#include <linux/bitmap.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/iopoll.h>
#include <linux/crc32.h>
#include <linux/mod_devicetable.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <soc/fsl/qe/immap_qe.h>
#include <soc/fsl/qe/qe.h>
static void qe_snums_init(void);
static int qe_sdma_init(void);
static DEFINE_SPINLOCK(qe_lock);
DEFINE_SPINLOCK(cmxgcr_lock);
EXPORT_SYMBOL(cmxgcr_lock);
struct qe_immap __iomem *qe_immr;
EXPORT_SYMBOL(qe_immr);
static u8 snums[QE_NUM_OF_SNUM];
static DECLARE_BITMAP(snum_state, QE_NUM_OF_SNUM);
static unsigned int qe_num_of_snum;
static phys_addr_t qebase = -1;
static struct device_node *qe_get_device_node(void)
{
struct device_node *qe;
qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
if (qe)
return qe;
return of_find_node_by_type(NULL, "qe");
}
static phys_addr_t get_qe_base(void)
{
struct device_node *qe;
int ret;
struct resource res;
if (qebase != -1)
return qebase;
qe = qe_get_device_node();
if (!qe)
return qebase;
ret = of_address_to_resource(qe, 0, &res);
if (!ret)
qebase = res.start;
of_node_put(qe);
return qebase;
}
void qe_reset(void)
{
if (qe_immr == NULL)
qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE);
qe_snums_init();
qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID,
QE_CR_PROTOCOL_UNSPECIFIED, 0);
qe_muram_init();
if (qe_sdma_init())
panic("sdma init failed!");
}
int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input)
{
unsigned long flags;
u8 mcn_shift = 0, dev_shift = 0;
u32 val;
int ret;
spin_lock_irqsave(&qe_lock, flags);
if (cmd == QE_RESET) {
iowrite32be((u32)(cmd | QE_CR_FLG), &qe_immr->cp.cecr);
} else {
if (cmd == QE_ASSIGN_PAGE) {
dev_shift = QE_CR_SNUM_SHIFT;
} else if (cmd == QE_ASSIGN_RISC) {
dev_shift = QE_CR_SNUM_SHIFT;
mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT;
} else {
if (device == QE_CR_SUBBLOCK_USB)
mcn_shift = QE_CR_MCN_USB_SHIFT;
else
mcn_shift = QE_CR_MCN_NORMAL_SHIFT;
}
iowrite32be(cmd_input, &qe_immr->cp.cecdr);
iowrite32be((cmd | QE_CR_FLG | ((u32)device << dev_shift) | (u32)mcn_protocol << mcn_shift),
&qe_immr->cp.cecr);
}
ret = readx_poll_timeout_atomic(ioread32be, &qe_immr->cp.cecr, val,
(val & QE_CR_FLG) == 0, 0, 100);
spin_unlock_irqrestore(&qe_lock, flags);
return ret == 0;
}
EXPORT_SYMBOL(qe_issue_cmd);
static unsigned int brg_clk = 0;
#define CLK_GRAN (1000)
#define CLK_GRAN_LIMIT (5)
unsigned int qe_get_brg_clk(void)
{
struct device_node *qe;
u32 brg;
unsigned int mod;
if (brg_clk)
return brg_clk;
qe = qe_get_device_node();
if (!qe)
return brg_clk;
if (!of_property_read_u32(qe, "brg-frequency", &brg))
brg_clk = brg;
of_node_put(qe);
mod = brg_clk % CLK_GRAN;
if (mod) {
if (mod < CLK_GRAN_LIMIT)
brg_clk -= mod;
else if (mod > (CLK_GRAN - CLK_GRAN_LIMIT))
brg_clk += CLK_GRAN - mod;
}
return brg_clk;
}
EXPORT_SYMBOL(qe_get_brg_clk);
#define PVR_VER_836x 0x8083
#define PVR_VER_832x 0x8084
static bool qe_general4_errata(void)
{
#ifdef CONFIG_PPC32
return pvr_version_is(PVR_VER_836x) || pvr_version_is(PVR_VER_832x);
#endif
return false;
}
int qe_setbrg(enum qe_clock brg, unsigned int rate, unsigned int multiplier)
{
u32 divisor, tempval;
u32 div16 = 0;
if ((brg < QE_BRG1) || (brg > QE_BRG16))
return -EINVAL;
divisor = qe_get_brg_clk() / (rate * multiplier);
if (divisor > QE_BRGC_DIVISOR_MAX + 1) {
div16 = QE_BRGC_DIV16;
divisor /= 16;
}
if (qe_general4_errata())
if (!div16 && (divisor & 1) && (divisor > 3))
divisor++;
tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) |
QE_BRGC_ENABLE | div16;
iowrite32be(tempval, &qe_immr->brg.brgc[brg - QE_BRG1]);
return 0;
}
EXPORT_SYMBOL(qe_setbrg);
enum qe_clock qe_clock_source(const char *source)
{
unsigned int i;
if (strcasecmp(source, "none") == 0)
return QE_CLK_NONE;
if (strcmp(source, "tsync_pin") == 0)
return QE_TSYNC_PIN;
if (strcmp(source, "rsync_pin") == 0)
return QE_RSYNC_PIN;
if (strncasecmp(source, "brg", 3) == 0) {
i = simple_strtoul(source + 3, NULL, 10);
if ((i >= 1) && (i <= 16))
return (QE_BRG1 - 1) + i;
else
return QE_CLK_DUMMY;
}
if (strncasecmp(source, "clk", 3) == 0) {
i = simple_strtoul(source + 3, NULL, 10);
if ((i >= 1) && (i <= 24))
return (QE_CLK1 - 1) + i;
else
return QE_CLK_DUMMY;
}
return QE_CLK_DUMMY;
}
EXPORT_SYMBOL(qe_clock_source);
static void qe_snums_init(void)
{
static const u8 snum_init_76[] = {
0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
0xD8, 0xD9, 0xE8, 0xE9, 0x44, 0x45, 0x4C, 0x4D,
0x54, 0x55, 0x5C, 0x5D, 0x64, 0x65, 0x6C, 0x6D,
0x74, 0x75, 0x7C, 0x7D, 0x84, 0x85, 0x8C, 0x8D,
0x94, 0x95, 0x9C, 0x9D, 0xA4, 0xA5, 0xAC, 0xAD,
0xB4, 0xB5, 0xBC, 0xBD, 0xC4, 0xC5, 0xCC, 0xCD,
0xD4, 0xD5, 0xDC, 0xDD, 0xE4, 0xE5, 0xEC, 0xED,
0xF4, 0xF5, 0xFC, 0xFD,
};
static const u8 snum_init_46[] = {
0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
0xD8, 0xD9, 0xE8, 0xE9, 0x08, 0x09, 0x18, 0x19,
0x28, 0x29, 0x38, 0x39, 0x48, 0x49, 0x58, 0x59,
0x68, 0x69, 0x78, 0x79, 0x80, 0x81,
};
struct device_node *qe;
const u8 *snum_init;
int i;
bitmap_zero(snum_state, QE_NUM_OF_SNUM);
qe_num_of_snum = 28;
qe = qe_get_device_node();
if (qe) {
i = of_property_read_variable_u8_array(qe, "fsl,qe-snums",
snums, 1, QE_NUM_OF_SNUM);
if (i > 0) {
of_node_put(qe);
qe_num_of_snum = i;
return;
}
of_property_read_u32(qe, "fsl,qe-num-snums", &qe_num_of_snum);
of_node_put(qe);
}
if (qe_num_of_snum == 76) {
snum_init = snum_init_76;
} else if (qe_num_of_snum == 28 || qe_num_of_snum == 46) {
snum_init = snum_init_46;
} else {
pr_err("QE: unsupported value of fsl,qe-num-snums: %u\n", qe_num_of_snum);
return;
}
memcpy(snums, snum_init, qe_num_of_snum);
}
int qe_get_snum(void)
{
unsigned long flags;
int snum = -EBUSY;
int i;
spin_lock_irqsave(&qe_lock, flags);
i = find_first_zero_bit(snum_state, qe_num_of_snum);
if (i < qe_num_of_snum) {
set_bit(i, snum_state);
snum = snums[i];
}
spin_unlock_irqrestore(&qe_lock, flags);
return snum;
}
EXPORT_SYMBOL(qe_get_snum);
void qe_put_snum(u8 snum)
{
const u8 *p = memchr(snums, snum, qe_num_of_snum);
if (p)
clear_bit(p - snums, snum_state);
}
EXPORT_SYMBOL(qe_put_snum);
static int qe_sdma_init(void)
{
struct sdma __iomem *sdma = &qe_immr->sdma;
static s32 sdma_buf_offset = -ENOMEM;
if (sdma_buf_offset < 0) {
sdma_buf_offset = qe_muram_alloc(512 * 2, 4096);
if (sdma_buf_offset < 0)
return -ENOMEM;
}
iowrite32be((u32)sdma_buf_offset & QE_SDEBCR_BA_MASK,
&sdma->sdebcr);
iowrite32be((QE_SDMR_GLB_1_MSK | (0x1 << QE_SDMR_CEN_SHIFT)),
&sdma->sdmr);
return 0;
}
#define MAX_QE_RISC 4
static struct qe_firmware_info qe_firmware_info;
static int qe_firmware_uploaded;
static void qe_upload_microcode(const void *base,
const struct qe_microcode *ucode)
{
const __be32 *code = base + be32_to_cpu(ucode->code_offset);
unsigned int i;
if (ucode->major || ucode->minor || ucode->revision)
printk(KERN_INFO "qe-firmware: "
"uploading microcode '%s' version %u.%u.%u\n",
ucode->id, ucode->major, ucode->minor, ucode->revision);
else
printk(KERN_INFO "qe-firmware: "
"uploading microcode '%s'\n", ucode->id);
iowrite32be(be32_to_cpu(ucode->iram_offset) | QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR,
&qe_immr->iram.iadd);
for (i = 0; i < be32_to_cpu(ucode->count); i++)
iowrite32be(be32_to_cpu(code[i]), &qe_immr->iram.idata);
iowrite32be(QE_IRAM_READY, &qe_immr->iram.iready);
}
int qe_upload_firmware(const struct qe_firmware *firmware)
{
unsigned int i;
unsigned int j;
u32 crc;
size_t calc_size;
size_t length;
const struct qe_header *hdr;
if (!firmware) {
printk(KERN_ERR "qe-firmware: invalid pointer\n");
return -EINVAL;
}
hdr = &firmware->header;
length = be32_to_cpu(hdr->length);
if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
(hdr->magic[2] != 'F')) {
printk(KERN_ERR "qe-firmware: not a microcode\n");
return -EPERM;
}
if (hdr->version != 1) {
printk(KERN_ERR "qe-firmware: unsupported version\n");
return -EPERM;
}
if ((firmware->count < 1) || (firmware->count > MAX_QE_RISC)) {
printk(KERN_ERR "qe-firmware: invalid data\n");
return -EINVAL;
}
calc_size = struct_size(firmware, microcode, firmware->count);
for (i = 0; i < firmware->count; i++)
calc_size += sizeof(__be32) *
be32_to_cpu(firmware->microcode[i].count);
if (length != calc_size + sizeof(__be32)) {
printk(KERN_ERR "qe-firmware: invalid length\n");
return -EPERM;
}
crc = be32_to_cpu(*(__be32 *)((void *)firmware + calc_size));
if (crc != crc32(0, firmware, calc_size)) {
printk(KERN_ERR "qe-firmware: firmware CRC is invalid\n");
return -EIO;
}
if (!firmware->split)
qe_setbits_be16(&qe_immr->cp.cercr, QE_CP_CERCR_CIR);
if (firmware->soc.model)
printk(KERN_INFO
"qe-firmware: firmware '%s' for %u V%u.%u\n",
firmware->id, be16_to_cpu(firmware->soc.model),
firmware->soc.major, firmware->soc.minor);
else
printk(KERN_INFO "qe-firmware: firmware '%s'\n",
firmware->id);
memset(&qe_firmware_info, 0, sizeof(qe_firmware_info));
strscpy(qe_firmware_info.id, firmware->id, sizeof(qe_firmware_info.id));
qe_firmware_info.extended_modes = be64_to_cpu(firmware->extended_modes);
memcpy(qe_firmware_info.vtraps, firmware->vtraps,
sizeof(firmware->vtraps));
for (i = 0; i < firmware->count; i++) {
const struct qe_microcode *ucode = &firmware->microcode[i];
if (ucode->code_offset)
qe_upload_microcode(firmware, ucode);
for (j = 0; j < 16; j++) {
u32 trap = be32_to_cpu(ucode->traps[j]);
if (trap)
iowrite32be(trap,
&qe_immr->rsp[i].tibcr[j]);
}
iowrite32be(be32_to_cpu(ucode->eccr),
&qe_immr->rsp[i].eccr);
}
qe_firmware_uploaded = 1;
return 0;
}
EXPORT_SYMBOL(qe_upload_firmware);
struct qe_firmware_info *qe_get_firmware_info(void)
{
static int initialized;
struct device_node *qe;
struct device_node *fw = NULL;
const char *sprop;
if (qe_firmware_uploaded)
return &qe_firmware_info;
if (initialized)
return NULL;
initialized = 1;
qe = qe_get_device_node();
if (!qe)
return NULL;
fw = of_get_child_by_name(qe, "firmware");
of_node_put(qe);
if (!fw)
return NULL;
qe_firmware_uploaded = 1;
sprop = of_get_property(fw, "id", NULL);
if (sprop)
strscpy(qe_firmware_info.id, sprop,
sizeof(qe_firmware_info.id));
of_property_read_u64(fw, "extended-modes",
&qe_firmware_info.extended_modes);
of_property_read_u32_array(fw, "virtual-traps", qe_firmware_info.vtraps,
ARRAY_SIZE(qe_firmware_info.vtraps));
of_node_put(fw);
return &qe_firmware_info;
}
EXPORT_SYMBOL(qe_get_firmware_info);
unsigned int qe_get_num_of_risc(void)
{
struct device_node *qe;
unsigned int num_of_risc = 0;
qe = qe_get_device_node();
if (!qe)
return num_of_risc;
of_property_read_u32(qe, "fsl,qe-num-riscs", &num_of_risc);
of_node_put(qe);
return num_of_risc;
}
EXPORT_SYMBOL(qe_get_num_of_risc);
unsigned int qe_get_num_of_snums(void)
{
return qe_num_of_snum;
}
EXPORT_SYMBOL(qe_get_num_of_snums);
static int __init qe_init(void)
{
struct device_node *np;
np = of_find_compatible_node(NULL, NULL, "fsl,qe");
if (!np)
return -ENODEV;
qe_reset();
of_node_put(np);
return 0;
}
subsys_initcall(qe_init);
#if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx)
static int qe_resume(struct platform_device *ofdev)
{
if (!qe_alive_during_sleep())
qe_reset();
return 0;
}
static int qe_probe(struct platform_device *ofdev)
{
return 0;
}
static const struct of_device_id qe_ids[] = {
{ .compatible = "fsl,qe", },
{ },
};
static struct platform_driver qe_driver = {
.driver = {
.name = "fsl-qe",
.of_match_table = qe_ids,
},
.probe = qe_probe,
.resume = qe_resume,
};
builtin_platform_driver(qe_driver);
#endif /* defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx) */