#include "disp.h"
#include "atom.h"
#include "core.h"
#include "head.h"
#include "wndw.h"
#include "handles.h"
#include <linux/dma-mapping.h>
#include <linux/hdmi.h>
#include <linux/component.h>
#include <linux/iopoll.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/display/drm_scdc_helper.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_fb_helper.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>
#include <nvif/push507c.h>
#include <nvif/class.h>
#include <nvif/cl0002.h>
#include <nvif/event.h>
#include <nvif/if0012.h>
#include <nvif/if0014.h>
#include <nvif/timer.h>
#include <nvhw/class/cl507c.h>
#include <nvhw/class/cl507d.h>
#include <nvhw/class/cl837d.h>
#include <nvhw/class/cl887d.h>
#include <nvhw/class/cl907d.h>
#include <nvhw/class/cl917d.h>
#include "nouveau_drv.h"
#include "nouveau_dma.h"
#include "nouveau_gem.h"
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_fence.h"
#include "nv50_display.h"
#include <subdev/bios/dp.h>
static int
nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
const s32 *oclass, u8 head, void *data, u32 size,
struct nv50_chan *chan)
{
struct nvif_sclass *sclass;
int ret, i, n;
chan->device = device;
ret = n = nvif_object_sclass_get(disp, &sclass);
if (ret < 0)
return ret;
while (oclass[0]) {
for (i = 0; i < n; i++) {
if (sclass[i].oclass == oclass[0]) {
ret = nvif_object_ctor(disp, "kmsChan", 0,
oclass[0], data, size,
&chan->user);
if (ret == 0)
nvif_object_map(&chan->user, NULL, 0);
nvif_object_sclass_put(&sclass);
return ret;
}
}
oclass++;
}
nvif_object_sclass_put(&sclass);
return -ENOSYS;
}
static void
nv50_chan_destroy(struct nv50_chan *chan)
{
nvif_object_dtor(&chan->user);
}
void
nv50_dmac_destroy(struct nv50_dmac *dmac)
{
nvif_object_dtor(&dmac->vram);
nvif_object_dtor(&dmac->sync);
nv50_chan_destroy(&dmac->base);
nvif_mem_dtor(&dmac->_push.mem);
}
static void
nv50_dmac_kick(struct nvif_push *push)
{
struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
if (dmac->put != dmac->cur) {
if (dmac->push->mem.type & NVIF_MEM_VRAM) {
struct nvif_device *device = dmac->base.device;
nvif_wr32(&device->object, 0x070000, 0x00000001);
nvif_msec(device, 2000,
if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
break;
);
}
NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
dmac->put = dmac->cur;
}
push->bgn = push->cur;
}
static int
nv50_dmac_free(struct nv50_dmac *dmac)
{
u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
if (get > dmac->cur)
return get - dmac->cur - 5;
return dmac->max - dmac->cur;
}
static int
nv50_dmac_wind(struct nv50_dmac *dmac)
{
u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
if (get == 0) {
if (dmac->put == 0)
nv50_dmac_kick(dmac->push);
if (nvif_msec(dmac->base.device, 2000,
if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
break;
) < 0)
return -ETIMEDOUT;
}
PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
dmac->cur = 0;
return 0;
}
static int
nv50_dmac_wait(struct nvif_push *push, u32 size)
{
struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
int free;
if (WARN_ON(size > dmac->max))
return -EINVAL;
dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
if (dmac->cur + size >= dmac->max) {
int ret = nv50_dmac_wind(dmac);
if (ret)
return ret;
push->cur = dmac->_push.mem.object.map.ptr;
push->cur = push->cur + dmac->cur;
nv50_dmac_kick(push);
}
if (nvif_msec(dmac->base.device, 2000,
if ((free = nv50_dmac_free(dmac)) >= size)
break;
) < 0) {
WARN_ON(1);
return -ETIMEDOUT;
}
push->bgn = dmac->_push.mem.object.map.ptr;
push->bgn = push->bgn + dmac->cur;
push->cur = push->bgn;
push->end = push->cur + free;
return 0;
}
MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
static int nv50_dmac_vram_pushbuf = -1;
module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
int
nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
struct nv50_dmac *dmac)
{
struct nouveau_cli *cli = (void *)device->object.client;
struct nvif_disp_chan_v0 *args = data;
u8 type = NVIF_MEM_COHERENT;
int ret;
mutex_init(&dmac->lock);
if ((nv50_dmac_vram_pushbuf > 0) ||
(nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
type |= NVIF_MEM_VRAM;
ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
&dmac->_push.mem);
if (ret)
return ret;
dmac->ptr = dmac->_push.mem.object.map.ptr;
dmac->_push.wait = nv50_dmac_wait;
dmac->_push.kick = nv50_dmac_kick;
dmac->push = &dmac->_push;
dmac->push->bgn = dmac->_push.mem.object.map.ptr;
dmac->push->cur = dmac->push->bgn;
dmac->push->end = dmac->push->bgn;
dmac->max = 0x1000/4 - 1;
if (disp->oclass < GV100_DISP)
dmac->max -= 12;
args->pushbuf = nvif_handle(&dmac->_push.mem.object);
ret = nv50_chan_create(device, disp, oclass, head, data, size,
&dmac->base);
if (ret)
return ret;
if (syncbuf < 0)
return 0;
ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
NV_DMA_IN_MEMORY,
&(struct nv_dma_v0) {
.target = NV_DMA_V0_TARGET_VRAM,
.access = NV_DMA_V0_ACCESS_RDWR,
.start = syncbuf + 0x0000,
.limit = syncbuf + 0x0fff,
}, sizeof(struct nv_dma_v0),
&dmac->sync);
if (ret)
return ret;
ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
NV_DMA_IN_MEMORY,
&(struct nv_dma_v0) {
.target = NV_DMA_V0_TARGET_VRAM,
.access = NV_DMA_V0_ACCESS_RDWR,
.start = 0,
.limit = device->info.ram_user - 1,
}, sizeof(struct nv_dma_v0),
&dmac->vram);
if (ret)
return ret;
return ret;
}
static void
nv50_outp_dump_caps(struct nouveau_drm *drm,
struct nouveau_encoder *outp)
{
NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
outp->base.base.name, outp->caps.dp_interlace);
}
static int
nv50_outp_atomic_check_view(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
struct drm_display_mode *native_mode)
{
struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
struct drm_display_mode *mode = &crtc_state->mode;
struct drm_connector *connector = conn_state->connector;
struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
asyc->scaler.full = false;
if (!native_mode)
return 0;
if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
switch (connector->connector_type) {
case DRM_MODE_CONNECTOR_LVDS:
case DRM_MODE_CONNECTOR_eDP:
if (mode->hdisplay == native_mode->hdisplay &&
mode->vdisplay == native_mode->vdisplay &&
mode->type & DRM_MODE_TYPE_DRIVER)
break;
mode = native_mode;
asyc->scaler.full = true;
break;
default:
break;
}
} else {
mode = native_mode;
}
if (!drm_mode_equal(adjusted_mode, mode)) {
drm_mode_copy(adjusted_mode, mode);
crtc_state->mode_changed = true;
}
return 0;
}
static void
nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state)
{
struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_display_mode *mode = &asyh->state.adjusted_mode;
unsigned int max_rate, mode_rate;
switch (nv_encoder->dcb->type) {
case DCB_OUTPUT_DP:
max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw;
asyh->or.bpc = min_t(u8, asyh->or.bpc, 10);
while (asyh->or.bpc > 6) {
mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8);
if (mode_rate <= max_rate)
break;
asyh->or.bpc -= 2;
}
break;
default:
break;
}
}
static int
nv50_outp_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct drm_connector *connector = conn_state->connector;
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
int ret;
ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
nv_connector->native_mode);
if (ret)
return ret;
if (crtc_state->mode_changed || crtc_state->connectors_changed)
asyh->or.bpc = connector->display_info.bpc;
nv50_outp_atomic_fix_depth(encoder, crtc_state);
return 0;
}
struct nouveau_connector *
nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
{
struct drm_connector *connector;
struct drm_connector_state *connector_state;
struct drm_encoder *encoder = to_drm_encoder(outp);
int i;
for_each_new_connector_in_state(state, connector, connector_state, i) {
if (connector_state->best_encoder == encoder)
return nouveau_connector(connector);
}
return NULL;
}
struct nouveau_connector *
nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
{
struct drm_connector *connector;
struct drm_connector_state *connector_state;
struct drm_encoder *encoder = to_drm_encoder(outp);
int i;
for_each_old_connector_in_state(state, connector, connector_state, i) {
if (connector_state->best_encoder == encoder)
return nouveau_connector(connector);
}
return NULL;
}
static struct nouveau_crtc *
nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
{
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
const u32 mask = drm_encoder_mask(&outp->base.base);
int i;
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
if (crtc_state->encoder_mask & mask)
return nouveau_crtc(crtc);
}
return NULL;
}
static void
nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_core *core = nv50_disp(encoder->dev)->core;
const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
nv_encoder->crtc = NULL;
nvif_outp_release(&nv_encoder->outp);
}
static void
nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
struct nv50_head_atom *asyh =
nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
struct nv50_core *core = nv50_disp(encoder->dev)->core;
u32 ctrl = 0;
switch (nv_crtc->index) {
case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
default:
WARN_ON(1);
break;
}
ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
nvif_outp_acquire_rgb_crt(&nv_encoder->outp);
core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
asyh->or.depth = 0;
nv_encoder->crtc = &nv_crtc->base;
}
static enum drm_connector_status
nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
u32 loadval;
int ret;
loadval = nouveau_drm(encoder->dev)->vbios.dactestval;
if (loadval == 0)
loadval = 340;
ret = nvif_outp_load_detect(&nv_encoder->outp, loadval);
if (ret <= 0)
return connector_status_disconnected;
return connector_status_connected;
}
static const struct drm_encoder_helper_funcs
nv50_dac_help = {
.atomic_check = nv50_outp_atomic_check,
.atomic_enable = nv50_dac_atomic_enable,
.atomic_disable = nv50_dac_atomic_disable,
.detect = nv50_dac_detect
};
static void
nv50_dac_destroy(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
nvif_outp_dtor(&nv_encoder->outp);
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_funcs
nv50_dac_func = {
.destroy = nv50_dac_destroy,
};
static int
nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nv50_disp *disp = nv50_disp(connector->dev);
struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
struct nvkm_i2c_bus *bus;
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
int type = DRM_MODE_ENCODER_DAC;
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
if (bus)
nv_encoder->i2c = &bus->i2c;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
"dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
drm_encoder_helper_add(encoder, &nv50_dac_help);
drm_connector_attach_encoder(connector, encoder);
return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
}
static void
nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
int dev_id)
{
if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
port, dev_id);
}
static int
nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
bool *enabled, unsigned char *buf, int max_bytes)
{
struct drm_device *drm_dev = dev_get_drvdata(kdev);
struct nouveau_drm *drm = nouveau_drm(drm_dev);
struct drm_encoder *encoder;
struct nouveau_encoder *nv_encoder;
struct nouveau_crtc *nv_crtc;
int ret = 0;
*enabled = false;
mutex_lock(&drm->audio.lock);
drm_for_each_encoder(encoder, drm->dev) {
struct nouveau_connector *nv_connector = NULL;
if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
continue;
nv_encoder = nouveau_encoder(encoder);
nv_connector = nouveau_connector(nv_encoder->audio.connector);
nv_crtc = nouveau_crtc(nv_encoder->crtc);
if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id)
continue;
*enabled = nv_encoder->audio.enabled;
if (*enabled) {
ret = drm_eld_size(nv_connector->base.eld);
memcpy(buf, nv_connector->base.eld,
min(max_bytes, ret));
}
break;
}
mutex_unlock(&drm->audio.lock);
return ret;
}
static const struct drm_audio_component_ops nv50_audio_component_ops = {
.get_eld = nv50_audio_component_get_eld,
};
static int
nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
void *data)
{
struct drm_device *drm_dev = dev_get_drvdata(kdev);
struct nouveau_drm *drm = nouveau_drm(drm_dev);
struct drm_audio_component *acomp = data;
if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
return -ENOMEM;
drm_modeset_lock_all(drm_dev);
acomp->ops = &nv50_audio_component_ops;
acomp->dev = kdev;
drm->audio.component = acomp;
drm_modeset_unlock_all(drm_dev);
return 0;
}
static void
nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
void *data)
{
struct drm_device *drm_dev = dev_get_drvdata(kdev);
struct nouveau_drm *drm = nouveau_drm(drm_dev);
struct drm_audio_component *acomp = data;
drm_modeset_lock_all(drm_dev);
drm->audio.component = NULL;
acomp->ops = NULL;
acomp->dev = NULL;
drm_modeset_unlock_all(drm_dev);
}
static const struct component_ops nv50_audio_component_bind_ops = {
.bind = nv50_audio_component_bind,
.unbind = nv50_audio_component_unbind,
};
static void
nv50_audio_component_init(struct nouveau_drm *drm)
{
if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
return;
drm->audio.component_registered = true;
mutex_init(&drm->audio.lock);
}
static void
nv50_audio_component_fini(struct nouveau_drm *drm)
{
if (!drm->audio.component_registered)
return;
component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
drm->audio.component_registered = false;
mutex_destroy(&drm->audio.lock);
}
static bool
nv50_audio_supported(struct drm_encoder *encoder)
{
struct nv50_disp *disp = nv50_disp(encoder->dev);
if (disp->disp->object.oclass <= GT200_DISP ||
disp->disp->object.oclass == GT206_DISP)
return false;
return true;
}
static void
nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
{
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nvif_outp *outp = &nv_encoder->outp;
if (!nv50_audio_supported(encoder))
return;
mutex_lock(&drm->audio.lock);
if (nv_encoder->audio.enabled) {
nv_encoder->audio.enabled = false;
nv_encoder->audio.connector = NULL;
nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0);
}
mutex_unlock(&drm->audio.lock);
nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
}
static void
nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
struct drm_display_mode *mode)
{
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nvif_outp *outp = &nv_encoder->outp;
if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid))
return;
mutex_lock(&drm->audio.lock);
nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld,
drm_eld_size(nv_connector->base.eld));
nv_encoder->audio.enabled = true;
nv_encoder->audio.connector = &nv_connector->base;
mutex_unlock(&drm->audio.lock);
nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
}
static void
nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
struct drm_display_mode *mode, bool hda)
{
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi;
union hdmi_infoframe infoframe = { 0 };
const u8 rekey = 56;
u8 scdc = 0;
u32 max_ac_packet;
struct {
struct nvif_outp_infoframe_v0 infoframe;
u8 data[17];
} args = { 0 };
int ret, size;
max_ac_packet = mode->htotal - mode->hdisplay;
max_ac_packet -= rekey;
max_ac_packet -= 18;
max_ac_packet /= 32;
if (hdmi->scdc.scrambling.supported) {
const bool high_tmds_clock_ratio = mode->clock > 340000;
ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc);
if (ret < 0) {
NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
return;
}
scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates)
scdc |= SCDC_SCRAMBLING_ENABLE;
if (high_tmds_clock_ratio)
scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40;
ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc);
if (ret < 0)
NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
scdc, ret);
}
ret = nvif_outp_acquire_tmds(&nv_encoder->outp, nv_crtc->index, true,
max_ac_packet, rekey, scdc, hda);
if (ret)
return;
args.infoframe.version = 0;
args.infoframe.head = nv_crtc->index;
if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) {
drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode,
HDMI_QUANTIZATION_RANGE_FULL);
size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
} else {
size = 0;
}
nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size);
memset(&args.data, 0, sizeof(args.data));
if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi,
&nv_connector->base, mode))
size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
else
size = 0;
nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size);
nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
}
#define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
#define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
#define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
struct nv50_mstc {
struct nv50_mstm *mstm;
struct drm_dp_mst_port *port;
struct drm_connector connector;
struct drm_display_mode *native;
struct edid *edid;
};
struct nv50_msto {
struct drm_encoder encoder;
struct nv50_head *head;
struct nv50_mstc *mstc;
bool disabled;
bool enabled;
};
struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
{
struct nv50_msto *msto;
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
return nouveau_encoder(encoder);
msto = nv50_msto(encoder);
if (!msto->mstc)
return NULL;
return msto->mstc->mstm->outp;
}
static void
nv50_msto_cleanup(struct drm_atomic_state *state,
struct drm_dp_mst_topology_state *mst_state,
struct drm_dp_mst_topology_mgr *mgr,
struct nv50_msto *msto)
{
struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
struct drm_dp_mst_atomic_payload *payload =
drm_atomic_get_mst_payload_state(mst_state, msto->mstc->port);
NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
if (msto->disabled) {
msto->mstc = NULL;
msto->disabled = false;
} else if (msto->enabled) {
drm_dp_add_payload_part2(mgr, state, payload);
msto->enabled = false;
}
}
static void
nv50_msto_prepare(struct drm_atomic_state *state,
struct drm_dp_mst_topology_state *mst_state,
struct drm_dp_mst_topology_mgr *mgr,
struct nv50_msto *msto)
{
struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
struct nv50_mstc *mstc = msto->mstc;
struct nv50_mstm *mstm = mstc->mstm;
struct drm_dp_mst_topology_state *old_mst_state;
struct drm_dp_mst_atomic_payload *payload, *old_payload;
NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
old_mst_state = drm_atomic_get_old_mst_topology_state(state, mgr);
payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port);
old_payload = drm_atomic_get_mst_payload_state(old_mst_state, mstc->port);
if (msto->disabled) {
drm_dp_remove_payload(mgr, mst_state, old_payload, payload);
nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0);
} else {
if (msto->enabled)
drm_dp_add_payload_part1(mgr, mst_state, payload);
nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index,
payload->vc_start_slot, payload->time_slots,
payload->pbn, payload->time_slots * mst_state->pbn_div);
}
}
static int
nv50_msto_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct drm_atomic_state *state = crtc_state->state;
struct drm_connector *connector = conn_state->connector;
struct drm_dp_mst_topology_state *mst_state;
struct nv50_mstc *mstc = nv50_mstc(connector);
struct nv50_mstm *mstm = mstc->mstm;
struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
int slots;
int ret;
ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
mstc->native);
if (ret)
return ret;
if (!drm_atomic_crtc_needs_modeset(crtc_state))
return 0;
if (!state->duplicated) {
const int clock = crtc_state->adjusted_mode.clock;
asyh->or.bpc = connector->display_info.bpc;
asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
false);
}
mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr);
if (IS_ERR(mst_state))
return PTR_ERR(mst_state);
if (!mst_state->pbn_div) {
struct nouveau_encoder *outp = mstc->mstm->outp;
mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr,
outp->dp.link_bw, outp->dp.link_nr);
}
slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn);
if (slots < 0)
return slots;
asyh->dp.tu = slots;
return 0;
}
static u8
nv50_dp_bpc_to_depth(unsigned int bpc)
{
switch (bpc) {
case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
case 10:
default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
}
}
static void
nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
{
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_head *head = msto->head;
struct nv50_head_atom *asyh =
nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
struct nv50_mstc *mstc = NULL;
struct nv50_mstm *mstm = NULL;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
u8 proto;
drm_connector_list_iter_begin(encoder->dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
if (connector->state->best_encoder == &msto->encoder) {
mstc = nv50_mstc(connector);
mstm = mstc->mstm;
break;
}
}
drm_connector_list_iter_end(&conn_iter);
if (WARN_ON(!mstc))
return;
if (!mstm->links++) {
nvif_outp_acquire_dp(&mstm->outp->outp, mstm->outp->dp.dpcd, 0, 0, false, true);
}
if (mstm->outp->outp.or.link & 1)
proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
else
proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
nv50_dp_bpc_to_depth(asyh->or.bpc));
msto->mstc = mstc;
msto->enabled = true;
mstm->modified = true;
}
static void
nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
{
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = msto->mstc;
struct nv50_mstm *mstm = mstc->mstm;
mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
mstm->modified = true;
if (!--mstm->links)
mstm->disabled = true;
msto->disabled = true;
}
static const struct drm_encoder_helper_funcs
nv50_msto_help = {
.atomic_disable = nv50_msto_atomic_disable,
.atomic_enable = nv50_msto_atomic_enable,
.atomic_check = nv50_msto_atomic_check,
};
static void
nv50_msto_destroy(struct drm_encoder *encoder)
{
struct nv50_msto *msto = nv50_msto(encoder);
drm_encoder_cleanup(&msto->encoder);
kfree(msto);
}
static const struct drm_encoder_funcs
nv50_msto = {
.destroy = nv50_msto_destroy,
};
static struct nv50_msto *
nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
{
struct nv50_msto *msto;
int ret;
msto = kzalloc(sizeof(*msto), GFP_KERNEL);
if (!msto)
return ERR_PTR(-ENOMEM);
ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
DRM_MODE_ENCODER_DPMST, "mst-%d", id);
if (ret) {
kfree(msto);
return ERR_PTR(ret);
}
drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
msto->head = head;
return msto;
}
static struct drm_encoder *
nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
struct drm_atomic_state *state)
{
struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
connector);
struct nv50_mstc *mstc = nv50_mstc(connector);
struct drm_crtc *crtc = connector_state->crtc;
if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
return NULL;
return &nv50_head(crtc)->msto->encoder;
}
static enum drm_mode_status
nv50_mstc_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
struct nouveau_encoder *outp = mstc->mstm->outp;
return nv50_dp_mode_valid(outp, mode, NULL);
}
static int
nv50_mstc_get_modes(struct drm_connector *connector)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
int ret = 0;
mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
drm_connector_update_edid_property(&mstc->connector, mstc->edid);
if (mstc->edid)
ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
if (connector->display_info.bpc)
connector->display_info.bpc =
clamp(connector->display_info.bpc, 6U, 8U);
else
connector->display_info.bpc = 8;
if (mstc->native)
drm_mode_destroy(mstc->connector.dev, mstc->native);
mstc->native = nouveau_conn_native_mode(&mstc->connector);
return ret;
}
static int
nv50_mstc_atomic_check(struct drm_connector *connector,
struct drm_atomic_state *state)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
return drm_dp_atomic_release_time_slots(state, mgr, mstc->port);
}
static int
nv50_mstc_detect(struct drm_connector *connector,
struct drm_modeset_acquire_ctx *ctx, bool force)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
int ret;
if (drm_connector_is_unregistered(connector))
return connector_status_disconnected;
ret = pm_runtime_get_sync(connector->dev->dev);
if (ret < 0 && ret != -EACCES) {
pm_runtime_put_autosuspend(connector->dev->dev);
return connector_status_disconnected;
}
ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
mstc->port);
if (ret != connector_status_connected)
goto out;
out:
pm_runtime_mark_last_busy(connector->dev->dev);
pm_runtime_put_autosuspend(connector->dev->dev);
return ret;
}
static const struct drm_connector_helper_funcs
nv50_mstc_help = {
.get_modes = nv50_mstc_get_modes,
.mode_valid = nv50_mstc_mode_valid,
.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
.atomic_check = nv50_mstc_atomic_check,
.detect_ctx = nv50_mstc_detect,
};
static void
nv50_mstc_destroy(struct drm_connector *connector)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
drm_connector_cleanup(&mstc->connector);
drm_dp_mst_put_port_malloc(mstc->port);
kfree(mstc);
}
static const struct drm_connector_funcs
nv50_mstc = {
.reset = nouveau_conn_reset,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = nv50_mstc_destroy,
.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
.atomic_set_property = nouveau_conn_atomic_set_property,
.atomic_get_property = nouveau_conn_atomic_get_property,
};
static int
nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
const char *path, struct nv50_mstc **pmstc)
{
struct drm_device *dev = mstm->outp->base.base.dev;
struct drm_crtc *crtc;
struct nv50_mstc *mstc;
int ret;
if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
return -ENOMEM;
mstc->mstm = mstm;
mstc->port = port;
ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
DRM_MODE_CONNECTOR_DisplayPort);
if (ret) {
kfree(*pmstc);
*pmstc = NULL;
return ret;
}
drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
mstc->connector.funcs->reset(&mstc->connector);
nouveau_conn_attach_properties(&mstc->connector);
drm_for_each_crtc(crtc, dev) {
if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
continue;
drm_connector_attach_encoder(&mstc->connector,
&nv50_head(crtc)->msto->encoder);
}
drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
drm_connector_set_path_property(&mstc->connector, path);
drm_dp_mst_get_port_malloc(port);
return 0;
}
static void
nv50_mstm_cleanup(struct drm_atomic_state *state,
struct drm_dp_mst_topology_state *mst_state,
struct nv50_mstm *mstm)
{
struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
struct drm_encoder *encoder;
NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
drm_dp_check_act_status(&mstm->mgr);
drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = msto->mstc;
if (mstc && mstc->mstm == mstm)
nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto);
}
}
mstm->modified = false;
}
static void
nv50_mstm_prepare(struct drm_atomic_state *state,
struct drm_dp_mst_topology_state *mst_state,
struct nv50_mstm *mstm)
{
struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
struct drm_encoder *encoder;
NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = msto->mstc;
if (mstc && mstc->mstm == mstm && msto->disabled)
nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
}
}
drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = msto->mstc;
if (mstc && mstc->mstm == mstm && !msto->disabled)
nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
}
}
if (mstm->disabled) {
if (!mstm->links)
nvif_outp_release(&mstm->outp->outp);
mstm->disabled = false;
}
}
static struct drm_connector *
nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_port *port, const char *path)
{
struct nv50_mstm *mstm = nv50_mstm(mgr);
struct nv50_mstc *mstc;
int ret;
ret = nv50_mstc_new(mstm, port, path, &mstc);
if (ret)
return NULL;
return &mstc->connector;
}
static const struct drm_dp_mst_topology_cbs
nv50_mstm = {
.add_connector = nv50_mstm_add_connector,
};
bool
nv50_mstm_service(struct nouveau_drm *drm,
struct nouveau_connector *nv_connector,
struct nv50_mstm *mstm)
{
struct drm_dp_aux *aux = &nv_connector->aux;
bool handled = true, ret = true;
int rc;
u8 esi[8] = {};
while (handled) {
u8 ack[8] = {};
rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
if (rc != 8) {
ret = false;
break;
}
drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled);
if (!handled)
break;
rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]);
if (rc != 1) {
ret = false;
break;
}
drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr);
}
if (!ret)
NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
nv_connector->base.name, rc);
return ret;
}
void
nv50_mstm_remove(struct nv50_mstm *mstm)
{
mstm->is_mst = false;
drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
}
int
nv50_mstm_detect(struct nouveau_encoder *outp)
{
struct nv50_mstm *mstm = outp->dp.mstm;
struct drm_dp_aux *aux;
int ret;
if (!mstm || !mstm->can_mst)
return 0;
aux = mstm->mgr.aux;
ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
if (ret < 0)
return ret;
ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
if (ret)
return ret;
mstm->is_mst = true;
return 1;
}
static void
nv50_mstm_fini(struct nouveau_encoder *outp)
{
struct nv50_mstm *mstm = outp->dp.mstm;
if (!mstm)
return;
mutex_lock(&outp->dp.hpd_irq_lock);
mstm->suspended = true;
mutex_unlock(&outp->dp.hpd_irq_lock);
if (mstm->is_mst)
drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
}
static void
nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
{
struct nv50_mstm *mstm = outp->dp.mstm;
int ret = 0;
if (!mstm)
return;
if (mstm->is_mst) {
ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
if (ret == -1)
nv50_mstm_remove(mstm);
}
mutex_lock(&outp->dp.hpd_irq_lock);
mstm->suspended = false;
mutex_unlock(&outp->dp.hpd_irq_lock);
if (ret == -1)
drm_kms_helper_hotplug_event(mstm->mgr.dev);
}
static void
nv50_mstm_del(struct nv50_mstm **pmstm)
{
struct nv50_mstm *mstm = *pmstm;
if (mstm) {
drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
kfree(*pmstm);
*pmstm = NULL;
}
}
static int
nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
int conn_base_id, struct nv50_mstm **pmstm)
{
const int max_payloads = hweight8(outp->dcb->heads);
struct drm_device *dev = outp->base.base.dev;
struct nv50_mstm *mstm;
int ret;
if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
return -ENOMEM;
mstm->outp = outp;
mstm->mgr.cbs = &nv50_mstm;
ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
max_payloads, conn_base_id);
if (ret)
return ret;
return 0;
}
static void
nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
struct nv50_head_atom *asyh, u8 proto, u8 depth)
{
struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
struct nv50_core *core = disp->core;
if (!asyh) {
nv_encoder->ctrl &= ~BIT(head);
if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
nv_encoder->ctrl = 0;
} else {
nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
nv_encoder->ctrl |= BIT(head);
asyh->or.depth = depth;
}
core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh);
}
static void
nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
#ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
struct nouveau_backlight *backlight = nv_connector->backlight;
#endif
struct drm_dp_aux *aux = &nv_connector->aux;
int ret;
u8 pwr;
#ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
if (backlight && backlight->uses_dpcd) {
ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
if (ret < 0)
NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
nv_connector->base.base.id, nv_connector->base.name, ret);
}
#endif
if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr);
if (ret == 0) {
pwr &= ~DP_SET_POWER_MASK;
pwr |= DP_SET_POWER_D3;
drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr);
}
}
nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
nv50_audio_disable(encoder, nv_crtc);
nvif_outp_release(&nv_encoder->outp);
nv_encoder->crtc = NULL;
}
static void
nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
struct nv50_head_atom *asyh =
nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
struct drm_display_mode *mode = &asyh->state.adjusted_mode;
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct nvif_outp *outp = &nv_encoder->outp;
struct drm_device *dev = encoder->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_connector *nv_connector;
#ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
struct nouveau_backlight *backlight;
#endif
struct nvbios *bios = &drm->vbios;
bool lvds_dual = false, lvds_8bpc = false, hda = false;
u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
nv_encoder->crtc = &nv_crtc->base;
if ((disp->disp->object.oclass == GT214_DISP ||
disp->disp->object.oclass >= GF110_DISP) &&
drm_detect_monitor_audio(nv_connector->edid))
hda = true;
switch (nv_encoder->dcb->type) {
case DCB_OUTPUT_TMDS:
if (disp->disp->object.oclass == NV50_DISP ||
!drm_detect_hdmi_monitor(nv_connector->edid))
nvif_outp_acquire_tmds(outp, nv_crtc->index, false, 0, 0, 0, false);
else
nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda);
if (nv_encoder->outp.or.link & 1) {
proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
if (mode->clock >= 165000 &&
nv_encoder->dcb->duallink_possible &&
!drm_detect_hdmi_monitor(nv_connector->edid))
proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
} else {
proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
}
break;
case DCB_OUTPUT_LVDS:
proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
if (bios->fp_no_ddc) {
lvds_dual = bios->fp.dual_link;
lvds_8bpc = bios->fp.if_is_24bit;
} else {
if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
if (((u8 *)nv_connector->edid)[121] == 2)
lvds_dual = true;
} else
if (mode->clock >= bios->fp.duallink_transition_clk) {
lvds_dual = true;
}
if (lvds_dual) {
if (bios->fp.strapless_is_24bit & 2)
lvds_8bpc = true;
} else {
if (bios->fp.strapless_is_24bit & 1)
lvds_8bpc = true;
}
if (asyh->or.bpc == 8)
lvds_8bpc = true;
}
nvif_outp_acquire_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc);
break;
case DCB_OUTPUT_DP:
nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, hda, false);
depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
if (nv_encoder->outp.or.link & 1)
proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
else
proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
#ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
backlight = nv_connector->backlight;
if (backlight && backlight->uses_dpcd)
drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
(u16)backlight->dev->props.brightness);
#endif
break;
default:
BUG();
break;
}
nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
}
static const struct drm_encoder_helper_funcs
nv50_sor_help = {
.atomic_check = nv50_outp_atomic_check,
.atomic_enable = nv50_sor_atomic_enable,
.atomic_disable = nv50_sor_atomic_disable,
};
static void
nv50_sor_destroy(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
nvif_outp_dtor(&nv_encoder->outp);
nv50_mstm_del(&nv_encoder->dp.mstm);
drm_encoder_cleanup(encoder);
if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
kfree(encoder);
}
static const struct drm_encoder_funcs
nv50_sor_func = {
.destroy = nv50_sor_destroy,
};
bool nv50_has_mst(struct nouveau_drm *drm)
{
struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
u32 data;
u8 ver, hdr, cnt, len;
data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
}
static int
nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
struct nv50_disp *disp = nv50_disp(connector->dev);
int type, ret;
switch (dcbe->type) {
case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
case DCB_OUTPUT_TMDS:
case DCB_OUTPUT_DP:
default:
type = DRM_MODE_ENCODER_TMDS;
break;
}
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->update = nv50_sor_update;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
"sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
drm_encoder_helper_add(encoder, &nv50_sor_help);
drm_connector_attach_encoder(connector, encoder);
disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
nv50_outp_dump_caps(drm, nv_encoder);
if (dcbe->type == DCB_OUTPUT_DP) {
struct nvkm_i2c_aux *aux =
nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
mutex_init(&nv_encoder->dp.hpd_irq_lock);
if (aux) {
if (disp->disp->object.oclass < GF110_DISP) {
nv_encoder->i2c = &aux->i2c;
} else {
nv_encoder->i2c = &nv_connector->aux.ddc;
}
nv_encoder->aux = aux;
}
if (nv_connector->type != DCB_CONNECTOR_eDP &&
nv50_has_mst(drm)) {
ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
16, nv_connector->base.base.id,
&nv_encoder->dp.mstm);
if (ret)
return ret;
}
} else {
struct nvkm_i2c_bus *bus =
nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
if (bus)
nv_encoder->i2c = &bus->i2c;
}
return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
}
static int
nv50_pior_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
if (ret)
return ret;
crtc_state->adjusted_mode.clock *= 2;
return 0;
}
static void
nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_core *core = nv50_disp(encoder->dev)->core;
const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
nv_encoder->crtc = NULL;
nvif_outp_release(&nv_encoder->outp);
}
static void
nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
struct nv50_head_atom *asyh =
nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
struct nv50_core *core = nv50_disp(encoder->dev)->core;
u32 ctrl = 0;
switch (nv_crtc->index) {
case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
default:
WARN_ON(1);
break;
}
switch (asyh->or.bpc) {
case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
}
switch (nv_encoder->dcb->type) {
case DCB_OUTPUT_TMDS:
ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
nvif_outp_acquire_tmds(&nv_encoder->outp, false, false, 0, 0, 0, false);
break;
case DCB_OUTPUT_DP:
ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, false, false);
break;
default:
BUG();
break;
}
core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
nv_encoder->crtc = &nv_crtc->base;
}
static const struct drm_encoder_helper_funcs
nv50_pior_help = {
.atomic_check = nv50_pior_atomic_check,
.atomic_enable = nv50_pior_atomic_enable,
.atomic_disable = nv50_pior_atomic_disable,
};
static void
nv50_pior_destroy(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
nvif_outp_dtor(&nv_encoder->outp);
drm_encoder_cleanup(encoder);
mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
kfree(encoder);
}
static const struct drm_encoder_funcs
nv50_pior_func = {
.destroy = nv50_pior_destroy,
};
static int
nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct drm_device *dev = connector->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nv50_disp *disp = nv50_disp(dev);
struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
struct nvkm_i2c_bus *bus = NULL;
struct nvkm_i2c_aux *aux = NULL;
struct i2c_adapter *ddc;
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
int type;
switch (dcbe->type) {
case DCB_OUTPUT_TMDS:
bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
ddc = bus ? &bus->i2c : NULL;
type = DRM_MODE_ENCODER_TMDS;
break;
case DCB_OUTPUT_DP:
aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
ddc = aux ? &aux->i2c : NULL;
type = DRM_MODE_ENCODER_TMDS;
break;
default:
return -ENODEV;
}
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->i2c = ddc;
nv_encoder->aux = aux;
mutex_init(&nv_encoder->dp.hpd_irq_lock);
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
"pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
drm_encoder_helper_add(encoder, &nv50_pior_help);
drm_connector_attach_encoder(connector, encoder);
disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
nv50_outp_dump_caps(drm, nv_encoder);
return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp);
}
static void
nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
{
struct drm_dp_mst_topology_mgr *mgr;
struct drm_dp_mst_topology_state *mst_state;
struct nouveau_drm *drm = nouveau_drm(state->dev);
struct nv50_disp *disp = nv50_disp(drm->dev);
struct nv50_core *core = disp->core;
struct nv50_mstm *mstm;
int i;
NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
mstm = nv50_mstm(mgr);
if (mstm->modified)
nv50_mstm_prepare(state, mst_state, mstm);
}
core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
core->func->update(core, interlock, true);
if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
disp->core->chan.base.device))
NV_ERROR(drm, "core notifier timeout\n");
for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
mstm = nv50_mstm(mgr);
if (mstm->modified)
nv50_mstm_cleanup(state, mst_state, mstm);
}
}
static void
nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
{
struct drm_plane_state *new_plane_state;
struct drm_plane *plane;
int i;
for_each_new_plane_in_state(state, plane, new_plane_state, i) {
struct nv50_wndw *wndw = nv50_wndw(plane);
if (interlock[wndw->interlock.type] & wndw->interlock.data) {
if (wndw->func->update)
wndw->func->update(wndw, interlock);
}
}
}
static void
nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_crtc_state *new_crtc_state, *old_crtc_state;
struct drm_crtc *crtc;
struct drm_plane_state *new_plane_state;
struct drm_plane *plane;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_atom *atom = nv50_atom(state);
struct nv50_core *core = disp->core;
struct nv50_outp_atom *outp, *outt;
u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
int i;
bool flushed = false;
NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
nv50_crc_atomic_stop_reporting(state);
drm_atomic_helper_wait_for_fences(dev, state, false);
drm_atomic_helper_wait_for_dependencies(state);
drm_dp_mst_atomic_wait_for_dependencies(state);
drm_atomic_helper_update_legacy_modeset_state(dev, state);
drm_atomic_helper_calc_timestamping_constants(state);
if (atom->lock_core)
mutex_lock(&disp->mutex);
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
struct nv50_head *head = nv50_head(crtc);
NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
asyh->clr.mask, asyh->set.mask);
if (old_crtc_state->active && !new_crtc_state->active) {
pm_runtime_put_noidle(dev->dev);
drm_crtc_vblank_off(crtc);
}
if (asyh->clr.mask) {
nv50_head_flush_clr(head, asyh, atom->flush_disable);
interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
}
}
for_each_new_plane_in_state(state, plane, new_plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
struct nv50_wndw *wndw = nv50_wndw(plane);
NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
asyw->clr.mask, asyw->set.mask);
if (!asyw->clr.mask)
continue;
nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
}
list_for_each_entry(outp, &atom->outp, head) {
const struct drm_encoder_helper_funcs *help;
struct drm_encoder *encoder;
encoder = outp->encoder;
help = encoder->helper_private;
NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
outp->clr.mask, outp->set.mask);
if (outp->clr.mask) {
help->atomic_disable(encoder, state);
interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
if (outp->flush_disable) {
nv50_disp_atomic_commit_wndw(state, interlock);
nv50_disp_atomic_commit_core(state, interlock);
memset(interlock, 0x00, sizeof(interlock));
flushed = true;
}
}
}
if (interlock[NV50_DISP_INTERLOCK_CORE]) {
if (atom->flush_disable) {
nv50_disp_atomic_commit_wndw(state, interlock);
nv50_disp_atomic_commit_core(state, interlock);
memset(interlock, 0x00, sizeof(interlock));
flushed = true;
}
}
if (flushed)
nv50_crc_atomic_release_notifier_contexts(state);
nv50_crc_atomic_init_notifier_contexts(state);
list_for_each_entry_safe(outp, outt, &atom->outp, head) {
const struct drm_encoder_helper_funcs *help;
struct drm_encoder *encoder;
encoder = outp->encoder;
help = encoder->helper_private;
NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
outp->set.mask, outp->clr.mask);
if (outp->set.mask) {
help->atomic_enable(encoder, state);
interlock[NV50_DISP_INTERLOCK_CORE] = 1;
}
list_del(&outp->head);
kfree(outp);
}
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
struct nv50_head *head = nv50_head(crtc);
NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
asyh->set.mask, asyh->clr.mask);
if (asyh->set.mask) {
nv50_head_flush_set(head, asyh);
interlock[NV50_DISP_INTERLOCK_CORE] = 1;
}
if (new_crtc_state->active) {
if (!old_crtc_state->active) {
drm_crtc_vblank_on(crtc);
pm_runtime_get_noresume(dev->dev);
}
if (new_crtc_state->event)
drm_crtc_vblank_get(crtc);
}
}
if (core->assign_windows) {
core->func->wndw.owner(core);
nv50_disp_atomic_commit_core(state, interlock);
core->assign_windows = false;
interlock[NV50_DISP_INTERLOCK_CORE] = 0;
}
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
struct nv50_head *head = nv50_head(crtc);
NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
asyh->set.mask, asyh->clr.mask);
if (asyh->set.mask) {
nv50_head_flush_set_wndw(head, asyh);
interlock[NV50_DISP_INTERLOCK_CORE] = 1;
}
}
for_each_new_plane_in_state(state, plane, new_plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
struct nv50_wndw *wndw = nv50_wndw(plane);
NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
asyw->set.mask, asyw->clr.mask);
if ( !asyw->set.mask &&
(!asyw->clr.mask || atom->flush_disable))
continue;
nv50_wndw_flush_set(wndw, interlock, asyw);
}
nv50_disp_atomic_commit_wndw(state, interlock);
if (interlock[NV50_DISP_INTERLOCK_CORE]) {
if (interlock[NV50_DISP_INTERLOCK_BASE] ||
interlock[NV50_DISP_INTERLOCK_OVLY] ||
interlock[NV50_DISP_INTERLOCK_WNDW] ||
!atom->state.legacy_cursor_update)
nv50_disp_atomic_commit_core(state, interlock);
else
disp->core->func->update(disp->core, interlock, false);
}
if (atom->lock_core)
mutex_unlock(&disp->mutex);
for_each_new_plane_in_state(state, plane, new_plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
struct nv50_wndw *wndw = nv50_wndw(plane);
int ret = nv50_wndw_wait_armed(wndw, asyw);
if (ret)
NV_ERROR(drm, "%s: timeout\n", plane->name);
}
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->event) {
unsigned long flags;
if (new_crtc_state->active)
drm_crtc_accurate_vblank_count(crtc);
spin_lock_irqsave(&crtc->dev->event_lock, flags);
drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
new_crtc_state->event = NULL;
if (new_crtc_state->active)
drm_crtc_vblank_put(crtc);
}
}
nv50_crc_atomic_start_reporting(state);
if (!flushed)
nv50_crc_atomic_release_notifier_contexts(state);
drm_atomic_helper_commit_hw_done(state);
drm_atomic_helper_cleanup_planes(dev, state);
drm_atomic_helper_commit_cleanup_done(state);
drm_atomic_state_put(state);
pm_runtime_mark_last_busy(dev->dev);
pm_runtime_put_autosuspend(dev->dev);
}
static void
nv50_disp_atomic_commit_work(struct work_struct *work)
{
struct drm_atomic_state *state =
container_of(work, typeof(*state), commit_work);
nv50_disp_atomic_commit_tail(state);
}
static int
nv50_disp_atomic_commit(struct drm_device *dev,
struct drm_atomic_state *state, bool nonblock)
{
struct drm_plane_state *new_plane_state;
struct drm_plane *plane;
int ret, i;
ret = pm_runtime_get_sync(dev->dev);
if (ret < 0 && ret != -EACCES) {
pm_runtime_put_autosuspend(dev->dev);
return ret;
}
ret = drm_atomic_helper_setup_commit(state, nonblock);
if (ret)
goto done;
INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
ret = drm_atomic_helper_prepare_planes(dev, state);
if (ret)
goto done;
if (!nonblock) {
ret = drm_atomic_helper_wait_for_fences(dev, state, true);
if (ret)
goto err_cleanup;
}
ret = drm_atomic_helper_swap_state(state, true);
if (ret)
goto err_cleanup;
for_each_new_plane_in_state(state, plane, new_plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
struct nv50_wndw *wndw = nv50_wndw(plane);
if (asyw->set.image)
nv50_wndw_ntfy_enable(wndw, asyw);
}
drm_atomic_state_get(state);
pm_runtime_get_noresume(dev->dev);
if (nonblock)
queue_work(system_unbound_wq, &state->commit_work);
else
nv50_disp_atomic_commit_tail(state);
err_cleanup:
if (ret)
drm_atomic_helper_cleanup_planes(dev, state);
done:
pm_runtime_put_autosuspend(dev->dev);
return ret;
}
static struct nv50_outp_atom *
nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
{
struct nv50_outp_atom *outp;
list_for_each_entry(outp, &atom->outp, head) {
if (outp->encoder == encoder)
return outp;
}
outp = kzalloc(sizeof(*outp), GFP_KERNEL);
if (!outp)
return ERR_PTR(-ENOMEM);
list_add(&outp->head, &atom->outp);
outp->encoder = encoder;
return outp;
}
static int
nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
struct drm_connector_state *old_connector_state)
{
struct drm_encoder *encoder = old_connector_state->best_encoder;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
struct drm_crtc *crtc;
struct nv50_outp_atom *outp;
if (!(crtc = old_connector_state->crtc))
return 0;
old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
outp = nv50_disp_outp_atomic_add(atom, encoder);
if (IS_ERR(outp))
return PTR_ERR(outp);
if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
outp->flush_disable = true;
atom->flush_disable = true;
}
outp->clr.ctrl = true;
atom->lock_core = true;
}
return 0;
}
static int
nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
struct drm_connector_state *connector_state)
{
struct drm_encoder *encoder = connector_state->best_encoder;
struct drm_crtc_state *new_crtc_state;
struct drm_crtc *crtc;
struct nv50_outp_atom *outp;
if (!(crtc = connector_state->crtc))
return 0;
new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
outp = nv50_disp_outp_atomic_add(atom, encoder);
if (IS_ERR(outp))
return PTR_ERR(outp);
outp->set.ctrl = true;
atom->lock_core = true;
}
return 0;
}
static int
nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
{
struct nv50_atom *atom = nv50_atom(state);
struct nv50_core *core = nv50_disp(dev)->core;
struct drm_connector_state *old_connector_state, *new_connector_state;
struct drm_connector *connector;
struct drm_crtc_state *new_crtc_state;
struct drm_crtc *crtc;
struct nv50_head *head;
struct nv50_head_atom *asyh;
int ret, i;
if (core->assign_windows && core->func->head->static_wndw_map) {
drm_for_each_crtc(crtc, dev) {
new_crtc_state = drm_atomic_get_crtc_state(state,
crtc);
if (IS_ERR(new_crtc_state))
return PTR_ERR(new_crtc_state);
head = nv50_head(crtc);
asyh = nv50_head_atom(new_crtc_state);
core->func->head->static_wndw_map(head, asyh);
}
}
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->color_mgmt_changed) {
ret = drm_atomic_add_affected_planes(state, crtc);
if (ret)
return ret;
}
}
ret = drm_atomic_helper_check(dev, state);
if (ret)
return ret;
for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
if (ret)
return ret;
ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
if (ret)
return ret;
}
ret = drm_dp_mst_atomic_check(state);
if (ret)
return ret;
nv50_crc_atomic_check_outp(atom);
return 0;
}
static void
nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
{
struct nv50_atom *atom = nv50_atom(state);
struct nv50_outp_atom *outp, *outt;
list_for_each_entry_safe(outp, outt, &atom->outp, head) {
list_del(&outp->head);
kfree(outp);
}
drm_atomic_state_default_clear(state);
}
static void
nv50_disp_atomic_state_free(struct drm_atomic_state *state)
{
struct nv50_atom *atom = nv50_atom(state);
drm_atomic_state_default_release(&atom->state);
kfree(atom);
}
static struct drm_atomic_state *
nv50_disp_atomic_state_alloc(struct drm_device *dev)
{
struct nv50_atom *atom;
if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
drm_atomic_state_init(dev, &atom->state) < 0) {
kfree(atom);
return NULL;
}
INIT_LIST_HEAD(&atom->outp);
return &atom->state;
}
static const struct drm_mode_config_funcs
nv50_disp_func = {
.fb_create = nouveau_user_framebuffer_create,
.output_poll_changed = drm_fb_helper_output_poll_changed,
.atomic_check = nv50_disp_atomic_check,
.atomic_commit = nv50_disp_atomic_commit,
.atomic_state_alloc = nv50_disp_atomic_state_alloc,
.atomic_state_clear = nv50_disp_atomic_state_clear,
.atomic_state_free = nv50_disp_atomic_state_free,
};
static const struct drm_mode_config_helper_funcs
nv50_disp_helper_func = {
.atomic_commit_setup = drm_dp_mst_atomic_setup_commit,
};
static void
nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct drm_encoder *encoder;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
nv50_mstm_fini(nouveau_encoder(encoder));
}
if (!runtime)
cancel_work_sync(&drm->hpd_work);
}
static int
nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
{
struct nv50_core *core = nv50_disp(dev)->core;
struct drm_encoder *encoder;
if (resume || runtime)
core->func->init(core);
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
struct nouveau_encoder *nv_encoder =
nouveau_encoder(encoder);
nv50_mstm_init(nv_encoder, runtime);
}
}
return 0;
}
static void
nv50_display_destroy(struct drm_device *dev)
{
struct nv50_disp *disp = nv50_disp(dev);
nv50_audio_component_fini(nouveau_drm(dev));
nvif_object_unmap(&disp->caps);
nvif_object_dtor(&disp->caps);
nv50_core_del(&disp->core);
nouveau_bo_unmap(disp->sync);
if (disp->sync)
nouveau_bo_unpin(disp->sync);
nouveau_bo_ref(NULL, &disp->sync);
nouveau_display(dev)->priv = NULL;
kfree(disp);
}
int
nv50_display_create(struct drm_device *dev)
{
struct nvif_device *device = &nouveau_drm(dev)->client.device;
struct nouveau_drm *drm = nouveau_drm(dev);
struct dcb_table *dcb = &drm->vbios.dcb;
struct drm_connector *connector, *tmp;
struct nv50_disp *disp;
struct dcb_output *dcbe;
int crtcs, ret, i;
bool has_mst = nv50_has_mst(drm);
disp = kzalloc(sizeof(*disp), GFP_KERNEL);
if (!disp)
return -ENOMEM;
mutex_init(&disp->mutex);
nouveau_display(dev)->priv = disp;
nouveau_display(dev)->dtor = nv50_display_destroy;
nouveau_display(dev)->init = nv50_display_init;
nouveau_display(dev)->fini = nv50_display_fini;
disp->disp = &nouveau_display(dev)->disp;
dev->mode_config.funcs = &nv50_disp_func;
dev->mode_config.helper_private = &nv50_disp_helper_func;
dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
dev->mode_config.normalize_zpos = true;
ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
NOUVEAU_GEM_DOMAIN_VRAM,
0, 0x0000, NULL, NULL, &disp->sync);
if (!ret) {
ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
if (!ret) {
ret = nouveau_bo_map(disp->sync);
if (ret)
nouveau_bo_unpin(disp->sync);
}
if (ret)
nouveau_bo_ref(NULL, &disp->sync);
}
if (ret)
goto out;
ret = nv50_core_new(drm, &disp->core);
if (ret)
goto out;
disp->core->func->init(disp->core);
if (disp->core->func->caps_init) {
ret = disp->core->func->caps_init(drm, disp);
if (ret)
goto out;
}
if (disp->disp->object.oclass >= TU102_DISP)
nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
else
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
else
nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
if (disp->disp->object.oclass >= GM107_DISP) {
dev->mode_config.cursor_width = 256;
dev->mode_config.cursor_height = 256;
} else if (disp->disp->object.oclass >= GK104_DISP) {
dev->mode_config.cursor_width = 128;
dev->mode_config.cursor_height = 128;
} else {
dev->mode_config.cursor_width = 64;
dev->mode_config.cursor_height = 64;
}
if (disp->disp->object.oclass >= GV100_DISP)
crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
else
if (disp->disp->object.oclass >= GF110_DISP)
crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
else
crtcs = 0x3;
for (i = 0; i < fls(crtcs); i++) {
struct nv50_head *head;
if (!(crtcs & (1 << i)))
continue;
head = nv50_head_create(dev, i);
if (IS_ERR(head)) {
ret = PTR_ERR(head);
goto out;
}
if (has_mst) {
head->msto = nv50_msto_new(dev, head, i);
if (IS_ERR(head->msto)) {
ret = PTR_ERR(head->msto);
head->msto = NULL;
goto out;
}
head->msto->encoder.possible_crtcs = crtcs;
}
}
for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
connector = nouveau_connector_create(dev, dcbe);
if (IS_ERR(connector))
continue;
if (dcbe->location == DCB_LOC_ON_CHIP) {
switch (dcbe->type) {
case DCB_OUTPUT_TMDS:
case DCB_OUTPUT_LVDS:
case DCB_OUTPUT_DP:
ret = nv50_sor_create(connector, dcbe);
break;
case DCB_OUTPUT_ANALOG:
ret = nv50_dac_create(connector, dcbe);
break;
default:
ret = -ENODEV;
break;
}
} else {
ret = nv50_pior_create(connector, dcbe);
}
if (ret) {
NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
dcbe->location, dcbe->type,
ffs(dcbe->or) - 1, ret);
ret = 0;
}
}
list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
if (connector->possible_encoders)
continue;
NV_WARN(drm, "%s has no encoders, removing\n",
connector->name);
connector->funcs->destroy(connector);
}
dev->vblank_disable_immediate = true;
nv50_audio_component_init(drm);
out:
if (ret)
nv50_display_destroy(dev);
return ret;
}
const u64 disp50xx_modifiers[] = {
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
DRM_FORMAT_MOD_LINEAR,
DRM_FORMAT_MOD_INVALID
};
const u64 disp90xx_modifiers[] = {
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
DRM_FORMAT_MOD_LINEAR,
DRM_FORMAT_MOD_INVALID
}