// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2015 MediaTek Inc.
 * Author: Hanyi Wu <hanyi.wu@mediatek.com>
 *         Sascha Hauer <s.hauer@pengutronix.de>
 *         Dawei Chien <dawei.chien@mediatek.com>
 *         Louis Yu <louis.yu@mediatek.com>
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/thermal.h>
#include <linux/reset.h>
#include <linux/types.h>

#include "../thermal_hwmon.h"

/* AUXADC Registers */
#define AUXADC_CON1_SET_V	0x008
#define AUXADC_CON1_CLR_V	0x00c
#define AUXADC_CON2_V		0x010
#define AUXADC_DATA(channel)	(0x14 + (channel) * 4)

#define APMIXED_SYS_TS_CON0	0x600
#define APMIXED_SYS_TS_CON1	0x604

/* Thermal Controller Registers */
#define TEMP_MONCTL0		0x000
#define TEMP_MONCTL1		0x004
#define TEMP_MONCTL2		0x008
#define TEMP_MONIDET0		0x014
#define TEMP_MONIDET1		0x018
#define TEMP_MSRCTL0		0x038
#define TEMP_MSRCTL1		0x03c
#define TEMP_AHBPOLL		0x040
#define TEMP_AHBTO		0x044
#define TEMP_ADCPNP0		0x048
#define TEMP_ADCPNP1		0x04c
#define TEMP_ADCPNP2		0x050
#define TEMP_ADCPNP3		0x0b4

#define TEMP_ADCMUX		0x054
#define TEMP_ADCEN		0x060
#define TEMP_PNPMUXADDR		0x064
#define TEMP_ADCMUXADDR		0x068
#define TEMP_ADCENADDR		0x074
#define TEMP_ADCVALIDADDR	0x078
#define TEMP_ADCVOLTADDR	0x07c
#define TEMP_RDCTRL		0x080
#define TEMP_ADCVALIDMASK	0x084
#define TEMP_ADCVOLTAGESHIFT	0x088
#define TEMP_ADCWRITECTRL	0x08c
#define TEMP_MSR0		0x090
#define TEMP_MSR1		0x094
#define TEMP_MSR2		0x098
#define TEMP_MSR3		0x0B8

#define TEMP_SPARE0		0x0f0

#define TEMP_ADCPNP0_1          0x148
#define TEMP_ADCPNP1_1          0x14c
#define TEMP_ADCPNP2_1          0x150
#define TEMP_MSR0_1             0x190
#define TEMP_MSR1_1             0x194
#define TEMP_MSR2_1             0x198
#define TEMP_ADCPNP3_1          0x1b4
#define TEMP_MSR3_1             0x1B8

#define PTPCORESEL		0x400

#define TEMP_MONCTL1_PERIOD_UNIT(x)	((x) & 0x3ff)

#define TEMP_MONCTL2_FILTER_INTERVAL(x)	(((x) & 0x3ff) << 16)
#define TEMP_MONCTL2_SENSOR_INTERVAL(x)	((x) & 0x3ff)

#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)	(x)

#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE		BIT(0)
#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE		BIT(1)

#define TEMP_ADCVALIDMASK_VALID_HIGH		BIT(5)
#define TEMP_ADCVALIDMASK_VALID_POS(bit)	(bit)

/* MT8173 thermal sensors */
#define MT8173_TS1	0
#define MT8173_TS2	1
#define MT8173_TS3	2
#define MT8173_TS4	3
#define MT8173_TSABB	4

/* AUXADC channel 11 is used for the temperature sensors */
#define MT8173_TEMP_AUXADC_CHANNEL	11

/* The total number of temperature sensors in the MT8173 */
#define MT8173_NUM_SENSORS		5

/* The number of banks in the MT8173 */
#define MT8173_NUM_ZONES		4

/* The number of sensing points per bank */
#define MT8173_NUM_SENSORS_PER_ZONE	4

/* The number of controller in the MT8173 */
#define MT8173_NUM_CONTROLLER		1

/* The calibration coefficient of sensor  */
#define MT8173_CALIBRATION	165

/* Valid temperatures range */
#define MT8173_TEMP_MIN		-20000
#define MT8173_TEMP_MAX		150000

/*
 * Layout of the fuses providing the calibration data
 * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
 * MT8183 has 6 sensors and needs 6 VTS calibration data.
 * MT8173 has 5 sensors and needs 5 VTS calibration data.
 * MT2701 has 3 sensors and needs 3 VTS calibration data.
 * MT2712 has 4 sensors and needs 4 VTS calibration data.
 */
#define CALIB_BUF0_VALID_V1		BIT(0)
#define CALIB_BUF1_ADC_GE_V1(x)		(((x) >> 22) & 0x3ff)
#define CALIB_BUF0_VTS_TS1_V1(x)	(((x) >> 17) & 0x1ff)
#define CALIB_BUF0_VTS_TS2_V1(x)	(((x) >> 8) & 0x1ff)
#define CALIB_BUF1_VTS_TS3_V1(x)	(((x) >> 0) & 0x1ff)
#define CALIB_BUF2_VTS_TS4_V1(x)	(((x) >> 23) & 0x1ff)
#define CALIB_BUF2_VTS_TS5_V1(x)	(((x) >> 5) & 0x1ff)
#define CALIB_BUF2_VTS_TSABB_V1(x)	(((x) >> 14) & 0x1ff)
#define CALIB_BUF0_DEGC_CALI_V1(x)	(((x) >> 1) & 0x3f)
#define CALIB_BUF0_O_SLOPE_V1(x)	(((x) >> 26) & 0x3f)
#define CALIB_BUF0_O_SLOPE_SIGN_V1(x)	(((x) >> 7) & 0x1)
#define CALIB_BUF1_ID_V1(x)		(((x) >> 9) & 0x1)

/*
 * Layout of the fuses providing the calibration data
 * These macros could be used for MT7622.
 */
#define CALIB_BUF0_ADC_OE_V2(x)		(((x) >> 22) & 0x3ff)
#define CALIB_BUF0_ADC_GE_V2(x)		(((x) >> 12) & 0x3ff)
#define CALIB_BUF0_DEGC_CALI_V2(x)	(((x) >> 6) & 0x3f)
#define CALIB_BUF0_O_SLOPE_V2(x)	(((x) >> 0) & 0x3f)
#define CALIB_BUF1_VTS_TS1_V2(x)	(((x) >> 23) & 0x1ff)
#define CALIB_BUF1_VTS_TS2_V2(x)	(((x) >> 14) & 0x1ff)
#define CALIB_BUF1_VTS_TSABB_V2(x)	(((x) >> 5) & 0x1ff)
#define CALIB_BUF1_VALID_V2(x)		(((x) >> 4) & 0x1)
#define CALIB_BUF1_O_SLOPE_SIGN_V2(x)	(((x) >> 3) & 0x1)

/*
 * Layout of the fuses providing the calibration data
 * These macros can be used for MT7981 and MT7986.
 */
#define CALIB_BUF0_ADC_GE_V3(x)		(((x) >> 0) & 0x3ff)
#define CALIB_BUF0_DEGC_CALI_V3(x)	(((x) >> 20) & 0x3f)
#define CALIB_BUF0_O_SLOPE_V3(x)	(((x) >> 26) & 0x3f)
#define CALIB_BUF1_VTS_TS1_V3(x)	(((x) >> 0) & 0x1ff)
#define CALIB_BUF1_VTS_TS2_V3(x)	(((x) >> 21) & 0x1ff)
#define CALIB_BUF1_VTS_TSABB_V3(x)	(((x) >> 9) & 0x1ff)
#define CALIB_BUF1_VALID_V3(x)		(((x) >> 18) & 0x1)
#define CALIB_BUF1_O_SLOPE_SIGN_V3(x)	(((x) >> 19) & 0x1)
#define CALIB_BUF1_ID_V3(x)		(((x) >> 20) & 0x1)

enum {
	VTS1,
	VTS2,
	VTS3,
	VTS4,
	VTS5,
	VTSABB,
	MAX_NUM_VTS,
};

enum mtk_thermal_version {
	MTK_THERMAL_V1 = 1,
	MTK_THERMAL_V2,
	MTK_THERMAL_V3,
};

/* MT2701 thermal sensors */
#define MT2701_TS1	0
#define MT2701_TS2	1
#define MT2701_TSABB	2

/* AUXADC channel 11 is used for the temperature sensors */
#define MT2701_TEMP_AUXADC_CHANNEL	11

/* The total number of temperature sensors in the MT2701 */
#define MT2701_NUM_SENSORS	3

/* The number of sensing points per bank */
#define MT2701_NUM_SENSORS_PER_ZONE	3

/* The number of controller in the MT2701 */
#define MT2701_NUM_CONTROLLER		1

/* The calibration coefficient of sensor  */
#define MT2701_CALIBRATION	165

/* MT2712 thermal sensors */
#define MT2712_TS1	0
#define MT2712_TS2	1
#define MT2712_TS3	2
#define MT2712_TS4	3

/* AUXADC channel 11 is used for the temperature sensors */
#define MT2712_TEMP_AUXADC_CHANNEL	11

/* The total number of temperature sensors in the MT2712 */
#define MT2712_NUM_SENSORS	4

/* The number of sensing points per bank */
#define MT2712_NUM_SENSORS_PER_ZONE	4

/* The number of controller in the MT2712 */
#define MT2712_NUM_CONTROLLER		1

/* The calibration coefficient of sensor  */
#define MT2712_CALIBRATION	165

#define MT7622_TEMP_AUXADC_CHANNEL	11
#define MT7622_NUM_SENSORS		1
#define MT7622_NUM_ZONES		1
#define MT7622_NUM_SENSORS_PER_ZONE	1
#define MT7622_TS1	0
#define MT7622_NUM_CONTROLLER		1

/* The maximum number of banks */
#define MAX_NUM_ZONES		8

/* The calibration coefficient of sensor  */
#define MT7622_CALIBRATION	165

/* MT8183 thermal sensors */
#define MT8183_TS1	0
#define MT8183_TS2	1
#define MT8183_TS3	2
#define MT8183_TS4	3
#define MT8183_TS5	4
#define MT8183_TSABB	5

/* AUXADC channel  is used for the temperature sensors */
#define MT8183_TEMP_AUXADC_CHANNEL	11

/* The total number of temperature sensors in the MT8183 */
#define MT8183_NUM_SENSORS	6

/* The number of banks in the MT8183 */
#define MT8183_NUM_ZONES               1

/* The number of sensing points per bank */
#define MT8183_NUM_SENSORS_PER_ZONE	 6

/* The number of controller in the MT8183 */
#define MT8183_NUM_CONTROLLER		2

/* The calibration coefficient of sensor  */
#define MT8183_CALIBRATION	153

/* AUXADC channel 11 is used for the temperature sensors */
#define MT7986_TEMP_AUXADC_CHANNEL	11

/* The total number of temperature sensors in the MT7986 */
#define MT7986_NUM_SENSORS		1

/* The number of banks in the MT7986 */
#define MT7986_NUM_ZONES		1

/* The number of sensing points per bank */
#define MT7986_NUM_SENSORS_PER_ZONE	1

/* MT7986 thermal sensors */
#define MT7986_TS1			0

/* The number of controller in the MT7986 */
#define MT7986_NUM_CONTROLLER		1

/* The calibration coefficient of sensor  */
#define MT7986_CALIBRATION		165

/* MT8365 */
#define MT8365_TEMP_AUXADC_CHANNEL 11
#define MT8365_CALIBRATION 164
#define MT8365_NUM_CONTROLLER 1
#define MT8365_NUM_BANKS 1
#define MT8365_NUM_SENSORS 3
#define MT8365_NUM_SENSORS_PER_ZONE 3
#define MT8365_TS1 0
#define MT8365_TS2 1
#define MT8365_TS3 2

struct mtk_thermal;

struct thermal_bank_cfg {
	unsigned int num_sensors;
	const int *sensors;
};

struct mtk_thermal_bank {
	struct mtk_thermal *mt;
	int id;
};

struct mtk_thermal_data {
	s32 num_banks;
	s32 num_sensors;
	s32 auxadc_channel;
	const int *vts_index;
	const int *sensor_mux_values;
	const int *msr;
	const int *adcpnp;
	const int cali_val;
	const int num_controller;
	const int *controller_offset;
	bool need_switch_bank;
	struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
	enum mtk_thermal_version version;
	u32 apmixed_buffer_ctl_reg;
	u32 apmixed_buffer_ctl_mask;
	u32 apmixed_buffer_ctl_set;
};

struct mtk_thermal {
	struct device *dev;
	void __iomem *thermal_base;

	struct clk *clk_peri_therm;
	struct clk *clk_auxadc;
	/* lock: for getting and putting banks */
	struct mutex lock;

	/* Calibration values */
	s32 adc_ge;
	s32 adc_oe;
	s32 degc_cali;
	s32 o_slope;
	s32 o_slope_sign;
	s32 vts[MAX_NUM_VTS];

	const struct mtk_thermal_data *conf;
	struct mtk_thermal_bank banks[MAX_NUM_ZONES];

	int (*raw_to_mcelsius)(struct mtk_thermal *mt, int sensno, s32 raw);
};

/* MT8183 thermal sensor data */
static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
	MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
};

static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
	TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
};

static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
	TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
	TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
};

static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};

static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
	VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
};

/* MT8173 thermal sensor data */
static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
	{ MT8173_TS2, MT8173_TS3 },
	{ MT8173_TS2, MT8173_TS4 },
	{ MT8173_TS1, MT8173_TS2, MT8173_TSABB },
	{ MT8173_TS2 },
};

static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
};

static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
};

static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };

static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
	VTS1, VTS2, VTS3, VTS4, VTSABB
};

/* MT2701 thermal sensor data */
static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
	MT2701_TS1, MT2701_TS2, MT2701_TSABB
};

static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
};

static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
};

static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };

static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
	VTS1, VTS2, VTS3
};

/* MT2712 thermal sensor data */
static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
	MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
};

static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
};

static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
};

static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };

static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
	VTS1, VTS2, VTS3, VTS4
};

/* MT7622 thermal sensor data */
static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };

/* MT7986 thermal sensor data */
static const int mt7986_bank_data[MT7986_NUM_SENSORS] = { MT7986_TS1, };
static const int mt7986_msr[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
static const int mt7986_adcpnp[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
static const int mt7986_mux_values[MT7986_NUM_SENSORS] = { 0, };
static const int mt7986_vts_index[MT7986_NUM_SENSORS] = { VTS1 };
static const int mt7986_tc_offset[MT7986_NUM_CONTROLLER] = { 0x0, };

/* MT8365 thermal sensor data */
static const int mt8365_bank_data[MT8365_NUM_SENSORS] = {
	MT8365_TS1, MT8365_TS2, MT8365_TS3
};

static const int mt8365_msr[MT8365_NUM_SENSORS_PER_ZONE] = {
	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
};

static const int mt8365_adcpnp[MT8365_NUM_SENSORS_PER_ZONE] = {
	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
};

static const int mt8365_mux_values[MT8365_NUM_SENSORS] = { 0, 1, 2 };
static const int mt8365_tc_offset[MT8365_NUM_CONTROLLER] = { 0 };

static const int mt8365_vts_index[MT8365_NUM_SENSORS] = { VTS1, VTS2, VTS3 };

/*
 * The MT8173 thermal controller has four banks. Each bank can read up to
 * four temperature sensors simultaneously. The MT8173 has a total of 5
 * temperature sensors. We use each bank to measure a certain area of the
 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
 * areas, hence is used in different banks.
 *
 * The thermal core only gets the maximum temperature of all banks, so
 * the bank concept wouldn't be necessary here. However, the SVS (Smart
 * Voltage Scaling) unit makes its decisions based on the same bank
 * data, and this indeed needs the temperatures of the individual banks
 * for making better decisions.
 */
static const struct mtk_thermal_data mt8173_thermal_data = {
	.auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
	.num_banks = MT8173_NUM_ZONES,
	.num_sensors = MT8173_NUM_SENSORS,
	.vts_index = mt8173_vts_index,
	.cali_val = MT8173_CALIBRATION,
	.num_controller = MT8173_NUM_CONTROLLER,
	.controller_offset = mt8173_tc_offset,
	.need_switch_bank = true,
	.bank_data = {
		{
			.num_sensors = 2,
			.sensors = mt8173_bank_data[0],
		}, {
			.num_sensors = 2,
			.sensors = mt8173_bank_data[1],
		}, {
			.num_sensors = 3,
			.sensors = mt8173_bank_data[2],
		}, {
			.num_sensors = 1,
			.sensors = mt8173_bank_data[3],
		},
	},
	.msr = mt8173_msr,
	.adcpnp = mt8173_adcpnp,
	.sensor_mux_values = mt8173_mux_values,
	.version = MTK_THERMAL_V1,
};

/*
 * The MT2701 thermal controller has one bank, which can read up to
 * three temperature sensors simultaneously. The MT2701 has a total of 3
 * temperature sensors.
 *
 * The thermal core only gets the maximum temperature of this one bank,
 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
 * Voltage Scaling) unit makes its decisions based on the same bank
 * data.
 */
static const struct mtk_thermal_data mt2701_thermal_data = {
	.auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
	.num_banks = 1,
	.num_sensors = MT2701_NUM_SENSORS,
	.vts_index = mt2701_vts_index,
	.cali_val = MT2701_CALIBRATION,
	.num_controller = MT2701_NUM_CONTROLLER,
	.controller_offset = mt2701_tc_offset,
	.need_switch_bank = true,
	.bank_data = {
		{
			.num_sensors = 3,
			.sensors = mt2701_bank_data,
		},
	},
	.msr = mt2701_msr,
	.adcpnp = mt2701_adcpnp,
	.sensor_mux_values = mt2701_mux_values,
	.version = MTK_THERMAL_V1,
};

/*
 * The MT8365 thermal controller has one bank, which can read up to
 * four temperature sensors simultaneously. The MT8365 has a total of 3
 * temperature sensors.
 *
 * The thermal core only gets the maximum temperature of this one bank,
 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
 * Voltage Scaling) unit makes its decisions based on the same bank
 * data.
 */
static const struct mtk_thermal_data mt8365_thermal_data = {
	.auxadc_channel = MT8365_TEMP_AUXADC_CHANNEL,
	.num_banks = MT8365_NUM_BANKS,
	.num_sensors = MT8365_NUM_SENSORS,
	.vts_index = mt8365_vts_index,
	.cali_val = MT8365_CALIBRATION,
	.num_controller = MT8365_NUM_CONTROLLER,
	.controller_offset = mt8365_tc_offset,
	.need_switch_bank = false,
	.bank_data = {
		{
			.num_sensors = MT8365_NUM_SENSORS,
			.sensors = mt8365_bank_data
		},
	},
	.msr = mt8365_msr,
	.adcpnp = mt8365_adcpnp,
	.sensor_mux_values = mt8365_mux_values,
	.version = MTK_THERMAL_V1,
	.apmixed_buffer_ctl_reg = APMIXED_SYS_TS_CON0,
	.apmixed_buffer_ctl_mask = (u32) ~GENMASK(29, 28),
	.apmixed_buffer_ctl_set = 0,
};

/*
 * The MT2712 thermal controller has one bank, which can read up to
 * four temperature sensors simultaneously. The MT2712 has a total of 4
 * temperature sensors.
 *
 * The thermal core only gets the maximum temperature of this one bank,
 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
 * Voltage Scaling) unit makes its decisions based on the same bank
 * data.
 */
static const struct mtk_thermal_data mt2712_thermal_data = {
	.auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
	.num_banks = 1,
	.num_sensors = MT2712_NUM_SENSORS,
	.vts_index = mt2712_vts_index,
	.cali_val = MT2712_CALIBRATION,
	.num_controller = MT2712_NUM_CONTROLLER,
	.controller_offset = mt2712_tc_offset,
	.need_switch_bank = true,
	.bank_data = {
		{
			.num_sensors = 4,
			.sensors = mt2712_bank_data,
		},
	},
	.msr = mt2712_msr,
	.adcpnp = mt2712_adcpnp,
	.sensor_mux_values = mt2712_mux_values,
	.version = MTK_THERMAL_V1,
};

/*
 * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
 * access.
 */
static const struct mtk_thermal_data mt7622_thermal_data = {
	.auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
	.num_banks = MT7622_NUM_ZONES,
	.num_sensors = MT7622_NUM_SENSORS,
	.vts_index = mt7622_vts_index,
	.cali_val = MT7622_CALIBRATION,
	.num_controller = MT7622_NUM_CONTROLLER,
	.controller_offset = mt7622_tc_offset,
	.need_switch_bank = true,
	.bank_data = {
		{
			.num_sensors = 1,
			.sensors = mt7622_bank_data,
		},
	},
	.msr = mt7622_msr,
	.adcpnp = mt7622_adcpnp,
	.sensor_mux_values = mt7622_mux_values,
	.version = MTK_THERMAL_V2,
	.apmixed_buffer_ctl_reg = APMIXED_SYS_TS_CON1,
	.apmixed_buffer_ctl_mask = GENMASK(31, 6) | BIT(3),
	.apmixed_buffer_ctl_set = BIT(0),
};

/*
 * The MT8183 thermal controller has one bank for the current SW framework.
 * The MT8183 has a total of 6 temperature sensors.
 * There are two thermal controller to control the six sensor.
 * The first one bind 2 sensor, and the other bind 4 sensors.
 * The thermal core only gets the maximum temperature of all sensor, so
 * the bank concept wouldn't be necessary here. However, the SVS (Smart
 * Voltage Scaling) unit makes its decisions based on the same bank
 * data, and this indeed needs the temperatures of the individual banks
 * for making better decisions.
 */
static const struct mtk_thermal_data mt8183_thermal_data = {
	.auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
	.num_banks = MT8183_NUM_ZONES,
	.num_sensors = MT8183_NUM_SENSORS,
	.vts_index = mt8183_vts_index,
	.cali_val = MT8183_CALIBRATION,
	.num_controller = MT8183_NUM_CONTROLLER,
	.controller_offset = mt8183_tc_offset,
	.need_switch_bank = false,
	.bank_data = {
		{
			.num_sensors = 6,
			.sensors = mt8183_bank_data,
		},
	},

	.msr = mt8183_msr,
	.adcpnp = mt8183_adcpnp,
	.sensor_mux_values = mt8183_mux_values,
	.version = MTK_THERMAL_V1,
};

/*
 * MT7986 uses AUXADC Channel 11 for raw data access.
 */
static const struct mtk_thermal_data mt7986_thermal_data = {
	.auxadc_channel = MT7986_TEMP_AUXADC_CHANNEL,
	.num_banks = MT7986_NUM_ZONES,
	.num_sensors = MT7986_NUM_SENSORS,
	.vts_index = mt7986_vts_index,
	.cali_val = MT7986_CALIBRATION,
	.num_controller = MT7986_NUM_CONTROLLER,
	.controller_offset = mt7986_tc_offset,
	.need_switch_bank = true,
	.bank_data = {
		{
			.num_sensors = 1,
			.sensors = mt7986_bank_data,
		},
	},
	.msr = mt7986_msr,
	.adcpnp = mt7986_adcpnp,
	.sensor_mux_values = mt7986_mux_values,
	.version = MTK_THERMAL_V3,
};

static bool mtk_thermal_temp_is_valid(int temp)
{
	return (temp >= MT8173_TEMP_MIN) && (temp <= MT8173_TEMP_MAX);
}

/**
 * raw_to_mcelsius_v1 - convert a raw ADC value to mcelsius
 * @mt:	The thermal controller
 * @sensno:	sensor number
 * @raw:	raw ADC value
 *
 * This converts the raw ADC value to mcelsius using the SoC specific
 * calibration constants
 */
static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw)
{
	s32 tmp;

	raw &= 0xfff;

	tmp = 203450520 << 3;
	tmp /= mt->conf->cali_val + mt->o_slope;
	tmp /= 10000 + mt->adc_ge;
	tmp *= raw - mt->vts[sensno] - 3350;
	tmp >>= 3;

	return mt->degc_cali * 500 - tmp;
}

static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw)
{
	s32 format_1;
	s32 format_2;
	s32 g_oe;
	s32 g_gain;
	s32 g_x_roomt;
	s32 tmp;

	if (raw == 0)
		return 0;

	raw &= 0xfff;
	g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12);
	g_oe = mt->adc_oe - 512;
	format_1 = mt->vts[VTS2] + 3105 - g_oe;
	format_2 = (mt->degc_cali * 10) >> 1;
	g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain;

	tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt;
	tmp = tmp * 10 * 100 / 11;

	if (mt->o_slope_sign == 0)
		tmp = tmp / (165 - mt->o_slope);
	else
		tmp = tmp / (165 + mt->o_slope);

	return (format_2 - tmp) * 100;
}

static int raw_to_mcelsius_v3(struct mtk_thermal *mt, int sensno, s32 raw)
{
	s32 tmp;

	if (raw == 0)
		return 0;

	raw &= 0xfff;
	tmp = 100000 * 15 / 16 * 10000;
	tmp /= 4096 - 512 + mt->adc_ge;
	tmp /= 1490;
	tmp *= raw - mt->vts[sensno] - 2900;

	return mt->degc_cali * 500 - tmp;
}

/**
 * mtk_thermal_get_bank - get bank
 * @bank:	The bank
 *
 * The bank registers are banked, we have to select a bank in the
 * PTPCORESEL register to access it.
 */
static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
{
	struct mtk_thermal *mt = bank->mt;
	u32 val;

	if (mt->conf->need_switch_bank) {
		mutex_lock(&mt->lock);

		val = readl(mt->thermal_base + PTPCORESEL);
		val &= ~0xf;
		val |= bank->id;
		writel(val, mt->thermal_base + PTPCORESEL);
	}
}

/**
 * mtk_thermal_put_bank - release bank
 * @bank:	The bank
 *
 * release a bank previously taken with mtk_thermal_get_bank,
 */
static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
{
	struct mtk_thermal *mt = bank->mt;

	if (mt->conf->need_switch_bank)
		mutex_unlock(&mt->lock);
}

/**
 * mtk_thermal_bank_temperature - get the temperature of a bank
 * @bank:	The bank
 *
 * The temperature of a bank is considered the maximum temperature of
 * the sensors associated to the bank.
 */
static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
{
	struct mtk_thermal *mt = bank->mt;
	const struct mtk_thermal_data *conf = mt->conf;
	int i, temp = INT_MIN, max = INT_MIN;
	u32 raw;

	for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
		raw = readl(mt->thermal_base + conf->msr[i]);

		temp = mt->raw_to_mcelsius(
			mt, conf->bank_data[bank->id].sensors[i], raw);

		/*
		 * Depending on the filt/sen intervals and ADC polling time,
		 * we may need up to 60 milliseconds after initialization: this
		 * will result in the first reading containing an out of range
		 * temperature value.
		 * Validate the reading to both address the aforementioned issue
		 * and to eventually avoid bogus readings during runtime in the
		 * event that the AUXADC gets unstable due to high EMI, etc.
		 */
		if (!mtk_thermal_temp_is_valid(temp))
			temp = THERMAL_TEMP_INVALID;

		if (temp > max)
			max = temp;
	}

	return max;
}

static int mtk_read_temp(struct thermal_zone_device *tz, int *temperature)
{
	struct mtk_thermal *mt = thermal_zone_device_priv(tz);
	int i;
	int tempmax = INT_MIN;

	for (i = 0; i < mt->conf->num_banks; i++) {
		struct mtk_thermal_bank *bank = &mt->banks[i];

		mtk_thermal_get_bank(bank);

		tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));

		mtk_thermal_put_bank(bank);
	}

	*temperature = tempmax;

	return 0;
}

static const struct thermal_zone_device_ops mtk_thermal_ops = {
	.get_temp = mtk_read_temp,
};

static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
				  u32 apmixed_phys_base, u32 auxadc_phys_base,
				  int ctrl_id)
{
	struct mtk_thermal_bank *bank = &mt->banks[num];
	const struct mtk_thermal_data *conf = mt->conf;
	int i;

	int offset = mt->conf->controller_offset[ctrl_id];
	void __iomem *controller_base = mt->thermal_base + offset;

	bank->id = num;
	bank->mt = mt;

	mtk_thermal_get_bank(bank);

	/* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
	writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);

	/*
	 * filt interval is 1 * 46.540us = 46.54us,
	 * sen interval is 429 * 46.540us = 19.96ms
	 */
	writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
			TEMP_MONCTL2_SENSOR_INTERVAL(429),
			controller_base + TEMP_MONCTL2);

	/* poll is set to 10u */
	writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
	       controller_base + TEMP_AHBPOLL);

	/* temperature sampling control, 1 sample */
	writel(0x0, controller_base + TEMP_MSRCTL0);

	/* exceed this polling time, IRQ would be inserted */
	writel(0xffffffff, controller_base + TEMP_AHBTO);

	/* number of interrupts per event, 1 is enough */
	writel(0x0, controller_base + TEMP_MONIDET0);
	writel(0x0, controller_base + TEMP_MONIDET1);

	/*
	 * The MT8173 thermal controller does not have its own ADC. Instead it
	 * uses AHB bus accesses to control the AUXADC. To do this the thermal
	 * controller has to be programmed with the physical addresses of the
	 * AUXADC registers and with the various bit positions in the AUXADC.
	 * Also the thermal controller controls a mux in the APMIXEDSYS register
	 * space.
	 */

	/*
	 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
	 * automatically by hw
	 */
	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);

	/* AHB address for auxadc mux selection */
	writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
	       controller_base + TEMP_ADCMUXADDR);

	if (mt->conf->version == MTK_THERMAL_V1) {
		/* AHB address for pnp sensor mux selection */
		writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
		       controller_base + TEMP_PNPMUXADDR);
	}

	/* AHB value for auxadc enable */
	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);

	/* AHB address for auxadc enable (channel 0 immediate mode selected) */
	writel(auxadc_phys_base + AUXADC_CON1_SET_V,
	       controller_base + TEMP_ADCENADDR);

	/* AHB address for auxadc valid bit */
	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
	       controller_base + TEMP_ADCVALIDADDR);

	/* AHB address for auxadc voltage output */
	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
	       controller_base + TEMP_ADCVOLTADDR);

	/* read valid & voltage are at the same register */
	writel(0x0, controller_base + TEMP_RDCTRL);

	/* indicate where the valid bit is */
	writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
	       controller_base + TEMP_ADCVALIDMASK);

	/* no shift */
	writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);

	/* enable auxadc mux write transaction */
	writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
		controller_base + TEMP_ADCWRITECTRL);

	for (i = 0; i < conf->bank_data[num].num_sensors; i++)
		writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
		       mt->thermal_base + conf->adcpnp[i]);

	writel((1 << conf->bank_data[num].num_sensors) - 1,
	       controller_base + TEMP_MONCTL0);

	writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
	       TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
	       controller_base + TEMP_ADCWRITECTRL);

	mtk_thermal_put_bank(bank);
}

static u64 of_get_phys_base(struct device_node *np)
{
	struct resource res;

	if (of_address_to_resource(np, 0, &res))
		return OF_BAD_ADDR;

	return res.start;
}

static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf)
{
	int i;

	if (!(buf[0] & CALIB_BUF0_VALID_V1))
		return -EINVAL;

	mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]);

	for (i = 0; i < mt->conf->num_sensors; i++) {
		switch (mt->conf->vts_index[i]) {
		case VTS1:
			mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]);
			break;
		case VTS2:
			mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]);
			break;
		case VTS3:
			mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]);
			break;
		case VTS4:
			mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]);
			break;
		case VTS5:
			mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]);
			break;
		case VTSABB:
			mt->vts[VTSABB] =
				CALIB_BUF2_VTS_TSABB_V1(buf[2]);
			break;
		default:
			break;
		}
	}

	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]);
	if (CALIB_BUF1_ID_V1(buf[1]) &
	    CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0]))
		mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]);
	else
		mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]);

	return 0;
}

static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf)
{
	if (!CALIB_BUF1_VALID_V2(buf[1]))
		return -EINVAL;

	mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]);
	mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]);
	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]);
	mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]);
	mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]);
	mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]);
	mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]);
	mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]);

	return 0;
}

static int mtk_thermal_extract_efuse_v3(struct mtk_thermal *mt, u32 *buf)
{
	if (!CALIB_BUF1_VALID_V3(buf[1]))
		return -EINVAL;

	mt->adc_ge = CALIB_BUF0_ADC_GE_V3(buf[0]);
	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V3(buf[0]);
	mt->o_slope = CALIB_BUF0_O_SLOPE_V3(buf[0]);
	mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V3(buf[1]);
	mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V3(buf[1]);
	mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V3(buf[1]);
	mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V3(buf[1]);

	if (CALIB_BUF1_ID_V3(buf[1]) == 0)
		mt->o_slope = 0;

	return 0;
}

static int mtk_thermal_get_calibration_data(struct device *dev,
					    struct mtk_thermal *mt)
{
	struct nvmem_cell *cell;
	u32 *buf;
	size_t len;
	int i, ret = 0;

	/* Start with default values */
	mt->adc_ge = 512;
	mt->adc_oe = 512;
	for (i = 0; i < mt->conf->num_sensors; i++)
		mt->vts[i] = 260;
	mt->degc_cali = 40;
	mt->o_slope = 0;

	cell = nvmem_cell_get(dev, "calibration-data");
	if (IS_ERR(cell)) {
		if (PTR_ERR(cell) == -EPROBE_DEFER)
			return PTR_ERR(cell);
		return 0;
	}

	buf = (u32 *)nvmem_cell_read(cell, &len);

	nvmem_cell_put(cell);

	if (IS_ERR(buf))
		return PTR_ERR(buf);

	if (len < 3 * sizeof(u32)) {
		dev_warn(dev, "invalid calibration data\n");
		ret = -EINVAL;
		goto out;
	}

	switch (mt->conf->version) {
	case MTK_THERMAL_V1:
		ret = mtk_thermal_extract_efuse_v1(mt, buf);
		break;
	case MTK_THERMAL_V2:
		ret = mtk_thermal_extract_efuse_v2(mt, buf);
		break;
	case MTK_THERMAL_V3:
		ret = mtk_thermal_extract_efuse_v3(mt, buf);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	if (ret) {
		dev_info(dev, "Device not calibrated, using default calibration values\n");
		ret = 0;
	}

out:
	kfree(buf);

	return ret;
}

static const struct of_device_id mtk_thermal_of_match[] = {
	{
		.compatible = "mediatek,mt8173-thermal",
		.data = (void *)&mt8173_thermal_data,
	},
	{
		.compatible = "mediatek,mt2701-thermal",
		.data = (void *)&mt2701_thermal_data,
	},
	{
		.compatible = "mediatek,mt2712-thermal",
		.data = (void *)&mt2712_thermal_data,
	},
	{
		.compatible = "mediatek,mt7622-thermal",
		.data = (void *)&mt7622_thermal_data,
	},
	{
		.compatible = "mediatek,mt7986-thermal",
		.data = (void *)&mt7986_thermal_data,
	},
	{
		.compatible = "mediatek,mt8183-thermal",
		.data = (void *)&mt8183_thermal_data,
	},
	{
		.compatible = "mediatek,mt8365-thermal",
		.data = (void *)&mt8365_thermal_data,
	}, {
	},
};
MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);

static void mtk_thermal_turn_on_buffer(struct mtk_thermal *mt,
				       void __iomem *apmixed_base)
{
	u32 tmp;

	if (!mt->conf->apmixed_buffer_ctl_reg)
		return;

	tmp = readl(apmixed_base + mt->conf->apmixed_buffer_ctl_reg);
	tmp &= mt->conf->apmixed_buffer_ctl_mask;
	tmp |= mt->conf->apmixed_buffer_ctl_set;
	writel(tmp, apmixed_base + mt->conf->apmixed_buffer_ctl_reg);
	udelay(200);
}

static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt,
					    void __iomem *auxadc_base)
{
	int tmp;

	writel(0x800, auxadc_base + AUXADC_CON1_SET_V);
	writel(0x1, mt->thermal_base + TEMP_MONCTL0);
	tmp = readl(mt->thermal_base + TEMP_MSRCTL1);
	writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1);
}

static int mtk_thermal_probe(struct platform_device *pdev)
{
	int ret, i, ctrl_id;
	struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
	struct mtk_thermal *mt;
	u64 auxadc_phys_base, apmixed_phys_base;
	struct thermal_zone_device *tzdev;
	void __iomem *apmixed_base, *auxadc_base;

	mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
	if (!mt)
		return -ENOMEM;

	mt->conf = of_device_get_match_data(&pdev->dev);

	mt->thermal_base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
	if (IS_ERR(mt->thermal_base))
		return PTR_ERR(mt->thermal_base);

	ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
	if (ret)
		return ret;

	mutex_init(&mt->lock);

	mt->dev = &pdev->dev;

	auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
	if (!auxadc) {
		dev_err(&pdev->dev, "missing auxadc node\n");
		return -ENODEV;
	}

	auxadc_base = of_iomap(auxadc, 0);
	auxadc_phys_base = of_get_phys_base(auxadc);

	of_node_put(auxadc);

	if (auxadc_phys_base == OF_BAD_ADDR) {
		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
		return -EINVAL;
	}

	apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
	if (!apmixedsys) {
		dev_err(&pdev->dev, "missing apmixedsys node\n");
		return -ENODEV;
	}

	apmixed_base = of_iomap(apmixedsys, 0);
	apmixed_phys_base = of_get_phys_base(apmixedsys);

	of_node_put(apmixedsys);

	if (apmixed_phys_base == OF_BAD_ADDR) {
		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
		return -EINVAL;
	}

	ret = device_reset_optional(&pdev->dev);
	if (ret)
		return ret;

	mt->clk_auxadc = devm_clk_get_enabled(&pdev->dev, "auxadc");
	if (IS_ERR(mt->clk_auxadc)) {
		ret = PTR_ERR(mt->clk_auxadc);
		dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
		return ret;
	}

	mt->clk_peri_therm = devm_clk_get_enabled(&pdev->dev, "therm");
	if (IS_ERR(mt->clk_peri_therm)) {
		ret = PTR_ERR(mt->clk_peri_therm);
		dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
		return ret;
	}

	mtk_thermal_turn_on_buffer(mt, apmixed_base);

	if (mt->conf->version != MTK_THERMAL_V2)
		mtk_thermal_release_periodic_ts(mt, auxadc_base);

	if (mt->conf->version == MTK_THERMAL_V1)
		mt->raw_to_mcelsius = raw_to_mcelsius_v1;
	else if (mt->conf->version == MTK_THERMAL_V2)
		mt->raw_to_mcelsius = raw_to_mcelsius_v2;
	else
		mt->raw_to_mcelsius = raw_to_mcelsius_v3;

	for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
		for (i = 0; i < mt->conf->num_banks; i++)
			mtk_thermal_init_bank(mt, i, apmixed_phys_base,
					      auxadc_phys_base, ctrl_id);

	tzdev = devm_thermal_of_zone_register(&pdev->dev, 0, mt,
					      &mtk_thermal_ops);
	if (IS_ERR(tzdev))
		return PTR_ERR(tzdev);

	ret = devm_thermal_add_hwmon_sysfs(&pdev->dev, tzdev);
	if (ret)
		dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs");

	return 0;
}

static struct platform_driver mtk_thermal_driver = {
	.probe = mtk_thermal_probe,
	.driver = {
		.name = "mtk-thermal",
		.of_match_table = mtk_thermal_of_match,
	},
};

module_platform_driver(mtk_thermal_driver);

MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
MODULE_DESCRIPTION("Mediatek thermal driver");
MODULE_LICENSE("GPL v2"