// SPDX-License-Identifier: GPL-2.0
/*
 * Support for mt9m114 Camera Sensor.
 *
 * Copyright (c) 2010 Intel Corporation. All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License version
 * 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 *
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/acpi.h>
#include "../include/linux/atomisp_gmin_platform.h"
#include <media/v4l2-device.h>

#include "mt9m114.h"

#define to_mt9m114_sensor(sd) container_of(sd, struct mt9m114_device, sd)

/*
 * TODO: use debug parameter to actually define when debug messages should
 * be printed.
 */
static int debug;
static int aaalock;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug level (0-1)");

static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value);
static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value);
static int mt9m114_wait_state(struct i2c_client *client, int timeout);

static int
mt9m114_read_reg(struct i2c_client *client, u16 data_length, u32 reg, u32 *val)
{
	int err;
	struct i2c_msg msg[2];
	unsigned char data[4];

	if (!client->adapter) {
		v4l2_err(client, "%s error, no client->adapter\n", __func__);
		return -ENODEV;
	}

	if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
	    && data_length != MISENSOR_32BIT) {
		v4l2_err(client, "%s error, invalid data length\n", __func__);
		return -EINVAL;
	}

	msg[0].addr = client->addr;
	msg[0].flags = 0;
	msg[0].len = MSG_LEN_OFFSET;
	msg[0].buf = data;

	/* high byte goes out first */
	data[0] = (u16)(reg >> 8);
	data[1] = (u16)(reg & 0xff);

	msg[1].addr = client->addr;
	msg[1].len = data_length;
	msg[1].flags = I2C_M_RD;
	msg[1].buf = data;

	err = i2c_transfer(client->adapter, msg, 2);

	if (err >= 0) {
		*val = 0;
		/* high byte comes first */
		if (data_length == MISENSOR_8BIT)
			*val = data[0];
		else if (data_length == MISENSOR_16BIT)
			*val = data[1] + (data[0] << 8);
		else
			*val = data[3] + (data[2] << 8) +
			       (data[1] << 16) + (data[0] << 24);

		return 0;
	}

	dev_err(&client->dev, "read from offset 0x%x error %d", reg, err);
	return err;
}

static int
mt9m114_write_reg(struct i2c_client *client, u16 data_length, u16 reg, u32 val)
{
	int num_msg;
	struct i2c_msg msg;
	unsigned char data[6] = {0};
	__be16 *wreg;
	int retry = 0;

	if (!client->adapter) {
		v4l2_err(client, "%s error, no client->adapter\n", __func__);
		return -ENODEV;
	}

	if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
	    && data_length != MISENSOR_32BIT) {
		v4l2_err(client, "%s error, invalid data_length\n", __func__);
		return -EINVAL;
	}

	memset(&msg, 0, sizeof(msg));

again:
	msg.addr = client->addr;
	msg.flags = 0;
	msg.len = 2 + data_length;
	msg.buf = data;

	/* high byte goes out first */
	wreg = (void *)data;
	*wreg = cpu_to_be16(reg);

	if (data_length == MISENSOR_8BIT) {
		data[2] = (u8)(val);
	} else if (data_length == MISENSOR_16BIT) {
		u16 *wdata = (void *)&data[2];

		*wdata = be16_to_cpu(*(__be16 *)&data[2]);
	} else {
		/* MISENSOR_32BIT */
		u32 *wdata = (void *)&data[2];

		*wdata = be32_to_cpu(*(__be32 *)&data[2]);
	}

	num_msg = i2c_transfer(client->adapter, &msg, 1);

	/*
	 * HACK: Need some delay here for Rev 2 sensors otherwise some
	 * registers do not seem to load correctly.
	 */
	mdelay(1);

	if (num_msg >= 0)
		return 0;

	dev_err(&client->dev, "write error: wrote 0x%x to offset 0x%x error %d",
		val, reg, num_msg);
	if (retry <= I2C_RETRY_COUNT) {
		dev_dbg(&client->dev, "retrying... %d", retry);
		retry++;
		msleep(20);
		goto again;
	}

	return num_msg;
}

/**
 * misensor_rmw_reg - Read/Modify/Write a value to a register in the sensor
 * device
 * @client: i2c driver client structure
 * @data_length: 8/16/32-bits length
 * @reg: register address
 * @mask: masked out bits
 * @set: bits set
 *
 * Read/modify/write a value to a register in the  sensor device.
 * Returns zero if successful, or non-zero otherwise.
 */
static int
misensor_rmw_reg(struct i2c_client *client, u16 data_length, u16 reg,
		 u32 mask, u32 set)
{
	int err;
	u32 val;

	/* Exit when no mask */
	if (mask == 0)
		return 0;

	/* @mask must not exceed data length */
	switch (data_length) {
	case MISENSOR_8BIT:
		if (mask & ~0xff)
			return -EINVAL;
		break;
	case MISENSOR_16BIT:
		if (mask & ~0xffff)
			return -EINVAL;
		break;
	case MISENSOR_32BIT:
		break;
	default:
		/* Wrong @data_length */
		return -EINVAL;
	}

	err = mt9m114_read_reg(client, data_length, reg, &val);
	if (err) {
		v4l2_err(client, "%s error exit, read failed\n", __func__);
		return -EINVAL;
	}

	val &= ~mask;

	/*
	 * Perform the OR function if the @set exists.
	 * Shift @set value to target bit location. @set should set only
	 * bits included in @mask.
	 *
	 * REVISIT: This function expects @set to be non-shifted. Its shift
	 * value is then defined to be equal to mask's LSB position.
	 * How about to inform values in their right offset position and avoid
	 * this unneeded shift operation?
	 */
	set <<= ffs(mask) - 1;
	val |= set & mask;

	err = mt9m114_write_reg(client, data_length, reg, val);
	if (err) {
		v4l2_err(client, "%s error exit, write failed\n", __func__);
		return -EINVAL;
	}

	return 0;
}

static int __mt9m114_flush_reg_array(struct i2c_client *client,
				     struct mt9m114_write_ctrl *ctrl)
{
	struct i2c_msg msg;
	const int num_msg = 1;
	int ret;
	int retry = 0;
	__be16 *data16 = (void *)&ctrl->buffer.addr;

	if (ctrl->index == 0)
		return 0;

again:
	msg.addr = client->addr;
	msg.flags = 0;
	msg.len = 2 + ctrl->index;
	*data16 = cpu_to_be16(ctrl->buffer.addr);
	msg.buf = (u8 *)&ctrl->buffer;

	ret = i2c_transfer(client->adapter, &msg, num_msg);
	if (ret != num_msg) {
		if (++retry <= I2C_RETRY_COUNT) {
			dev_dbg(&client->dev, "retrying... %d\n", retry);
			msleep(20);
			goto again;
		}
		dev_err(&client->dev, "%s: i2c transfer error\n", __func__);
		return -EIO;
	}

	ctrl->index = 0;

	/*
	 * REVISIT: Previously we had a delay after writing data to sensor.
	 * But it was removed as our tests have shown it is not necessary
	 * anymore.
	 */

	return 0;
}

static int __mt9m114_buf_reg_array(struct i2c_client *client,
				   struct mt9m114_write_ctrl *ctrl,
				   const struct misensor_reg *next)
{
	__be16 *data16;
	__be32 *data32;
	int err;

	/* Insufficient buffer? Let's flush and get more free space. */
	if (ctrl->index + next->length >= MT9M114_MAX_WRITE_BUF_SIZE) {
		err = __mt9m114_flush_reg_array(client, ctrl);
		if (err)
			return err;
	}

	switch (next->length) {
	case MISENSOR_8BIT:
		ctrl->buffer.data[ctrl->index] = (u8)next->val;
		break;
	case MISENSOR_16BIT:
		data16 = (__be16 *)&ctrl->buffer.data[ctrl->index];
		*data16 = cpu_to_be16((u16)next->val);
		break;
	case MISENSOR_32BIT:
		data32 = (__be32 *)&ctrl->buffer.data[ctrl->index];
		*data32 = cpu_to_be32(next->val);
		break;
	default:
		return -EINVAL;
	}

	/* When first item is added, we need to store its starting address */
	if (ctrl->index == 0)
		ctrl->buffer.addr = next->reg;

	ctrl->index += next->length;

	return 0;
}

static int
__mt9m114_write_reg_is_consecutive(struct i2c_client *client,
				   struct mt9m114_write_ctrl *ctrl,
				   const struct misensor_reg *next)
{
	if (ctrl->index == 0)
		return 1;

	return ctrl->buffer.addr + ctrl->index == next->reg;
}

/*
 * mt9m114_write_reg_array - Initializes a list of mt9m114 registers
 * @client: i2c driver client structure
 * @reglist: list of registers to be written
 * @poll: completion polling requirement
 * This function initializes a list of registers. When consecutive addresses
 * are found in a row on the list, this function creates a buffer and sends
 * consecutive data in a single i2c_transfer().
 *
 * __mt9m114_flush_reg_array, __mt9m114_buf_reg_array() and
 * __mt9m114_write_reg_is_consecutive() are internal functions to
 * mt9m114_write_reg_array() and should be not used anywhere else.
 *
 */
static int mt9m114_write_reg_array(struct i2c_client *client,
				   const struct misensor_reg *reglist,
				   int poll)
{
	const struct misensor_reg *next = reglist;
	struct mt9m114_write_ctrl ctrl;
	int err;

	if (poll == PRE_POLLING) {
		err = mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
		if (err)
			return err;
	}

	ctrl.index = 0;
	for (; next->length != MISENSOR_TOK_TERM; next++) {
		switch (next->length & MISENSOR_TOK_MASK) {
		case MISENSOR_TOK_DELAY:
			err = __mt9m114_flush_reg_array(client, &ctrl);
			if (err)
				return err;
			msleep(next->val);
			break;
		case MISENSOR_TOK_RMW:
			err = __mt9m114_flush_reg_array(client, &ctrl);
			err |= misensor_rmw_reg(client,
						next->length &
						~MISENSOR_TOK_RMW,
						next->reg, next->val,
						next->val2);
			if (err) {
				dev_err(&client->dev, "%s read err. aborted\n",
					__func__);
				return -EINVAL;
			}
			break;
		default:
			/*
			 * If next address is not consecutive, data needs to be
			 * flushed before proceed.
			 */
			if (!__mt9m114_write_reg_is_consecutive(client, &ctrl,
								next)) {
				err = __mt9m114_flush_reg_array(client, &ctrl);
				if (err)
					return err;
			}
			err = __mt9m114_buf_reg_array(client, &ctrl, next);
			if (err) {
				v4l2_err(client, "%s: write error, aborted\n",
					 __func__);
				return err;
			}
			break;
		}
	}

	err = __mt9m114_flush_reg_array(client, &ctrl);
	if (err)
		return err;

	if (poll == POST_POLLING)
		return mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);

	return 0;
}

static int mt9m114_wait_state(struct i2c_client *client, int timeout)
{
	int ret;
	unsigned int val;

	while (timeout-- > 0) {
		ret = mt9m114_read_reg(client, MISENSOR_16BIT, 0x0080, &val);
		if (ret)
			return ret;
		if ((val & 0x2) == 0)
			return 0;
		msleep(20);
	}

	return -EINVAL;
}

static int mt9m114_set_suspend(struct v4l2_subdev *sd)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	return mt9m114_write_reg_array(client,
				       mt9m114_standby_reg, POST_POLLING);
}

static int mt9m114_init_common(struct v4l2_subdev *sd)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	return mt9m114_write_reg_array(client, mt9m114_common, PRE_POLLING);
}

static int power_ctrl(struct v4l2_subdev *sd, bool flag)
{
	int ret;
	struct mt9m114_device *dev = to_mt9m114_sensor(sd);

	if (!dev || !dev->platform_data)
		return -ENODEV;

	if (flag) {
		ret = dev->platform_data->v2p8_ctrl(sd, 1);
		if (ret == 0) {
			ret = dev->platform_data->v1p8_ctrl(sd, 1);
			if (ret)
				ret = dev->platform_data->v2p8_ctrl(sd, 0);
		}
	} else {
		ret = dev->platform_data->v2p8_ctrl(sd, 0);
		ret = dev->platform_data->v1p8_ctrl(sd, 0);
	}
	return ret;
}

static int gpio_ctrl(struct v4l2_subdev *sd, bool flag)
{
	int ret;
	struct mt9m114_device *dev = to_mt9m114_sensor(sd);

	if (!dev || !dev->platform_data)
		return -ENODEV;

	/*
	 * Note: current modules wire only one GPIO signal (RESET#),
	 * but the schematic wires up two to the connector.  BIOS
	 * versions have been unfortunately inconsistent with which
	 * ACPI index RESET# is on, so hit both
	 */

	if (flag) {
		ret = dev->platform_data->gpio0_ctrl(sd, 0);
		ret = dev->platform_data->gpio1_ctrl(sd, 0);
		msleep(60);
		ret |= dev->platform_data->gpio0_ctrl(sd, 1);
		ret |= dev->platform_data->gpio1_ctrl(sd, 1);
	} else {
		ret = dev->platform_data->gpio0_ctrl(sd, 0);
		ret = dev->platform_data->gpio1_ctrl(sd, 0);
	}
	return ret;
}

static int power_up(struct v4l2_subdev *sd)
{
	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret;

	if (!dev->platform_data) {
		dev_err(&client->dev, "no camera_sensor_platform_data");
		return -ENODEV;
	}

	/* power control */
	ret = power_ctrl(sd, 1);
	if (ret)
		goto fail_power;

	/* flis clock control */
	ret = dev->platform_data->flisclk_ctrl(sd, 1);
	if (ret)
		goto fail_clk;

	/* gpio ctrl */
	ret = gpio_ctrl(sd, 1);
	if (ret)
		dev_err(&client->dev, "gpio failed 1\n");
	/*
	 * according to DS, 44ms is needed between power up and first i2c
	 * commend
	 */
	msleep(50);

	return 0;

fail_clk:
	dev->platform_data->flisclk_ctrl(sd, 0);
fail_power:
	power_ctrl(sd, 0);
	dev_err(&client->dev, "sensor power-up failed\n");

	return ret;
}

static int power_down(struct v4l2_subdev *sd)
{
	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret;

	if (!dev->platform_data) {
		dev_err(&client->dev, "no camera_sensor_platform_data");
		return -ENODEV;
	}

	ret = dev->platform_data->flisclk_ctrl(sd, 0);
	if (ret)
		dev_err(&client->dev, "flisclk failed\n");

	/* gpio ctrl */
	ret = gpio_ctrl(sd, 0);
	if (ret)
		dev_err(&client->dev, "gpio failed 1\n");

	/* power control */
	ret = power_ctrl(sd, 0);
	if (ret)
		dev_err(&client->dev, "vprog failed.\n");

	/* according to DS, 20ms is needed after power down */
	msleep(20);

	return ret;
}

static int mt9m114_s_power(struct v4l2_subdev *sd, int power)
{
	if (power == 0)
		return power_down(sd);

	if (power_up(sd))
		return -EINVAL;

	return mt9m114_init_common(sd);
}

static int mt9m114_res2size(struct v4l2_subdev *sd, int *h_size, int *v_size)
{
	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
	unsigned short hsize;
	unsigned short vsize;

	switch (dev->res) {
	case MT9M114_RES_736P:
		hsize = MT9M114_RES_736P_SIZE_H;
		vsize = MT9M114_RES_736P_SIZE_V;
		break;
	case MT9M114_RES_864P:
		hsize = MT9M114_RES_864P_SIZE_H;
		vsize = MT9M114_RES_864P_SIZE_V;
		break;
	case MT9M114_RES_960P:
		hsize = MT9M114_RES_960P_SIZE_H;
		vsize = MT9M114_RES_960P_SIZE_V;
		break;
	default:
		v4l2_err(sd, "%s: Resolution 0x%08x unknown\n", __func__,
			 dev->res);
		return -EINVAL;
	}

	if (h_size)
		*h_size = hsize;
	if (v_size)
		*v_size = vsize;

	return 0;
}

static int mt9m114_get_fmt(struct v4l2_subdev *sd,
			   struct v4l2_subdev_state *sd_state,
			   struct v4l2_subdev_format *format)
{
	struct v4l2_mbus_framefmt *fmt = &format->format;
	int width, height;
	int ret;

	if (format->pad)
		return -EINVAL;
	fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;

	ret = mt9m114_res2size(sd, &width, &height);
	if (ret)
		return ret;
	fmt->width = width;
	fmt->height = height;

	return 0;
}

static int mt9m114_set_fmt(struct v4l2_subdev *sd,
			   struct v4l2_subdev_state *sd_state,
			   struct v4l2_subdev_format *format)
{
	struct v4l2_mbus_framefmt *fmt = &format->format;
	struct i2c_client *c = v4l2_get_subdevdata(sd);
	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
	struct mt9m114_res_struct *res;
	u32 width = fmt->width;
	u32 height = fmt->height;
	struct camera_mipi_info *mt9m114_info = NULL;

	int ret;

	if (format->pad)
		return -EINVAL;
	dev->streamon = 0;
	dev->first_exp = MT9M114_DEFAULT_FIRST_EXP;

	mt9m114_info = v4l2_get_subdev_hostdata(sd);
	if (!mt9m114_info)
		return -EINVAL;

	res = v4l2_find_nearest_size(mt9m114_res,
				     ARRAY_SIZE(mt9m114_res), width,
				     height, fmt->width, fmt->height);
	if (!res)
		res = &mt9m114_res[N_RES - 1];

	fmt->width = res->width;
	fmt->height = res->height;

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		sd_state->pads->try_fmt = *fmt;
		return 0;
	}

	switch (res->res) {
	case MT9M114_RES_736P:
		ret = mt9m114_write_reg_array(c, mt9m114_736P_init, NO_POLLING);
		ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
					MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
		break;
	case MT9M114_RES_864P:
		ret = mt9m114_write_reg_array(c, mt9m114_864P_init, NO_POLLING);
		ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
					MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
		break;
	case MT9M114_RES_960P:
		ret = mt9m114_write_reg_array(c, mt9m114_976P_init, NO_POLLING);
		/* set sensor read_mode to Normal */
		ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
					MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
		break;
	default:
		v4l2_err(sd, "set resolution: %d failed!\n", res->res);
		return -EINVAL;
	}

	if (ret)
		return -EINVAL;

	ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg, POST_POLLING);
	if (ret < 0)
		return ret;

	if (mt9m114_set_suspend(sd))
		return -EINVAL;

	if (dev->res != res->res) {
		int index;

		/* Switch to different size */
		if (width <= 640) {
			dev->nctx = 0x00; /* Set for context A */
		} else {
			/*
			 * Context B is used for resolutions larger than 640x480
			 * Using YUV for Context B.
			 */
			dev->nctx = 0x01; /* set for context B */
		}

		/*
		 * Marked current sensor res as being "used"
		 *
		 * REVISIT: We don't need to use an "used" field on each mode
		 * list entry to know which mode is selected. If this
		 * information is really necessary, how about to use a single
		 * variable on sensor dev struct?
		 */
		for (index = 0; index < N_RES; index++) {
			if ((width == mt9m114_res[index].width) &&
			    (height == mt9m114_res[index].height)) {
				mt9m114_res[index].used = true;
				continue;
			}
			mt9m114_res[index].used = false;
		}
	}
	/*
	 * mt9m114 - we don't poll for context switch
	 * because it does not happen with streaming disabled.
	 */
	dev->res = res->res;

	fmt->width = width;
	fmt->height = height;
	fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
	return 0;
}

/* Horizontal flip the image. */
static int mt9m114_g_hflip(struct v4l2_subdev *sd, s32 *val)
{
	struct i2c_client *c = v4l2_get_subdevdata(sd);
	int ret;
	u32 data;

	ret = mt9m114_read_reg(c, MISENSOR_16BIT,
			       (u32)MISENSOR_READ_MODE, &data);
	if (ret)
		return ret;
	*val = !!(data & MISENSOR_HFLIP_MASK);

	return 0;
}

static int mt9m114_g_vflip(struct v4l2_subdev *sd, s32 *val)
{
	struct i2c_client *c = v4l2_get_subdevdata(sd);
	int ret;
	u32 data;

	ret = mt9m114_read_reg(c, MISENSOR_16BIT,
			       (u32)MISENSOR_READ_MODE, &data);
	if (ret)
		return ret;
	*val = !!(data & MISENSOR_VFLIP_MASK);

	return 0;
}

static long mt9m114_s_exposure(struct v4l2_subdev *sd,
			       struct atomisp_exposure *exposure)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
	int ret = 0;
	unsigned int coarse_integration = 0;
	unsigned int f_lines = 0;
	unsigned int frame_len_lines = 0; /* ExposureTime.FrameLengthLines; */
	unsigned int analog_gain, digital_gain;
	u32 analog_gain_to_write = 0;

	dev_dbg(&client->dev, "%s(0x%X 0x%X 0x%X)\n", __func__,
		exposure->integration_time[0], exposure->gain[0],
		exposure->gain[1]);

	coarse_integration = exposure->integration_time[0];
	/*
	 * fine_integration = ExposureTime.FineIntegrationTime;
	 * frame_len_lines = ExposureTime.FrameLengthLines;
	 */
	f_lines = mt9m114_res[dev->res].lines_per_frame;
	analog_gain = exposure->gain[0];
	digital_gain = exposure->gain[1];
	if (!dev->streamon) {
		/*Save the first exposure values while stream is off*/
		dev->first_exp = coarse_integration;
		dev->first_gain = analog_gain;
		dev->first_diggain = digital_gain;
	}
	/* digital_gain = 0x400 * (((u16) digital_gain) >> 8) +		*/
	/* ((unsigned int)(0x400 * (((u16) digital_gain) & 0xFF)) >>8); */

	/* set frame length */
	if (f_lines < coarse_integration + 6)
		f_lines = coarse_integration + 6;
	if (f_lines < frame_len_lines)
		f_lines = frame_len_lines;
	ret = mt9m114_write_reg(client, MISENSOR_16BIT, 0x300A, f_lines);
	if (ret) {
		v4l2_err(client, "%s: fail to set f_lines\n", __func__);
		return -EINVAL;
	}

	/* set coarse integration */
	/*
	 * 3A provide real exposure time.
	 * should not translate to any value here.
	 */
	ret = mt9m114_write_reg(client, MISENSOR_16BIT,
				REG_EXPO_COARSE, (u16)(coarse_integration));
	if (ret) {
		v4l2_err(client, "%s: fail to set exposure time\n", __func__);
		return -EINVAL;
	}

	/*
	 * set analog/digital gain
	switch(analog_gain)
	{
	case 0:
	  analog_gain_to_write = 0x0;
	  break;
	case 1:
	  analog_gain_to_write = 0x20;
	  break;
	case 2:
	  analog_gain_to_write = 0x60;
	  break;
	case 4:
	  analog_gain_to_write = 0xA0;
	  break;
	case 8:
	  analog_gain_to_write = 0xE0;
	  break;
	default:
	  analog_gain_to_write = 0x20;
	  break;
	}
	*/
	if (digital_gain >= 16 || digital_gain <= 1)
		digital_gain = 1;
	/*
	 * analog_gain_to_write = (u16)((digital_gain << 12)
	 *				| analog_gain_to_write);
	 */
	analog_gain_to_write = (u16)((digital_gain << 12) | (u16)analog_gain);
	ret = mt9m114_write_reg(client, MISENSOR_16BIT,
				REG_GAIN, analog_gain_to_write);
	if (ret) {
		v4l2_err(client, "%s: fail to set analog_gain_to_write\n",
			 __func__);
		return -EINVAL;
	}

	return ret;
}

static long mt9m114_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
	switch (cmd) {
	case ATOMISP_IOC_S_EXPOSURE:
		return mt9m114_s_exposure(sd, arg);
	default:
		return -EINVAL;
	}

	return 0;
}

/*
 * This returns the exposure time being used. This should only be used
 * for filling in EXIF data, not for actual image processing.
 */
static int mt9m114_g_exposure(struct v4l2_subdev *sd, s32 *value)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	u32 coarse;
	int ret;

	/* the fine integration time is currently not calculated */
	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
			       REG_EXPO_COARSE, &coarse);
	if (ret)
		return ret;

	*value = coarse;
	return 0;
}

/*
 * This function will return the sensor supported max exposure zone number.
 * the sensor which supports max exposure zone number is 1.
 */
static int mt9m114_g_exposure_zone_num(struct v4l2_subdev *sd, s32 *val)
{
	*val = 1;

	return 0;
}

/*
 * set exposure metering, average/center_weighted/spot/matrix.
 */
static int mt9m114_s_exposure_metering(struct v4l2_subdev *sd, s32 val)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret;

	switch (val) {
	case V4L2_EXPOSURE_METERING_SPOT:
		ret = mt9m114_write_reg_array(client, mt9m114_exp_average,
					      NO_POLLING);
		if (ret) {
			dev_err(&client->dev, "write exp_average reg err.\n");
			return ret;
		}
		break;
	case V4L2_EXPOSURE_METERING_CENTER_WEIGHTED:
	default:
		ret = mt9m114_write_reg_array(client, mt9m114_exp_center,
					      NO_POLLING);
		if (ret) {
			dev_err(&client->dev, "write exp_default reg err");
			return ret;
		}
	}

	return 0;
}

/*
 * This function is for touch exposure feature.
 */
static int mt9m114_s_exposure_selection(struct v4l2_subdev *sd,
					struct v4l2_subdev_state *sd_state,
					struct v4l2_subdev_selection *sel)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	struct misensor_reg exp_reg;
	int width, height;
	int grid_width, grid_height;
	int grid_left, grid_top, grid_right, grid_bottom;
	int win_left, win_top, win_right, win_bottom;
	int i, j;
	int ret;

	if (sel->which != V4L2_SUBDEV_FORMAT_TRY &&
	    sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
		return -EINVAL;

	grid_left = sel->r.left;
	grid_top = sel->r.top;
	grid_right = sel->r.left + sel->r.width - 1;
	grid_bottom = sel->r.top + sel->r.height - 1;

	ret = mt9m114_res2size(sd, &width, &height);
	if (ret)
		return ret;

	grid_width = width / 5;
	grid_height = height / 5;

	if (grid_width && grid_height) {
		win_left = grid_left / grid_width;
		win_top = grid_top / grid_height;
		win_right = grid_right / grid_width;
		win_bottom = grid_bottom / grid_height;
	} else {
		dev_err(&client->dev, "Incorrect exp grid.\n");
		return -EINVAL;
	}

	win_left   = clamp_t(int, win_left, 0, 4);
	win_top    = clamp_t(int, win_top, 0, 4);
	win_right  = clamp_t(int, win_right, 0, 4);
	win_bottom = clamp_t(int, win_bottom, 0, 4);

	ret = mt9m114_write_reg_array(client, mt9m114_exp_average, NO_POLLING);
	if (ret) {
		dev_err(&client->dev, "write exp_average reg err.\n");
		return ret;
	}

	for (i = win_top; i <= win_bottom; i++) {
		for (j = win_left; j <= win_right; j++) {
			exp_reg = mt9m114_exp_win[i][j];

			ret = mt9m114_write_reg(client, exp_reg.length,
						exp_reg.reg, exp_reg.val);
			if (ret) {
				dev_err(&client->dev, "write exp_reg err.\n");
				return ret;
			}
		}
	}

	return 0;
}

static int mt9m114_s_ev(struct v4l2_subdev *sd, s32 val)
{
	struct i2c_client *c = v4l2_get_subdevdata(sd);
	s32 luma = 0x37;
	int err;

	/*
	 * EV value only support -2 to 2
	 * 0: 0x37, 1:0x47, 2:0x57, -1:0x27, -2:0x17
	 */
	if (val < -2 || val > 2)
		return -EINVAL;
	luma += 0x10 * val;
	dev_dbg(&c->dev, "%s val:%d luma:0x%x\n", __func__, val, luma);
	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
	if (err) {
		dev_err(&c->dev, "%s logic addr access error\n", __func__);
		return err;
	}
	err = mt9m114_write_reg(c, MISENSOR_8BIT, 0xC87A, (u32)luma);
	if (err) {
		dev_err(&c->dev, "%s write target_average_luma failed\n",
			__func__);
		return err;
	}
	udelay(10);

	return 0;
}

static int mt9m114_g_ev(struct v4l2_subdev *sd, s32 *val)
{
	struct i2c_client *c = v4l2_get_subdevdata(sd);
	int err;
	u32 luma;

	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
	if (err) {
		dev_err(&c->dev, "%s logic addr access error\n", __func__);
		return err;
	}
	err = mt9m114_read_reg(c, MISENSOR_8BIT, 0xC87A, &luma);
	if (err) {
		dev_err(&c->dev, "%s read target_average_luma failed\n",
			__func__);
		return err;
	}
	luma -= 0x17;
	luma /= 0x10;
	*val = (s32)luma - 2;
	dev_dbg(&c->dev, "%s val:%d\n", __func__, *val);

	return 0;
}

/*
 * Fake interface
 * mt9m114 now can not support 3a_lock
 */
static int mt9m114_s_3a_lock(struct v4l2_subdev *sd, s32 val)
{
	aaalock = val;
	return 0;
}

static int mt9m114_g_3a_lock(struct v4l2_subdev *sd, s32 *val)
{
	if (aaalock)
		return V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE
		       | V4L2_LOCK_FOCUS;
	return 0;
}

static int mt9m114_s_ctrl(struct v4l2_ctrl *ctrl)
{
	struct mt9m114_device *dev =
	    container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
	struct i2c_client *client = v4l2_get_subdevdata(&dev->sd);
	int ret = 0;

	switch (ctrl->id) {
	case V4L2_CID_VFLIP:
		dev_dbg(&client->dev, "%s: CID_VFLIP:%d.\n",
			__func__, ctrl->val);
		ret = mt9m114_t_vflip(&dev->sd, ctrl->val);
		break;
	case V4L2_CID_HFLIP:
		dev_dbg(&client->dev, "%s: CID_HFLIP:%d.\n",
			__func__, ctrl->val);
		ret = mt9m114_t_hflip(&dev->sd, ctrl->val);
		break;
	case V4L2_CID_EXPOSURE_METERING:
		ret = mt9m114_s_exposure_metering(&dev->sd, ctrl->val);
		break;
	case V4L2_CID_EXPOSURE:
		ret = mt9m114_s_ev(&dev->sd, ctrl->val);
		break;
	case V4L2_CID_3A_LOCK:
		ret = mt9m114_s_3a_lock(&dev->sd, ctrl->val);
		break;
	default:
		ret = -EINVAL;
	}
	return ret;
}

static int mt9m114_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
	struct mt9m114_device *dev =
	    container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
	int ret = 0;

	switch (ctrl->id) {
	case V4L2_CID_VFLIP:
		ret = mt9m114_g_vflip(&dev->sd, &ctrl->val);
		break;
	case V4L2_CID_HFLIP:
		ret = mt9m114_g_hflip(&dev->sd, &ctrl->val);
		break;
	case V4L2_CID_EXPOSURE_ABSOLUTE:
		ret = mt9m114_g_exposure(&dev->sd, &ctrl->val);
		break;
	case V4L2_CID_EXPOSURE_ZONE_NUM:
		ret = mt9m114_g_exposure_zone_num(&dev->sd, &ctrl->val);
		break;
	case V4L2_CID_EXPOSURE:
		ret = mt9m114_g_ev(&dev->sd, &ctrl->val);
		break;
	case V4L2_CID_3A_LOCK:
		ret = mt9m114_g_3a_lock(&dev->sd, &ctrl->val);
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static const struct v4l2_ctrl_ops ctrl_ops = {
	.s_ctrl = mt9m114_s_ctrl,
	.g_volatile_ctrl = mt9m114_g_volatile_ctrl
};

static struct v4l2_ctrl_config mt9m114_controls[] = {
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_VFLIP,
		.name = "Image v-Flip",
		.type = V4L2_CTRL_TYPE_INTEGER,
		.min = 0,
		.max = 1,
		.step = 1,
		.def = 0,
	},
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_HFLIP,
		.name = "Image h-Flip",
		.type = V4L2_CTRL_TYPE_INTEGER,
		.min = 0,
		.max = 1,
		.step = 1,
		.def = 0,
	},
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_EXPOSURE_ABSOLUTE,
		.name = "exposure",
		.type = V4L2_CTRL_TYPE_INTEGER,
		.min = 0,
		.max = 0xffff,
		.step = 1,
		.def = 0,
		.flags = 0,
	},
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_EXPOSURE_ZONE_NUM,
		.name = "one-time exposure zone number",
		.type = V4L2_CTRL_TYPE_INTEGER,
		.min = 0,
		.max = 0xffff,
		.step = 1,
		.def = 0,
		.flags = 0,
	},
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_EXPOSURE_METERING,
		.name = "metering",
		.type = V4L2_CTRL_TYPE_MENU,
		.min = 0,
		.max = 3,
		.step = 0,
		.def = 1,
		.flags = 0,
	},
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_EXPOSURE,
		.name = "exposure biasx",
		.type = V4L2_CTRL_TYPE_INTEGER,
		.min = -2,
		.max = 2,
		.step = 1,
		.def = 0,
		.flags = 0,
	},
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_3A_LOCK,
		.name = "3a lock",
		.type = V4L2_CTRL_TYPE_BITMASK,
		.min = 0,
		.max = V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE | V4L2_LOCK_FOCUS,
		.step = 1,
		.def = 0,
		.flags = 0,
	},
};

static int mt9m114_detect(struct mt9m114_device *dev, struct i2c_client *client)
{
	struct i2c_adapter *adapter = client->adapter;
	u32 model;
	int ret;

	if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) {
		dev_err(&client->dev, "%s: i2c error", __func__);
		return -ENODEV;
	}
	ret = mt9m114_read_reg(client, MISENSOR_16BIT, MT9M114_PID, &model);
	if (ret)
		return ret;
	dev->real_model_id = model;

	if (model != MT9M114_MOD_ID) {
		dev_err(&client->dev, "%s: failed: client->addr = %x\n",
			__func__, client->addr);
		return -ENODEV;
	}

	return 0;
}

static int
mt9m114_s_config(struct v4l2_subdev *sd, int irq, void *platform_data)
{
	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret;

	if (!platform_data)
		return -ENODEV;

	dev->platform_data =
	    (struct camera_sensor_platform_data *)platform_data;

	ret = power_up(sd);
	if (ret) {
		v4l2_err(client, "mt9m114 power-up err");
		return ret;
	}

	/* config & detect sensor */
	ret = mt9m114_detect(dev, client);
	if (ret) {
		v4l2_err(client, "mt9m114_detect err s_config.\n");
		goto fail_detect;
	}

	ret = dev->platform_data->csi_cfg(sd, 1);
	if (ret)
		goto fail_csi_cfg;

	ret = mt9m114_set_suspend(sd);
	if (ret) {
		v4l2_err(client, "mt9m114 suspend err");
		return ret;
	}

	ret = power_down(sd);
	if (ret) {
		v4l2_err(client, "mt9m114 power down err");
		return ret;
	}

	return ret;

fail_csi_cfg:
	dev->platform_data->csi_cfg(sd, 0);
fail_detect:
	power_down(sd);
	dev_err(&client->dev, "sensor power-gating failed\n");
	return ret;
}

/* Horizontal flip the image. */
static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value)
{
	struct i2c_client *c = v4l2_get_subdevdata(sd);
	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
	int err;
	/* set for direct mode */
	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
	if (value) {
		/* enable H flip ctx A */
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x01);
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x01);
		/* ctx B */
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x01);
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x01);

		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
					MISENSOR_HFLIP_MASK, MISENSOR_FLIP_EN);

		dev->bpat = MT9M114_BPAT_GRGRBGBG;
	} else {
		/* disable H flip ctx A */
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x00);
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x00);
		/* ctx B */
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x00);
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x00);

		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
					MISENSOR_HFLIP_MASK, MISENSOR_FLIP_DIS);

		dev->bpat = MT9M114_BPAT_BGBGGRGR;
	}

	err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
	udelay(10);

	return !!err;
}

/* Vertically flip the image */
static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value)
{
	struct i2c_client *c = v4l2_get_subdevdata(sd);
	int err;
	/* set for direct mode */
	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
	if (value >= 1) {
		/* enable H flip - ctx A */
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x01);
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x01);
		/* ctx B */
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x01);
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x01);

		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
					MISENSOR_VFLIP_MASK, MISENSOR_FLIP_EN);
	} else {
		/* disable H flip - ctx A */
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x00);
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x00);
		/* ctx B */
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x00);
		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x00);

		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
					MISENSOR_VFLIP_MASK, MISENSOR_FLIP_DIS);
	}

	err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
	udelay(10);

	return !!err;
}

static int mt9m114_g_frame_interval(struct v4l2_subdev *sd,
				    struct v4l2_subdev_frame_interval *interval)
{
	struct mt9m114_device *dev = to_mt9m114_sensor(sd);

	interval->interval.numerator = 1;
	interval->interval.denominator = mt9m114_res[dev->res].fps;

	return 0;
}

static int mt9m114_s_stream(struct v4l2_subdev *sd, int enable)
{
	int ret;
	struct i2c_client *c = v4l2_get_subdevdata(sd);
	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
	struct atomisp_exposure exposure;

	if (enable) {
		ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg,
					      POST_POLLING);
		if (ret < 0)
			return ret;

		if (dev->first_exp > MT9M114_MAX_FIRST_EXP) {
			exposure.integration_time[0] = dev->first_exp;
			exposure.gain[0] = dev->first_gain;
			exposure.gain[1] = dev->first_diggain;
			mt9m114_s_exposure(sd, &exposure);
		}
		dev->streamon = 1;

	} else {
		dev->streamon = 0;
		ret = mt9m114_set_suspend(sd);
	}

	return ret;
}

static int mt9m114_enum_mbus_code(struct v4l2_subdev *sd,
				  struct v4l2_subdev_state *sd_state,
				  struct v4l2_subdev_mbus_code_enum *code)
{
	if (code->index)
		return -EINVAL;
	code->code = MEDIA_BUS_FMT_SGRBG10_1X10;

	return 0;
}

static int mt9m114_enum_frame_size(struct v4l2_subdev *sd,
				   struct v4l2_subdev_state *sd_state,
				   struct v4l2_subdev_frame_size_enum *fse)
{
	unsigned int index = fse->index;

	if (index >= N_RES)
		return -EINVAL;

	fse->min_width = mt9m114_res[index].width;
	fse->min_height = mt9m114_res[index].height;
	fse->max_width = mt9m114_res[index].width;
	fse->max_height = mt9m114_res[index].height;

	return 0;
}

static int mt9m114_g_skip_frames(struct v4l2_subdev *sd, u32 *frames)
{
	int index;
	struct mt9m114_device *snr = to_mt9m114_sensor(sd);

	if (!frames)
		return -EINVAL;

	for (index = 0; index < N_RES; index++) {
		if (mt9m114_res[index].res == snr->res)
			break;
	}

	if (index >= N_RES)
		return -EINVAL;

	*frames = mt9m114_res[index].skip_frames;

	return 0;
}

static const struct v4l2_subdev_video_ops mt9m114_video_ops = {
	.s_stream = mt9m114_s_stream,
	.g_frame_interval = mt9m114_g_frame_interval,
};

static const struct v4l2_subdev_sensor_ops mt9m114_sensor_ops = {
	.g_skip_frames	= mt9m114_g_skip_frames,
};

static const struct v4l2_subdev_core_ops mt9m114_core_ops = {
	.s_power = mt9m114_s_power,
	.ioctl = mt9m114_ioctl,
};

/* REVISIT: Do we need pad operations? */
static const struct v4l2_subdev_pad_ops mt9m114_pad_ops = {
	.enum_mbus_code = mt9m114_enum_mbus_code,
	.enum_frame_size = mt9m114_enum_frame_size,
	.get_fmt = mt9m114_get_fmt,
	.set_fmt = mt9m114_set_fmt,
	.set_selection = mt9m114_s_exposure_selection,
};

static const struct v4l2_subdev_ops mt9m114_ops = {
	.core = &mt9m114_core_ops,
	.video = &mt9m114_video_ops,
	.pad = &mt9m114_pad_ops,
	.sensor = &mt9m114_sensor_ops,
};

static void mt9m114_remove(struct i2c_client *client)
{
	struct mt9m114_device *dev;
	struct v4l2_subdev *sd = i2c_get_clientdata(client);

	dev = container_of(sd, struct mt9m114_device, sd);
	dev->platform_data->csi_cfg(sd, 0);
	v4l2_device_unregister_subdev(sd);
	media_entity_cleanup(&dev->sd.entity);
	v4l2_ctrl_handler_free(&dev->ctrl_handler);
	kfree(dev);
}

static int mt9m114_probe(struct i2c_client *client)
{
	struct mt9m114_device *dev;
	int ret = 0;
	unsigned int i;
	void *pdata;

	/* Setup sensor configuration structure */
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return -ENOMEM;

	v4l2_i2c_subdev_init(&dev->sd, client, &mt9m114_ops);
	pdata = gmin_camera_platform_data(&dev->sd,
					  ATOMISP_INPUT_FORMAT_RAW_10,
					  atomisp_bayer_order_grbg);
	if (pdata)
		ret = mt9m114_s_config(&dev->sd, client->irq, pdata);
	if (!pdata || ret) {
		v4l2_device_unregister_subdev(&dev->sd);
		kfree(dev);
		return ret;
	}

	ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA);
	if (ret) {
		v4l2_device_unregister_subdev(&dev->sd);
		kfree(dev);
		/* Coverity CID 298095 - return on error */
		return ret;
	}

	/* TODO add format code here */
	dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
	dev->pad.flags = MEDIA_PAD_FL_SOURCE;
	dev->format.code = MEDIA_BUS_FMT_SGRBG10_1X10;
	dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;

	ret =
	    v4l2_ctrl_handler_init(&dev->ctrl_handler,
				   ARRAY_SIZE(mt9m114_controls));
	if (ret) {
		mt9m114_remove(client);
		return ret;
	}

	for (i = 0; i < ARRAY_SIZE(mt9m114_controls); i++)
		v4l2_ctrl_new_custom(&dev->ctrl_handler, &mt9m114_controls[i],
				     NULL);

	if (dev->ctrl_handler.error) {
		mt9m114_remove(client);
		return dev->ctrl_handler.error;
	}

	/* Use same lock for controls as for everything else. */
	dev->ctrl_handler.lock = &dev->input_lock;
	dev->sd.ctrl_handler = &dev->ctrl_handler;

	/* REVISIT: Do we need media controller? */
	ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad);
	if (ret) {
		mt9m114_remove(client);
		return ret;
	}
	return 0;
}

static const struct acpi_device_id mt9m114_acpi_match[] = {
	{ "INT33F0" },
	{ "CRMT1040" },
	{},
};
MODULE_DEVICE_TABLE(acpi, mt9m114_acpi_match);

static struct i2c_driver mt9m114_driver = {
	.driver = {
		.name = "mt9m114",
		.acpi_match_table = mt9m114_acpi_match,
	},
	.probe = mt9m114_probe,
	.remove = mt9m114_remove,
};
module_i2c_driver(mt9m114_driver);

MODULE_AUTHOR("Shuguang Gong <Shuguang.gong@intel.com>");
MODULE_LICENSE("GPL"