/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include <linux/slab.h> #include "i915_syncmap.h" #include "i915_gem.h" /* GEM_BUG_ON() */ #include "i915_selftest.h" #define SHIFT ilog2(KSYNCMAP) #define MASK (KSYNCMAP - 1) /* * struct i915_syncmap is a layer of a radixtree that maps a u64 fence * context id to the last u32 fence seqno waited upon from that context. * Unlike lib/radixtree it uses a parent pointer that allows traversal back to * the root. This allows us to access the whole tree via a single pointer * to the most recently used layer. We expect fence contexts to be dense * and most reuse to be on the same i915_gem_context but on neighbouring * engines (i.e. on adjacent contexts) and reuse the same leaf, a very * effective lookup cache. If the new lookup is not on the same leaf, we * expect it to be on the neighbouring branch. * * A leaf holds an array of u32 seqno, and has height 0. The bitmap field * allows us to store whether a particular seqno is valid (i.e. allows us * to distinguish unset from 0). * * A branch holds an array of layer pointers, and has height > 0, and always * has at least 2 layers (either branches or leaves) below it. * * For example, * for x in * 0 1 2 0x10 0x11 0x200 0x201 * 0x500000 0x500001 0x503000 0x503001 * 0xE<<60: * i915_syncmap_set(&sync, x, lower_32_bits(x)); * will build a tree like: * 0xXXXXXXXXXXXXXXXX * 0-> 0x0000000000XXXXXX * | 0-> 0x0000000000000XXX * | | 0-> 0x00000000000000XX * | | | 0-> 0x000000000000000X 0:0, 1:1, 2:2 * | | | 1-> 0x000000000000001X 0:10, 1:11 * | | 2-> 0x000000000000020X 0:200, 1:201 * | 5-> 0x000000000050XXXX * | 0-> 0x000000000050000X 0:500000, 1:500001 * | 3-> 0x000000000050300X 0:503000, 1:503001 * e-> 0xe00000000000000X e:e */ struct i915_syncmap { u64 prefix; unsigned int height; unsigned int bitmap; struct i915_syncmap *parent; /* * Following this header is an array of either seqno or child pointers: * union { * u32 seqno[KSYNCMAP]; * struct i915_syncmap *child[KSYNCMAP]; * }; */ }; /** * i915_syncmap_init -- initialise the #i915_syncmap * @root: pointer to the #i915_syncmap */ void i915_syncmap_init(struct i915_syncmap **root) { BUILD_BUG_ON_NOT_POWER_OF_2(KSYNCMAP); BUILD_BUG_ON_NOT_POWER_OF_2(SHIFT); BUILD_BUG_ON(KSYNCMAP > BITS_PER_TYPE((*root)->bitmap)); *root = NULL; } static inline u32 *__sync_seqno(struct i915_syncmap *p) { GEM_BUG_ON(p->height); return (u32 *)(p + 1); } static inline struct i915_syncmap **__sync_child(struct i915_syncmap *p) { GEM_BUG_ON(!p->height); return (struct i915_syncmap **)(p + 1); } static inline unsigned int __sync_branch_idx(const struct i915_syncmap *p, u64 id) { return (id >> p->height) & MASK; } static inline unsigned int __sync_leaf_idx(const struct i915_syncmap *p, u64 id) { GEM_BUG_ON(p->height); return id & MASK; } static inline u64 __sync_branch_prefix(const struct i915_syncmap *p, u64 id) { return id >> p->height >> SHIFT; } static inline u64 __sync_leaf_prefix(const struct i915_syncmap *p, u64 id) { GEM_BUG_ON(p->height); return id >> SHIFT; } static inline bool seqno_later(u32 a, u32 b) { return (s32)(a - b) >= 0; } /** * i915_syncmap_is_later -- compare against the last know sync point * @root: pointer to the #i915_syncmap * @id: the context id (other timeline) we are synchronising to * @seqno: the sequence number along the other timeline * * If we have already synchronised this @root timeline with another (@id) then * we can omit any repeated or earlier synchronisation requests. If the two * timelines are already coupled, we can also omit the dependency between the * two as that is already known via the timeline. * * Returns true if the two timelines are already synchronised wrt to @seqno, * false if not and the synchronisation must be emitted. */ bool i915_syncmap_is_later(struct i915_syncmap **root, u64 id, u32 seqno) { struct i915_syncmap *p; unsigned int idx; p = *root; if (!p) return false; if (likely(__sync_leaf_prefix(p, id) == p->prefix)) goto found; /* First climb the tree back to a parent branch */ do { p = p->parent; if (!p) return false; if (__sync_branch_prefix(p, id) == p->prefix) break; } while (1); /* And then descend again until we find our leaf */ do { if (!p->height) break; p = __sync_child(p)[__sync_branch_idx(p, id)]; if (!p) return false; if (__sync_branch_prefix(p, id) != p->prefix) return false; } while (1); *root = p; found: idx = __sync_leaf_idx(p, id); if (!(p->bitmap & BIT(idx))) return false; return seqno_later(__sync_seqno(p)[idx], seqno); } static struct i915_syncmap * __sync_alloc_leaf(struct i915_syncmap *parent, u64 id) { struct i915_syncmap *p; p = kmalloc(sizeof(*p) + KSYNCMAP * sizeof(u32), GFP_KERNEL); if (unlikely(!p)) return NULL; p->parent = parent; p->height = 0; p->bitmap = 0; p->prefix = __sync_leaf_prefix(p, id); return p; } static inline void __sync_set_seqno(struct i915_syncmap *p, u64 id, u32 seqno) { unsigned int idx = __sync_leaf_idx(p, id); p->bitmap |= BIT(idx); __sync_seqno(p)[idx] = seqno; } static inline void __sync_set_child(struct i915_syncmap *p, unsigned int idx, struct i915_syncmap *child) { p->bitmap |= BIT(idx); __sync_child(p)[idx] = child; } static noinline int __sync_set(struct i915_syncmap **root, u64 id, u32 seqno) { struct i915_syncmap *p = *root; unsigned int idx; if (!p) { p = __sync_alloc_leaf(NULL, id); if (unlikely(!p)) return -ENOMEM; goto found; } /* Caller handled the likely cached case */ GEM_BUG_ON(__sync_leaf_prefix(p, id) == p->prefix); /* Climb back up the tree until we find a common prefix */ do { if (!p->parent) break; p = p->parent; if (__sync_branch_prefix(p, id) == p->prefix) break; } while (1); /* * No shortcut, we have to descend the tree to find the right layer * containing this fence. * * Each layer in the tree holds 16 (KSYNCMAP) pointers, either fences * or lower layers. Leaf nodes (height = 0) contain the fences, all * other nodes (height > 0) are internal layers that point to a lower * node. Each internal layer has at least 2 descendents. * * Starting at the top, we check whether the current prefix matches. If * it doesn't, we have gone past our target and need to insert a join * into the tree, and a new leaf node for the target as a descendent * of the join, as well as the original layer. * * The matching prefix means we are still following the right branch * of the tree. If it has height 0, we have found our leaf and just * need to replace the fence slot with ourselves. If the height is * not zero, our slot contains the next layer in the tree (unless * it is empty, in which case we can add ourselves as a new leaf). * As descend the tree the prefix grows (and height decreases). */ do { struct i915_syncmap *next; if (__sync_branch_prefix(p, id) != p->prefix) { unsigned int above; /* Insert a join above the current layer */ next = kzalloc(sizeof(*next) + KSYNCMAP * sizeof(next), GFP_KERNEL); if (unlikely(!next)) return -ENOMEM; /* Compute the height at which these two diverge */ above = fls64(__sync_branch_prefix(p, id) ^ p->prefix); above = round_up(above, SHIFT); next->height = above + p->height; next->prefix = __sync_branch_prefix(next, id); /* Insert the join into the parent */ if (p->parent) { idx = __sync_branch_idx(p->parent, id); __sync_child(p->parent)[idx] = next; GEM_BUG_ON(!(p->parent->bitmap & BIT(idx))); } next->parent = p->parent; /* Compute the idx of the other branch, not our id! */ idx = p->prefix >> (above - SHIFT) & MASK; __sync_set_child(next, idx, p); p->parent = next; /* Ascend to the join */ p = next; } else { if (!p->height) break; } /* Descend into the next layer */ GEM_BUG_ON(!p->height); idx = __sync_branch_idx(p, id); next = __sync_child(p)[idx]; if (!next) { next = __sync_alloc_leaf(p, id); if (unlikely(!next)) return -ENOMEM; __sync_set_child(p, idx, next); p = next; break; } p = next; } while (1); found: GEM_BUG_ON(p->prefix != __sync_leaf_prefix(p, id)); __sync_set_seqno(p, id, seqno); *root = p; return 0; } /** * i915_syncmap_set -- mark the most recent syncpoint between contexts * @root: pointer to the #i915_syncmap * @id: the context id (other timeline) we have synchronised to * @seqno: the sequence number along the other timeline * * When we synchronise this @root timeline with another (@id), we also know * that we have synchronized with all previous seqno along that timeline. If * we then have a request to synchronise with the same seqno or older, we can * omit it, see i915_syncmap_is_later() * * Returns 0 on success, or a negative error code. */ int i915_syncmap_set(struct i915_syncmap **root, u64 id, u32 seqno) { struct i915_syncmap *p = *root; /* * We expect to be called in sequence following is_later(id), which * should have preloaded the root for us. */ if (likely(p && __sync_leaf_prefix(p, id) == p->prefix)) { __sync_set_seqno(p, id, seqno); return 0; } return __sync_set(root, id, seqno); } static void __sync_free(struct i915_syncmap *p) { if (p->height) { unsigned int i; while ((i = ffs(p->bitmap))) { p->bitmap &= ~0u << i; __sync_free(__sync_child(p)[i - 1]); } } kfree(p); } /** * i915_syncmap_free -- free all memory associated with the syncmap * @root: pointer to the #i915_syncmap * * Either when the timeline is to be freed and we no longer need the sync * point tracking, or when the fences are all known to be signaled and the * sync point tracking is redundant, we can free the #i915_syncmap to recover * its allocations. * * Will reinitialise the @root pointer so that the #i915_syncmap is ready for * reuse. */ void i915_syncmap_free(struct i915_syncmap **root) { struct i915_syncmap *p; p = *root; if (!p) return; while (p->parent) p = p->parent; __sync_free(p); *root = NULL; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/i915_syncmap.c" #endif