#include <linux/err.h>
#include <linux/hwmon.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/watchdog.h>
#define FTS_DEVICE_ID_REG 0x0000
#define FTS_DEVICE_REVISION_REG 0x0001
#define FTS_DEVICE_STATUS_REG 0x0004
#define FTS_SATELLITE_STATUS_REG 0x0005
#define FTS_EVENT_STATUS_REG 0x0006
#define FTS_GLOBAL_CONTROL_REG 0x0007
#define FTS_DEVICE_DETECT_REG_1 0x0C
#define FTS_DEVICE_DETECT_REG_2 0x0D
#define FTS_DEVICE_DETECT_REG_3 0x0E
#define FTS_SENSOR_EVENT_REG 0x0010
#define FTS_FAN_EVENT_REG 0x0014
#define FTS_FAN_PRESENT_REG 0x0015
#define FTS_POWER_ON_TIME_COUNTER_A 0x007A
#define FTS_POWER_ON_TIME_COUNTER_B 0x007B
#define FTS_POWER_ON_TIME_COUNTER_C 0x007C
#define FTS_PAGE_SELECT_REG 0x007F
#define FTS_WATCHDOG_TIME_PRESET 0x000B
#define FTS_WATCHDOG_CONTROL 0x5081
#define FTS_NO_FAN_SENSORS 0x08
#define FTS_NO_TEMP_SENSORS 0x10
#define FTS_NO_VOLT_SENSORS 0x04
#define FTS_FAN_SOURCE_INVALID 0xff
static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END };
static const struct i2c_device_id fts_id[] = {
{ "ftsteutates", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, fts_id);
enum WATCHDOG_RESOLUTION {
seconds = 1,
minutes = 60
};
struct fts_data {
struct i2c_client *client;
struct mutex update_lock;
struct mutex access_lock;
unsigned long last_updated;
struct watchdog_device wdd;
enum WATCHDOG_RESOLUTION resolution;
bool valid;
u8 volt[FTS_NO_VOLT_SENSORS];
u8 temp_input[FTS_NO_TEMP_SENSORS];
u8 temp_alarm;
u8 fan_present;
u8 fan_input[FTS_NO_FAN_SENSORS];
u8 fan_source[FTS_NO_FAN_SENSORS];
u8 fan_alarm;
};
#define FTS_REG_FAN_INPUT(idx) ((idx) + 0x20)
#define FTS_REG_FAN_SOURCE(idx) ((idx) + 0x30)
#define FTS_REG_FAN_CONTROL(idx) (((idx) << 16) + 0x4881)
#define FTS_REG_TEMP_INPUT(idx) ((idx) + 0x40)
#define FTS_REG_TEMP_CONTROL(idx) (((idx) << 16) + 0x0681)
#define FTS_REG_VOLT(idx) ((idx) + 0x18)
static int fts_read_byte(struct i2c_client *client, unsigned short reg)
{
int ret;
unsigned char page = reg >> 8;
struct fts_data *data = dev_get_drvdata(&client->dev);
mutex_lock(&data->access_lock);
dev_dbg(&client->dev, "page select - page: 0x%.02x\n", page);
ret = i2c_smbus_write_byte_data(client, FTS_PAGE_SELECT_REG, page);
if (ret < 0)
goto error;
reg &= 0xFF;
ret = i2c_smbus_read_byte_data(client, reg);
dev_dbg(&client->dev, "read - reg: 0x%.02x: val: 0x%.02x\n", reg, ret);
error:
mutex_unlock(&data->access_lock);
return ret;
}
static int fts_write_byte(struct i2c_client *client, unsigned short reg,
unsigned char value)
{
int ret;
unsigned char page = reg >> 8;
struct fts_data *data = dev_get_drvdata(&client->dev);
mutex_lock(&data->access_lock);
dev_dbg(&client->dev, "page select - page: 0x%.02x\n", page);
ret = i2c_smbus_write_byte_data(client, FTS_PAGE_SELECT_REG, page);
if (ret < 0)
goto error;
reg &= 0xFF;
dev_dbg(&client->dev,
"write - reg: 0x%.02x: val: 0x%.02x\n", reg, value);
ret = i2c_smbus_write_byte_data(client, reg, value);
error:
mutex_unlock(&data->access_lock);
return ret;
}
static int fts_update_device(struct fts_data *data)
{
int i;
int err = 0;
mutex_lock(&data->update_lock);
if (!time_after(jiffies, data->last_updated + 2 * HZ) && data->valid)
goto exit;
err = fts_read_byte(data->client, FTS_DEVICE_STATUS_REG);
if (err < 0)
goto exit;
data->valid = !!(err & 0x02);
if (unlikely(!data->valid)) {
err = -EAGAIN;
goto exit;
}
err = fts_read_byte(data->client, FTS_FAN_PRESENT_REG);
if (err < 0)
goto exit;
data->fan_present = err;
err = fts_read_byte(data->client, FTS_FAN_EVENT_REG);
if (err < 0)
goto exit;
data->fan_alarm = err;
for (i = 0; i < FTS_NO_FAN_SENSORS; i++) {
if (data->fan_present & BIT(i)) {
err = fts_read_byte(data->client, FTS_REG_FAN_INPUT(i));
if (err < 0)
goto exit;
data->fan_input[i] = err;
err = fts_read_byte(data->client,
FTS_REG_FAN_SOURCE(i));
if (err < 0)
goto exit;
data->fan_source[i] = err;
} else {
data->fan_input[i] = 0;
data->fan_source[i] = FTS_FAN_SOURCE_INVALID;
}
}
err = fts_read_byte(data->client, FTS_SENSOR_EVENT_REG);
if (err < 0)
goto exit;
data->temp_alarm = err;
for (i = 0; i < FTS_NO_TEMP_SENSORS; i++) {
err = fts_read_byte(data->client, FTS_REG_TEMP_INPUT(i));
if (err < 0)
goto exit;
data->temp_input[i] = err;
}
for (i = 0; i < FTS_NO_VOLT_SENSORS; i++) {
err = fts_read_byte(data->client, FTS_REG_VOLT(i));
if (err < 0)
goto exit;
data->volt[i] = err;
}
data->last_updated = jiffies;
err = 0;
exit:
mutex_unlock(&data->update_lock);
return err;
}
static int fts_wd_set_resolution(struct fts_data *data,
enum WATCHDOG_RESOLUTION resolution)
{
int ret;
if (data->resolution == resolution)
return 0;
ret = fts_read_byte(data->client, FTS_WATCHDOG_CONTROL);
if (ret < 0)
return ret;
if ((resolution == seconds && ret & BIT(1)) ||
(resolution == minutes && (ret & BIT(1)) == 0)) {
data->resolution = resolution;
return 0;
}
if (resolution == seconds)
ret |= BIT(1);
else
ret &= ~BIT(1);
ret = fts_write_byte(data->client, FTS_WATCHDOG_CONTROL, ret);
if (ret < 0)
return ret;
data->resolution = resolution;
return ret;
}
static int fts_wd_set_timeout(struct watchdog_device *wdd, unsigned int timeout)
{
struct fts_data *data;
enum WATCHDOG_RESOLUTION resolution = seconds;
int ret;
data = watchdog_get_drvdata(wdd);
if (timeout > 0xFF) {
timeout = DIV_ROUND_UP(timeout, 60) * 60;
resolution = minutes;
}
ret = fts_wd_set_resolution(data, resolution);
if (ret < 0)
return ret;
wdd->timeout = timeout;
return 0;
}
static int fts_wd_start(struct watchdog_device *wdd)
{
struct fts_data *data = watchdog_get_drvdata(wdd);
return fts_write_byte(data->client, FTS_WATCHDOG_TIME_PRESET,
wdd->timeout / (u8)data->resolution);
}
static int fts_wd_stop(struct watchdog_device *wdd)
{
struct fts_data *data;
data = watchdog_get_drvdata(wdd);
return fts_write_byte(data->client, FTS_WATCHDOG_TIME_PRESET, 0);
}
static const struct watchdog_info fts_wd_info = {
.options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE,
.identity = "FTS Teutates Hardware Watchdog",
};
static const struct watchdog_ops fts_wd_ops = {
.owner = THIS_MODULE,
.start = fts_wd_start,
.stop = fts_wd_stop,
.set_timeout = fts_wd_set_timeout,
};
static int fts_watchdog_init(struct fts_data *data)
{
int timeout, ret;
watchdog_set_drvdata(&data->wdd, data);
timeout = fts_read_byte(data->client, FTS_WATCHDOG_TIME_PRESET);
if (timeout < 0)
return timeout;
if (timeout == 0) {
ret = fts_wd_set_resolution(data, seconds);
if (ret < 0)
return ret;
data->wdd.timeout = 60;
} else {
ret = fts_read_byte(data->client, FTS_WATCHDOG_CONTROL);
if (ret < 0)
return ret;
data->resolution = ret & BIT(1) ? seconds : minutes;
data->wdd.timeout = timeout * (u8)data->resolution;
set_bit(WDOG_HW_RUNNING, &data->wdd.status);
}
data->wdd.info = &fts_wd_info;
data->wdd.ops = &fts_wd_ops;
data->wdd.parent = &data->client->dev;
data->wdd.min_timeout = 1;
data->wdd.max_hw_heartbeat_ms = 0xFF * 60 * MSEC_PER_SEC;
return devm_watchdog_register_device(&data->client->dev, &data->wdd);
}
static umode_t fts_is_visible(const void *devdata, enum hwmon_sensor_types type, u32 attr,
int channel)
{
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_fault:
return 0444;
case hwmon_temp_alarm:
return 0644;
default:
break;
}
break;
case hwmon_fan:
switch (attr) {
case hwmon_fan_input:
case hwmon_fan_fault:
return 0444;
case hwmon_fan_alarm:
return 0644;
default:
break;
}
break;
case hwmon_pwm:
case hwmon_in:
return 0444;
default:
break;
}
return 0;
}
static int fts_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel,
long *val)
{
struct fts_data *data = dev_get_drvdata(dev);
int ret = fts_update_device(data);
if (ret < 0)
return ret;
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
*val = (data->temp_input[channel] - 64) * 1000;
return 0;
case hwmon_temp_alarm:
*val = !!(data->temp_alarm & BIT(channel));
return 0;
case hwmon_temp_fault:
;
*val = (data->temp_input[channel] == 0);
return 0;
default:
break;
}
break;
case hwmon_fan:
switch (attr) {
case hwmon_fan_input:
*val = data->fan_input[channel] * 60;
return 0;
case hwmon_fan_alarm:
*val = !!(data->fan_alarm & BIT(channel));
return 0;
case hwmon_fan_fault:
*val = !(data->fan_present & BIT(channel));
return 0;
default:
break;
}
break;
case hwmon_pwm:
switch (attr) {
case hwmon_pwm_auto_channels_temp:
if (data->fan_source[channel] == FTS_FAN_SOURCE_INVALID)
*val = 0;
else
*val = BIT(data->fan_source[channel]);
return 0;
default:
break;
}
break;
case hwmon_in:
switch (attr) {
case hwmon_in_input:
*val = DIV_ROUND_CLOSEST(data->volt[channel] * 3300, 255);
return 0;
default:
break;
}
break;
default:
break;
}
return -EOPNOTSUPP;
}
static int fts_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel,
long val)
{
struct fts_data *data = dev_get_drvdata(dev);
int ret = fts_update_device(data);
if (ret < 0)
return ret;
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_alarm:
if (val)
return -EINVAL;
mutex_lock(&data->update_lock);
ret = fts_read_byte(data->client, FTS_REG_TEMP_CONTROL(channel));
if (ret >= 0)
ret = fts_write_byte(data->client, FTS_REG_TEMP_CONTROL(channel),
ret | 0x1);
if (ret >= 0)
data->valid = false;
mutex_unlock(&data->update_lock);
if (ret < 0)
return ret;
return 0;
default:
break;
}
break;
case hwmon_fan:
switch (attr) {
case hwmon_fan_alarm:
if (val)
return -EINVAL;
mutex_lock(&data->update_lock);
ret = fts_read_byte(data->client, FTS_REG_FAN_CONTROL(channel));
if (ret >= 0)
ret = fts_write_byte(data->client, FTS_REG_FAN_CONTROL(channel),
ret | 0x1);
if (ret >= 0)
data->valid = false;
mutex_unlock(&data->update_lock);
if (ret < 0)
return ret;
return 0;
default:
break;
}
break;
default:
break;
}
return -EOPNOTSUPP;
}
static const struct hwmon_ops fts_ops = {
.is_visible = fts_is_visible,
.read = fts_read,
.write = fts_write,
};
static const struct hwmon_channel_info * const fts_info[] = {
HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ),
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_FAULT
),
HWMON_CHANNEL_INFO(fan,
HWMON_F_INPUT | HWMON_F_ALARM | HWMON_F_FAULT,
HWMON_F_INPUT | HWMON_F_ALARM | HWMON_F_FAULT,
HWMON_F_INPUT | HWMON_F_ALARM | HWMON_F_FAULT,
HWMON_F_INPUT | HWMON_F_ALARM | HWMON_F_FAULT,
HWMON_F_INPUT | HWMON_F_ALARM | HWMON_F_FAULT,
HWMON_F_INPUT | HWMON_F_ALARM | HWMON_F_FAULT,
HWMON_F_INPUT | HWMON_F_ALARM | HWMON_F_FAULT,
HWMON_F_INPUT | HWMON_F_ALARM | HWMON_F_FAULT
),
HWMON_CHANNEL_INFO(pwm,
HWMON_PWM_AUTO_CHANNELS_TEMP,
HWMON_PWM_AUTO_CHANNELS_TEMP,
HWMON_PWM_AUTO_CHANNELS_TEMP,
HWMON_PWM_AUTO_CHANNELS_TEMP,
HWMON_PWM_AUTO_CHANNELS_TEMP,
HWMON_PWM_AUTO_CHANNELS_TEMP,
HWMON_PWM_AUTO_CHANNELS_TEMP,
HWMON_PWM_AUTO_CHANNELS_TEMP
),
HWMON_CHANNEL_INFO(in,
HWMON_I_INPUT,
HWMON_I_INPUT,
HWMON_I_INPUT,
HWMON_I_INPUT
),
NULL
};
static const struct hwmon_chip_info fts_chip_info = {
.ops = &fts_ops,
.info = fts_info,
};
static int fts_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
int val;
val = i2c_smbus_read_byte_data(client, FTS_DEVICE_REVISION_REG);
if (val < 0x2b)
return -ENODEV;
val = i2c_smbus_read_byte_data(client, FTS_DEVICE_DETECT_REG_1);
if (val != 0x17)
return -ENODEV;
val = i2c_smbus_read_byte_data(client, FTS_DEVICE_DETECT_REG_2);
if (val != 0x34)
return -ENODEV;
val = i2c_smbus_read_byte_data(client, FTS_DEVICE_DETECT_REG_3);
if (val != 0x54)
return -ENODEV;
val = i2c_smbus_read_byte_data(client, FTS_DEVICE_ID_REG);
if (val != 0x11)
return -ENODEV;
strscpy(info->type, fts_id[0].name, I2C_NAME_SIZE);
info->flags = 0;
return 0;
}
static int fts_probe(struct i2c_client *client)
{
u8 revision;
struct fts_data *data;
int err;
s8 deviceid;
struct device *hwmon_dev;
if (client->addr != 0x73)
return -ENODEV;
deviceid = i2c_smbus_read_byte_data(client, FTS_DEVICE_ID_REG);
if (deviceid > 0 && (deviceid & 0xF0) == 0x10) {
switch (deviceid & 0x0F) {
case 0x01:
break;
default:
dev_dbg(&client->dev,
"No Baseboard Management Controller\n");
return -ENODEV;
}
} else {
dev_dbg(&client->dev, "No fujitsu board\n");
return -ENODEV;
}
data = devm_kzalloc(&client->dev, sizeof(struct fts_data),
GFP_KERNEL);
if (!data)
return -ENOMEM;
mutex_init(&data->update_lock);
mutex_init(&data->access_lock);
data->client = client;
dev_set_drvdata(&client->dev, data);
err = i2c_smbus_read_byte_data(client, FTS_DEVICE_REVISION_REG);
if (err < 0)
return err;
revision = err;
hwmon_dev = devm_hwmon_device_register_with_info(&client->dev, "ftsteutates", data,
&fts_chip_info, NULL);
if (IS_ERR(hwmon_dev))
return PTR_ERR(hwmon_dev);
err = fts_watchdog_init(data);
if (err)
return err;
dev_info(&client->dev, "Detected FTS Teutates chip, revision: %d.%d\n",
(revision & 0xF0) >> 4, revision & 0x0F);
return 0;
}
static struct i2c_driver fts_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "ftsteutates",
},
.id_table = fts_id,
.probe = fts_probe,
.detect = fts_detect,
.address_list = normal_i2c,
};
module_i2c_driver(fts_driver);
MODULE_AUTHOR("Thilo Cestonaro <thilo.cestonaro@ts.fujitsu.com>");
MODULE_DESCRIPTION("FTS Teutates driver");
MODULE_LICENSE("GPL"