#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/acpi.h>
#include "../include/linux/atomisp_gmin_platform.h"
#include <media/v4l2-device.h>
#include "mt9m114.h"
#define to_mt9m114_sensor(sd) container_of(sd, struct mt9m114_device, sd)
static int debug;
static int aaalock;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug level (0-1)");
static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value);
static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value);
static int mt9m114_wait_state(struct i2c_client *client, int timeout);
static int
mt9m114_read_reg(struct i2c_client *client, u16 data_length, u32 reg, u32 *val)
{
int err;
struct i2c_msg msg[2];
unsigned char data[4];
if (!client->adapter) {
v4l2_err(client, "%s error, no client->adapter\n", __func__);
return -ENODEV;
}
if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
&& data_length != MISENSOR_32BIT) {
v4l2_err(client, "%s error, invalid data length\n", __func__);
return -EINVAL;
}
msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].len = MSG_LEN_OFFSET;
msg[0].buf = data;
data[0] = (u16)(reg >> 8);
data[1] = (u16)(reg & 0xff);
msg[1].addr = client->addr;
msg[1].len = data_length;
msg[1].flags = I2C_M_RD;
msg[1].buf = data;
err = i2c_transfer(client->adapter, msg, 2);
if (err >= 0) {
*val = 0;
if (data_length == MISENSOR_8BIT)
*val = data[0];
else if (data_length == MISENSOR_16BIT)
*val = data[1] + (data[0] << 8);
else
*val = data[3] + (data[2] << 8) +
(data[1] << 16) + (data[0] << 24);
return 0;
}
dev_err(&client->dev, "read from offset 0x%x error %d", reg, err);
return err;
}
static int
mt9m114_write_reg(struct i2c_client *client, u16 data_length, u16 reg, u32 val)
{
int num_msg;
struct i2c_msg msg;
unsigned char data[6] = {0};
__be16 *wreg;
int retry = 0;
if (!client->adapter) {
v4l2_err(client, "%s error, no client->adapter\n", __func__);
return -ENODEV;
}
if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
&& data_length != MISENSOR_32BIT) {
v4l2_err(client, "%s error, invalid data_length\n", __func__);
return -EINVAL;
}
memset(&msg, 0, sizeof(msg));
again:
msg.addr = client->addr;
msg.flags = 0;
msg.len = 2 + data_length;
msg.buf = data;
wreg = (void *)data;
*wreg = cpu_to_be16(reg);
if (data_length == MISENSOR_8BIT) {
data[2] = (u8)(val);
} else if (data_length == MISENSOR_16BIT) {
u16 *wdata = (void *)&data[2];
*wdata = be16_to_cpu(*(__be16 *)&data[2]);
} else {
u32 *wdata = (void *)&data[2];
*wdata = be32_to_cpu(*(__be32 *)&data[2]);
}
num_msg = i2c_transfer(client->adapter, &msg, 1);
mdelay(1);
if (num_msg >= 0)
return 0;
dev_err(&client->dev, "write error: wrote 0x%x to offset 0x%x error %d",
val, reg, num_msg);
if (retry <= I2C_RETRY_COUNT) {
dev_dbg(&client->dev, "retrying... %d", retry);
retry++;
msleep(20);
goto again;
}
return num_msg;
}
static int
misensor_rmw_reg(struct i2c_client *client, u16 data_length, u16 reg,
u32 mask, u32 set)
{
int err;
u32 val;
if (mask == 0)
return 0;
switch (data_length) {
case MISENSOR_8BIT:
if (mask & ~0xff)
return -EINVAL;
break;
case MISENSOR_16BIT:
if (mask & ~0xffff)
return -EINVAL;
break;
case MISENSOR_32BIT:
break;
default:
return -EINVAL;
}
err = mt9m114_read_reg(client, data_length, reg, &val);
if (err) {
v4l2_err(client, "%s error exit, read failed\n", __func__);
return -EINVAL;
}
val &= ~mask;
set <<= ffs(mask) - 1;
val |= set & mask;
err = mt9m114_write_reg(client, data_length, reg, val);
if (err) {
v4l2_err(client, "%s error exit, write failed\n", __func__);
return -EINVAL;
}
return 0;
}
static int __mt9m114_flush_reg_array(struct i2c_client *client,
struct mt9m114_write_ctrl *ctrl)
{
struct i2c_msg msg;
const int num_msg = 1;
int ret;
int retry = 0;
__be16 *data16 = (void *)&ctrl->buffer.addr;
if (ctrl->index == 0)
return 0;
again:
msg.addr = client->addr;
msg.flags = 0;
msg.len = 2 + ctrl->index;
*data16 = cpu_to_be16(ctrl->buffer.addr);
msg.buf = (u8 *)&ctrl->buffer;
ret = i2c_transfer(client->adapter, &msg, num_msg);
if (ret != num_msg) {
if (++retry <= I2C_RETRY_COUNT) {
dev_dbg(&client->dev, "retrying... %d\n", retry);
msleep(20);
goto again;
}
dev_err(&client->dev, "%s: i2c transfer error\n", __func__);
return -EIO;
}
ctrl->index = 0;
return 0;
}
static int __mt9m114_buf_reg_array(struct i2c_client *client,
struct mt9m114_write_ctrl *ctrl,
const struct misensor_reg *next)
{
__be16 *data16;
__be32 *data32;
int err;
if (ctrl->index + next->length >= MT9M114_MAX_WRITE_BUF_SIZE) {
err = __mt9m114_flush_reg_array(client, ctrl);
if (err)
return err;
}
switch (next->length) {
case MISENSOR_8BIT:
ctrl->buffer.data[ctrl->index] = (u8)next->val;
break;
case MISENSOR_16BIT:
data16 = (__be16 *)&ctrl->buffer.data[ctrl->index];
*data16 = cpu_to_be16((u16)next->val);
break;
case MISENSOR_32BIT:
data32 = (__be32 *)&ctrl->buffer.data[ctrl->index];
*data32 = cpu_to_be32(next->val);
break;
default:
return -EINVAL;
}
if (ctrl->index == 0)
ctrl->buffer.addr = next->reg;
ctrl->index += next->length;
return 0;
}
static int
__mt9m114_write_reg_is_consecutive(struct i2c_client *client,
struct mt9m114_write_ctrl *ctrl,
const struct misensor_reg *next)
{
if (ctrl->index == 0)
return 1;
return ctrl->buffer.addr + ctrl->index == next->reg;
}
static int mt9m114_write_reg_array(struct i2c_client *client,
const struct misensor_reg *reglist,
int poll)
{
const struct misensor_reg *next = reglist;
struct mt9m114_write_ctrl ctrl;
int err;
if (poll == PRE_POLLING) {
err = mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
if (err)
return err;
}
ctrl.index = 0;
for (; next->length != MISENSOR_TOK_TERM; next++) {
switch (next->length & MISENSOR_TOK_MASK) {
case MISENSOR_TOK_DELAY:
err = __mt9m114_flush_reg_array(client, &ctrl);
if (err)
return err;
msleep(next->val);
break;
case MISENSOR_TOK_RMW:
err = __mt9m114_flush_reg_array(client, &ctrl);
err |= misensor_rmw_reg(client,
next->length &
~MISENSOR_TOK_RMW,
next->reg, next->val,
next->val2);
if (err) {
dev_err(&client->dev, "%s read err. aborted\n",
__func__);
return -EINVAL;
}
break;
default:
if (!__mt9m114_write_reg_is_consecutive(client, &ctrl,
next)) {
err = __mt9m114_flush_reg_array(client, &ctrl);
if (err)
return err;
}
err = __mt9m114_buf_reg_array(client, &ctrl, next);
if (err) {
v4l2_err(client, "%s: write error, aborted\n",
__func__);
return err;
}
break;
}
}
err = __mt9m114_flush_reg_array(client, &ctrl);
if (err)
return err;
if (poll == POST_POLLING)
return mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
return 0;
}
static int mt9m114_wait_state(struct i2c_client *client, int timeout)
{
int ret;
unsigned int val;
while (timeout-- > 0) {
ret = mt9m114_read_reg(client, MISENSOR_16BIT, 0x0080, &val);
if (ret)
return ret;
if ((val & 0x2) == 0)
return 0;
msleep(20);
}
return -EINVAL;
}
static int mt9m114_set_suspend(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return mt9m114_write_reg_array(client,
mt9m114_standby_reg, POST_POLLING);
}
static int mt9m114_init_common(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return mt9m114_write_reg_array(client, mt9m114_common, PRE_POLLING);
}
static int power_ctrl(struct v4l2_subdev *sd, bool flag)
{
int ret;
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
if (!dev || !dev->platform_data)
return -ENODEV;
if (flag) {
ret = dev->platform_data->v2p8_ctrl(sd, 1);
if (ret == 0) {
ret = dev->platform_data->v1p8_ctrl(sd, 1);
if (ret)
ret = dev->platform_data->v2p8_ctrl(sd, 0);
}
} else {
ret = dev->platform_data->v2p8_ctrl(sd, 0);
ret = dev->platform_data->v1p8_ctrl(sd, 0);
}
return ret;
}
static int gpio_ctrl(struct v4l2_subdev *sd, bool flag)
{
int ret;
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
if (!dev || !dev->platform_data)
return -ENODEV;
if (flag) {
ret = dev->platform_data->gpio0_ctrl(sd, 0);
ret = dev->platform_data->gpio1_ctrl(sd, 0);
msleep(60);
ret |= dev->platform_data->gpio0_ctrl(sd, 1);
ret |= dev->platform_data->gpio1_ctrl(sd, 1);
} else {
ret = dev->platform_data->gpio0_ctrl(sd, 0);
ret = dev->platform_data->gpio1_ctrl(sd, 0);
}
return ret;
}
static int power_up(struct v4l2_subdev *sd)
{
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret;
if (!dev->platform_data) {
dev_err(&client->dev, "no camera_sensor_platform_data");
return -ENODEV;
}
ret = power_ctrl(sd, 1);
if (ret)
goto fail_power;
ret = dev->platform_data->flisclk_ctrl(sd, 1);
if (ret)
goto fail_clk;
ret = gpio_ctrl(sd, 1);
if (ret)
dev_err(&client->dev, "gpio failed 1\n");
msleep(50);
return 0;
fail_clk:
dev->platform_data->flisclk_ctrl(sd, 0);
fail_power:
power_ctrl(sd, 0);
dev_err(&client->dev, "sensor power-up failed\n");
return ret;
}
static int power_down(struct v4l2_subdev *sd)
{
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret;
if (!dev->platform_data) {
dev_err(&client->dev, "no camera_sensor_platform_data");
return -ENODEV;
}
ret = dev->platform_data->flisclk_ctrl(sd, 0);
if (ret)
dev_err(&client->dev, "flisclk failed\n");
ret = gpio_ctrl(sd, 0);
if (ret)
dev_err(&client->dev, "gpio failed 1\n");
ret = power_ctrl(sd, 0);
if (ret)
dev_err(&client->dev, "vprog failed.\n");
msleep(20);
return ret;
}
static int mt9m114_s_power(struct v4l2_subdev *sd, int power)
{
if (power == 0)
return power_down(sd);
if (power_up(sd))
return -EINVAL;
return mt9m114_init_common(sd);
}
static int mt9m114_res2size(struct v4l2_subdev *sd, int *h_size, int *v_size)
{
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
unsigned short hsize;
unsigned short vsize;
switch (dev->res) {
case MT9M114_RES_736P:
hsize = MT9M114_RES_736P_SIZE_H;
vsize = MT9M114_RES_736P_SIZE_V;
break;
case MT9M114_RES_864P:
hsize = MT9M114_RES_864P_SIZE_H;
vsize = MT9M114_RES_864P_SIZE_V;
break;
case MT9M114_RES_960P:
hsize = MT9M114_RES_960P_SIZE_H;
vsize = MT9M114_RES_960P_SIZE_V;
break;
default:
v4l2_err(sd, "%s: Resolution 0x%08x unknown\n", __func__,
dev->res);
return -EINVAL;
}
if (h_size)
*h_size = hsize;
if (v_size)
*v_size = vsize;
return 0;
}
static int mt9m114_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct v4l2_mbus_framefmt *fmt = &format->format;
int width, height;
int ret;
if (format->pad)
return -EINVAL;
fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
ret = mt9m114_res2size(sd, &width, &height);
if (ret)
return ret;
fmt->width = width;
fmt->height = height;
return 0;
}
static int mt9m114_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct v4l2_mbus_framefmt *fmt = &format->format;
struct i2c_client *c = v4l2_get_subdevdata(sd);
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
struct mt9m114_res_struct *res;
u32 width = fmt->width;
u32 height = fmt->height;
struct camera_mipi_info *mt9m114_info = NULL;
int ret;
if (format->pad)
return -EINVAL;
dev->streamon = 0;
dev->first_exp = MT9M114_DEFAULT_FIRST_EXP;
mt9m114_info = v4l2_get_subdev_hostdata(sd);
if (!mt9m114_info)
return -EINVAL;
res = v4l2_find_nearest_size(mt9m114_res,
ARRAY_SIZE(mt9m114_res), width,
height, fmt->width, fmt->height);
if (!res)
res = &mt9m114_res[N_RES - 1];
fmt->width = res->width;
fmt->height = res->height;
if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
sd_state->pads->try_fmt = *fmt;
return 0;
}
switch (res->res) {
case MT9M114_RES_736P:
ret = mt9m114_write_reg_array(c, mt9m114_736P_init, NO_POLLING);
ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
break;
case MT9M114_RES_864P:
ret = mt9m114_write_reg_array(c, mt9m114_864P_init, NO_POLLING);
ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
break;
case MT9M114_RES_960P:
ret = mt9m114_write_reg_array(c, mt9m114_976P_init, NO_POLLING);
ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
break;
default:
v4l2_err(sd, "set resolution: %d failed!\n", res->res);
return -EINVAL;
}
if (ret)
return -EINVAL;
ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg, POST_POLLING);
if (ret < 0)
return ret;
if (mt9m114_set_suspend(sd))
return -EINVAL;
if (dev->res != res->res) {
int index;
if (width <= 640) {
dev->nctx = 0x00;
} else {
dev->nctx = 0x01;
}
for (index = 0; index < N_RES; index++) {
if ((width == mt9m114_res[index].width) &&
(height == mt9m114_res[index].height)) {
mt9m114_res[index].used = true;
continue;
}
mt9m114_res[index].used = false;
}
}
dev->res = res->res;
fmt->width = width;
fmt->height = height;
fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
return 0;
}
static int mt9m114_g_hflip(struct v4l2_subdev *sd, s32 *val)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
int ret;
u32 data;
ret = mt9m114_read_reg(c, MISENSOR_16BIT,
(u32)MISENSOR_READ_MODE, &data);
if (ret)
return ret;
*val = !!(data & MISENSOR_HFLIP_MASK);
return 0;
}
static int mt9m114_g_vflip(struct v4l2_subdev *sd, s32 *val)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
int ret;
u32 data;
ret = mt9m114_read_reg(c, MISENSOR_16BIT,
(u32)MISENSOR_READ_MODE, &data);
if (ret)
return ret;
*val = !!(data & MISENSOR_VFLIP_MASK);
return 0;
}
static long mt9m114_s_exposure(struct v4l2_subdev *sd,
struct atomisp_exposure *exposure)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
int ret = 0;
unsigned int coarse_integration = 0;
unsigned int f_lines = 0;
unsigned int frame_len_lines = 0;
unsigned int analog_gain, digital_gain;
u32 analog_gain_to_write = 0;
dev_dbg(&client->dev, "%s(0x%X 0x%X 0x%X)\n", __func__,
exposure->integration_time[0], exposure->gain[0],
exposure->gain[1]);
coarse_integration = exposure->integration_time[0];
f_lines = mt9m114_res[dev->res].lines_per_frame;
analog_gain = exposure->gain[0];
digital_gain = exposure->gain[1];
if (!dev->streamon) {
dev->first_exp = coarse_integration;
dev->first_gain = analog_gain;
dev->first_diggain = digital_gain;
}
if (f_lines < coarse_integration + 6)
f_lines = coarse_integration + 6;
if (f_lines < frame_len_lines)
f_lines = frame_len_lines;
ret = mt9m114_write_reg(client, MISENSOR_16BIT, 0x300A, f_lines);
if (ret) {
v4l2_err(client, "%s: fail to set f_lines\n", __func__);
return -EINVAL;
}
ret = mt9m114_write_reg(client, MISENSOR_16BIT,
REG_EXPO_COARSE, (u16)(coarse_integration));
if (ret) {
v4l2_err(client, "%s: fail to set exposure time\n", __func__);
return -EINVAL;
}
if (digital_gain >= 16 || digital_gain <= 1)
digital_gain = 1;
analog_gain_to_write = (u16)((digital_gain << 12) | (u16)analog_gain);
ret = mt9m114_write_reg(client, MISENSOR_16BIT,
REG_GAIN, analog_gain_to_write);
if (ret) {
v4l2_err(client, "%s: fail to set analog_gain_to_write\n",
__func__);
return -EINVAL;
}
return ret;
}
static long mt9m114_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
switch (cmd) {
case ATOMISP_IOC_S_EXPOSURE:
return mt9m114_s_exposure(sd, arg);
default:
return -EINVAL;
}
return 0;
}
static int mt9m114_g_exposure(struct v4l2_subdev *sd, s32 *value)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
u32 coarse;
int ret;
ret = mt9m114_read_reg(client, MISENSOR_16BIT,
REG_EXPO_COARSE, &coarse);
if (ret)
return ret;
*value = coarse;
return 0;
}
static int mt9m114_g_exposure_zone_num(struct v4l2_subdev *sd, s32 *val)
{
*val = 1;
return 0;
}
static int mt9m114_s_exposure_metering(struct v4l2_subdev *sd, s32 val)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret;
switch (val) {
case V4L2_EXPOSURE_METERING_SPOT:
ret = mt9m114_write_reg_array(client, mt9m114_exp_average,
NO_POLLING);
if (ret) {
dev_err(&client->dev, "write exp_average reg err.\n");
return ret;
}
break;
case V4L2_EXPOSURE_METERING_CENTER_WEIGHTED:
default:
ret = mt9m114_write_reg_array(client, mt9m114_exp_center,
NO_POLLING);
if (ret) {
dev_err(&client->dev, "write exp_default reg err");
return ret;
}
}
return 0;
}
static int mt9m114_s_exposure_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct misensor_reg exp_reg;
int width, height;
int grid_width, grid_height;
int grid_left, grid_top, grid_right, grid_bottom;
int win_left, win_top, win_right, win_bottom;
int i, j;
int ret;
if (sel->which != V4L2_SUBDEV_FORMAT_TRY &&
sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
return -EINVAL;
grid_left = sel->r.left;
grid_top = sel->r.top;
grid_right = sel->r.left + sel->r.width - 1;
grid_bottom = sel->r.top + sel->r.height - 1;
ret = mt9m114_res2size(sd, &width, &height);
if (ret)
return ret;
grid_width = width / 5;
grid_height = height / 5;
if (grid_width && grid_height) {
win_left = grid_left / grid_width;
win_top = grid_top / grid_height;
win_right = grid_right / grid_width;
win_bottom = grid_bottom / grid_height;
} else {
dev_err(&client->dev, "Incorrect exp grid.\n");
return -EINVAL;
}
win_left = clamp_t(int, win_left, 0, 4);
win_top = clamp_t(int, win_top, 0, 4);
win_right = clamp_t(int, win_right, 0, 4);
win_bottom = clamp_t(int, win_bottom, 0, 4);
ret = mt9m114_write_reg_array(client, mt9m114_exp_average, NO_POLLING);
if (ret) {
dev_err(&client->dev, "write exp_average reg err.\n");
return ret;
}
for (i = win_top; i <= win_bottom; i++) {
for (j = win_left; j <= win_right; j++) {
exp_reg = mt9m114_exp_win[i][j];
ret = mt9m114_write_reg(client, exp_reg.length,
exp_reg.reg, exp_reg.val);
if (ret) {
dev_err(&client->dev, "write exp_reg err.\n");
return ret;
}
}
}
return 0;
}
static int mt9m114_s_ev(struct v4l2_subdev *sd, s32 val)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
s32 luma = 0x37;
int err;
if (val < -2 || val > 2)
return -EINVAL;
luma += 0x10 * val;
dev_dbg(&c->dev, "%s val:%d luma:0x%x\n", __func__, val, luma);
err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
if (err) {
dev_err(&c->dev, "%s logic addr access error\n", __func__);
return err;
}
err = mt9m114_write_reg(c, MISENSOR_8BIT, 0xC87A, (u32)luma);
if (err) {
dev_err(&c->dev, "%s write target_average_luma failed\n",
__func__);
return err;
}
udelay(10);
return 0;
}
static int mt9m114_g_ev(struct v4l2_subdev *sd, s32 *val)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
int err;
u32 luma;
err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
if (err) {
dev_err(&c->dev, "%s logic addr access error\n", __func__);
return err;
}
err = mt9m114_read_reg(c, MISENSOR_8BIT, 0xC87A, &luma);
if (err) {
dev_err(&c->dev, "%s read target_average_luma failed\n",
__func__);
return err;
}
luma -= 0x17;
luma /= 0x10;
*val = (s32)luma - 2;
dev_dbg(&c->dev, "%s val:%d\n", __func__, *val);
return 0;
}
static int mt9m114_s_3a_lock(struct v4l2_subdev *sd, s32 val)
{
aaalock = val;
return 0;
}
static int mt9m114_g_3a_lock(struct v4l2_subdev *sd, s32 *val)
{
if (aaalock)
return V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE
| V4L2_LOCK_FOCUS;
return 0;
}
static int mt9m114_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9m114_device *dev =
container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
struct i2c_client *client = v4l2_get_subdevdata(&dev->sd);
int ret = 0;
switch (ctrl->id) {
case V4L2_CID_VFLIP:
dev_dbg(&client->dev, "%s: CID_VFLIP:%d.\n",
__func__, ctrl->val);
ret = mt9m114_t_vflip(&dev->sd, ctrl->val);
break;
case V4L2_CID_HFLIP:
dev_dbg(&client->dev, "%s: CID_HFLIP:%d.\n",
__func__, ctrl->val);
ret = mt9m114_t_hflip(&dev->sd, ctrl->val);
break;
case V4L2_CID_EXPOSURE_METERING:
ret = mt9m114_s_exposure_metering(&dev->sd, ctrl->val);
break;
case V4L2_CID_EXPOSURE:
ret = mt9m114_s_ev(&dev->sd, ctrl->val);
break;
case V4L2_CID_3A_LOCK:
ret = mt9m114_s_3a_lock(&dev->sd, ctrl->val);
break;
default:
ret = -EINVAL;
}
return ret;
}
static int mt9m114_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9m114_device *dev =
container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
int ret = 0;
switch (ctrl->id) {
case V4L2_CID_VFLIP:
ret = mt9m114_g_vflip(&dev->sd, &ctrl->val);
break;
case V4L2_CID_HFLIP:
ret = mt9m114_g_hflip(&dev->sd, &ctrl->val);
break;
case V4L2_CID_EXPOSURE_ABSOLUTE:
ret = mt9m114_g_exposure(&dev->sd, &ctrl->val);
break;
case V4L2_CID_EXPOSURE_ZONE_NUM:
ret = mt9m114_g_exposure_zone_num(&dev->sd, &ctrl->val);
break;
case V4L2_CID_EXPOSURE:
ret = mt9m114_g_ev(&dev->sd, &ctrl->val);
break;
case V4L2_CID_3A_LOCK:
ret = mt9m114_g_3a_lock(&dev->sd, &ctrl->val);
break;
default:
ret = -EINVAL;
}
return ret;
}
static const struct v4l2_ctrl_ops ctrl_ops = {
.s_ctrl = mt9m114_s_ctrl,
.g_volatile_ctrl = mt9m114_g_volatile_ctrl
};
static struct v4l2_ctrl_config mt9m114_controls[] = {
{
.ops = &ctrl_ops,
.id = V4L2_CID_VFLIP,
.name = "Image v-Flip",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = 1,
.step = 1,
.def = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_HFLIP,
.name = "Image h-Flip",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = 1,
.step = 1,
.def = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_EXPOSURE_ABSOLUTE,
.name = "exposure",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = 0xffff,
.step = 1,
.def = 0,
.flags = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_EXPOSURE_ZONE_NUM,
.name = "one-time exposure zone number",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = 0,
.max = 0xffff,
.step = 1,
.def = 0,
.flags = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_EXPOSURE_METERING,
.name = "metering",
.type = V4L2_CTRL_TYPE_MENU,
.min = 0,
.max = 3,
.step = 0,
.def = 1,
.flags = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_EXPOSURE,
.name = "exposure biasx",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = -2,
.max = 2,
.step = 1,
.def = 0,
.flags = 0,
},
{
.ops = &ctrl_ops,
.id = V4L2_CID_3A_LOCK,
.name = "3a lock",
.type = V4L2_CTRL_TYPE_BITMASK,
.min = 0,
.max = V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE | V4L2_LOCK_FOCUS,
.step = 1,
.def = 0,
.flags = 0,
},
};
static int mt9m114_detect(struct mt9m114_device *dev, struct i2c_client *client)
{
struct i2c_adapter *adapter = client->adapter;
u32 model;
int ret;
if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "%s: i2c error", __func__);
return -ENODEV;
}
ret = mt9m114_read_reg(client, MISENSOR_16BIT, MT9M114_PID, &model);
if (ret)
return ret;
dev->real_model_id = model;
if (model != MT9M114_MOD_ID) {
dev_err(&client->dev, "%s: failed: client->addr = %x\n",
__func__, client->addr);
return -ENODEV;
}
return 0;
}
static int
mt9m114_s_config(struct v4l2_subdev *sd, int irq, void *platform_data)
{
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret;
if (!platform_data)
return -ENODEV;
dev->platform_data =
(struct camera_sensor_platform_data *)platform_data;
ret = power_up(sd);
if (ret) {
v4l2_err(client, "mt9m114 power-up err");
return ret;
}
ret = mt9m114_detect(dev, client);
if (ret) {
v4l2_err(client, "mt9m114_detect err s_config.\n");
goto fail_detect;
}
ret = dev->platform_data->csi_cfg(sd, 1);
if (ret)
goto fail_csi_cfg;
ret = mt9m114_set_suspend(sd);
if (ret) {
v4l2_err(client, "mt9m114 suspend err");
return ret;
}
ret = power_down(sd);
if (ret) {
v4l2_err(client, "mt9m114 power down err");
return ret;
}
return ret;
fail_csi_cfg:
dev->platform_data->csi_cfg(sd, 0);
fail_detect:
power_down(sd);
dev_err(&client->dev, "sensor power-gating failed\n");
return ret;
}
static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
int err;
err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
if (value) {
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x01);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x01);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x01);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x01);
err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
MISENSOR_HFLIP_MASK, MISENSOR_FLIP_EN);
dev->bpat = MT9M114_BPAT_GRGRBGBG;
} else {
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x00);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x00);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x00);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x00);
err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
MISENSOR_HFLIP_MASK, MISENSOR_FLIP_DIS);
dev->bpat = MT9M114_BPAT_BGBGGRGR;
}
err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
udelay(10);
return !!err;
}
static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value)
{
struct i2c_client *c = v4l2_get_subdevdata(sd);
int err;
err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
if (value >= 1) {
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x01);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x01);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x01);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x01);
err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
MISENSOR_VFLIP_MASK, MISENSOR_FLIP_EN);
} else {
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x00);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x00);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x00);
err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x00);
err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
MISENSOR_VFLIP_MASK, MISENSOR_FLIP_DIS);
}
err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
udelay(10);
return !!err;
}
static int mt9m114_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *interval)
{
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
interval->interval.numerator = 1;
interval->interval.denominator = mt9m114_res[dev->res].fps;
return 0;
}
static int mt9m114_s_stream(struct v4l2_subdev *sd, int enable)
{
int ret;
struct i2c_client *c = v4l2_get_subdevdata(sd);
struct mt9m114_device *dev = to_mt9m114_sensor(sd);
struct atomisp_exposure exposure;
if (enable) {
ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg,
POST_POLLING);
if (ret < 0)
return ret;
if (dev->first_exp > MT9M114_MAX_FIRST_EXP) {
exposure.integration_time[0] = dev->first_exp;
exposure.gain[0] = dev->first_gain;
exposure.gain[1] = dev->first_diggain;
mt9m114_s_exposure(sd, &exposure);
}
dev->streamon = 1;
} else {
dev->streamon = 0;
ret = mt9m114_set_suspend(sd);
}
return ret;
}
static int mt9m114_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index)
return -EINVAL;
code->code = MEDIA_BUS_FMT_SGRBG10_1X10;
return 0;
}
static int mt9m114_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
unsigned int index = fse->index;
if (index >= N_RES)
return -EINVAL;
fse->min_width = mt9m114_res[index].width;
fse->min_height = mt9m114_res[index].height;
fse->max_width = mt9m114_res[index].width;
fse->max_height = mt9m114_res[index].height;
return 0;
}
static int mt9m114_g_skip_frames(struct v4l2_subdev *sd, u32 *frames)
{
int index;
struct mt9m114_device *snr = to_mt9m114_sensor(sd);
if (!frames)
return -EINVAL;
for (index = 0; index < N_RES; index++) {
if (mt9m114_res[index].res == snr->res)
break;
}
if (index >= N_RES)
return -EINVAL;
*frames = mt9m114_res[index].skip_frames;
return 0;
}
static const struct v4l2_subdev_video_ops mt9m114_video_ops = {
.s_stream = mt9m114_s_stream,
.g_frame_interval = mt9m114_g_frame_interval,
};
static const struct v4l2_subdev_sensor_ops mt9m114_sensor_ops = {
.g_skip_frames = mt9m114_g_skip_frames,
};
static const struct v4l2_subdev_core_ops mt9m114_core_ops = {
.s_power = mt9m114_s_power,
.ioctl = mt9m114_ioctl,
};
static const struct v4l2_subdev_pad_ops mt9m114_pad_ops = {
.enum_mbus_code = mt9m114_enum_mbus_code,
.enum_frame_size = mt9m114_enum_frame_size,
.get_fmt = mt9m114_get_fmt,
.set_fmt = mt9m114_set_fmt,
.set_selection = mt9m114_s_exposure_selection,
};
static const struct v4l2_subdev_ops mt9m114_ops = {
.core = &mt9m114_core_ops,
.video = &mt9m114_video_ops,
.pad = &mt9m114_pad_ops,
.sensor = &mt9m114_sensor_ops,
};
static void mt9m114_remove(struct i2c_client *client)
{
struct mt9m114_device *dev;
struct v4l2_subdev *sd = i2c_get_clientdata(client);
dev = container_of(sd, struct mt9m114_device, sd);
dev->platform_data->csi_cfg(sd, 0);
v4l2_device_unregister_subdev(sd);
media_entity_cleanup(&dev->sd.entity);
v4l2_ctrl_handler_free(&dev->ctrl_handler);
kfree(dev);
}
static int mt9m114_probe(struct i2c_client *client)
{
struct mt9m114_device *dev;
int ret = 0;
unsigned int i;
void *pdata;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
v4l2_i2c_subdev_init(&dev->sd, client, &mt9m114_ops);
pdata = gmin_camera_platform_data(&dev->sd,
ATOMISP_INPUT_FORMAT_RAW_10,
atomisp_bayer_order_grbg);
if (pdata)
ret = mt9m114_s_config(&dev->sd, client->irq, pdata);
if (!pdata || ret) {
v4l2_device_unregister_subdev(&dev->sd);
kfree(dev);
return ret;
}
ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA);
if (ret) {
v4l2_device_unregister_subdev(&dev->sd);
kfree(dev);
return ret;
}
dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
dev->pad.flags = MEDIA_PAD_FL_SOURCE;
dev->format.code = MEDIA_BUS_FMT_SGRBG10_1X10;
dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret =
v4l2_ctrl_handler_init(&dev->ctrl_handler,
ARRAY_SIZE(mt9m114_controls));
if (ret) {
mt9m114_remove(client);
return ret;
}
for (i = 0; i < ARRAY_SIZE(mt9m114_controls); i++)
v4l2_ctrl_new_custom(&dev->ctrl_handler, &mt9m114_controls[i],
NULL);
if (dev->ctrl_handler.error) {
mt9m114_remove(client);
return dev->ctrl_handler.error;
}
dev->ctrl_handler.lock = &dev->input_lock;
dev->sd.ctrl_handler = &dev->ctrl_handler;
ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad);
if (ret) {
mt9m114_remove(client);
return ret;
}
return 0;
}
static const struct acpi_device_id mt9m114_acpi_match[] = {
{ "INT33F0" },
{ "CRMT1040" },
{},
};
MODULE_DEVICE_TABLE(acpi, mt9m114_acpi_match);
static struct i2c_driver mt9m114_driver = {
.driver = {
.name = "mt9m114",
.acpi_match_table = mt9m114_acpi_match,
},
.probe = mt9m114_probe,
.remove = mt9m114_remove,
};
module_i2c_driver(mt9m114_driver);
MODULE_AUTHOR("Shuguang Gong <Shuguang.gong@intel.com>");
MODULE_LICENSE("GPL"