier;
}
INIT_LIST_HEAD(&policy->policy_list);
init_rwsem(&policy->rwsem);
spin_lock_init(&policy->transition_lock);
init_waitqueue_head(&policy->transition_wait);
INIT_WORK(&policy->update, handle_update);
policy->cpu = cpu;
return policy;
err_min_qos_notifier:
freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
&policy->nb_min);
err_kobj_remove:
cpufreq_policy_put_kobj(policy);
err_free_real_cpus:
free_cpumask_var(policy->real_cpus);
err_free_rcpumask:
free_cpumask_var(policy->related_cpus);
err_free_cpumask:
free_cpumask_var(policy->cpus);
err_free_policy:
kfree(policy);
return NULL;
}
static void cpufreq_policy_free(struct cpufreq_policy *policy)
{
unsigned long flags;
int cpu;
if (unlikely(!policy_is_inactive(policy)))
pr_warn("%s: Freeing active policy\n", __func__);
write_lock_irqsave(&cpufreq_driver_lock, flags);
list_del(&policy->policy_list);
for_each_cpu(cpu, policy->related_cpus)
per_cpu(cpufreq_cpu_data, cpu) = NULL;
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
&policy->nb_max);
freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
&policy->nb_min);
cancel_work_sync(&policy->update);
if (policy->max_freq_req) {
blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
CPUFREQ_REMOVE_POLICY, policy);
freq_qos_remove_request(policy->max_freq_req);
}
freq_qos_remove_request(policy->min_freq_req);
kfree(policy->min_freq_req);
cpufreq_policy_put_kobj(policy);
free_cpumask_var(policy->real_cpus);
free_cpumask_var(policy->related_cpus);
free_cpumask_var(policy->cpus);
kfree(policy);
}
static int cpufreq_online(unsigned int cpu)
{
struct cpufreq_policy *policy;
bool new_policy;
unsigned long flags;
unsigned int j;
int ret;
pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
policy = per_cpu(cpufreq_cpu_data, cpu);
if (policy) {
WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
if (!policy_is_inactive(policy))
return cpufreq_add_policy_cpu(policy, cpu);
new_policy = false;
down_write(&policy->rwsem);
policy->cpu = cpu;
policy->governor = NULL;
} else {
new_policy = true;
policy = cpufreq_policy_alloc(cpu);
if (!policy)
return -ENOMEM;
down_write(&policy->rwsem);
}
if (!new_policy && cpufreq_driver->online) {
cpumask_copy(policy->cpus, policy->related_cpus);
ret = cpufreq_driver->online(policy);
if (ret) {
pr_debug("%s: %d: initialization failed\n", __func__,
__LINE__);
goto out_exit_policy;
}
} else {
cpumask_copy(policy->cpus, cpumask_of(cpu));
ret = cpufreq_driver->init(policy);
if (ret) {
pr_debug("%s: %d: initialization failed\n", __func__,
__LINE__);
goto out_free_policy;
}
ret = cpufreq_table_validate_and_sort(policy);
if (ret)
goto out_offline_policy;
cpumask_copy(policy->related_cpus, policy->cpus);
}
cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
if (new_policy) {
for_each_cpu(j, policy->related_cpus) {
per_cpu(cpufreq_cpu_data, j) = policy;
add_cpu_dev_symlink(policy, j, get_cpu_device(j));
}
policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
GFP_KERNEL);
if (!policy->min_freq_req) {
ret = -ENOMEM;
goto out_destroy_policy;
}
ret = freq_qos_add_request(&policy->constraints,
policy->min_freq_req, FREQ_QOS_MIN,
FREQ_QOS_MIN_DEFAULT_VALUE);
if (ret < 0) {
kfree(policy->min_freq_req);
policy->min_freq_req = NULL;
goto out_destroy_policy;
}
policy->max_freq_req = policy->min_freq_req + 1;
ret = freq_qos_add_request(&policy->constraints,
policy->max_freq_req, FREQ_QOS_MAX,
FREQ_QOS_MAX_DEFAULT_VALUE);
if (ret < 0) {
policy->max_freq_req = NULL;
goto out_destroy_policy;
}
blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
CPUFREQ_CREATE_POLICY, policy);
}
if (cpufreq_driver->get && has_target()) {
policy->cur = cpufreq_driver->get(policy->cpu);
if (!policy->cur) {
ret = -EIO;
pr_err("%s: ->get() failed\n", __func__);
goto out_destroy_policy;
}
}
if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
&& has_target()) {
unsigned int old_freq = policy->cur;
ret = cpufreq_frequency_table_get_index(policy, old_freq);
if (ret == -EINVAL) {
ret = __cpufreq_driver_target(policy, old_freq - 1,
CPUFREQ_RELATION_L);
BUG_ON(ret);
pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
__func__, policy->cpu, old_freq, policy->cur);
}
}
if (new_policy) {
ret = cpufreq_add_dev_interface(policy);
if (ret)
goto out_destroy_policy;
cpufreq_stats_create_table(policy);
write_lock_irqsave(&cpufreq_driver_lock, flags);
list_add(&policy->policy_list, &cpufreq_policy_list);
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
if (cpufreq_driver->register_em)
cpufreq_driver->register_em(policy);
}
ret = cpufreq_init_policy(policy);
if (ret) {
pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
__func__, cpu, ret);
goto out_destroy_policy;
}
up_write(&policy->rwsem);
kobject_uevent(&policy->kobj, KOBJ_ADD);
if (cpufreq_driver->ready)
cpufreq_driver->ready(policy);
if (cpufreq_thermal_control_enabled(cpufreq_driver))
policy->cdev = of_cpufreq_cooling_register(policy);
pr_debug("initialization complete\n");
return 0;
out_destroy_policy:
for_each_cpu(j, policy->real_cpus)
remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
out_offline_policy:
if (cpufreq_driver->offline)
cpufreq_driver->offline(policy);
out_exit_policy:
if (cpufreq_driver->exit)
cpufreq_driver->exit(policy);
out_free_policy:
cpumask_clear(policy->cpus);
up_write(&policy->rwsem);
cpufreq_policy_free(policy);
return ret;
}
static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
{
struct cpufreq_policy *policy;
unsigned cpu = dev->id;
int ret;
dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
if (cpu_online(cpu)) {
ret = cpufreq_online(cpu);
if (ret)
return ret;
}
policy = per_cpu(cpufreq_cpu_data, cpu);
if (policy)
add_cpu_dev_symlink(policy, cpu, dev);
return 0;
}
static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
{
int ret;
if (has_target())
cpufreq_stop_governor(policy);
cpumask_clear_cpu(cpu, policy->cpus);
if (!policy_is_inactive(policy)) {
if (cpu == policy->cpu)
policy->cpu = cpumask_any(policy->cpus);
if (has_target()) {
ret = cpufreq_start_governor(policy);
if (ret)
pr_err("%s: Failed to start governor\n", __func__);
}
return;
}
if (has_target())
strncpy(policy->last_governor, policy->governor->name,
CPUFREQ_NAME_LEN);
else
policy->last_policy = policy->policy;
if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
cpufreq_cooling_unregister(policy->cdev);
policy->cdev = NULL;
}
if (has_target())
cpufreq_exit_governor(policy);
if (cpufreq_driver->offline) {
cpufreq_driver->offline(policy);
} else if (cpufreq_driver->exit) {
cpufreq_driver->exit(policy);
policy->freq_table = NULL;
}
}
static int cpufreq_offline(unsigned int cpu)
{
struct cpufreq_policy *policy;
pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
policy = cpufreq_cpu_get_raw(cpu);
if (!policy) {
pr_debug("%s: No cpu_data found\n", __func__);
return 0;
}
down_write(&policy->rwsem);
__cpufreq_offline(cpu, policy);
up_write(&policy->rwsem);
return 0;
}
static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
{
unsigned int cpu = dev->id;
struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
if (!policy)
return;
down_write(&policy->rwsem);
if (cpu_online(cpu))
__cpufreq_offline(cpu, policy);
remove_cpu_dev_symlink(policy, cpu, dev);
if (!cpumask_empty(policy->real_cpus)) {
up_write(&policy->rwsem);
return;
}
if (cpufreq_driver->offline)
cpufreq_driver->exit(policy);
up_write(&policy->rwsem);
cpufreq_policy_free(policy);
}
static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
unsigned int new_freq)
{
struct cpufreq_freqs freqs;
pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
policy->cur, new_freq);
freqs.old = policy->cur;
freqs.new = new_freq;
cpufreq_freq_transition_begin(policy, &freqs);
cpufreq_freq_transition_end(policy, &freqs, 0);
}
static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
{
unsigned int new_freq;
new_freq = cpufreq_driver->get(policy->cpu);
if (!new_freq)
return 0;
if (policy->fast_switch_enabled || !has_target())
return new_freq;
if (policy->cur != new_freq) {
if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
return policy->cur;
cpufreq_out_of_sync(policy, new_freq);
if (update)
schedule_work(&policy->update);
}
return new_freq;
}
unsigned int cpufreq_quick_get(unsigned int cpu)
{
struct cpufreq_policy *policy;
unsigned int ret_freq = 0;
unsigned long flags;
read_lock_irqsave(&cpufreq_driver_lock, flags);
if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
ret_freq = cpufreq_driver->get(cpu);
read_unlock_irqrestore(&cpufreq_driver_lock, flags);
return ret_freq;
}
read_unlock_irqrestore(&cpufreq_driver_lock, flags);
policy = cpufreq_cpu_get(cpu);
if (policy) {
ret_freq = policy->cur;
cpufreq_cpu_put(policy);
}
return ret_freq;
}
EXPORT_SYMBOL(cpufreq_quick_get);
unsigned int cpufreq_quick_get_max(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
unsigned int ret_freq = 0;
if (policy) {
ret_freq = policy->max;
cpufreq_cpu_put(policy);
}
return ret_freq;
}
EXPORT_SYMBOL(cpufreq_quick_get_max);
__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
unsigned int ret_freq = 0;
if (policy) {
ret_freq = policy->cpuinfo.max_freq;
cpufreq_cpu_put(policy);
}
return ret_freq;
}
EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
{
if (unlikely(policy_is_inactive(policy)))
return 0;
return cpufreq_verify_current_freq(policy, true);
}
unsigned int cpufreq_get(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
unsigned int ret_freq = 0;
if (policy) {
down_read(&policy->rwsem);
if (cpufreq_driver->get)
ret_freq = __cpufreq_get(policy);
up_read(&policy->rwsem);
cpufreq_cpu_put(policy);
}
return ret_freq;
}
EXPORT_SYMBOL(cpufreq_get);
static struct subsys_interface cpufreq_interface = {
.name = "cpufreq",
.subsys = &cpu_subsys,
.add_dev = cpufreq_add_dev,
.remove_dev = cpufreq_remove_dev,
};
int cpufreq_generic_suspend(struct cpufreq_policy *policy)
{
int ret;
if (!policy->suspend_freq) {
pr_debug("%s: suspend_freq not defined\n", __func__);
return 0;
}
pr_debug("%s: Setting suspend-freq: %u\n", __func__,
policy->suspend_freq);
ret = __cpufreq_driver_target(policy, policy->suspend_freq,
CPUFREQ_RELATION_H);
if (ret)
pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
__func__, policy->suspend_freq, ret);
return ret;
}
EXPORT_SYMBOL(cpufreq_generic_suspend);
void cpufreq_suspend(void)
{
struct cpufreq_policy *policy;
if (!cpufreq_driver)
return;
if (!has_target() && !cpufreq_driver->suspend)
goto suspend;
pr_debug("%s: Suspending Governors\n", __func__);
for_each_active_policy(policy) {
if (has_target()) {
down_write(&policy->rwsem);
cpufreq_stop_governor(policy);
up_write(&policy->rwsem);
}
if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
pr_err("%s: Failed to suspend driver: %s\n", __func__,
cpufreq_driver->name);
}
suspend:
cpufreq_suspended = true;
}
void cpufreq_resume(void)
{
struct cpufreq_policy *policy;
int ret;
if (!cpufreq_driver)
return;
if (unlikely(!cpufreq_suspended))
return;
cpufreq_suspended = false;
if (!has_target() && !cpufreq_driver->resume)
return;
pr_debug("%s: Resuming Governors\n", __func__);
for_each_active_policy(policy) {
if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
pr_err("%s: Failed to resume driver: %s\n", __func__,
cpufreq_driver->name);
} else if (has_target()) {
down_write(&policy->rwsem);
ret = cpufreq_start_governor(policy);
up_write(&policy->rwsem);
if (ret)
pr_err("%s: Failed to start governor for CPU%u's policy\n",
__func__, policy->cpu);
}
}
}
bool cpufreq_driver_test_flags(u16 flags)
{
return !!(cpufreq_driver->flags & flags);
}
const char *cpufreq_get_current_driver(void)
{
if (cpufreq_driver)
return cpufreq_driver->name;
return NULL;
}
EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
void *cpufreq_get_driver_data(void)
{
if (cpufreq_driver)
return cpufreq_driver->driver_data;
return NULL;
}
EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
{
int ret;
if (cpufreq_disabled())
return -EINVAL;
switch (list) {
case CPUFREQ_TRANSITION_NOTIFIER:
mutex_lock(&cpufreq_fast_switch_lock);
if (cpufreq_fast_switch_count > 0) {
mutex_unlock(&cpufreq_fast_switch_lock);
return -EBUSY;
}
ret = srcu_notifier_chain_register(
&cpufreq_transition_notifier_list, nb);
if (!ret)
cpufreq_fast_switch_count--;
mutex_unlock(&cpufreq_fast_switch_lock);
break;
case CPUFREQ_POLICY_NOTIFIER:
ret = blocking_notifier_chain_register(
&cpufreq_policy_notifier_list, nb);
break;
default:
ret = -EINVAL;
}
return ret;
}
EXPORT_SYMBOL(cpufreq_register_notifier);
int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
{
int ret;
if (cpufreq_disabled())
return -EINVAL;
switch (list) {
case CPUFREQ_TRANSITION_NOTIFIER:
mutex_lock(&cpufreq_fast_switch_lock);
ret = srcu_notifier_chain_unregister(
&cpufreq_transition_notifier_list, nb);
if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
cpufreq_fast_switch_count++;
mutex_unlock(&cpufreq_fast_switch_lock);
break;
case CPUFREQ_POLICY_NOTIFIER:
ret = blocking_notifier_chain_unregister(
&cpufreq_policy_notifier_list, nb);
break;
default:
ret = -EINVAL;
}
return ret;
}
EXPORT_SYMBOL(cpufreq_unregister_notifier);
unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
unsigned int freq;
int cpu;
target_freq = clamp_val(target_freq, policy->min, policy->max);
freq = cpufreq_driver->fast_switch(policy, target_freq);
if (!freq)
return 0;
policy->cur = freq;
arch_set_freq_scale(policy->related_cpus, freq,
policy->cpuinfo.max_freq);
cpufreq_stats_record_transition(policy, freq);
if (trace_cpu_frequency_enabled()) {
for_each_cpu(cpu, policy->cpus)
trace_cpu_frequency(freq, cpu);
}
return freq;
}
EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
void cpufreq_driver_adjust_perf(unsigned int cpu,
unsigned long min_perf,
unsigned long target_perf,
unsigned long capacity)
{
cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
}
bool cpufreq_driver_has_adjust_perf(void)
{
return !!cpufreq_driver->adjust_perf;
}
static int __target_intermediate(struct cpufreq_policy *policy,
struct cpufreq_freqs *freqs, int index)
{
int ret;
freqs->new = cpufreq_driver->get_intermediate(policy, index);
if (!freqs->new)
return 0;
pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
__func__, policy->cpu, freqs->old, freqs->new);
cpufreq_freq_transition_begin(policy, freqs);
ret = cpufreq_driver->target_intermediate(policy, index);
cpufreq_freq_transition_end(policy, freqs, ret);
if (ret)
pr_err("%s: Failed to change to intermediate frequency: %d\n",
__func__, ret);
return ret;
}
static int __target_index(struct cpufreq_policy *policy, int index)
{
struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
unsigned int restore_freq, intermediate_freq = 0;
unsigned int newfreq = policy->freq_table[index].frequency;
int retval = -EINVAL;
bool notify;
if (newfreq == policy->cur)
return 0;
restore_freq = policy->cur;
notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
if (notify) {
if (cpufreq_driver->get_intermediate) {
retval = __target_intermediate(policy, &freqs, index);
if (retval)
return retval;
intermediate_freq = freqs.new;
if (intermediate_freq)
freqs.old = freqs.new;
}
freqs.new = newfreq;
pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
__func__, policy->cpu, freqs.old, freqs.new);
cpufreq_freq_transition_begin(policy, &freqs);
}
retval = cpufreq_driver->target_index(policy, index);
if (retval)
pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
retval);
if (notify) {
cpufreq_freq_transition_end(policy, &freqs, retval);
if (unlikely(retval && intermediate_freq)) {
freqs.old = intermediate_freq;
freqs.new = restore_freq;
cpufreq_freq_transition_begin(policy, &freqs);
cpufreq_freq_transition_end(policy, &freqs, 0);
}
}
return retval;
}
int __cpufreq_driver_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
unsigned int old_target_freq = target_freq;
if (cpufreq_disabled())
return -ENODEV;
target_freq = __resolve_freq(policy, target_freq, relation);
pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
policy->cpu, target_freq, relation, old_target_freq);
if (target_freq == policy->cur &&
!(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
return 0;
if (cpufreq_driver->target) {
if (!policy->efficiencies_available)
relation &= ~CPUFREQ_RELATION_E;
return cpufreq_driver->target(policy, target_freq, relation);
}
if (!cpufreq_driver->target_index)
return -EINVAL;
return __target_index(policy, policy->cached_resolved_idx);
}
EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
int cpufreq_driver_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
int ret;
down_write(&policy->rwsem);
ret = __cpufreq_driver_target(policy, target_freq, relation);
up_write(&policy->rwsem);
return ret;
}
EXPORT_SYMBOL_GPL(cpufreq_driver_target);
__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
{
return NULL;
}
static int cpufreq_init_governor(struct cpufreq_policy *policy)
{
int ret;
if (cpufreq_suspended)
return 0;
if (!policy->governor)
return -EINVAL;
if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
struct cpufreq_governor *gov = cpufreq_fallback_governor();
if (gov) {
pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
policy->governor->name, gov->name);
policy->governor = gov;
} else {
return -EINVAL;
}
}
if (!try_module_get(policy->governor->owner))
return -EINVAL;
pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
if (policy->governor->init) {
ret = policy->governor->init(policy);
if (ret) {
module_put(policy->governor->owner);
return ret;
}
}
policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
return 0;
}
static void cpufreq_exit_governor(struct cpufreq_policy *policy)
{
if (cpufreq_suspended || !policy->governor)
return;
pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
if (policy->governor->exit)
policy->governor->exit(policy);
module_put(policy->governor->owner);
}
int cpufreq_start_governor(struct cpufreq_policy *policy)
{
int ret;
if (cpufreq_suspended)
return 0;
if (!policy->governor)
return -EINVAL;
pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
if (cpufreq_driver->get)
cpufreq_verify_current_freq(policy, false);
if (policy->governor->start) {
ret = policy->governor->start(policy);
if (ret)
return ret;
}
if (policy->governor->limits)
policy->governor->limits(policy);
return 0;
}
void cpufreq_stop_governor(struct cpufreq_policy *policy)
{
if (cpufreq_suspended || !policy->governor)
return;
pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
if (policy->governor->stop)
policy->governor->stop(policy);
}
static void cpufreq_governor_limits(struct cpufreq_policy *policy)
{
if (cpufreq_suspended || !policy->governor)
return;
pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
if (policy->governor->limits)
policy->governor->limits(policy);
}
int cpufreq_register_governor(struct cpufreq_governor *governor)
{
int err;
if (!governor)
return -EINVAL;
if (cpufreq_disabled())
return -ENODEV;
mutex_lock(&cpufreq_governor_mutex);
err = -EBUSY;
if (!find_governor(governor->name)) {
err = 0;
list_add(&governor->governor_list, &cpufreq_governor_list);
}
mutex_unlock(&cpufreq_governor_mutex);
return err;
}
EXPORT_SYMBOL_GPL(cpufreq_register_governor);
void cpufreq_unregister_governor(struct cpufreq_governor *governor)
{
struct cpufreq_policy *policy;
unsigned long flags;
if (!governor)
return;
if (cpufreq_disabled())
return;
read_lock_irqsave(&cpufreq_driver_lock, flags);
for_each_inactive_policy(policy) {
if (!strcmp(policy->last_governor, governor->name)) {
policy->governor = NULL;
strcpy(policy->last_governor, "\0");
}
}
read_unlock_irqrestore(&cpufreq_driver_lock, flags);
mutex_lock(&cpufreq_governor_mutex);
list_del(&governor->governor_list);
mutex_unlock(&cpufreq_governor_mutex);
}
EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
{
struct cpufreq_policy *cpu_policy;
if (!policy)
return -EINVAL;
cpu_policy = cpufreq_cpu_get(cpu);
if (!cpu_policy)
return -EINVAL;
memcpy(policy, cpu_policy, sizeof(*policy));
cpufreq_cpu_put(cpu_policy);
return 0;
}
EXPORT_SYMBOL(cpufreq_get_policy);
static int cpufreq_set_policy(struct cpufreq_policy *policy,
struct cpufreq_governor *new_gov,
unsigned int new_pol)
{
struct cpufreq_policy_data new_data;
struct cpufreq_governor *old_gov;
int ret;
memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
new_data.freq_table = policy->freq_table;
new_data.cpu = policy->cpu;
new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
new_data.cpu, new_data.min, new_data.max);
ret = cpufreq_driver->verify(&new_data);
if (ret)
return ret;
policy->min = new_data.min;
policy->max = new_data.max;
policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
trace_cpu_frequency_limits(policy);
policy->cached_target_freq = UINT_MAX;
pr_debug("new min and max freqs are %u - %u kHz\n",
policy->min, policy->max);
if (cpufreq_driver->setpolicy) {
policy->policy = new_pol;
pr_debug("setting range\n");
return cpufreq_driver->setpolicy(policy);
}
if (new_gov == policy->governor) {
pr_debug("governor limits update\n");
cpufreq_governor_limits(policy);
return 0;
}
pr_debug("governor switch\n");
old_gov = policy->governor;
if (old_gov) {
cpufreq_stop_governor(policy);
cpufreq_exit_governor(policy);
}
policy->governor = new_gov;
ret = cpufreq_init_governor(policy);
if (!ret) {
ret = cpufreq_start_governor(policy);
if (!ret) {
pr_debug("governor change\n");
sched_cpufreq_governor_change(policy, old_gov);
return 0;
}
cpufreq_exit_governor(policy);
}
pr_debug("starting governor %s failed\n", policy->governor->name);
if (old_gov) {
policy->governor = old_gov;
if (cpufreq_init_governor(policy))
policy->governor = NULL;
else
cpufreq_start_governor(policy);
}
return ret;
}
void cpufreq_update_policy(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
if (!policy)
return;
if (cpufreq_driver->get && has_target() &&
(cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
goto unlock;
refresh_frequency_limits(policy);
unlock:
cpufreq_cpu_release(policy);
}
EXPORT_SYMBOL(cpufreq_update_policy);
void cpufreq_update_limits(unsigned int cpu)
{
if (cpufreq_driver->update_limits)
cpufreq_driver->update_limits(cpu);
else
cpufreq_update_policy(cpu);
}
EXPORT_SYMBOL_GPL(cpufreq_update_limits);
static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
{
int ret;
if (!policy->freq_table)
return -ENXIO;
ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
if (ret) {
pr_err("%s: Policy frequency update failed\n", __func__);
return ret;
}
ret = freq_qos_update_request(policy->max_freq_req, policy->max);
if (ret < 0)
return ret;
return 0;
}
int cpufreq_boost_trigger_state(int state)
{
struct cpufreq_policy *policy;
unsigned long flags;
int ret = 0;
if (cpufreq_driver->boost_enabled == state)
return 0;
write_lock_irqsave(&cpufreq_driver_lock, flags);
cpufreq_driver->boost_enabled = state;
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
cpus_read_lock();
for_each_active_policy(policy) {
ret = cpufreq_driver->set_boost(policy, state);
if (ret)
goto err_reset_state;
policy->boost_enabled = state;
}
cpus_read_unlock();
return 0;
err_reset_state:
cpus_read_unlock();
write_lock_irqsave(&cpufreq_driver_lock, flags);
cpufreq_driver->boost_enabled = !state;
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
pr_err("%s: Cannot %s BOOST\n",
__func__, state ? "enable" : "disable");
return ret;
}
static bool cpufreq_boost_supported(void)
{
return cpufreq_driver->set_boost;
}
static int create_boost_sysfs_file(void)
{
int ret;
ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
if (ret)
pr_err("%s: cannot register global BOOST sysfs file\n",
__func__);
return ret;
}
static void remove_boost_sysfs_file(void)
{
if (cpufreq_boost_supported())
sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
}
int cpufreq_enable_boost_support(void)
{
if (!cpufreq_driver)
return -EINVAL;
if (cpufreq_boost_supported())
return 0;
cpufreq_driver->set_boost = cpufreq_boost_set_sw;
return create_boost_sysfs_file();
}
EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
int cpufreq_boost_enabled(void)
{
return cpufreq_driver->boost_enabled;
}
EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
static enum cpuhp_state hp_online;
static int cpuhp_cpufreq_online(unsigned int cpu)
{
cpufreq_online(cpu);
return 0;
}
static int cpuhp_cpufreq_offline(unsigned int cpu)
{
cpufreq_offline(cpu);
return 0;
}
int cpufreq_register_driver(struct cpufreq_driver *driver_data)
{
unsigned long flags;
int ret;
if (cpufreq_disabled())
return -ENODEV;
if (!get_cpu_device(0))
return -EPROBE_DEFER;
if (!driver_data || !driver_data->verify || !driver_data->init ||
!(driver_data->setpolicy || driver_data->target_index ||
driver_data->target) ||
(driver_data->setpolicy && (driver_data->target_index ||
driver_data->target)) ||
(!driver_data->get_intermediate != !driver_data->target_intermediate) ||
(!driver_data->online != !driver_data->offline) ||
(driver_data->adjust_perf && !driver_data->fast_switch))
return -EINVAL;
pr_debug("trying to register driver %s\n", driver_data->name);
cpus_read_lock();
write_lock_irqsave(&cpufreq_driver_lock, flags);
if (cpufreq_driver) {
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
ret = -EEXIST;
goto out;
}
cpufreq_driver = driver_data;
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
if (!cpufreq_driver->setpolicy) {
static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
pr_debug("supports frequency invariance");
}
if (driver_data->setpolicy)
driver_data->flags |= CPUFREQ_CONST_LOOPS;
if (cpufreq_boost_supported()) {
ret = create_boost_sysfs_file();
if (ret)
goto err_null_driver;
}
ret = subsys_interface_register(&cpufreq_interface);
if (ret)
goto err_boost_unreg;
if (unlikely(list_empty(&cpufreq_policy_list))) {
ret = -ENODEV;
pr_debug("%s: No CPU initialized for driver %s\n", __func__,
driver_data->name);
goto err_if_unreg;
}
ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
"cpufreq:online",
cpuhp_cpufreq_online,
cpuhp_cpufreq_offline);
if (ret < 0)
goto err_if_unreg;
hp_online = ret;
ret = 0;
pr_debug("driver %s up and running\n", driver_data->name);
goto out;
err_if_unreg:
subsys_interface_unregister(&cpufreq_interface);
err_boost_unreg:
remove_boost_sysfs_file();
err_null_driver:
write_lock_irqsave(&cpufreq_driver_lock, flags);
cpufreq_driver = NULL;
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
out:
cpus_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(cpufreq_register_driver);
void cpufreq_unregister_driver(struct cpufreq_driver *driver)
{
unsigned long flags;
if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
return;
pr_debug("unregistering driver %s\n", driver->name);
cpus_read_lock();
subsys_interface_unregister(&cpufreq_interface);
remove_boost_sysfs_file();
static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
cpuhp_remove_state_nocalls_cpuslocked(hp_online);
write_lock_irqsave(&cpufreq_driver_lock, flags);
cpufreq_driver = NULL;
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
cpus_read_unlock();
}
EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
static int __init cpufreq_core_init(void)
{
struct cpufreq_governor *gov = cpufreq_default_governor();
struct device *dev_root;
if (cpufreq_disabled())
return -ENODEV;
dev_root = bus_get_dev_root(&cpu_subsys);
if (dev_root) {
cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
put_device(dev_root);
}
BUG_ON(!cpufreq_global_kobject);
if (!strlen(default_governor))
strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
return 0;
}
module_param(off, int, 0444);
module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
core_initcall