// SPDX-License-Identifier: GPL-2.0-only
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
 * This driver supports the memory controllers found on the Intel
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
 *
 * Copyright (c) 2009-2010 by:
 *	 Mauro Carvalho Chehab
 *
 * Red Hat Inc. https://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/dmi.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <asm/mce.h>
#include <asm/processor.h>
#include <asm/div64.h>

#include "edac_module.h"

/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


/*
 * Alter this version for the module when modifications are made
 */
#define I7CORE_REVISION    " Ver: 1.0.0"
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90
  #define MC_CFG_UNLOCK		0x02
  #define MC_CFG_LOCK		0x00

	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

/*
 * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

/* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */
#define MC_SSRCONTROL		0x48
  #define SSR_MODE_DISABLE	0x00
  #define SSR_MODE_ENABLE	0x01
  #define SSR_MODE_MASK		0x03

#define MC_SCRUB_CONTROL	0x4c
  #define STARTSCRUB		(1 << 24)
  #define SCRUBINTERVAL_MASK    0xffffff

#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


	/* OFFSETS for Devices 4,5 and 6 Function 0 */

#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

#define MC_CHANNEL_ADDR_MATCH	0xf0
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01

	/* OFFSETS for Devices 4,5 and 6 Function 1 */

#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)

#define MC_RANK_PRESENT		0x7c

#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

/*
 * i7core structs
 */

#define NUM_CHANS 3
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
	u32	ch_map;
};


struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

struct i7core_channel {
	bool		is_3dimms_present;
	bool		is_single_4rank;
	bool		has_4rank;
	u32		dimms;
};

struct pci_id_descr {
	int			dev;
	int			func;
	int 			dev_id;
	int			optional;
};

struct pci_id_table {
	const struct pci_id_descr	*descr;
	int				n_devs;
};

struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
	int			n_devs;
	struct mem_ctl_info	*mci;
};

struct i7core_pvt {
	struct device *addrmatch_dev, *chancounts_dev;

	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;

	struct i7core_info	info;
	struct i7core_inject	inject;
	struct i7core_channel	channel[NUM_CHANS];

	int		ce_count_available;

			/* ECC corrected errors counts per udimm */
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
			/* ECC corrected errors counts per rdimm */
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];

	bool		is_registered, enable_scrub;

	/* DCLK Frequency used for computing scrub rate */
	int			dclk_freq;

	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
};

#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },

};

static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },

	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
};

static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

};

#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
	{0,}			/* 0 terminated list. */
};

/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] = {
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
	{0,}			/* 0 terminated list. */
};

/****************************************************************************
			Ancillary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))

	/* MC_STATUS bits */
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))

	/* MC_MAX_DOD read functions */
static inline int numdimms(u32 dimms)
{
	return (dimms & 0x3) + 1;
}

static inline int numrank(u32 rank)
{
	static const int ranks[] = { 1, 2, 4, -EINVAL };

	return ranks[rank & 0x3];
}

static inline int numbank(u32 bank)
{
	static const int banks[] = { 4, 8, 16, -EINVAL };

	return banks[bank & 0x3];
}

static inline int numrow(u32 row)
{
	static const int rows[] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

	return rows[row & 0x7];
}

static inline int numcol(u32 col)
{
	static const int cols[] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
	return cols[col & 0x3];
}

static struct i7core_dev *get_i7core_dev(u8 socket)
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

	i7core_dev->pdev = kcalloc(table->n_devs, sizeof(*i7core_dev->pdev),
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

/****************************************************************************
			Memory check routines
 ****************************************************************************/

static int get_dimm_config(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	int i, j;
	enum edac_type mode;
	enum mem_type mtype;
	struct dimm_info *dimm;

	/* Get data from the MC register, function 0 */
	pdev = pvt->pci_mcr[0];
	if (!pdev)
		return -ENODEV;

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);

	edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
		 pvt->i7core_dev->socket, pvt->info.mc_control,
		 pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map);

	if (ECC_ENABLED(pvt)) {
		edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
		edac_dbg(0, "ECC disabled\n");
		mode = EDAC_NONE;
	}

	/* FIXME: need to handle the error codes */
	edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n",
		 numdimms(pvt->info.max_dod),
		 numrank(pvt->info.max_dod >> 2),
		 numbank(pvt->info.max_dod >> 4),
		 numrow(pvt->info.max_dod >> 6),
		 numcol(pvt->info.max_dod >> 9));

	for (i = 0; i < NUM_CHANS; i++) {
		u32 data, dimm_dod[3], value[8];

		if (!pvt->pci_ch[i][0])
			continue;

		if (!CH_ACTIVE(pvt, i)) {
			edac_dbg(0, "Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			edac_dbg(0, "Channel %i is disabled\n", i);
			continue;
		}

		/* Devices 4-6 function 0 */
		pci_read_config_dword(pvt->pci_ch[i][0],
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);


		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].is_3dimms_present = true;

		if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].is_single_4rank = true;

		if (data & QUAD_RANK_PRESENT)
			pvt->channel[i].has_4rank = true;

		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;

		/* Devices 4-6 function 1 */
		pci_read_config_dword(pvt->pci_ch[i][1],
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pvt->pci_ch[i][1],
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pvt->pci_ch[i][1],
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

		edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n",
			 i,
			 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			 data,
			 pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
			 pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
			 pvt->channel[i].has_4rank ? "HAS_4R " : "",
			 (data & REGISTERED_DIMM) ? 'R' : 'U');

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
			u32 size, npages;

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			dimm = edac_get_dimm(mci, i, j, 0);
			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

			edac_dbg(0, "\tdimm %d %d MiB offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n",
				 j, size,
				 RANKOFFSET(dimm_dod[j]),
				 banks, ranks, rows, cols);

			npages = MiB_TO_PAGES(size);

			dimm->nr_pages = npages;

			switch (banks) {
			case 4:
				dimm->dtype = DEV_X4;
				break;
			case 8:
				dimm->dtype = DEV_X8;
				break;
			case 16:
				dimm->dtype = DEV_X16;
				break;
			default:
				dimm->dtype = DEV_UNKNOWN;
			}

			snprintf(dimm->label, sizeof(dimm->label),
				 "CPU#%uChannel#%u_DIMM#%u",
				 pvt->i7core_dev->socket, i, j);
			dimm->grain = 8;
			dimm->edac_mode = mode;
			dimm->mtype = mtype;
		}

		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
		edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
		for (j = 0; j < 8; j++)
			edac_dbg(1, "\t\t%#x\t%#x\t%#x\n",
				 (value[j] >> 27) & 0x1,
				 (value[j] >> 24) & 0x7,
				 (value[j] & ((1 << 24) - 1)));
	}

	return 0;
}

/****************************************************************************
			Error insertion routines
 ****************************************************************************/

#define to_mci(k) container_of(k, struct mem_ctl_info, dev)

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
static int disable_inject(const struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

	if (!pvt->pci_ch[pvt->inject.channel][0])
		return -ENODEV;

	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
				MC_CHANNEL_ERROR_INJECT, 0);

	return 0;
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct device *dev,
					   struct device_attribute *mattr,
					   const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
		disable_inject(mci);

	rc = kstrtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
		return -EIO;

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct device *dev,
					  struct device_attribute *mattr,
					  char *data)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct device *dev,
					struct device_attribute *mattr,
					const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
		disable_inject(mci);

	rc = kstrtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
		return -EIO;

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct device *dev,
				       struct device_attribute *mattr,
				       char *data)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct i7core_pvt *pvt = mci->pvt_info;

	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct device *dev,
					   struct device_attribute *mattr,
					   const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
		disable_inject(mci);

	rc = kstrtoul(data, 10, &value);
	if (rc < 0)
		return -EIO;

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct device *dev,
					  struct device_attribute *mattr,
					  char *data)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct i7core_pvt *pvt = mci->pvt_info;

	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
	struct device *dev,					\
	struct device_attribute *mattr,				\
	const char *data, size_t count)				\
{								\
	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\
	struct i7core_pvt *pvt;					\
	long value;						\
	int rc;							\
								\
	edac_dbg(1, "\n");					\
	pvt = mci->pvt_info;					\
								\
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
		value = -1;					\
	else {							\
		rc = kstrtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
	struct device *dev,					\
	struct device_attribute *mattr,				\
	char *data)						\
{								\
	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	edac_dbg(1, "pvt=%p\n", pvt);				\
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
}

#define ATTR_ADDR_MATCH(param)					\
	static DEVICE_ATTR(param, S_IRUGO | S_IWUSR,		\
		    i7core_inject_show_##param,			\
		    i7core_inject_store_##param)

DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);

ATTR_ADDR_MATCH(channel);
ATTR_ADDR_MATCH(dimm);
ATTR_ADDR_MATCH(rank);
ATTR_ADDR_MATCH(bank);
ATTR_ADDR_MATCH(page);
ATTR_ADDR_MATCH(col);

static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
{
	u32 read;
	int count;

	edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		 where, val);

	for (count = 0; count < 10; count++) {
		if (count)
			msleep(100);
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);

	return -EINVAL;
}

/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct device *dev,
					  struct device_attribute *mattr,
					  const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

	rc = kstrtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
		mask |= 1LL << 41;
	else {
		if (pvt->channel[pvt->inject.channel].dimms > 2)
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
		else
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
		mask |= 1LL << 40;
	else {
		if (pvt->channel[pvt->inject.channel].dimms > 2)
			mask |= (pvt->inject.rank & 0x1LL) << 34;
		else
			mask |= (pvt->inject.rank & 0x3LL) << 34;
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
		mask |= 1LL << 39;
	else
		mask |= (pvt->inject.bank & 0x15LL) << 30;

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
		mask |= 1LL << 38;
	else
		mask |= (pvt->inject.page & 0xffff) << 14;

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
		mask |= 1LL << 37;
	else
		mask |= (pvt->inject.col & 0x3fff);

	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
	pci_write_config_dword(pvt->pci_noncore,
			       MC_CFG_CONTROL, 0x2);

	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
			       MC_CHANNEL_ADDR_MATCH, mask);
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
			       MC_CHANNEL_ERROR_INJECT, injectmask);

	/*
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
	 */
	pci_write_config_dword(pvt->pci_noncore,
			       MC_CFG_CONTROL, 8);

	edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n",
		 mask, pvt->inject.eccmask, injectmask);


	return count;
}

static ssize_t i7core_inject_enable_show(struct device *dev,
					 struct device_attribute *mattr,
					 char *data)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;

	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
			       MC_CHANNEL_ERROR_INJECT, &injectmask);

	edac_dbg(0, "Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

	return sprintf(data, "%d\n", pvt->inject.enable);
}

#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
	struct device *dev,					\
	struct device_attribute *mattr,				\
	char *data)						\
{								\
	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	edac_dbg(1, "\n");					\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}

#define ATTR_COUNTER(param)					\
	static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR,	\
		    i7core_show_counter_##param,		\
		    NULL)

DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);

ATTR_COUNTER(0);
ATTR_COUNTER(1);
ATTR_COUNTER(2);

/*
 * inject_addrmatch device sysfs struct
 */

static struct attribute *i7core_addrmatch_attrs[] = {
	&dev_attr_channel.attr,
	&dev_attr_dimm.attr,
	&dev_attr_rank.attr,
	&dev_attr_bank.attr,
	&dev_attr_page.attr,
	&dev_attr_col.attr,
	NULL
};

static const struct attribute_group addrmatch_grp = {
	.attrs	= i7core_addrmatch_attrs,
};

static const struct attribute_group *addrmatch_groups[] = {
	&addrmatch_grp,
	NULL
};

static void addrmatch_release(struct device *device)
{
	edac_dbg(1, "Releasing device %s\n", dev_name(device));
	kfree(device);
}

static const struct device_type addrmatch_type = {
	.groups		= addrmatch_groups,
	.release	= addrmatch_release,
};

/*
 * all_channel_counts sysfs struct
 */

static struct attribute *i7core_udimm_counters_attrs[] = {
	&dev_attr_udimm0.attr,
	&dev_attr_udimm1.attr,
	&dev_attr_udimm2.attr,
	NULL
};

static const struct attribute_group all_channel_counts_grp = {
	.attrs	= i7core_udimm_counters_attrs,
};

static const struct attribute_group *all_channel_counts_groups[] = {
	&all_channel_counts_grp,
	NULL
};

static void all_channel_counts_release(struct device *device)
{
	edac_dbg(1, "Releasing device %s\n", dev_name(device));
	kfree(device);
}

static const struct device_type all_channel_counts_type = {
	.groups		= all_channel_counts_groups,
	.release	= all_channel_counts_release,
};

/*
 * inject sysfs attributes
 */

static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
		   i7core_inject_section_show, i7core_inject_section_store);

static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR,
		   i7core_inject_type_show, i7core_inject_type_store);


static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR,
		   i7core_inject_eccmask_show, i7core_inject_eccmask_store);

static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR,
		   i7core_inject_enable_show, i7core_inject_enable_store);

static struct attribute *i7core_dev_attrs[] = {
	&dev_attr_inject_section.attr,
	&dev_attr_inject_type.attr,
	&dev_attr_inject_eccmask.attr,
	&dev_attr_inject_enable.attr,
	NULL
};

ATTRIBUTE_GROUPS(i7core_dev);

static int i7core_create_sysfs_devices(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int rc;

	pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL);
	if (!pvt->addrmatch_dev)
		return -ENOMEM;

	pvt->addrmatch_dev->type = &addrmatch_type;
	pvt->addrmatch_dev->bus = mci->dev.bus;
	device_initialize(pvt->addrmatch_dev);
	pvt->addrmatch_dev->parent = &mci->dev;
	dev_set_name(pvt->addrmatch_dev, "inject_addrmatch");
	dev_set_drvdata(pvt->addrmatch_dev, mci);

	edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev));

	rc = device_add(pvt->addrmatch_dev);
	if (rc < 0)
		goto err_put_addrmatch;

	if (!pvt->is_registered) {
		pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev),
					      GFP_KERNEL);
		if (!pvt->chancounts_dev) {
			rc = -ENOMEM;
			goto err_del_addrmatch;
		}

		pvt->chancounts_dev->type = &all_channel_counts_type;
		pvt->chancounts_dev->bus = mci->dev.bus;
		device_initialize(pvt->chancounts_dev);
		pvt->chancounts_dev->parent = &mci->dev;
		dev_set_name(pvt->chancounts_dev, "all_channel_counts");
		dev_set_drvdata(pvt->chancounts_dev, mci);

		edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev));

		rc = device_add(pvt->chancounts_dev);
		if (rc < 0)
			goto err_put_chancounts;
	}
	return 0;

err_put_chancounts:
	put_device(pvt->chancounts_dev);
err_del_addrmatch:
	device_del(pvt->addrmatch_dev);
err_put_addrmatch:
	put_device(pvt->addrmatch_dev);

	return rc;
}

static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;

	edac_dbg(1, "\n");

	if (!pvt->is_registered) {
		device_del(pvt->chancounts_dev);
		put_device(pvt->chancounts_dev);
	}
	device_del(pvt->addrmatch_dev);
	put_device(pvt->addrmatch_dev);
}

/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	i7core_put_all_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void i7core_put_devices(struct i7core_dev *i7core_dev)
{
	int i;

	edac_dbg(0, "\n");
	for (i = 0; i < i7core_dev->n_devs; i++) {
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
			 pdev->bus->number,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
}

static void i7core_put_all_devices(void)
{
	struct i7core_dev *i7core_dev, *tmp;

	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
		i7core_put_devices(i7core_dev);
		free_i7core_dev(i7core_dev);
	}
}

static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
{
	struct pci_dev *pdev = NULL;
	int i;

	/*
	 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
		pci_dev_put(pdev);
		table++;
	}
}

static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		edac_dbg(0, "Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	edac_dbg(0, "Last bus %d\n", last_bus);

	return last_bus;
}

/*
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
{
	struct i7core_dev *i7core_dev;
	const struct pci_id_descr *dev_descr = &table->descr[devno];

	struct pci_dev *pdev = NULL;
	u8 bus = 0;
	u8 socket = 0;

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
			      dev_descr->dev_id, *prev);

	/*
	 * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) {
		pci_dev_get(*prev);	/* pci_get_device will put it */
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
	}

	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE &&
	    !pdev) {
		pci_dev_get(*prev);	/* pci_get_device will put it */
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);
	}

	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
		}

		if (dev_descr->optional)
			return 0;

		if (devno == 0)
			return -ENODEV;

		i7core_printk(KERN_INFO,
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;

	socket = last_bus - bus;

	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
		i7core_dev = alloc_i7core_dev(socket, table);
		if (!i7core_dev) {
			pci_dev_put(pdev);
			return -ENOMEM;
		}
	}

	if (i7core_dev->pdev[devno]) {
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		pci_dev_put(pdev);
		return -ENODEV;
	}

	i7core_dev->pdev[devno] = pdev;

	/* Sanity check */
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			bus, dev_descr->dev, dev_descr->func);
		return -ENODEV;
	}

	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		return -ENODEV;
	}

	edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
		 socket, bus, dev_descr->dev,
		 dev_descr->func,
		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

	*prev = pdev;

	return 0;
}

static int i7core_get_all_devices(void)
{
	int i, rc, last_bus;
	struct pci_dev *pdev = NULL;
	const struct pci_id_table *table = pci_dev_table;

	last_bus = i7core_pci_lastbus();

	while (table && table->descr) {
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
				rc = i7core_get_onedevice(&pdev, table, i,
							  last_bus);
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
		table++;
	}

	return 0;
}

static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	int i, func, slot;
	char *family;

	pvt->is_registered = false;
	pvt->enable_scrub  = false;
	for (i = 0; i < i7core_dev->n_devs; i++) {
		pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;

		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
				goto error;
			pvt->pci_ch[slot - 4][func] = pdev;
		} else if (!slot && !func) {
			pvt->pci_noncore = pdev;

			/* Detect the processor family */
			switch (pdev->device) {
			case PCI_DEVICE_ID_INTEL_I7_NONCORE:
				family = "Xeon 35xx/ i7core";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
				family = "i7-800/i5-700";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
				family = "Xeon 34xx";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
				family = "Xeon 55xx";
				pvt->enable_scrub = true;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
				family = "Xeon 56xx / i7-900";
				pvt->enable_scrub = true;
				break;
			default:
				family = "unknown";
				pvt->enable_scrub = false;
			}
			edac_dbg(0, "Detected a processor type %s\n", family);
		} else
			goto error;

		edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n",
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev, i7core_dev->socket);

		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
			pvt->is_registered = true;
	}

	return 0;

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
}

/****************************************************************************
			Error check routines
 ****************************************************************************/

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
	if (pvt->ce_count_available) {
		/* Updates CE counters */

		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];

		if (add2 < 0)
			add2 += 0x7fff;
		pvt->rdimm_ce_count[chan][2] += add2;

		if (add1 < 0)
			add1 += 0x7fff;
		pvt->rdimm_ce_count[chan][1] += add1;

		if (add0 < 0)
			add0 += 0x7fff;
		pvt->rdimm_ce_count[chan][0] += add0;
	} else
		pvt->ce_count_available = 1;

	/* Store the new values */
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;

	/*updated the edac core */
	if (add0 != 0)
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0,
				     0, 0, 0,
				     chan, 0, -1, "error", "");
	if (add1 != 0)
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1,
				     0, 0, 0,
				     chan, 1, -1, "error", "");
	if (add2 != 0)
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2,
				     0, 0, 0,
				     chan, 2, -1, "error", "");
}

static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
								&rcv[0][0]);
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
								&rcv[0][1]);
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
								&rcv[1][0]);
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
								&rcv[1][1]);
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
								&rcv[2][0]);
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
		if (pvt->channel[i].dimms > 2) {
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
	}
}

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

	if (!pvt->pci_mcr[4]) {
		edac_dbg(0, "MCR registers not found\n");
		return;
	}

	/* Corrected test errors */
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
	if (pvt->ce_count_available) {
		/* Updates CE counters */
		int add0, add1, add2;

		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];

		if (add2 < 0)
			add2 += 0x7fff;
		pvt->udimm_ce_count[2] += add2;

		if (add1 < 0)
			add1 += 0x7fff;
		pvt->udimm_ce_count[1] += add1;

		if (add0 < 0)
			add0 += 0x7fff;
		pvt->udimm_ce_count[0] += add0;

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
	} else
		pvt->ce_count_available = 1;

	/* Store the new values */
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
}

/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
 *     struct mce field	MCA Register
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
static void i7core_mce_output_error(struct mem_ctl_info *mci,
				    const struct mce *m)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	char *optype, *err;
	enum hw_event_mc_err_type tp_event;
	unsigned long error = m->status & 0x1ff0000l;
	bool uncorrected_error = m->mcgstatus & 1ll << 61;
	bool ripv = m->mcgstatus & 1;
	u32 optypenum = (m->status >> 4) & 0x07;
	u32 core_err_cnt = (m->status >> 38) & 0x7fff;
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);

	if (uncorrected_error) {
		core_err_cnt = 1;
		if (ripv)
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		else
			tp_event = HW_EVENT_ERR_FATAL;
	} else {
		tp_event = HW_EVENT_ERR_CORRECTED;
	}

	switch (optypenum) {
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
	}

	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundancy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
	}

	/*
	 * Call the helper to output message
	 * FIXME: what to do if core_err_cnt > 1? Currently, it generates
	 * only one event
	 */
	if (uncorrected_error || !pvt->is_registered)
		edac_mc_handle_error(tp_event, mci, core_err_cnt,
				     m->addr >> PAGE_SHIFT,
				     m->addr & ~PAGE_MASK,
				     syndrome,
				     channel, dimm, -1,
				     err, optype);
}

/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci, struct mce *m)
{
	struct i7core_pvt *pvt = mci->pvt_info;

	i7core_mce_output_error(mci, m);

	/*
	 * Now, let's increment CE error counts
	 */
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
}

/*
 * Check that logging is enabled and that this is the right type
 * of error for us to handle.
 */
static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
				  void *data)
{
	struct mce *mce = (struct mce *)data;
	struct i7core_dev *i7_dev;
	struct mem_ctl_info *mci;

	i7_dev = get_i7core_dev(mce->socketid);
	if (!i7_dev || (mce->kflags & MCE_HANDLED_CEC))
		return NOTIFY_DONE;

	mci = i7_dev->mci;

	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
		return NOTIFY_DONE;

	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
		return NOTIFY_DONE;

	i7core_check_error(mci, mce);

	/* Advise mcelog that the errors were handled */
	mce->kflags |= MCE_HANDLED_EDAC;
	return NOTIFY_OK;
}

static struct notifier_block i7_mce_dec = {
	.notifier_call	= i7core_mce_check_error,
	.priority	= MCE_PRIO_EDAC,
};

struct memdev_dmi_entry {
	u8 type;
	u8 length;
	u16 handle;
	u16 phys_mem_array_handle;
	u16 mem_err_info_handle;
	u16 total_width;
	u16 data_width;
	u16 size;
	u8 form;
	u8 device_set;
	u8 device_locator;
	u8 bank_locator;
	u8 memory_type;
	u16 type_detail;
	u16 speed;
	u8 manufacturer;
	u8 serial_number;
	u8 asset_tag;
	u8 part_number;
	u8 attributes;
	u32 extended_size;
	u16 conf_mem_clk_speed;
} __attribute__((__packed__));


/*
 * Decode the DRAM Clock Frequency, be paranoid, make sure that all
 * memory devices show the same speed, and if they don't then consider
 * all speeds to be invalid.
 */
static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
{
	int *dclk_freq = _dclk_freq;
	u16 dmi_mem_clk_speed;

	if (*dclk_freq == -1)
		return;

	if (dh->type == DMI_ENTRY_MEM_DEVICE) {
		struct memdev_dmi_entry *memdev_dmi_entry =
			(struct memdev_dmi_entry *)dh;
		unsigned long conf_mem_clk_speed_offset =
			(unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
			(unsigned long)&memdev_dmi_entry->type;
		unsigned long speed_offset =
			(unsigned long)&memdev_dmi_entry->speed -
			(unsigned long)&memdev_dmi_entry->type;

		/* Check that a DIMM is present */
		if (memdev_dmi_entry->size == 0)
			return;

		/*
		 * Pick the configured speed if it's available, otherwise
		 * pick the DIMM speed, or we don't have a speed.
		 */
		if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
			dmi_mem_clk_speed =
				memdev_dmi_entry->conf_mem_clk_speed;
		} else if (memdev_dmi_entry->length > speed_offset) {
			dmi_mem_clk_speed = memdev_dmi_entry->speed;
		} else {
			*dclk_freq = -1;
			return;
		}

		if (*dclk_freq == 0) {
			/* First pass, speed was 0 */
			if (dmi_mem_clk_speed > 0) {
				/* Set speed if a valid speed is read */
				*dclk_freq = dmi_mem_clk_speed;
			} else {
				/* Otherwise we don't have a valid speed */
				*dclk_freq = -1;
			}
		} else if (*dclk_freq > 0 &&
			   *dclk_freq != dmi_mem_clk_speed) {
			/*
			 * If we have a speed, check that all DIMMS are the same
			 * speed, otherwise set the speed as invalid.
			 */
			*dclk_freq = -1;
		}
	}
}

/*
 * The default DCLK frequency is used as a fallback if we
 * fail to find anything reliable in the DMI. The value
 * is taken straight from the datasheet.
 */
#define DEFAULT_DCLK_FREQ 800

static int get_dclk_freq(void)
{
	int dclk_freq = 0;

	dmi_walk(decode_dclk, (void *)&dclk_freq);

	if (dclk_freq < 1)
		return DEFAULT_DCLK_FREQ;

	return dclk_freq;
}

/*
 * set_sdram_scrub_rate		This routine sets byte/sec bandwidth scrub rate
 *				to hardware according to SCRUBINTERVAL formula
 *				found in datasheet.
 */
static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	u32 dw_scrub;
	u32 dw_ssr;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);

	if (new_bw == 0) {
		/* Prepare to disable petrol scrub */
		dw_scrub &= ~STARTSCRUB;
		/* Stop the patrol scrub engine */
		write_and_test(pdev, MC_SCRUB_CONTROL,
			       dw_scrub & ~SCRUBINTERVAL_MASK);

		/* Get current status of scrub rate and set bit to disable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_DISABLE;
	} else {
		const int cache_line_size = 64;
		const u32 freq_dclk_mhz = pvt->dclk_freq;
		unsigned long long scrub_interval;
		/*
		 * Translate the desired scrub rate to a register value and
		 * program the corresponding register value.
		 */
		scrub_interval = (unsigned long long)freq_dclk_mhz *
			cache_line_size * 1000000;
		do_div(scrub_interval, new_bw);

		if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
			return -EINVAL;

		dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;

		/* Start the patrol scrub engine */
		pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
				       STARTSCRUB | dw_scrub);

		/* Get current status of scrub rate and set bit to enable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_ENABLE;
	}
	/* Disable or enable scrubbing */
	pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);

	return new_bw;
}

/*
 * get_sdram_scrub_rate		This routine convert current scrub rate value
 *				into byte/sec bandwidth according to
 *				SCRUBINTERVAL formula found in datasheet.
 */
static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	const u32 cache_line_size = 64;
	const u32 freq_dclk_mhz = pvt->dclk_freq;
	unsigned long long scrub_rate;
	u32 scrubval;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	/* Get current scrub control data */
	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);

	/* Mask highest 8-bits to 0 */
	scrubval &=  SCRUBINTERVAL_MASK;
	if (!scrubval)
		return 0;

	/* Calculate scrub rate value into byte/sec bandwidth */
	scrub_rate =  (unsigned long long)freq_dclk_mhz *
		1000000 * cache_line_size;
	do_div(scrub_rate, scrubval);
	return (int)scrub_rate;
}

static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Unlock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_UNLOCK);

	mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
	mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
}

static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Lock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_LOCK);
}

static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
		i7core_printk(KERN_WARNING,
			      "Unable to setup PCI error report via EDAC\n");
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci = i7core_dev->mci;
	struct i7core_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
		edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev);

		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

	edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);

	/* Disable scrubrate setting */
	if (pvt->enable_scrub)
		disable_sdram_scrub_setting(mci);

	/* Disable EDAC polling */
	i7core_pci_ctl_release(pvt);

	/* Remove MC sysfs nodes */
	i7core_delete_sysfs_devices(mci);
	edac_mc_del_mc(mci->pdev);

	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
}

static int i7core_register_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
	int rc;
	struct edac_mc_layer layers[2];

	/* allocate a new MC control structure */

	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = NUM_CHANS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = MAX_DIMMS;
	layers[1].is_virt_csrow = true;
	mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
			    sizeof(*pvt));
	if (unlikely(!mci))
		return -ENOMEM;

	edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);

	pvt = mci->pvt_info;
	memset(pvt, 0, sizeof(*pvt));

	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;

	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";

	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d", i7core_dev->socket);
	if (!mci->ctl_name) {
		rc = -ENOMEM;
		goto fail1;
	}

	mci->dev_name = pci_name(i7core_dev->pdev[0]);
	mci->ctl_page_to_phys = NULL;

	/* Store pci devices at mci for faster access */
	rc = mci_bind_devs(mci, i7core_dev);
	if (unlikely(rc < 0))
		goto fail0;


	/* Get dimm basic config */
	get_dimm_config(mci);
	/* record ptr to the generic device */
	mci->pdev = &i7core_dev->pdev[0]->dev;

	/* Enable scrubrate setting */
	if (pvt->enable_scrub)
		enable_sdram_scrub_setting(mci);

	/* add this new MC control structure to EDAC's list of MCs */
	if (unlikely(edac_mc_add_mc_with_groups(mci, i7core_dev_groups))) {
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */

		rc = -EINVAL;
		goto fail0;
	}
	if (i7core_create_sysfs_devices(mci)) {
		edac_dbg(0, "MC: failed to create sysfs nodes\n");
		edac_mc_del_mc(mci->pdev);
		rc = -EINVAL;
		goto fail0;
	}

	/* Default error mask is any memory */
	pvt->inject.channel = 0;
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

	/* DCLK for scrub rate setting */
	pvt->dclk_freq = get_dclk_freq();

	return 0;

fail0:
	kfree(mci->ctl_name);

fail1:
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */

static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
	int rc, count = 0;
	struct i7core_dev *i7core_dev;

	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

	/*
	 * All memory controllers are allocated at the first pass.
	 */
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
		return -ENODEV;
	}
	probed++;

	rc = i7core_get_all_devices();
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		count++;
		rc = i7core_register_mci(i7core_dev);
		if (unlikely(rc < 0))
			goto fail1;
	}

	/*
	 * Nehalem-EX uses a different memory controller. However, as the
	 * memory controller is not visible on some Nehalem/Nehalem-EP, we
	 * need to indirectly probe via a X58 PCI device. The same devices
	 * are found on (some) Nehalem-EX. So, on those machines, the
	 * probe routine needs to return -ENODEV, as the actual Memory
	 * Controller registers won't be detected.
	 */
	if (!count) {
		rc = -ENODEV;
		goto fail1;
	}

	i7core_printk(KERN_INFO,
		      "Driver loaded, %d memory controller(s) found.\n",
		      count);

	mutex_unlock(&i7core_edac_lock);
	return 0;

fail1:
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);

	i7core_put_all_devices();
fail0:
	mutex_unlock(&i7core_edac_lock);
	return rc;
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void i7core_remove(struct pci_dev *pdev)
{
	struct i7core_dev *i7core_dev;

	edac_dbg(0, "\n");

	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */

	mutex_lock(&i7core_edac_lock);

	if (unlikely(!probed)) {
		mutex_unlock(&i7core_edac_lock);
		return;
	}

	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);

	/* Release PCI resources */
	i7core_put_all_devices();

	probed--;

	mutex_unlock(&i7core_edac_lock);
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = i7core_remove,
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	edac_dbg(2, "\n");

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);

	pci_rc = pci_register_driver(&i7core_driver);

	if (pci_rc >= 0) {
		mce_register_decode_chain(&i7_mce_dec);
		return 0;
	}

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	edac_dbg(2, "\n");
	pci_unregister_driver(&i7core_driver);
	mce_unregister_decode_chain(&i7_mce_dec);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab");
MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"