#include <linux/aperture.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/console.h>
#include <linux/backlight.h>
#ifdef CONFIG_BOOTX_TEXT
#include <asm/btext.h>
#endif
#include "nv_local.h"
#include "nv_type.h"
#include "nv_proto.h"
#include "nv_dma.h"
#ifdef CONFIG_FB_NVIDIA_DEBUG
#define NVTRACE printk
#else
#define NVTRACE if (0) printk
#endif
#define NVTRACE_ENTER(...) NVTRACE("%s START\n", __func__)
#define NVTRACE_LEAVE(...) NVTRACE("%s END\n", __func__)
#ifdef CONFIG_FB_NVIDIA_DEBUG
#define assert(expr) \
if (!(expr)) { \
printk( "Assertion failed! %s,%s,%s,line=%d\n",\
#expr,__FILE__,__func__,__LINE__); \
BUG(); \
}
#else
#define assert(expr)
#endif
#define PFX "nvidiafb: "
#define MAX_CURS 32
static const struct pci_device_id nvidiafb_pci_tbl[] = {
{PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
PCI_BASE_CLASS_DISPLAY << 16, 0xff0000, 0},
{ 0, }
};
MODULE_DEVICE_TABLE(pci, nvidiafb_pci_tbl);
static int flatpanel = -1;
static int fpdither = -1;
static int forceCRTC = -1;
static int hwcur = 0;
static int noaccel = 0;
static int noscale = 0;
static int paneltweak = 0;
static int vram = 0;
static int bpp = 8;
static int reverse_i2c;
static bool nomtrr = false;
static int backlight = IS_BUILTIN(CONFIG_PMAC_BACKLIGHT);
static char *mode_option = NULL;
static struct fb_fix_screeninfo nvidiafb_fix = {
.type = FB_TYPE_PACKED_PIXELS,
.xpanstep = 8,
.ypanstep = 1,
};
static struct fb_var_screeninfo nvidiafb_default_var = {
.xres = 640,
.yres = 480,
.xres_virtual = 640,
.yres_virtual = 480,
.bits_per_pixel = 8,
.red = {0, 8, 0},
.green = {0, 8, 0},
.blue = {0, 8, 0},
.transp = {0, 0, 0},
.activate = FB_ACTIVATE_NOW,
.height = -1,
.width = -1,
.pixclock = 39721,
.left_margin = 40,
.right_margin = 24,
.upper_margin = 32,
.lower_margin = 11,
.hsync_len = 96,
.vsync_len = 2,
.vmode = FB_VMODE_NONINTERLACED
};
static void nvidiafb_load_cursor_image(struct nvidia_par *par, u8 * data8,
u16 bg, u16 fg, u32 w, u32 h)
{
u32 *data = (u32 *) data8;
int i, j, k = 0;
u32 b, tmp;
w = (w + 1) & ~1;
for (i = 0; i < h; i++) {
b = *data++;
reverse_order(&b);
for (j = 0; j < w / 2; j++) {
tmp = 0;
#if defined (__BIG_ENDIAN)
tmp = (b & (1 << 31)) ? fg << 16 : bg << 16;
b <<= 1;
tmp |= (b & (1 << 31)) ? fg : bg;
b <<= 1;
#else
tmp = (b & 1) ? fg : bg;
b >>= 1;
tmp |= (b & 1) ? fg << 16 : bg << 16;
b >>= 1;
#endif
NV_WR32(&par->CURSOR[k++], 0, tmp);
}
k += (MAX_CURS - w) / 2;
}
}
static void nvidia_write_clut(struct nvidia_par *par,
u8 regnum, u8 red, u8 green, u8 blue)
{
NVWriteDacMask(par, 0xff);
NVWriteDacWriteAddr(par, regnum);
NVWriteDacData(par, red);
NVWriteDacData(par, green);
NVWriteDacData(par, blue);
}
static void nvidia_read_clut(struct nvidia_par *par,
u8 regnum, u8 * red, u8 * green, u8 * blue)
{
NVWriteDacMask(par, 0xff);
NVWriteDacReadAddr(par, regnum);
*red = NVReadDacData(par);
*green = NVReadDacData(par);
*blue = NVReadDacData(par);
}
static int nvidia_panel_tweak(struct nvidia_par *par,
struct _riva_hw_state *state)
{
int tweak = 0;
if (par->paneltweak) {
tweak = par->paneltweak;
} else {
if (((par->Chipset & 0xffff) == 0x0328) && (state->bpp == 32)) {
tweak = -1;
}
if ((par->Chipset & 0xfff0) == 0x0310)
tweak = 1;
}
return tweak;
}
static void nvidia_screen_off(struct nvidia_par *par, int on)
{
unsigned char tmp;
if (on) {
tmp = NVReadSeq(par, 0x01);
NVWriteSeq(par, 0x00, 0x01);
NVWriteSeq(par, 0x01, tmp | 0x20);
} else {
tmp = NVReadSeq(par, 0x01);
NVWriteSeq(par, 0x01, tmp & ~0x20);
NVWriteSeq(par, 0x00, 0x03);
}
}
static void nvidia_save_vga(struct nvidia_par *par,
struct _riva_hw_state *state)
{
int i;
NVTRACE_ENTER();
NVLockUnlock(par, 0);
NVUnloadStateExt(par, state);
state->misc_output = NVReadMiscOut(par);
for (i = 0; i < NUM_CRT_REGS; i++)
state->crtc[i] = NVReadCrtc(par, i);
for (i = 0; i < NUM_ATC_REGS; i++)
state->attr[i] = NVReadAttr(par, i);
for (i = 0; i < NUM_GRC_REGS; i++)
state->gra[i] = NVReadGr(par, i);
for (i = 0; i < NUM_SEQ_REGS; i++)
state->seq[i] = NVReadSeq(par, i);
NVTRACE_LEAVE();
}
#undef DUMP_REG
static void nvidia_write_regs(struct nvidia_par *par,
struct _riva_hw_state *state)
{
int i;
NVTRACE_ENTER();
NVLoadStateExt(par, state);
NVWriteMiscOut(par, state->misc_output);
for (i = 1; i < NUM_SEQ_REGS; i++) {
#ifdef DUMP_REG
printk(" SEQ[%02x] = %08x\n", i, state->seq[i]);
#endif
NVWriteSeq(par, i, state->seq[i]);
}
NVWriteCrtc(par, 0x11, state->crtc[0x11] & ~0x80);
for (i = 0; i < NUM_CRT_REGS; i++) {
switch (i) {
case 0x19:
case 0x20 ... 0x40:
break;
default:
#ifdef DUMP_REG
printk("CRTC[%02x] = %08x\n", i, state->crtc[i]);
#endif
NVWriteCrtc(par, i, state->crtc[i]);
}
}
for (i = 0; i < NUM_GRC_REGS; i++) {
#ifdef DUMP_REG
printk(" GRA[%02x] = %08x\n", i, state->gra[i]);
#endif
NVWriteGr(par, i, state->gra[i]);
}
for (i = 0; i < NUM_ATC_REGS; i++) {
#ifdef DUMP_REG
printk("ATTR[%02x] = %08x\n", i, state->attr[i]);
#endif
NVWriteAttr(par, i, state->attr[i]);
}
NVTRACE_LEAVE();
}
static int nvidia_calc_regs(struct fb_info *info)
{
struct nvidia_par *par = info->par;
struct _riva_hw_state *state = &par->ModeReg;
int i, depth = fb_get_color_depth(&info->var, &info->fix);
int h_display = info->var.xres / 8 - 1;
int h_start = (info->var.xres + info->var.right_margin) / 8 - 1;
int h_end = (info->var.xres + info->var.right_margin +
info->var.hsync_len) / 8 - 1;
int h_total = (info->var.xres + info->var.right_margin +
info->var.hsync_len + info->var.left_margin) / 8 - 5;
int h_blank_s = h_display;
int h_blank_e = h_total + 4;
int v_display = info->var.yres - 1;
int v_start = info->var.yres + info->var.lower_margin - 1;
int v_end = (info->var.yres + info->var.lower_margin +
info->var.vsync_len) - 1;
int v_total = (info->var.yres + info->var.lower_margin +
info->var.vsync_len + info->var.upper_margin) - 2;
int v_blank_s = v_display;
int v_blank_e = v_total + 1;
if (info->var.vmode & FB_VMODE_INTERLACED)
v_total |= 1;
if (par->FlatPanel == 1) {
v_start = v_total - 3;
v_end = v_total - 2;
v_blank_s = v_start;
h_start = h_total - 5;
h_end = h_total - 2;
h_blank_e = h_total + 4;
}
state->crtc[0x0] = Set8Bits(h_total);
state->crtc[0x1] = Set8Bits(h_display);
state->crtc[0x2] = Set8Bits(h_blank_s);
state->crtc[0x3] = SetBitField(h_blank_e, 4: 0, 4:0)
| SetBit(7);
state->crtc[0x4] = Set8Bits(h_start);
state->crtc[0x5] = SetBitField(h_blank_e, 5: 5, 7:7)
| SetBitField(h_end, 4: 0, 4:0);
state->crtc[0x6] = SetBitField(v_total, 7: 0, 7:0);
state->crtc[0x7] = SetBitField(v_total, 8: 8, 0:0)
| SetBitField(v_display, 8: 8, 1:1)
| SetBitField(v_start, 8: 8, 2:2)
| SetBitField(v_blank_s, 8: 8, 3:3)
| SetBit(4)
| SetBitField(v_total, 9: 9, 5:5)
| SetBitField(v_display, 9: 9, 6:6)
| SetBitField(v_start, 9: 9, 7:7);
state->crtc[0x9] = SetBitField(v_blank_s, 9: 9, 5:5)
| SetBit(6)
| ((info->var.vmode & FB_VMODE_DOUBLE) ? 0x80 : 0x00);
state->crtc[0x10] = Set8Bits(v_start);
state->crtc[0x11] = SetBitField(v_end, 3: 0, 3:0) | SetBit(5);
state->crtc[0x12] = Set8Bits(v_display);
state->crtc[0x13] = ((info->var.xres_virtual / 8) *
(info->var.bits_per_pixel / 8));
state->crtc[0x15] = Set8Bits(v_blank_s);
state->crtc[0x16] = Set8Bits(v_blank_e);
state->attr[0x10] = 0x01;
if (par->Television)
state->attr[0x11] = 0x00;
state->screen = SetBitField(h_blank_e, 6: 6, 4:4)
| SetBitField(v_blank_s, 10: 10, 3:3)
| SetBitField(v_start, 10: 10, 2:2)
| SetBitField(v_display, 10: 10, 1:1)
| SetBitField(v_total, 10: 10, 0:0);
state->horiz = SetBitField(h_total, 8: 8, 0:0)
| SetBitField(h_display, 8: 8, 1:1)
| SetBitField(h_blank_s, 8: 8, 2:2)
| SetBitField(h_start, 8: 8, 3:3);
state->extra = SetBitField(v_total, 11: 11, 0:0)
| SetBitField(v_display, 11: 11, 2:2)
| SetBitField(v_start, 11: 11, 4:4)
| SetBitField(v_blank_s, 11: 11, 6:6);
if (info->var.vmode & FB_VMODE_INTERLACED) {
h_total = (h_total >> 1) & ~1;
state->interlace = Set8Bits(h_total);
state->horiz |= SetBitField(h_total, 8: 8, 4:4);
} else {
state->interlace = 0xff;
}
if (depth < 24)
i = depth;
else
i = 32;
if (par->Architecture >= NV_ARCH_10)
par->CURSOR = (volatile u32 __iomem *)(info->screen_base +
par->CursorStart);
if (info->var.sync & FB_SYNC_HOR_HIGH_ACT)
state->misc_output &= ~0x40;
else
state->misc_output |= 0x40;
if (info->var.sync & FB_SYNC_VERT_HIGH_ACT)
state->misc_output &= ~0x80;
else
state->misc_output |= 0x80;
NVCalcStateExt(par, state, i, info->var.xres_virtual,
info->var.xres, info->var.yres_virtual,
1000000000 / info->var.pixclock, info->var.vmode);
state->scale = NV_RD32(par->PRAMDAC, 0x00000848) & 0xfff000ff;
if (par->FlatPanel == 1) {
state->pixel |= (1 << 7);
if (!par->fpScaler || (par->fpWidth <= info->var.xres)
|| (par->fpHeight <= info->var.yres)) {
state->scale |= (1 << 8);
}
if (!par->crtcSync_read) {
state->crtcSync = NV_RD32(par->PRAMDAC, 0x0828);
par->crtcSync_read = 1;
}
par->PanelTweak = nvidia_panel_tweak(par, state);
}
state->vpll = state->pll;
state->vpll2 = state->pll;
state->vpllB = state->pllB;
state->vpll2B = state->pllB;
VGA_WR08(par->PCIO, 0x03D4, 0x1C);
state->fifo = VGA_RD08(par->PCIO, 0x03D5) & ~(1<<5);
if (par->CRTCnumber) {
state->head = NV_RD32(par->PCRTC0, 0x00000860) & ~0x00001000;
state->head2 = NV_RD32(par->PCRTC0, 0x00002860) | 0x00001000;
state->crtcOwner = 3;
state->pllsel |= 0x20000800;
state->vpll = NV_RD32(par->PRAMDAC0, 0x00000508);
if (par->twoStagePLL)
state->vpllB = NV_RD32(par->PRAMDAC0, 0x00000578);
} else if (par->twoHeads) {
state->head = NV_RD32(par->PCRTC0, 0x00000860) | 0x00001000;
state->head2 = NV_RD32(par->PCRTC0, 0x00002860) & ~0x00001000;
state->crtcOwner = 0;
state->vpll2 = NV_RD32(par->PRAMDAC0, 0x0520);
if (par->twoStagePLL)
state->vpll2B = NV_RD32(par->PRAMDAC0, 0x057C);
}
state->cursorConfig = 0x00000100;
if (info->var.vmode & FB_VMODE_DOUBLE)
state->cursorConfig |= (1 << 4);
if (par->alphaCursor) {
if ((par->Chipset & 0x0ff0) != 0x0110)
state->cursorConfig |= 0x04011000;
else
state->cursorConfig |= 0x14011000;
state->general |= (1 << 29);
} else
state->cursorConfig |= 0x02000000;
if (par->twoHeads) {
if ((par->Chipset & 0x0ff0) == 0x0110) {
state->dither = NV_RD32(par->PRAMDAC, 0x0528) &
~0x00010000;
if (par->FPDither)
state->dither |= 0x00010000;
} else {
state->dither = NV_RD32(par->PRAMDAC, 0x083C) & ~1;
if (par->FPDither)
state->dither |= 1;
}
}
state->timingH = 0;
state->timingV = 0;
state->displayV = info->var.xres;
return 0;
}
static void nvidia_init_vga(struct fb_info *info)
{
struct nvidia_par *par = info->par;
struct _riva_hw_state *state = &par->ModeReg;
int i;
for (i = 0; i < 0x10; i++)
state->attr[i] = i;
state->attr[0x10] = 0x41;
state->attr[0x11] = 0xff;
state->attr[0x12] = 0x0f;
state->attr[0x13] = 0x00;
state->attr[0x14] = 0x00;
memset(state->crtc, 0x00, NUM_CRT_REGS);
state->crtc[0x0a] = 0x20;
state->crtc[0x17] = 0xe3;
state->crtc[0x18] = 0xff;
state->crtc[0x28] = 0x40;
memset(state->gra, 0x00, NUM_GRC_REGS);
state->gra[0x05] = 0x40;
state->gra[0x06] = 0x05;
state->gra[0x07] = 0x0f;
state->gra[0x08] = 0xff;
state->seq[0x00] = 0x03;
state->seq[0x01] = 0x01;
state->seq[0x02] = 0x0f;
state->seq[0x03] = 0x00;
state->seq[0x04] = 0x0e;
state->misc_output = 0xeb;
}
static int nvidiafb_cursor(struct fb_info *info, struct fb_cursor *cursor)
{
struct nvidia_par *par = info->par;
u8 data[MAX_CURS * MAX_CURS / 8];
int i, set = cursor->set;
u16 fg, bg;
if (cursor->image.width > MAX_CURS || cursor->image.height > MAX_CURS)
return -ENXIO;
NVShowHideCursor(par, 0);
if (par->cursor_reset) {
set = FB_CUR_SETALL;
par->cursor_reset = 0;
}
if (set & FB_CUR_SETSIZE)
memset_io(par->CURSOR, 0, MAX_CURS * MAX_CURS * 2);
if (set & FB_CUR_SETPOS) {
u32 xx, yy, temp;
yy = cursor->image.dy - info->var.yoffset;
xx = cursor->image.dx - info->var.xoffset;
temp = xx & 0xFFFF;
temp |= yy << 16;
NV_WR32(par->PRAMDAC, 0x0000300, temp);
}
if (set & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP | FB_CUR_SETIMAGE)) {
u32 bg_idx = cursor->image.bg_color;
u32 fg_idx = cursor->image.fg_color;
u32 s_pitch = (cursor->image.width + 7) >> 3;
u32 d_pitch = MAX_CURS / 8;
u8 *dat = (u8 *) cursor->image.data;
u8 *msk = (u8 *) cursor->mask;
u8 *src;
src = kmalloc_array(s_pitch, cursor->image.height, GFP_ATOMIC);
if (src) {
switch (cursor->rop) {
case ROP_XOR:
for (i = 0; i < s_pitch * cursor->image.height; i++)
src[i] = dat[i] ^ msk[i];
break;
case ROP_COPY:
default:
for (i = 0; i < s_pitch * cursor->image.height; i++)
src[i] = dat[i] & msk[i];
break;
}
fb_pad_aligned_buffer(data, d_pitch, src, s_pitch,
cursor->image.height);
bg = ((info->cmap.red[bg_idx] & 0xf8) << 7) |
((info->cmap.green[bg_idx] & 0xf8) << 2) |
((info->cmap.blue[bg_idx] & 0xf8) >> 3) | 1 << 15;
fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
((info->cmap.green[fg_idx] & 0xf8) << 2) |
((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
NVLockUnlock(par, 0);
nvidiafb_load_cursor_image(par, data, bg, fg,
cursor->image.width,
cursor->image.height);
kfree(src);
}
}
if (cursor->enable)
NVShowHideCursor(par, 1);
return 0;
}
static struct fb_ops nvidia_fb_ops;
static int nvidiafb_set_par(struct fb_info *info)
{
struct nvidia_par *par = info->par;
NVTRACE_ENTER();
NVLockUnlock(par, 1);
if (!par->FlatPanel || !par->twoHeads)
par->FPDither = 0;
if (par->FPDither < 0) {
if ((par->Chipset & 0x0ff0) == 0x0110)
par->FPDither = !!(NV_RD32(par->PRAMDAC, 0x0528)
& 0x00010000);
else
par->FPDither = !!(NV_RD32(par->PRAMDAC, 0x083C) & 1);
printk(KERN_INFO PFX "Flat panel dithering %s\n",
par->FPDither ? "enabled" : "disabled");
}
info->fix.visual = (info->var.bits_per_pixel == 8) ?
FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_DIRECTCOLOR;
nvidia_init_vga(info);
nvidia_calc_regs(info);
NVLockUnlock(par, 0);
if (par->twoHeads) {
VGA_WR08(par->PCIO, 0x03D4, 0x44);
VGA_WR08(par->PCIO, 0x03D5, par->ModeReg.crtcOwner);
NVLockUnlock(par, 0);
}
nvidia_screen_off(par, 1);
nvidia_write_regs(par, &par->ModeReg);
NVSetStartAddress(par, 0);
#if defined (__BIG_ENDIAN)
{
unsigned char tmp;
VGA_WR08(par->PCIO, 0x3d4, 0x46);
tmp = VGA_RD08(par->PCIO, 0x3d5);
tmp |= (1 << 7);
VGA_WR08(par->PCIO, 0x3d5, tmp);
}
#endif
info->fix.line_length = (info->var.xres_virtual *
info->var.bits_per_pixel) >> 3;
if (info->var.accel_flags) {
nvidia_fb_ops.fb_imageblit = nvidiafb_imageblit;
nvidia_fb_ops.fb_fillrect = nvidiafb_fillrect;
nvidia_fb_ops.fb_copyarea = nvidiafb_copyarea;
nvidia_fb_ops.fb_sync = nvidiafb_sync;
info->pixmap.scan_align = 4;
info->flags &= ~FBINFO_HWACCEL_DISABLED;
info->flags |= FBINFO_READS_FAST;
NVResetGraphics(info);
} else {
nvidia_fb_ops.fb_imageblit = cfb_imageblit;
nvidia_fb_ops.fb_fillrect = cfb_fillrect;
nvidia_fb_ops.fb_copyarea = cfb_copyarea;
nvidia_fb_ops.fb_sync = NULL;
info->pixmap.scan_align = 1;
info->flags |= FBINFO_HWACCEL_DISABLED;
info->flags &= ~FBINFO_READS_FAST;
}
par->cursor_reset = 1;
nvidia_screen_off(par, 0);
#ifdef CONFIG_BOOTX_TEXT
btext_update_display(info->fix.smem_start,
info->var.xres, info->var.yres,
info->var.bits_per_pixel, info->fix.line_length);
#endif
NVLockUnlock(par, 0);
NVTRACE_LEAVE();
return 0;
}
static int nvidiafb_setcolreg(unsigned regno, unsigned red, unsigned green,
unsigned blue, unsigned transp,
struct fb_info *info)
{
struct nvidia_par *par = info->par;
int i;
NVTRACE_ENTER();
if (regno >= (1 << info->var.green.length))
return -EINVAL;
if (info->var.grayscale) {
red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
}
if (regno < 16 && info->fix.visual == FB_VISUAL_DIRECTCOLOR) {
((u32 *) info->pseudo_palette)[regno] =
(regno << info->var.red.offset) |
(regno << info->var.green.offset) |
(regno << info->var.blue.offset);
}
switch (info->var.bits_per_pixel) {
case 8:
nvidia_write_clut(par, regno, red >> 8, green >> 8, blue >> 8);
break;
case 16:
if (info->var.green.length == 5) {
for (i = 0; i < 8; i++) {
nvidia_write_clut(par, regno * 8 + i, red >> 8,
green >> 8, blue >> 8);
}
} else {
u8 r, g, b;
if (regno < 32) {
for (i = 0; i < 8; i++) {
nvidia_write_clut(par, regno * 8 + i,
red >> 8, green >> 8,
blue >> 8);
}
}
nvidia_read_clut(par, regno * 4, &r, &g, &b);
for (i = 0; i < 4; i++)
nvidia_write_clut(par, regno * 4 + i, r,
green >> 8, b);
}
break;
case 32:
nvidia_write_clut(par, regno, red >> 8, green >> 8, blue >> 8);
break;
default:
break;
}
NVTRACE_LEAVE();
return 0;
}
static int nvidiafb_check_var(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct nvidia_par *par = info->par;
int memlen, vramlen, mode_valid = 0;
int pitch, err = 0;
NVTRACE_ENTER();
if (!var->pixclock)
return -EINVAL;
var->transp.offset = 0;
var->transp.length = 0;
var->xres &= ~7;
if (var->bits_per_pixel <= 8)
var->bits_per_pixel = 8;
else if (var->bits_per_pixel <= 16)
var->bits_per_pixel = 16;
else
var->bits_per_pixel = 32;
switch (var->bits_per_pixel) {
case 8:
var->red.offset = 0;
var->red.length = 8;
var->green.offset = 0;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 0;
var->transp.length = 0;
break;
case 16:
var->green.length = (var->green.length < 6) ? 5 : 6;
var->red.length = 5;
var->blue.length = 5;
var->transp.length = 6 - var->green.length;
var->blue.offset = 0;
var->green.offset = 5;
var->red.offset = 5 + var->green.length;
var->transp.offset = (5 + var->red.offset) & 15;
break;
case 32:
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.length = 8;
var->transp.offset = 24;
break;
}
var->red.msb_right = 0;
var->green.msb_right = 0;
var->blue.msb_right = 0;
var->transp.msb_right = 0;
if (!info->monspecs.hfmax || !info->monspecs.vfmax ||
!info->monspecs.dclkmax || !fb_validate_mode(var, info))
mode_valid = 1;
if (!mode_valid && info->monspecs.gtf) {
if (!fb_get_mode(FB_MAXTIMINGS, 0, var, info))
mode_valid = 1;
}
if (!mode_valid) {
const struct fb_videomode *mode;
mode = fb_find_best_mode(var, &info->modelist);
if (mode) {
fb_videomode_to_var(var, mode);
mode_valid = 1;
}
}
if (!mode_valid && info->monspecs.modedb_len)
return -EINVAL;
if (par->fpWidth && par->fpHeight && (par->fpWidth < var->xres ||
par->fpHeight < var->yres)) {
const struct fb_videomode *mode;
var->xres = par->fpWidth;
var->yres = par->fpHeight;
mode = fb_find_best_mode(var, &info->modelist);
if (!mode) {
printk(KERN_ERR PFX "mode out of range of flat "
"panel dimensions\n");
return -EINVAL;
}
fb_videomode_to_var(var, mode);
}
if (var->yres_virtual < var->yres)
var->yres_virtual = var->yres;
if (var->xres_virtual < var->xres)
var->xres_virtual = var->xres;
var->xres_virtual = (var->xres_virtual + 63) & ~63;
vramlen = info->screen_size;
pitch = ((var->xres_virtual * var->bits_per_pixel) + 7) / 8;
memlen = pitch * var->yres_virtual;
if (memlen > vramlen) {
var->yres_virtual = vramlen / pitch;
if (var->yres_virtual < var->yres) {
var->yres_virtual = var->yres;
var->xres_virtual = vramlen / var->yres_virtual;
var->xres_virtual /= var->bits_per_pixel / 8;
var->xres_virtual &= ~63;
pitch = (var->xres_virtual *
var->bits_per_pixel + 7) / 8;
memlen = pitch * var->yres;
if (var->xres_virtual < var->xres) {
printk("nvidiafb: required video memory, "
"%d bytes, for %dx%d-%d (virtual) "
"is out of range\n",
memlen, var->xres_virtual,
var->yres_virtual, var->bits_per_pixel);
err = -ENOMEM;
}
}
}
if (var->accel_flags) {
if (var->yres_virtual > 0x7fff)
var->yres_virtual = 0x7fff;
if (var->xres_virtual > 0x7fff)
var->xres_virtual = 0x7fff;
}
var->xres_virtual &= ~63;
NVTRACE_LEAVE();
return err;
}
static int nvidiafb_pan_display(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct nvidia_par *par = info->par;
u32 total;
total = var->yoffset * info->fix.line_length + var->xoffset;
NVSetStartAddress(par, total);
return 0;
}
static int nvidiafb_blank(int blank, struct fb_info *info)
{
struct nvidia_par *par = info->par;
unsigned char tmp, vesa;
tmp = NVReadSeq(par, 0x01) & ~0x20;
vesa = NVReadCrtc(par, 0x1a) & ~0xc0;
NVTRACE_ENTER();
if (blank)
tmp |= 0x20;
switch (blank) {
case FB_BLANK_UNBLANK:
case FB_BLANK_NORMAL:
break;
case FB_BLANK_VSYNC_SUSPEND:
vesa |= 0x80;
break;
case FB_BLANK_HSYNC_SUSPEND:
vesa |= 0x40;
break;
case FB_BLANK_POWERDOWN:
vesa |= 0xc0;
break;
}
NVWriteSeq(par, 0x01, tmp);
NVWriteCrtc(par, 0x1a, vesa);
NVTRACE_LEAVE();
return 0;
}
#ifdef CONFIG_X86
static void save_vga_x86(struct nvidia_par *par)
{
struct resource *res= &par->pci_dev->resource[PCI_ROM_RESOURCE];
if (res && res->flags & IORESOURCE_ROM_SHADOW) {
memset(&par->vgastate, 0, sizeof(par->vgastate));
par->vgastate.flags = VGA_SAVE_MODE | VGA_SAVE_FONTS |
VGA_SAVE_CMAP;
save_vga(&par->vgastate);
}
}
static void restore_vga_x86(struct nvidia_par *par)
{
struct resource *res= &par->pci_dev->resource[PCI_ROM_RESOURCE];
if (res && res->flags & IORESOURCE_ROM_SHADOW)
restore_vga(&par->vgastate);
}
#else
#define save_vga_x86(x) do {} while (0)
#define restore_vga_x86(x) do {} while (0)
#endif /* X86 */
static int nvidiafb_open(struct fb_info *info, int user)
{
struct nvidia_par *par = info->par;
if (!par->open_count) {
save_vga_x86(par);
nvidia_save_vga(par, &par->initial_state);
}
par->open_count++;
return 0;
}
static int nvidiafb_release(struct fb_info *info, int user)
{
struct nvidia_par *par = info->par;
int err = 0;
if (!par->open_count) {
err = -EINVAL;
goto done;
}
if (par->open_count == 1) {
nvidia_write_regs(par, &par->initial_state);
restore_vga_x86(par);
}
par->open_count--;
done:
return err;
}
static struct fb_ops nvidia_fb_ops = {
.owner = THIS_MODULE,
.fb_open = nvidiafb_open,
.fb_release = nvidiafb_release,
.fb_check_var = nvidiafb_check_var,
.fb_set_par = nvidiafb_set_par,
.fb_setcolreg = nvidiafb_setcolreg,
.fb_pan_display = nvidiafb_pan_display,
.fb_blank = nvidiafb_blank,
.fb_fillrect = nvidiafb_fillrect,
.fb_copyarea = nvidiafb_copyarea,
.fb_imageblit = nvidiafb_imageblit,
.fb_cursor = nvidiafb_cursor,
.fb_sync = nvidiafb_sync,
};
static int nvidiafb_suspend_late(struct device *dev, pm_message_t mesg)
{
struct fb_info *info = dev_get_drvdata(dev);
struct nvidia_par *par = info->par;
if (mesg.event == PM_EVENT_PRETHAW)
mesg.event = PM_EVENT_FREEZE;
console_lock();
par->pm_state = mesg.event;
if (mesg.event & PM_EVENT_SLEEP) {
fb_set_suspend(info, 1);
nvidiafb_blank(FB_BLANK_POWERDOWN, info);
nvidia_write_regs(par, &par->SavedReg);
}
dev->power.power_state = mesg;
console_unlock();
return 0;
}
static int __maybe_unused nvidiafb_suspend(struct device *dev)
{
return nvidiafb_suspend_late(dev, PMSG_SUSPEND);
}
static int __maybe_unused nvidiafb_hibernate(struct device *dev)
{
return nvidiafb_suspend_late(dev, PMSG_HIBERNATE);
}
static int __maybe_unused nvidiafb_freeze(struct device *dev)
{
return nvidiafb_suspend_late(dev, PMSG_FREEZE);
}
static int __maybe_unused nvidiafb_resume(struct device *dev)
{
struct fb_info *info = dev_get_drvdata(dev);
struct nvidia_par *par = info->par;
console_lock();
par->pm_state = PM_EVENT_ON;
nvidiafb_set_par(info);
fb_set_suspend (info, 0);
nvidiafb_blank(FB_BLANK_UNBLANK, info);
console_unlock();
return 0;
}
static const struct dev_pm_ops nvidiafb_pm_ops = {
#ifdef CONFIG_PM_SLEEP
.suspend = nvidiafb_suspend,
.resume = nvidiafb_resume,
.freeze = nvidiafb_freeze,
.thaw = nvidiafb_resume,
.poweroff = nvidiafb_hibernate,
.restore = nvidiafb_resume,
#endif /* CONFIG_PM_SLEEP */
};
static int nvidia_set_fbinfo(struct fb_info *info)
{
struct fb_monspecs *specs = &info->monspecs;
struct fb_videomode modedb;
struct nvidia_par *par = info->par;
int lpitch;
NVTRACE_ENTER();
info->flags =
FBINFO_HWACCEL_IMAGEBLIT
| FBINFO_HWACCEL_FILLRECT
| FBINFO_HWACCEL_COPYAREA
| FBINFO_HWACCEL_YPAN;
fb_videomode_to_modelist(info->monspecs.modedb,
info->monspecs.modedb_len, &info->modelist);
fb_var_to_videomode(&modedb, &nvidiafb_default_var);
switch (bpp) {
case 0 ... 8:
bpp = 8;
break;
case 9 ... 16:
bpp = 16;
break;
default:
bpp = 32;
break;
}
if (specs->modedb != NULL) {
const struct fb_videomode *mode;
mode = fb_find_best_display(specs, &info->modelist);
fb_videomode_to_var(&nvidiafb_default_var, mode);
nvidiafb_default_var.bits_per_pixel = bpp;
} else if (par->fpWidth && par->fpHeight) {
char buf[16];
memset(buf, 0, 16);
snprintf(buf, 15, "%dx%dMR", par->fpWidth, par->fpHeight);
fb_find_mode(&nvidiafb_default_var, info, buf, specs->modedb,
specs->modedb_len, &modedb, bpp);
}
if (mode_option)
fb_find_mode(&nvidiafb_default_var, info, mode_option,
specs->modedb, specs->modedb_len, &modedb, bpp);
info->var = nvidiafb_default_var;
info->fix.visual = (info->var.bits_per_pixel == 8) ?
FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_DIRECTCOLOR;
info->pseudo_palette = par->pseudo_palette;
fb_alloc_cmap(&info->cmap, 256, 0);
fb_destroy_modedb(info->monspecs.modedb);
info->monspecs.modedb = NULL;
lpitch = info->var.xres_virtual *
((info->var.bits_per_pixel + 7) >> 3);
info->var.yres_virtual = info->screen_size / lpitch;
info->pixmap.scan_align = 4;
info->pixmap.buf_align = 4;
info->pixmap.access_align = 32;
info->pixmap.size = 8 * 1024;
info->pixmap.flags = FB_PIXMAP_SYSTEM;
if (!hwcur)
nvidia_fb_ops.fb_cursor = NULL;
info->var.accel_flags = (!noaccel);
switch (par->Architecture) {
case NV_ARCH_04:
info->fix.accel = FB_ACCEL_NV4;
break;
case NV_ARCH_10:
info->fix.accel = FB_ACCEL_NV_10;
break;
case NV_ARCH_20:
info->fix.accel = FB_ACCEL_NV_20;
break;
case NV_ARCH_30:
info->fix.accel = FB_ACCEL_NV_30;
break;
case NV_ARCH_40:
info->fix.accel = FB_ACCEL_NV_40;
break;
}
NVTRACE_LEAVE();
return nvidiafb_check_var(&info->var, info);
}
static u32 nvidia_get_chipset(struct pci_dev *pci_dev,
volatile u32 __iomem *REGS)
{
u32 id = (pci_dev->vendor << 16) | pci_dev->device;
printk(KERN_INFO PFX "Device ID: %x \n", id);
if ((id & 0xfff0) == 0x00f0 ||
(id & 0xfff0) == 0x02e0) {
id = NV_RD32(REGS, 0x1800);
if ((id & 0x0000ffff) == 0x000010DE)
id = 0x10DE0000 | (id >> 16);
else if ((id & 0xffff0000) == 0xDE100000)
id = 0x10DE0000 | ((id << 8) & 0x0000ff00) |
((id >> 8) & 0x000000ff);
printk(KERN_INFO PFX "Subsystem ID: %x \n", id);
}
return id;
}
static u32 nvidia_get_arch(u32 Chipset)
{
u32 arch = 0;
switch (Chipset & 0x0ff0) {
case 0x0100:
case 0x0110:
case 0x0150:
case 0x0170:
case 0x0180:
case 0x01A0:
case 0x01F0:
arch = NV_ARCH_10;
break;
case 0x0200:
case 0x0250:
case 0x0280:
arch = NV_ARCH_20;
break;
case 0x0300:
case 0x0310:
case 0x0320:
case 0x0330:
case 0x0340:
arch = NV_ARCH_30;
break;
case 0x0040:
case 0x00C0:
case 0x0120:
case 0x0140:
case 0x0160:
case 0x01D0:
case 0x0090:
case 0x0210:
case 0x0220:
case 0x0240:
case 0x0290:
case 0x0390:
case 0x03D0:
arch = NV_ARCH_40;
break;
case 0x0020:
arch = NV_ARCH_04;
break;
default:
break;
}
return arch;
}
static int nvidiafb_probe(struct pci_dev *pd, const struct pci_device_id *ent)
{
struct nvidia_par *par;
struct fb_info *info;
unsigned short cmd;
int ret;
volatile u32 __iomem *REGS;
int Chipset;
u32 Architecture;
NVTRACE_ENTER();
assert(pd != NULL);
if (pci_enable_device(pd)) {
printk(KERN_ERR PFX "cannot enable PCI device\n");
return -ENODEV;
}
pci_read_config_word(pd, PCI_COMMAND, &cmd);
cmd |= (PCI_COMMAND_IO | PCI_COMMAND_MEMORY);
pci_write_config_word(pd, PCI_COMMAND, cmd);
nvidiafb_fix.mmio_start = pci_resource_start(pd, 0);
nvidiafb_fix.mmio_len = pci_resource_len(pd, 0);
REGS = ioremap(nvidiafb_fix.mmio_start, nvidiafb_fix.mmio_len);
if (!REGS) {
printk(KERN_ERR PFX "cannot ioremap MMIO base\n");
return -ENODEV;
}
Chipset = nvidia_get_chipset(pd, REGS);
Architecture = nvidia_get_arch(Chipset);
if (Architecture == 0) {
printk(KERN_ERR PFX "unknown NV_ARCH\n");
goto err_out;
}
ret = aperture_remove_conflicting_pci_devices(pd, "nvidiafb");
if (ret)
goto err_out;
info = framebuffer_alloc(sizeof(struct nvidia_par), &pd->dev);
if (!info)
goto err_out;
par = info->par;
par->pci_dev = pd;
info->pixmap.addr = kzalloc(8 * 1024, GFP_KERNEL);
if (info->pixmap.addr == NULL)
goto err_out_kfree;
if (pci_request_regions(pd, "nvidiafb")) {
printk(KERN_ERR PFX "cannot request PCI regions\n");
goto err_out_enable;
}
par->FlatPanel = flatpanel;
if (flatpanel == 1)
printk(KERN_INFO PFX "flatpanel support enabled\n");
par->FPDither = fpdither;
par->CRTCnumber = forceCRTC;
par->FpScale = (!noscale);
par->paneltweak = paneltweak;
par->reverse_i2c = reverse_i2c;
nvidiafb_fix.smem_start = pci_resource_start(pd, 1);
par->REGS = REGS;
par->Chipset = Chipset;
par->Architecture = Architecture;
sprintf(nvidiafb_fix.id, "NV%x", (pd->device & 0x0ff0) >> 4);
if (NVCommonSetup(info))
goto err_out_free_base0;
par->FbAddress = nvidiafb_fix.smem_start;
par->FbMapSize = par->RamAmountKBytes * 1024;
if (vram && vram * 1024 * 1024 < par->FbMapSize)
par->FbMapSize = vram * 1024 * 1024;
if (par->FbMapSize > 64 * 1024 * 1024)
par->FbMapSize = 64 * 1024 * 1024;
if(par->Architecture >= NV_ARCH_40)
par->FbUsableSize = par->FbMapSize - (560 * 1024);
else
par->FbUsableSize = par->FbMapSize - (128 * 1024);
par->ScratchBufferSize = (par->Architecture < NV_ARCH_10) ? 8 * 1024 :
16 * 1024;
par->ScratchBufferStart = par->FbUsableSize - par->ScratchBufferSize;
par->CursorStart = par->FbUsableSize + (32 * 1024);
info->screen_base = ioremap_wc(nvidiafb_fix.smem_start,
par->FbMapSize);
info->screen_size = par->FbUsableSize;
nvidiafb_fix.smem_len = par->RamAmountKBytes * 1024;
if (!info->screen_base) {
printk(KERN_ERR PFX "cannot ioremap FB base\n");
goto err_out_free_base1;
}
par->FbStart = info->screen_base;
if (!nomtrr)
par->wc_cookie = arch_phys_wc_add(nvidiafb_fix.smem_start,
par->RamAmountKBytes * 1024);
info->fbops = &nvidia_fb_ops;
info->fix = nvidiafb_fix;
if (nvidia_set_fbinfo(info) < 0) {
printk(KERN_ERR PFX "error setting initial video mode\n");
goto err_out_iounmap_fb;
}
nvidia_save_vga(par, &par->SavedReg);
pci_set_drvdata(pd, info);
if (register_framebuffer(info) < 0) {
printk(KERN_ERR PFX "error registering nVidia framebuffer\n");
goto err_out_iounmap_fb;
}
if (backlight)
nvidia_bl_init(par);
printk(KERN_INFO PFX
"PCI nVidia %s framebuffer (%dMB @ 0x%lX)\n",
info->fix.id,
par->FbMapSize / (1024 * 1024), info->fix.smem_start);
NVTRACE_LEAVE();
return 0;
err_out_iounmap_fb:
iounmap(info->screen_base);
err_out_free_base1:
fb_destroy_modedb(info->monspecs.modedb);
nvidia_delete_i2c_busses(par);
err_out_free_base0:
pci_release_regions(pd);
err_out_enable:
kfree(info->pixmap.addr);
err_out_kfree:
framebuffer_release(info);
err_out:
iounmap(REGS);
return -ENODEV;
}
static void nvidiafb_remove(struct pci_dev *pd)
{
struct fb_info *info = pci_get_drvdata(pd);
struct nvidia_par *par = info->par;
NVTRACE_ENTER();
nvidia_bl_exit(par);
unregister_framebuffer(info);
arch_phys_wc_del(par->wc_cookie);
iounmap(info->screen_base);
fb_destroy_modedb(info->monspecs.modedb);
nvidia_delete_i2c_busses(par);
iounmap(par->REGS);
pci_release_regions(pd);
kfree(info->pixmap.addr);
framebuffer_release(info);
NVTRACE_LEAVE();
}
#ifndef MODULE
static int nvidiafb_setup(char *options)
{
char *this_opt;
NVTRACE_ENTER();
if (!options || !*options)
return 0;
while ((this_opt = strsep(&options, ",")) != NULL) {
if (!strncmp(this_opt, "forceCRTC", 9)) {
char *p;
p = this_opt + 9;
if (!*p || !*(++p))
continue;
forceCRTC = *p - '0';
if (forceCRTC < 0 || forceCRTC > 1)
forceCRTC = -1;
} else if (!strncmp(this_opt, "flatpanel", 9)) {
flatpanel = 1;
} else if (!strncmp(this_opt, "hwcur", 5)) {
hwcur = 1;
} else if (!strncmp(this_opt, "noaccel", 6)) {
noaccel = 1;
} else if (!strncmp(this_opt, "noscale", 7)) {
noscale = 1;
} else if (!strncmp(this_opt, "reverse_i2c", 11)) {
reverse_i2c = 1;
} else if (!strncmp(this_opt, "paneltweak:", 11)) {
paneltweak = simple_strtoul(this_opt+11, NULL, 0);
} else if (!strncmp(this_opt, "vram:", 5)) {
vram = simple_strtoul(this_opt+5, NULL, 0);
} else if (!strncmp(this_opt, "backlight:", 10)) {
backlight = simple_strtoul(this_opt+10, NULL, 0);
} else if (!strncmp(this_opt, "nomtrr", 6)) {
nomtrr = true;
} else if (!strncmp(this_opt, "fpdither:", 9)) {
fpdither = simple_strtol(this_opt+9, NULL, 0);
} else if (!strncmp(this_opt, "bpp:", 4)) {
bpp = simple_strtoul(this_opt+4, NULL, 0);
} else
mode_option = this_opt;
}
NVTRACE_LEAVE();
return 0;
}
#endif /* !MODULE */
static struct pci_driver nvidiafb_driver = {
.name = "nvidiafb",
.id_table = nvidiafb_pci_tbl,
.probe = nvidiafb_probe,
.driver.pm = &nvidiafb_pm_ops,
.remove = nvidiafb_remove,
};
static int nvidiafb_init(void)
{
#ifndef MODULE
char *option = NULL;
#endif
if (fb_modesetting_disabled("nvidiafb"))
return -ENODEV;
#ifndef MODULE
if (fb_get_options("nvidiafb", &option))
return -ENODEV;
nvidiafb_setup(option);
#endif
return pci_register_driver(&nvidiafb_driver);
}
module_init(nvidiafb_init);
static void __exit nvidiafb_exit(void)
{
pci_unregister_driver(&nvidiafb_driver);
}
module_exit(nvidiafb_exit);
module_param(flatpanel, int, 0);
MODULE_PARM_DESC(flatpanel,
"Enables experimental flat panel support for some chipsets. "
"(0=disabled, 1=enabled, -1=autodetect) (default=-1)");
module_param(fpdither, int, 0);
MODULE_PARM_DESC(fpdither,
"Enables dithering of flat panel for 6 bits panels. "
"(0=disabled, 1=enabled, -1=autodetect) (default=-1)");
module_param(hwcur, int, 0);
MODULE_PARM_DESC(hwcur,
"Enables hardware cursor implementation. (0 or 1=enabled) "
"(default=0)");
module_param(noaccel, int, 0);
MODULE_PARM_DESC(noaccel,
"Disables hardware acceleration. (0 or 1=disable) "
"(default=0)");
module_param(noscale, int, 0);
MODULE_PARM_DESC(noscale,
"Disables screen scaling. (0 or 1=disable) "
"(default=0, do scaling)");
module_param(paneltweak, int, 0);
MODULE_PARM_DESC(paneltweak,
"Tweak display settings for flatpanels. "
"(default=0, no tweaks)");
module_param(forceCRTC, int, 0);
MODULE_PARM_DESC(forceCRTC,
"Forces usage of a particular CRTC in case autodetection "
"fails. (0 or 1) (default=autodetect)");
module_param(vram, int, 0);
MODULE_PARM_DESC(vram,
"amount of framebuffer memory to remap in MiB"
"(default=0 - remap entire memory)");
module_param(mode_option, charp, 0);
MODULE_PARM_DESC(mode_option, "Specify initial video mode");
module_param(bpp, int, 0);
MODULE_PARM_DESC(bpp, "pixel width in bits"
"(default=8)");
module_param(reverse_i2c, int, 0);
MODULE_PARM_DESC(reverse_i2c, "reverse port assignment of the i2c bus");
module_param(nomtrr, bool, false);
MODULE_PARM_DESC(nomtrr, "Disables MTRR support (0 or 1=disabled) "
"(default=0)");
MODULE_AUTHOR("Antonino Daplas");
MODULE_DESCRIPTION("Framebuffer driver for nVidia graphics chipset");
MODULE_LICENSE("GPL"