/* Generic MTRR (Memory Type Range Register) driver. Copyright (C) 1997-2000 Richard Gooch Copyright (c) 2002 Patrick Mochel This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. Richard Gooch may be reached by email at rgooch@atnf.csiro.au The postal address is: Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia. Source: "Pentium Pro Family Developer's Manual, Volume 3: Operating System Writer's Guide" (Intel document number 242692), section 11.11.7 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org> on 6-7 March 2002. Source: Intel Architecture Software Developers Manual, Volume 3: System Programming Guide; Section 9.11. (1997 edition - PPro). */ #include <linux/types.h> /* FIXME: kvm_para.h needs this */ #include <linux/stop_machine.h> #include <linux/kvm_para.h> #include <linux/uaccess.h> #include <linux/export.h> #include <linux/mutex.h> #include <linux/init.h> #include <linux/sort.h> #include <linux/cpu.h> #include <linux/pci.h> #include <linux/smp.h> #include <linux/syscore_ops.h> #include <linux/rcupdate.h> #include <asm/cacheinfo.h> #include <asm/cpufeature.h> #include <asm/e820/api.h> #include <asm/mtrr.h> #include <asm/msr.h> #include <asm/memtype.h> #include "mtrr.h" /* arch_phys_wc_add returns an MTRR register index plus this offset. */ #define MTRR_TO_PHYS_WC_OFFSET 1000 u32 num_var_ranges; unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES]; DEFINE_MUTEX(mtrr_mutex); const struct mtrr_ops *mtrr_if; /* Returns non-zero if we have the write-combining memory type */ static int have_wrcomb(void) { struct pci_dev *dev; dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL); if (dev != NULL) { /* * ServerWorks LE chipsets < rev 6 have problems with * write-combining. Don't allow it and leave room for other * chipsets to be tagged */ if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS && dev->device == PCI_DEVICE_ID_SERVERWORKS_LE && dev->revision <= 5) { pr_info("Serverworks LE rev < 6 detected. Write-combining disabled.\n"); pci_dev_put(dev); return 0; } /* * Intel 450NX errata # 23. Non ascending cacheline evictions to * write combining memory may resulting in data corruption */ if (dev->vendor == PCI_VENDOR_ID_INTEL && dev->device == PCI_DEVICE_ID_INTEL_82451NX) { pr_info("Intel 450NX MMC detected. Write-combining disabled.\n"); pci_dev_put(dev); return 0; } pci_dev_put(dev); } return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0; } static void __init init_table(void) { int i, max; max = num_var_ranges; for (i = 0; i < max; i++) mtrr_usage_table[i] = 1; } struct set_mtrr_data { unsigned long smp_base; unsigned long smp_size; unsigned int smp_reg; mtrr_type smp_type; }; /** * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed * by all the CPUs. * @info: pointer to mtrr configuration data * * Returns nothing. */ static int mtrr_rendezvous_handler(void *info) { struct set_mtrr_data *data = info; mtrr_if->set(data->smp_reg, data->smp_base, data->smp_size, data->smp_type); return 0; } static inline int types_compatible(mtrr_type type1, mtrr_type type2) { return type1 == MTRR_TYPE_UNCACHABLE || type2 == MTRR_TYPE_UNCACHABLE || (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) || (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH); } /** * set_mtrr - update mtrrs on all processors * @reg: mtrr in question * @base: mtrr base * @size: mtrr size * @type: mtrr type * * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly: * * 1. Queue work to do the following on all processors: * 2. Disable Interrupts * 3. Wait for all procs to do so * 4. Enter no-fill cache mode * 5. Flush caches * 6. Clear PGE bit * 7. Flush all TLBs * 8. Disable all range registers * 9. Update the MTRRs * 10. Enable all range registers * 11. Flush all TLBs and caches again * 12. Enter normal cache mode and reenable caching * 13. Set PGE * 14. Wait for buddies to catch up * 15. Enable interrupts. * * What does that mean for us? Well, stop_machine() will ensure that * the rendezvous handler is started on each CPU. And in lockstep they * do the state transition of disabling interrupts, updating MTRR's * (the CPU vendors may each do it differently, so we call mtrr_if->set() * callback and let them take care of it.) and enabling interrupts. * * Note that the mechanism is the same for UP systems, too; all the SMP stuff * becomes nops. */ static void set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type) { struct set_mtrr_data data = { .smp_reg = reg, .smp_base = base, .smp_size = size, .smp_type = type }; stop_machine_cpuslocked(mtrr_rendezvous_handler, &data, cpu_online_mask); generic_rebuild_map(); } /** * mtrr_add_page - Add a memory type region * @base: Physical base address of region in pages (in units of 4 kB!) * @size: Physical size of region in pages (4 kB) * @type: Type of MTRR desired * @increment: If this is true do usage counting on the region * * Memory type region registers control the caching on newer Intel and * non Intel processors. This function allows drivers to request an * MTRR is added. The details and hardware specifics of each processor's * implementation are hidden from the caller, but nevertheless the * caller should expect to need to provide a power of two size on an * equivalent power of two boundary. * * If the region cannot be added either because all regions are in use * or the CPU cannot support it a negative value is returned. On success * the register number for this entry is returned, but should be treated * as a cookie only. * * On a multiprocessor machine the changes are made to all processors. * This is required on x86 by the Intel processors. * * The available types are * * %MTRR_TYPE_UNCACHABLE - No caching * * %MTRR_TYPE_WRBACK - Write data back in bursts whenever * * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts * * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes * * BUGS: Needs a quiet flag for the cases where drivers do not mind * failures and do not wish system log messages to be sent. */ int mtrr_add_page(unsigned long base, unsigned long size, unsigned int type, bool increment) { unsigned long lbase, lsize; int i, replace, error; mtrr_type ltype; if (!mtrr_enabled()) return -ENXIO; error = mtrr_if->validate_add_page(base, size, type); if (error) return error; if (type >= MTRR_NUM_TYPES) { pr_warn("type: %u invalid\n", type); return -EINVAL; } /* If the type is WC, check that this processor supports it */ if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) { pr_warn("your processor doesn't support write-combining\n"); return -ENOSYS; } if (!size) { pr_warn("zero sized request\n"); return -EINVAL; } if ((base | (base + size - 1)) >> (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) { pr_warn("base or size exceeds the MTRR width\n"); return -EINVAL; } error = -EINVAL; replace = -1; /* No CPU hotplug when we change MTRR entries */ cpus_read_lock(); /* Search for existing MTRR */ mutex_lock(&mtrr_mutex); for (i = 0; i < num_var_ranges; ++i) { mtrr_if->get(i, &lbase, &lsize, <ype); if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase) continue; /* * At this point we know there is some kind of * overlap/enclosure */ if (base < lbase || base + size - 1 > lbase + lsize - 1) { if (base <= lbase && base + size - 1 >= lbase + lsize - 1) { /* New region encloses an existing region */ if (type == ltype) { replace = replace == -1 ? i : -2; continue; } else if (types_compatible(type, ltype)) continue; } pr_warn("0x%lx000,0x%lx000 overlaps existing 0x%lx000,0x%lx000\n", base, size, lbase, lsize); goto out; } /* New region is enclosed by an existing region */ if (ltype != type) { if (types_compatible(type, ltype)) continue; pr_warn("type mismatch for %lx000,%lx000 old: %s new: %s\n", base, size, mtrr_attrib_to_str(ltype), mtrr_attrib_to_str(type)); goto out; } if (increment) ++mtrr_usage_table[i]; error = i; goto out; } /* Search for an empty MTRR */ i = mtrr_if->get_free_region(base, size, replace); if (i >= 0) { set_mtrr(i, base, size, type); if (likely(replace < 0)) { mtrr_usage_table[i] = 1; } else { mtrr_usage_table[i] = mtrr_usage_table[replace]; if (increment) mtrr_usage_table[i]++; if (unlikely(replace != i)) { set_mtrr(replace, 0, 0, 0); mtrr_usage_table[replace] = 0; } } } else { pr_info("no more MTRRs available\n"); } error = i; out: mutex_unlock(&mtrr_mutex); cpus_read_unlock(); return error; } static int mtrr_check(unsigned long base, unsigned long size) { if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) { pr_warn("size and base must be multiples of 4 kiB\n"); Dprintk("size: 0x%lx base: 0x%lx\n", size, base); dump_stack(); return -1; } return 0; } /** * mtrr_add - Add a memory type region * @base: Physical base address of region * @size: Physical size of region * @type: Type of MTRR desired * @increment: If this is true do usage counting on the region * * Memory type region registers control the caching on newer Intel and * non Intel processors. This function allows drivers to request an * MTRR is added. The details and hardware specifics of each processor's * implementation are hidden from the caller, but nevertheless the * caller should expect to need to provide a power of two size on an * equivalent power of two boundary. * * If the region cannot be added either because all regions are in use * or the CPU cannot support it a negative value is returned. On success * the register number for this entry is returned, but should be treated * as a cookie only. * * On a multiprocessor machine the changes are made to all processors. * This is required on x86 by the Intel processors. * * The available types are * * %MTRR_TYPE_UNCACHABLE - No caching * * %MTRR_TYPE_WRBACK - Write data back in bursts whenever * * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts * * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes * * BUGS: Needs a quiet flag for the cases where drivers do not mind * failures and do not wish system log messages to be sent. */ int mtrr_add(unsigned long base, unsigned long size, unsigned int type, bool increment) { if (!mtrr_enabled()) return -ENODEV; if (mtrr_check(base, size)) return -EINVAL; return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type, increment); } /** * mtrr_del_page - delete a memory type region * @reg: Register returned by mtrr_add * @base: Physical base address * @size: Size of region * * If register is supplied then base and size are ignored. This is * how drivers should call it. * * Releases an MTRR region. If the usage count drops to zero the * register is freed and the region returns to default state. * On success the register is returned, on failure a negative error * code. */ int mtrr_del_page(int reg, unsigned long base, unsigned long size) { int i, max; mtrr_type ltype; unsigned long lbase, lsize; int error = -EINVAL; if (!mtrr_enabled()) return -ENODEV; max = num_var_ranges; /* No CPU hotplug when we change MTRR entries */ cpus_read_lock(); mutex_lock(&mtrr_mutex); if (reg < 0) { /* Search for existing MTRR */ for (i = 0; i < max; ++i) { mtrr_if->get(i, &lbase, &lsize, <ype); if (lbase == base && lsize == size) { reg = i; break; } } if (reg < 0) { Dprintk("no MTRR for %lx000,%lx000 found\n", base, size); goto out; } } if (reg >= max) { pr_warn("register: %d too big\n", reg); goto out; } mtrr_if->get(reg, &lbase, &lsize, <ype); if (lsize < 1) { pr_warn("MTRR %d not used\n", reg); goto out; } if (mtrr_usage_table[reg] < 1) { pr_warn("reg: %d has count=0\n", reg); goto out; } if (--mtrr_usage_table[reg] < 1) set_mtrr(reg, 0, 0, 0); error = reg; out: mutex_unlock(&mtrr_mutex); cpus_read_unlock(); return error; } /** * mtrr_del - delete a memory type region * @reg: Register returned by mtrr_add * @base: Physical base address * @size: Size of region * * If register is supplied then base and size are ignored. This is * how drivers should call it. * * Releases an MTRR region. If the usage count drops to zero the * register is freed and the region returns to default state. * On success the register is returned, on failure a negative error * code. */ int mtrr_del(int reg, unsigned long base, unsigned long size) { if (!mtrr_enabled()) return -ENODEV; if (mtrr_check(base, size)) return -EINVAL; return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT); } /** * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable * @base: Physical base address * @size: Size of region * * If PAT is available, this does nothing. If PAT is unavailable, it * attempts to add a WC MTRR covering size bytes starting at base and * logs an error if this fails. * * The called should provide a power of two size on an equivalent * power of two boundary. * * Drivers must store the return value to pass to mtrr_del_wc_if_needed, * but drivers should not try to interpret that return value. */ int arch_phys_wc_add(unsigned long base, unsigned long size) { int ret; if (pat_enabled() || !mtrr_enabled()) return 0; /* Success! (We don't need to do anything.) */ ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true); if (ret < 0) { pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.", (void *)base, (void *)(base + size - 1)); return ret; } return ret + MTRR_TO_PHYS_WC_OFFSET; } EXPORT_SYMBOL(arch_phys_wc_add); /* * arch_phys_wc_del - undoes arch_phys_wc_add * @handle: Return value from arch_phys_wc_add * * This cleans up after mtrr_add_wc_if_needed. * * The API guarantees that mtrr_del_wc_if_needed(error code) and * mtrr_del_wc_if_needed(0) do nothing. */ void arch_phys_wc_del(int handle) { if (handle >= 1) { WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET); mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0); } } EXPORT_SYMBOL(arch_phys_wc_del); /* * arch_phys_wc_index - translates arch_phys_wc_add's return value * @handle: Return value from arch_phys_wc_add * * This will turn the return value from arch_phys_wc_add into an mtrr * index suitable for debugging. * * Note: There is no legitimate use for this function, except possibly * in printk line. Alas there is an illegitimate use in some ancient * drm ioctls. */ int arch_phys_wc_index(int handle) { if (handle < MTRR_TO_PHYS_WC_OFFSET) return -1; else return handle - MTRR_TO_PHYS_WC_OFFSET; } EXPORT_SYMBOL_GPL(arch_phys_wc_index); int __initdata changed_by_mtrr_cleanup; /** * mtrr_bp_init - initialize MTRRs on the boot CPU * * This needs to be called early; before any of the other CPUs are * initialized (i.e. before smp_init()). */ void __init mtrr_bp_init(void) { bool generic_mtrrs = cpu_feature_enabled(X86_FEATURE_MTRR); const char *why = "(not available)"; unsigned long config, dummy; phys_hi_rsvd = GENMASK(31, boot_cpu_data.x86_phys_bits - 32); if (!generic_mtrrs && mtrr_state.enabled) { /* * Software overwrite of MTRR state, only for generic case. * Note that X86_FEATURE_MTRR has been reset in this case. */ init_table(); mtrr_build_map(); pr_info("MTRRs set to read-only\n"); return; } if (generic_mtrrs) mtrr_if = &generic_mtrr_ops; else mtrr_set_if(); if (mtrr_enabled()) { /* Get the number of variable MTRR ranges. */ if (mtrr_if == &generic_mtrr_ops) rdmsr(MSR_MTRRcap, config, dummy); else config = mtrr_if->var_regs; num_var_ranges = config & MTRR_CAP_VCNT; init_table(); if (mtrr_if == &generic_mtrr_ops) { /* BIOS may override */ if (get_mtrr_state()) { memory_caching_control |= CACHE_MTRR; changed_by_mtrr_cleanup = mtrr_cleanup(); mtrr_build_map(); } else { mtrr_if = NULL; why = "by BIOS"; } } } if (!mtrr_enabled()) pr_info("MTRRs disabled %s\n", why); } /** * mtrr_save_state - Save current fixed-range MTRR state of the first * cpu in cpu_online_mask. */ void mtrr_save_state(void) { int first_cpu; if (!mtrr_enabled()) return; first_cpu = cpumask_first(cpu_online_mask); smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1); } static int __init mtrr_init_finalize(void) { /* * Map might exist if mtrr_overwrite_state() has been called or if * mtrr_enabled() returns true. */ mtrr_copy_map(); if (!mtrr_enabled()) return 0; if (memory_caching_control & CACHE_MTRR) { if (!changed_by_mtrr_cleanup) mtrr_state_warn(); return 0; } mtrr_register_syscore(); return 0; } subsys_initcall