#include <linux/firmware.h>
#include <linux/slab.h>
#include <drv_types.h>
#include <rtw_debug.h>
#include <rtl8723b_hal.h>
#include "hal_com_h2c.h"
static void _FWDownloadEnable(struct adapter *padapter, bool enable)
{
u8 tmp, count = 0;
if (enable) {
tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
do {
tmp = rtw_read8(padapter, REG_MCUFWDL);
if (tmp & 0x01)
break;
rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
msleep(1);
} while (count++ < 100);
tmp = rtw_read8(padapter, REG_MCUFWDL+2);
rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
} else {
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
}
}
static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
{
int ret = _SUCCESS;
u32 blockSize_p1 = 4;
u32 blockSize_p2 = 8;
u32 blockSize_p3 = 1;
u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
u32 remainSize_p1 = 0, remainSize_p2 = 0;
u8 *bufferPtr = buffer;
u32 i = 0, offset = 0;
blockCount_p1 = buffSize / blockSize_p1;
remainSize_p1 = buffSize % blockSize_p1;
for (i = 0; i < blockCount_p1; i++) {
ret = rtw_write32(padapter, (FW_8723B_START_ADDRESS + i * blockSize_p1), *((u32 *)(bufferPtr + i * blockSize_p1)));
if (ret == _FAIL) {
printk("====>%s %d i:%d\n", __func__, __LINE__, i);
goto exit;
}
}
if (remainSize_p1) {
offset = blockCount_p1 * blockSize_p1;
blockCount_p2 = remainSize_p1/blockSize_p2;
remainSize_p2 = remainSize_p1%blockSize_p2;
}
if (remainSize_p2) {
offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
blockCount_p3 = remainSize_p2 / blockSize_p3;
for (i = 0; i < blockCount_p3; i++) {
ret = rtw_write8(padapter, (FW_8723B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
if (ret == _FAIL) {
printk("====>%s %d i:%d\n", __func__, __LINE__, i);
goto exit;
}
}
}
exit:
return ret;
}
static int _PageWrite(
struct adapter *padapter,
u32 page,
void *buffer,
u32 size
)
{
u8 value8;
u8 u8Page = (u8) (page & 0x07);
value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
rtw_write8(padapter, REG_MCUFWDL+2, value8);
return _BlockWrite(padapter, buffer, size);
}
static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
{
int ret = _SUCCESS;
u32 pageNums, remainSize;
u32 page, offset;
u8 *bufferPtr = buffer;
pageNums = size / MAX_DLFW_PAGE_SIZE;
remainSize = size % MAX_DLFW_PAGE_SIZE;
for (page = 0; page < pageNums; page++) {
offset = page * MAX_DLFW_PAGE_SIZE;
ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
if (ret == _FAIL) {
printk("====>%s %d\n", __func__, __LINE__);
goto exit;
}
}
if (remainSize) {
offset = pageNums * MAX_DLFW_PAGE_SIZE;
page = pageNums;
ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
if (ret == _FAIL) {
printk("====>%s %d\n", __func__, __LINE__);
goto exit;
}
}
exit:
return ret;
}
void _8051Reset8723(struct adapter *padapter)
{
u8 cpu_rst;
u8 io_rst;
io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
io_rst &= ~BIT(0);
rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
cpu_rst &= ~BIT(2);
rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
io_rst |= BIT(0);
rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
cpu_rst |= BIT(2);
rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
}
u8 g_fwdl_chksum_fail;
static s32 polling_fwdl_chksum(
struct adapter *adapter, u32 min_cnt, u32 timeout_ms
)
{
s32 ret = _FAIL;
u32 value32;
unsigned long start = jiffies;
u32 cnt = 0;
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
break;
yield();
} while (jiffies_to_msecs(jiffies-start) < timeout_ms || cnt < min_cnt);
if (!(value32 & FWDL_ChkSum_rpt)) {
goto exit;
}
if (g_fwdl_chksum_fail) {
g_fwdl_chksum_fail--;
goto exit;
}
ret = _SUCCESS;
exit:
return ret;
}
u8 g_fwdl_wintint_rdy_fail;
static s32 _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
s32 ret = _FAIL;
u32 value32;
unsigned long start = jiffies;
u32 cnt = 0;
value32 = rtw_read32(adapter, REG_MCUFWDL);
value32 |= MCUFWDL_RDY;
value32 &= ~WINTINI_RDY;
rtw_write32(adapter, REG_MCUFWDL, value32);
_8051Reset8723(adapter);
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
break;
yield();
} while (jiffies_to_msecs(jiffies - start) < timeout_ms || cnt < min_cnt);
if (!(value32 & WINTINI_RDY)) {
goto exit;
}
if (g_fwdl_wintint_rdy_fail) {
g_fwdl_wintint_rdy_fail--;
goto exit;
}
ret = _SUCCESS;
exit:
return ret;
}
#define IS_FW_81xxC(padapter) (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
void rtl8723b_FirmwareSelfReset(struct adapter *padapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 u1bTmp;
u8 Delay = 100;
if (
!(IS_FW_81xxC(padapter) && ((pHalData->FirmwareVersion < 0x21) || (pHalData->FirmwareVersion == 0x21 && pHalData->FirmwareSubVersion < 0x01)))
) {
rtw_write8(padapter, REG_HMETFR+3, 0x20);
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
while (u1bTmp & BIT2) {
Delay--;
if (Delay == 0)
break;
udelay(50);
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
}
if (Delay == 0) {
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
}
}
}
s32 rtl8723b_FirmwareDownload(struct adapter *padapter, bool bUsedWoWLANFw)
{
s32 rtStatus = _SUCCESS;
u8 write_fw = 0;
unsigned long fwdl_start_time;
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct rt_firmware *pFirmware;
struct rt_firmware *pBTFirmware;
struct rt_firmware_hdr *pFwHdr = NULL;
u8 *pFirmwareBuf;
u32 FirmwareLen;
const struct firmware *fw;
struct device *device = dvobj_to_dev(padapter->dvobj);
u8 *fwfilepath;
struct dvobj_priv *psdpriv = padapter->dvobj;
struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
u8 tmp_ps;
pFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
if (!pFirmware)
return _FAIL;
pBTFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
if (!pBTFirmware) {
kfree(pFirmware);
return _FAIL;
}
tmp_ps = rtw_read8(padapter, 0xa3);
tmp_ps &= 0xf8;
tmp_ps |= 0x02;
rtw_write8(padapter, 0xa3, tmp_ps);
tmp_ps = rtw_read8(padapter, 0xa0);
tmp_ps &= 0x03;
if (tmp_ps != 0x01)
pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
fwfilepath = "rtlwifi/rtl8723bs_nic.bin";
pr_info("rtl8723bs: acquire FW from file:%s\n", fwfilepath);
rtStatus = request_firmware(&fw, fwfilepath, device);
if (rtStatus) {
pr_err("Request firmware failed with error 0x%x\n", rtStatus);
rtStatus = _FAIL;
goto exit;
}
if (!fw) {
pr_err("Firmware %s not available\n", fwfilepath);
rtStatus = _FAIL;
goto exit;
}
if (fw->size > FW_8723B_SIZE) {
rtStatus = _FAIL;
goto exit;
}
pFirmware->fw_buffer_sz = kmemdup(fw->data, fw->size, GFP_KERNEL);
if (!pFirmware->fw_buffer_sz) {
rtStatus = _FAIL;
goto exit;
}
pFirmware->fw_length = fw->size;
release_firmware(fw);
if (pFirmware->fw_length > FW_8723B_SIZE) {
rtStatus = _FAIL;
netdev_emerg(padapter->pnetdev,
"Firmware size:%u exceed %u\n",
pFirmware->fw_length, FW_8723B_SIZE);
goto release_fw1;
}
pFirmwareBuf = pFirmware->fw_buffer_sz;
FirmwareLen = pFirmware->fw_length;
pFwHdr = (struct rt_firmware_hdr *)pFirmwareBuf;
pHalData->FirmwareVersion = le16_to_cpu(pFwHdr->version);
pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->subversion);
pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->signature);
if (IS_FW_HEADER_EXIST_8723B(pFwHdr)) {
pFirmwareBuf = pFirmwareBuf + 32;
FirmwareLen = FirmwareLen - 32;
}
if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) {
rtw_write8(padapter, REG_MCUFWDL, 0x00);
rtl8723b_FirmwareSelfReset(padapter);
}
_FWDownloadEnable(padapter, true);
fwdl_start_time = jiffies;
while (
!padapter->bDriverStopped &&
!padapter->bSurpriseRemoved &&
(write_fw++ < 3 || jiffies_to_msecs(jiffies - fwdl_start_time) < 500)
) {
rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
if (rtStatus != _SUCCESS)
continue;
rtStatus = polling_fwdl_chksum(padapter, 5, 50);
if (rtStatus == _SUCCESS)
break;
}
_FWDownloadEnable(padapter, false);
if (_SUCCESS != rtStatus)
goto fwdl_stat;
rtStatus = _FWFreeToGo(padapter, 10, 200);
if (_SUCCESS != rtStatus)
goto fwdl_stat;
fwdl_stat:
exit:
kfree(pFirmware->fw_buffer_sz);
kfree(pFirmware);
release_fw1:
kfree(pBTFirmware);
return rtStatus;
}
void rtl8723b_InitializeFirmwareVars(struct adapter *padapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
adapter_to_pwrctl(padapter)->fw_current_in_ps_mode = false;
rtw_write8(padapter, REG_HMETFR, 0x0f);
pHalData->LastHMEBoxNum = 0;
}
static void rtl8723b_free_hal_data(struct adapter *padapter)
{
}
static u8 hal_EfuseSwitchToBank(
struct adapter *padapter, u8 bank, bool bPseudoTest
)
{
u8 bRet = false;
u32 value32 = 0;
#ifdef HAL_EFUSE_MEMORY
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
#endif
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeEfuseBank = bank;
#else
fakeEfuseBank = bank;
#endif
bRet = true;
} else {
value32 = rtw_read32(padapter, EFUSE_TEST);
bRet = true;
switch (bank) {
case 0:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
break;
case 1:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
break;
case 2:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
break;
case 3:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
break;
default:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
bRet = false;
break;
}
rtw_write32(padapter, EFUSE_TEST, value32);
}
return bRet;
}
static void Hal_GetEfuseDefinition(
struct adapter *padapter,
u8 efuseType,
u8 type,
void *pOut,
bool bPseudoTest
)
{
switch (type) {
case TYPE_EFUSE_MAX_SECTION:
{
u8 *pMax_section;
pMax_section = pOut;
if (efuseType == EFUSE_WIFI)
*pMax_section = EFUSE_MAX_SECTION_8723B;
else
*pMax_section = EFUSE_BT_MAX_SECTION;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN:
{
u16 *pu2Tmp;
pu2Tmp = pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
else
*pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
{
u16 *pu2Tmp;
pu2Tmp = pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
else
*pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
{
u16 *pu2Tmp;
pu2Tmp = pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
else
*pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
}
break;
case TYPE_EFUSE_MAP_LEN:
{
u16 *pu2Tmp;
pu2Tmp = pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_MAX_MAP_LEN;
else
*pu2Tmp = EFUSE_BT_MAP_LEN;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK:
{
u8 *pu1Tmp;
pu1Tmp = pOut;
if (efuseType == EFUSE_WIFI)
*pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
else
*pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK:
{
u16 *pu2Tmp;
pu2Tmp = pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
else
*pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
}
break;
default:
{
u8 *pu1Tmp;
pu1Tmp = pOut;
*pu1Tmp = 0;
}
break;
}
}
#define VOLTAGE_V25 0x03
#define EFUSE_ACCESS_ON_8723 0x69 /* For RTL8723 only. */
#define REG_EFUSE_ACCESS_8723 0x00CF /* Efuse access protection for RTL8723 */
static void Hal_BT_EfusePowerSwitch(
struct adapter *padapter, u8 bWrite, u8 PwrState
)
{
u8 tempval;
if (PwrState) {
tempval = rtw_read8(padapter, 0x6B);
tempval |= BIT(6);
rtw_write8(padapter, 0x6B, tempval);
msleep(1);
tempval = rtw_read8(padapter, 0x6B);
tempval &= ~BIT(7);
rtw_write8(padapter, 0x6B, tempval);
} else {
tempval = rtw_read8(padapter, 0x6B);
tempval |= BIT(7);
rtw_write8(padapter, 0x6B, tempval);
tempval = rtw_read8(padapter, 0x6B);
tempval &= ~BIT(6);
rtw_write8(padapter, 0x6B, tempval);
}
}
static void Hal_EfusePowerSwitch(
struct adapter *padapter, u8 bWrite, u8 PwrState
)
{
u8 tempval;
u16 tmpV16;
if (PwrState) {
tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
if (tempval & BIT(0)) {
u8 count = 0;
tempval &= ~BIT(0);
rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
do {
tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
tempval &= 0x3;
if (tempval == 0x02)
break;
count++;
if (count >= 100)
break;
mdelay(10);
} while (1);
}
rtw_write8(padapter, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
tmpV16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
if (!(tmpV16 & FEN_ELDR)) {
tmpV16 |= FEN_ELDR;
rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
}
tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) {
tmpV16 |= (LOADER_CLK_EN | ANA8M);
rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
}
if (bWrite) {
tempval = rtw_read8(padapter, EFUSE_TEST+3);
tempval &= 0x0F;
tempval |= (VOLTAGE_V25 << 4);
rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
}
} else {
rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
if (bWrite) {
tempval = rtw_read8(padapter, EFUSE_TEST+3);
rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
}
}
}
static void hal_ReadEFuse_WiFi(
struct adapter *padapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
bool bPseudoTest
)
{
#ifdef HAL_EFUSE_MEMORY
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
#endif
u8 *efuseTbl = NULL;
u16 eFuse_Addr = 0;
u8 offset, wden;
u8 efuseHeader, efuseExtHdr, efuseData;
u16 i, total, used;
u8 efuse_usage = 0;
if ((_offset + _size_byte) > EFUSE_MAX_MAP_LEN)
return;
efuseTbl = rtw_malloc(EFUSE_MAX_MAP_LEN);
if (!efuseTbl)
return;
memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
if (efuseHeader == 0xFF)
break;
if (EXT_HEADER(efuseHeader)) {
offset = GET_HDR_OFFSET_2_0(efuseHeader);
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
if (ALL_WORDS_DISABLED(efuseExtHdr))
continue;
offset |= ((efuseExtHdr & 0xF0) >> 1);
wden = (efuseExtHdr & 0x0F);
} else {
offset = ((efuseHeader >> 4) & 0x0f);
wden = (efuseHeader & 0x0f);
}
if (offset < EFUSE_MAX_SECTION_8723B) {
u16 addr;
addr = offset * PGPKT_DATA_SIZE;
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
if (!(wden & (0x01<<i))) {
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
efuseTbl[addr] = efuseData;
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
efuseTbl[addr+1] = efuseData;
}
addr += 2;
}
} else {
eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
}
}
for (i = 0; i < _size_byte; i++)
pbuf[i] = efuseTbl[_offset+i];
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
used = eFuse_Addr - 1;
efuse_usage = (u8)((used*100)/total);
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeEfuseUsedBytes = used;
#else
fakeEfuseUsedBytes = used;
#endif
} else {
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
}
kfree(efuseTbl);
}
static void hal_ReadEFuse_BT(
struct adapter *padapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
bool bPseudoTest
)
{
#ifdef HAL_EFUSE_MEMORY
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
#endif
u8 *efuseTbl;
u8 bank;
u16 eFuse_Addr;
u8 efuseHeader, efuseExtHdr, efuseData;
u8 offset, wden;
u16 i, total, used;
u8 efuse_usage;
if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN)
return;
efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
if (!efuseTbl)
return;
memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
for (bank = 1; bank < 3; bank++) {
if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false)
goto exit;
eFuse_Addr = 0;
while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
if (efuseHeader == 0xFF)
break;
if (EXT_HEADER(efuseHeader)) {
offset = GET_HDR_OFFSET_2_0(efuseHeader);
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
if (ALL_WORDS_DISABLED(efuseExtHdr))
continue;
offset |= ((efuseExtHdr & 0xF0) >> 1);
wden = (efuseExtHdr & 0x0F);
} else {
offset = ((efuseHeader >> 4) & 0x0f);
wden = (efuseHeader & 0x0f);
}
if (offset < EFUSE_BT_MAX_SECTION) {
u16 addr;
addr = offset * PGPKT_DATA_SIZE;
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
if (!(wden & (0x01<<i))) {
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
efuseTbl[addr] = efuseData;
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
efuseTbl[addr+1] = efuseData;
}
addr += 2;
}
} else {
eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
}
}
if ((eFuse_Addr - 1) < total)
break;
}
hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
for (i = 0; i < _size_byte; i++)
pbuf[i] = efuseTbl[_offset+i];
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
efuse_usage = (u8)((used*100)/total);
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeBTEfuseUsedBytes = used;
#else
fakeBTEfuseUsedBytes = used;
#endif
} else {
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
}
exit:
kfree(efuseTbl);
}
static void Hal_ReadEFuse(
struct adapter *padapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
bool bPseudoTest
)
{
if (efuseType == EFUSE_WIFI)
hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
else
hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
}
static u16 hal_EfuseGetCurrentSize_WiFi(
struct adapter *padapter, bool bPseudoTest
)
{
#ifdef HAL_EFUSE_MEMORY
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
#endif
u16 efuse_addr = 0;
u16 start_addr = 0;
u8 hoffset = 0, hworden = 0;
u8 efuse_data, word_cnts = 0;
u32 count = 0;
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
#else
efuse_addr = (u16)fakeEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
start_addr = efuse_addr;
hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
count = 0;
while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false)
goto error;
if (efuse_data == 0xFF)
break;
if ((start_addr != 0) && (efuse_addr == start_addr)) {
count++;
efuse_data = 0xFF;
if (count < 4) {
if (count > 2) {
efuse_addr = 0;
start_addr = 0;
}
continue;
}
goto error;
}
if (EXT_HEADER(efuse_data)) {
hoffset = GET_HDR_OFFSET_2_0(efuse_data);
efuse_addr++;
efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data))
continue;
hoffset |= ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
} else {
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
efuse_addr += (word_cnts*2)+1;
}
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
#else
fakeEfuseUsedBytes = efuse_addr;
#endif
} else
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
goto exit;
error:
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
exit:
return efuse_addr;
}
static u16 hal_EfuseGetCurrentSize_BT(struct adapter *padapter, u8 bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
#endif
u16 btusedbytes;
u16 efuse_addr;
u8 bank, startBank;
u8 hoffset = 0, hworden = 0;
u8 efuse_data, word_cnts = 0;
u16 retU2 = 0;
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
#else
btusedbytes = fakeBTEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
for (bank = startBank; bank < 3; bank++) {
if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false)
break;
if (bank != startBank)
efuse_addr = 0;
#if 1
while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
if (efuse_OneByteRead(padapter, efuse_addr,
&efuse_data, bPseudoTest) == false)
break;
if (efuse_data == 0xFF)
break;
if (EXT_HEADER(efuse_data)) {
hoffset = GET_HDR_OFFSET_2_0(efuse_data);
efuse_addr++;
efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data)) {
efuse_addr++;
continue;
}
hoffset |= ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
} else {
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
efuse_addr += (word_cnts*2)+1;
}
#else
while (
bContinual &&
efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) &&
AVAILABLE_EFUSE_ADDR(efuse_addr)
) {
if (efuse_data != 0xFF) {
if ((efuse_data&0x1F) == 0x0F) {
hoffset = efuse_data;
efuse_addr++;
efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
if ((efuse_data & 0x0F) == 0x0F) {
efuse_addr++;
continue;
} else {
hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
} else {
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
efuse_addr = efuse_addr + (word_cnts*2)+1;
} else
bContinual = false;
}
#endif
if (efuse_addr < retU2)
break;
}
retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
if (bPseudoTest) {
pEfuseHal->fakeBTEfuseUsedBytes = retU2;
} else {
pEfuseHal->BTEfuseUsedBytes = retU2;
}
return retU2;
}
static u16 Hal_EfuseGetCurrentSize(
struct adapter *padapter, u8 efuseType, bool bPseudoTest
)
{
u16 ret = 0;
if (efuseType == EFUSE_WIFI)
ret = hal_EfuseGetCurrentSize_WiFi(padapter, bPseudoTest);
else
ret = hal_EfuseGetCurrentSize_BT(padapter, bPseudoTest);
return ret;
}
static u8 Hal_EfuseWordEnableDataWrite(
struct adapter *padapter,
u16 efuse_addr,
u8 word_en,
u8 *data,
bool bPseudoTest
)
{
u16 tmpaddr = 0;
u16 start_addr = efuse_addr;
u8 badworden = 0x0F;
u8 tmpdata[PGPKT_DATA_SIZE];
memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
if (!(word_en & BIT(0))) {
tmpaddr = start_addr;
efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
badworden &= (~BIT(0));
}
}
if (!(word_en & BIT(1))) {
tmpaddr = start_addr;
efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
badworden &= (~BIT(1));
}
}
if (!(word_en & BIT(2))) {
tmpaddr = start_addr;
efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
badworden &= (~BIT(2));
}
}
if (!(word_en & BIT(3))) {
tmpaddr = start_addr;
efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
badworden &= (~BIT(3));
}
}
return badworden;
}
static s32 Hal_EfusePgPacketRead(
struct adapter *padapter,
u8 offset,
u8 *data,
bool bPseudoTest
)
{
u8 efuse_data, word_cnts = 0;
u16 efuse_addr = 0;
u8 hoffset = 0, hworden = 0;
u8 i;
u8 max_section = 0;
s32 ret;
if (!data)
return false;
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
if (offset > max_section)
return false;
memset(data, 0xFF, PGPKT_DATA_SIZE);
ret = true;
while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == false) {
ret = false;
break;
}
if (efuse_data == 0xFF)
break;
if (EXT_HEADER(efuse_data)) {
hoffset = GET_HDR_OFFSET_2_0(efuse_data);
efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data))
continue;
hoffset |= ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
} else {
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
if (hoffset == offset) {
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
if (!(hworden & (0x01<<i))) {
efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
data[i*2] = efuse_data;
efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
data[(i*2)+1] = efuse_data;
}
}
} else {
word_cnts = Efuse_CalculateWordCnts(hworden);
efuse_addr += word_cnts*2;
}
}
return ret;
}
static u8 hal_EfusePgCheckAvailableAddr(
struct adapter *padapter, u8 efuseType, u8 bPseudoTest
)
{
u16 max_available = 0;
u16 current_size;
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
current_size = Efuse_GetCurrentSize(padapter, efuseType, bPseudoTest);
if (current_size >= max_available)
return false;
return true;
}
static void hal_EfuseConstructPGPkt(
u8 offset,
u8 word_en,
u8 *pData,
struct pgpkt_struct *pTargetPkt
)
{
memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
pTargetPkt->offset = offset;
pTargetPkt->word_en = word_en;
efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
static u8 hal_EfusePartialWriteCheck(
struct adapter *padapter,
u8 efuseType,
u16 *pAddr,
struct pgpkt_struct *pTargetPkt,
u8 bPseudoTest
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
u8 bRet = false;
u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
u8 efuse_data = 0;
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
if (efuseType == EFUSE_WIFI) {
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
#else
startAddr = (u16)fakeEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
} else {
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
#else
startAddr = (u16)fakeBTEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
}
startAddr %= efuse_max;
while (1) {
if (startAddr >= efuse_max_available_len) {
bRet = false;
break;
}
if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
#if 1
bRet = false;
break;
#else
if (EXT_HEADER(efuse_data)) {
cur_header = efuse_data;
startAddr++;
efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data)) {
bRet = false;
break;
} else {
curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
curPkt.word_en = efuse_data & 0x0F;
}
} else {
cur_header = efuse_data;
curPkt.offset = (cur_header>>4) & 0x0F;
curPkt.word_en = cur_header & 0x0F;
}
curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
if (
(curPkt.offset == pTargetPkt->offset) &&
(hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr+1, bPseudoTest) == false) &&
wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == true
) {
badworden = Efuse_WordEnableDataWrite(padapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
if (badworden != 0x0F) {
u32 PgWriteSuccess = 0;
if (efuseType == EFUSE_WIFI)
PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
else
PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
if (!PgWriteSuccess) {
bRet = false;
break;
}
}
for (i = 0; i < 4; i++) {
if ((matched_wden & (0x1<<i)) == 0) {
pTargetPkt->word_en |= (0x1<<i);
}
}
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
startAddr = startAddr + (curPkt.word_cnts*2) + 1;
#endif
} else {
*pAddr = startAddr;
bRet = true;
break;
}
}
return bRet;
}
static u8 hal_EfusePgPacketWrite1ByteHeader(
struct adapter *padapter,
u8 efuseType,
u16 *pAddr,
struct pgpkt_struct *pTargetPkt,
u8 bPseudoTest
)
{
u8 pg_header = 0, tmp_header = 0;
u16 efuse_addr = *pAddr;
u8 repeatcnt = 0;
pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
do {
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
if (tmp_header != 0xFF)
break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
return false;
} while (1);
if (tmp_header != pg_header)
return false;
*pAddr = efuse_addr;
return true;
}
static u8 hal_EfusePgPacketWrite2ByteHeader(
struct adapter *padapter,
u8 efuseType,
u16 *pAddr,
struct pgpkt_struct *pTargetPkt,
u8 bPseudoTest
)
{
u16 efuse_addr, efuse_max_available_len = 0;
u8 pg_header = 0, tmp_header = 0;
u8 repeatcnt = 0;
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
efuse_addr = *pAddr;
if (efuse_addr >= efuse_max_available_len)
return false;
pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
do {
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
if (tmp_header != 0xFF)
break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
return false;
} while (1);
if (tmp_header != pg_header)
return false;
efuse_addr++;
pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
do {
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
if (tmp_header != 0xFF)
break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
return false;
} while (1);
if (tmp_header != pg_header)
return false;
*pAddr = efuse_addr;
return true;
}
static u8 hal_EfusePgPacketWriteHeader(
struct adapter *padapter,
u8 efuseType,
u16 *pAddr,
struct pgpkt_struct *pTargetPkt,
u8 bPseudoTest
)
{
u8 bRet = false;
if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
else
bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
return bRet;
}
static u8 hal_EfusePgPacketWriteData(
struct adapter *padapter,
u8 efuseType,
u16 *pAddr,
struct pgpkt_struct *pTargetPkt,
u8 bPseudoTest
)
{
u16 efuse_addr;
u8 badworden;
efuse_addr = *pAddr;
badworden = Efuse_WordEnableDataWrite(padapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
if (badworden != 0x0F)
return false;
return true;
}
static s32 Hal_EfusePgPacketWrite(
struct adapter *padapter,
u8 offset,
u8 word_en,
u8 *pData,
bool bPseudoTest
)
{
struct pgpkt_struct targetPkt;
u16 startAddr = 0;
u8 efuseType = EFUSE_WIFI;
if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
return false;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
return true;
}
static bool Hal_EfusePgPacketWrite_BT(
struct adapter *padapter,
u8 offset,
u8 word_en,
u8 *pData,
bool bPseudoTest
)
{
struct pgpkt_struct targetPkt;
u16 startAddr = 0;
u8 efuseType = EFUSE_BT;
if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
return false;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
return true;
}
static struct hal_version ReadChipVersion8723B(struct adapter *padapter)
{
u32 value32;
struct hal_version ChipVersion;
struct hal_com_data *pHalData;
pHalData = GET_HAL_DATA(padapter);
value32 = rtw_read32(padapter, REG_SYS_CFG);
ChipVersion.ICType = CHIP_8723B;
ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT;
pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20);
pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
#if 1
dump_chip_info(ChipVersion);
#endif
pHalData->VersionID = ChipVersion;
return ChipVersion;
}
static void rtl8723b_read_chip_version(struct adapter *padapter)
{
ReadChipVersion8723B(padapter);
}
void rtl8723b_InitBeaconParameters(struct adapter *padapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u16 val16;
u8 val8;
val8 = DIS_TSF_UDT;
val16 = val8 | (val8 << 8);
val16 |= EN_BCN_FUNCTION;
rtw_write16(padapter, REG_BCN_CTRL, val16);
rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);
if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723B);
rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723B);
rtw_write16(padapter, REG_BCNTCFG, 0x660F);
pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
}
void _InitBurstPktLen_8723BS(struct adapter *Adapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7)|BIT(7));
rtw_write8(Adapter, REG_RX_PKT_LIMIT_8723B, 0x18);
rtw_write8(Adapter, REG_MAX_AGGR_NUM_8723B, 0x1F);
rtw_write8(Adapter, REG_PIFS_8723B, 0x00);
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8723B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
if (pHalData->AMPDUBurstMode)
rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8723B, 0x5F);
rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8723B, 0x70);
rtw_write32(Adapter, REG_ARFR0_8723B, 0x00000010);
if (IS_NORMAL_CHIP(pHalData->VersionID))
rtw_write32(Adapter, REG_ARFR0_8723B+4, 0xfffff000);
else
rtw_write32(Adapter, REG_ARFR0_8723B+4, 0x3e0ff000);
rtw_write32(Adapter, REG_ARFR1_8723B, 0x00000010);
rtw_write32(Adapter, REG_ARFR1_8723B+4, 0x003ff000);
}
static void ResumeTxBeacon(struct adapter *padapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
pHalData->RegFwHwTxQCtrl |= BIT(6);
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
pHalData->RegReg542 |= BIT(0);
rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
}
static void StopTxBeacon(struct adapter *padapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
pHalData->RegFwHwTxQCtrl &= ~BIT(6);
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
pHalData->RegReg542 &= ~BIT(0);
rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
CheckFwRsvdPageContent(padapter);
}
static void _BeaconFunctionEnable(struct adapter *padapter, u8 Enable, u8 Linked)
{
rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
}
static void rtl8723b_SetBeaconRelatedRegisters(struct adapter *padapter)
{
u8 val8;
u32 value32;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
u32 bcn_ctrl_reg;
bcn_ctrl_reg = REG_BCN_CTRL;
rtw_write16(padapter, REG_ATIMWND, 2);
rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
rtl8723b_InitBeaconParameters(padapter);
rtw_write8(padapter, REG_SLOT, 0x09);
value32 = rtw_read32(padapter, REG_TCR);
value32 &= ~TSFRST;
rtw_write32(padapter, REG_TCR, value32);
value32 |= TSFRST;
rtw_write32(padapter, REG_TCR, value32);
if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == true) {
rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
}
_BeaconFunctionEnable(padapter, true, true);
ResumeTxBeacon(padapter);
val8 = rtw_read8(padapter, bcn_ctrl_reg);
val8 |= DIS_BCNQ_SUB;
rtw_write8(padapter, bcn_ctrl_reg, val8);
}
static void rtl8723b_GetHalODMVar(
struct adapter *Adapter,
enum hal_odm_variable eVariable,
void *pValue1,
void *pValue2
)
{
GetHalODMVar(Adapter, eVariable, pValue1, pValue2);
}
static void rtl8723b_SetHalODMVar(
struct adapter *Adapter,
enum hal_odm_variable eVariable,
void *pValue1,
bool bSet
)
{
SetHalODMVar(Adapter, eVariable, pValue1, bSet);
}
static void hal_notch_filter_8723b(struct adapter *adapter, bool enable)
{
if (enable)
rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
else
rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
}
static void UpdateHalRAMask8723B(struct adapter *padapter, u32 mac_id, u8 rssi_level)
{
u32 mask, rate_bitmap;
u8 shortGIrate = false;
struct sta_info *psta;
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct dm_priv *pdmpriv = &pHalData->dmpriv;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if (mac_id >= NUM_STA)
return;
psta = pmlmeinfo->FW_sta_info[mac_id].psta;
if (!psta)
return;
shortGIrate = query_ra_short_GI(psta);
mask = psta->ra_mask;
rate_bitmap = 0xffffffff;
rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv, mac_id, mask, rssi_level);
mask &= rate_bitmap;
rate_bitmap = hal_btcoex_GetRaMask(padapter);
mask &= ~rate_bitmap;
if (pHalData->fw_ractrl) {
rtl8723b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
}
pdmpriv->INIDATA_RATE[mac_id] = psta->init_rate;
}
void rtl8723b_set_hal_ops(struct hal_ops *pHalFunc)
{
pHalFunc->free_hal_data = &rtl8723b_free_hal_data;
pHalFunc->dm_init = &rtl8723b_init_dm_priv;
pHalFunc->read_chip_version = &rtl8723b_read_chip_version;
pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8723B;
pHalFunc->set_bwmode_handler = &PHY_SetBWMode8723B;
pHalFunc->set_channel_handler = &PHY_SwChnl8723B;
pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8723B;
pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8723B;
pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8723B;
pHalFunc->hal_dm_watchdog = &rtl8723b_HalDmWatchDog;
pHalFunc->hal_dm_watchdog_in_lps = &rtl8723b_HalDmWatchDog_in_LPS;
pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8723b_SetBeaconRelatedRegisters;
pHalFunc->Add_RateATid = &rtl8723b_Add_RateATid;
pHalFunc->run_thread = &rtl8723b_start_thread;
pHalFunc->cancel_thread = &rtl8723b_stop_thread;
pHalFunc->read_bbreg = &PHY_QueryBBReg_8723B;
pHalFunc->write_bbreg = &PHY_SetBBReg_8723B;
pHalFunc->read_rfreg = &PHY_QueryRFReg_8723B;
pHalFunc->write_rfreg = &PHY_SetRFReg_8723B;
pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
pHalFunc->ReadEFuse = &Hal_ReadEFuse;
pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
pHalFunc->GetHalODMVarHandler = &rtl8723b_GetHalODMVar;
pHalFunc->SetHalODMVarHandler = &rtl8723b_SetHalODMVar;
pHalFunc->xmit_thread_handler = &hal_xmit_handler;
pHalFunc->hal_notch_filter = &hal_notch_filter_8723b;
pHalFunc->c2h_handler = c2h_handler_8723b;
pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723b;
pHalFunc->fill_h2c_cmd = &FillH2CCmd8723B;
}
void rtl8723b_InitAntenna_Selection(struct adapter *padapter)
{
u8 val;
val = rtw_read8(padapter, REG_LEDCFG2);
val |= BIT(7);
rtw_write8(padapter, REG_LEDCFG2, val);
}
void rtl8723b_init_default_value(struct adapter *padapter)
{
struct hal_com_data *pHalData;
struct dm_priv *pdmpriv;
u8 i;
pHalData = GET_HAL_DATA(padapter);
pdmpriv = &pHalData->dmpriv;
padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
pHalData->fw_ractrl = false;
pHalData->bIQKInitialized = false;
if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
pHalData->LastHMEBoxNum = 0;
pHalData->bIQKInitialized = false;
pdmpriv->TM_Trigger = 0;
pdmpriv->ThermalValue_HP_index = 0;
for (i = 0; i < HP_THERMAL_NUM; i++)
pdmpriv->ThermalValue_HP[i] = 0;
pHalData->EfuseUsedBytes = 0;
pHalData->EfuseUsedPercentage = 0;
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.fakeEfuseBank = 0;
pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
pHalData->EfuseHal.BTEfuseUsedBytes = 0;
pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
#endif
}
u8 GetEEPROMSize8723B(struct adapter *padapter)
{
u8 size = 0;
u32 cr;
cr = rtw_read16(padapter, REG_9346CR);
size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
return size;
}
s32 rtl8723b_InitLLTTable(struct adapter *padapter)
{
unsigned long start, passing_time;
u32 val32;
s32 ret;
ret = _FAIL;
val32 = rtw_read32(padapter, REG_AUTO_LLT);
val32 |= BIT_AUTO_INIT_LLT;
rtw_write32(padapter, REG_AUTO_LLT, val32);
start = jiffies;
do {
val32 = rtw_read32(padapter, REG_AUTO_LLT);
if (!(val32 & BIT_AUTO_INIT_LLT)) {
ret = _SUCCESS;
break;
}
passing_time = jiffies_to_msecs(jiffies - start);
if (passing_time > 1000)
break;
msleep(1);
} while (1);
return ret;
}
static void hal_get_chnl_group_8723b(u8 channel, u8 *group)
{
if (1 <= channel && channel <= 2)
*group = 0;
else if (3 <= channel && channel <= 5)
*group = 1;
else if (6 <= channel && channel <= 8)
*group = 2;
else if (9 <= channel && channel <= 11)
*group = 3;
else if (12 <= channel && channel <= 14)
*group = 4;
}
void Hal_InitPGData(struct adapter *padapter, u8 *PROMContent)
{
struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
if (!pEEPROM->bautoload_fail_flag) {
if (!pEEPROM->EepromOrEfuse) {
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
}
} else {
if (!pEEPROM->EepromOrEfuse)
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
}
}
void Hal_EfuseParseIDCode(struct adapter *padapter, u8 *hwinfo)
{
struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
u16 EEPROMId;
EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
if (EEPROMId != RTL_EEPROM_ID) {
pEEPROM->bautoload_fail_flag = true;
} else
pEEPROM->bautoload_fail_flag = false;
}
static void Hal_ReadPowerValueFromPROM_8723B(
struct adapter *Adapter,
struct TxPowerInfo24G *pwrInfo24G,
u8 *PROMContent,
bool AutoLoadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_8723B, group, TxCount = 0;
memset(pwrInfo24G, 0, sizeof(struct TxPowerInfo24G));
if (0xFF == PROMContent[eeAddr+1])
AutoLoadFail = true;
if (AutoLoadFail) {
for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
}
for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
if (TxCount == 0) {
pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
} else {
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
}
}
}
return;
}
pHalData->bTXPowerDataReadFromEEPORM = true;
for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++];
if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
}
for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++];
if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
}
for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
if (TxCount == 0) {
pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
if (PROMContent[eeAddr] == 0xFF)
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF;
else {
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
if (PROMContent[eeAddr] == 0xFF)
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
else {
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
}
pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
eeAddr++;
} else {
if (PROMContent[eeAddr] == 0xFF)
pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
else {
pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)
pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
}
if (PROMContent[eeAddr] == 0xFF)
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
else {
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
eeAddr++;
if (PROMContent[eeAddr] == 0xFF)
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
else {
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
}
if (PROMContent[eeAddr] == 0xFF)
pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
else {
pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)
pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
}
eeAddr++;
}
}
}
}
void Hal_EfuseParseTxPowerInfo_8723B(
struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct TxPowerInfo24G pwrInfo24G;
u8 rfPath, ch, TxCount = 1;
Hal_ReadPowerValueFromPROM_8723B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) {
for (ch = 0 ; ch < CHANNEL_MAX_NUMBER; ch++) {
u8 group = 0;
hal_get_chnl_group_8723b(ch + 1, &group);
if (ch == 14-1) {
pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
} else {
pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
}
}
for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
}
}
if (!AutoLoadFail) {
pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723B]&0x7);
if (PROMContent[EEPROM_RF_BOARD_OPTION_8723B] == 0xFF)
pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7);
} else
pHalData->EEPROMRegulatory = 0;
}
void Hal_EfuseParseBTCoexistInfo_8723B(
struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 tempval;
u32 tmpu4;
if (!AutoLoadFail) {
tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
if (tmpu4 & BT_FUNC_EN)
pHalData->EEPROMBluetoothCoexist = true;
else
pHalData->EEPROMBluetoothCoexist = false;
pHalData->EEPROMBluetoothType = BT_RTL8723B;
tempval = hwinfo[EEPROM_RF_BT_SETTING_8723B];
if (tempval != 0xFF) {
pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
if (tempval & BIT(6))
pHalData->ant_path = RF_PATH_B;
else
pHalData->ant_path = RF_PATH_A;
} else {
pHalData->EEPROMBluetoothAntNum = Ant_x1;
if (pHalData->PackageType == PACKAGE_QFN68)
pHalData->ant_path = RF_PATH_B;
else
pHalData->ant_path = RF_PATH_A;
}
} else {
pHalData->EEPROMBluetoothCoexist = false;
pHalData->EEPROMBluetoothType = BT_RTL8723B;
pHalData->EEPROMBluetoothAntNum = Ant_x1;
pHalData->ant_path = RF_PATH_A;
}
if (padapter->registrypriv.ant_num > 0) {
switch (padapter->registrypriv.ant_num) {
case 1:
pHalData->EEPROMBluetoothAntNum = Ant_x1;
break;
case 2:
pHalData->EEPROMBluetoothAntNum = Ant_x2;
break;
default:
break;
}
}
hal_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
hal_btcoex_SetPgAntNum(padapter, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
hal_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
}
void Hal_EfuseParseEEPROMVer_8723B(
struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
if (!AutoLoadFail)
pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723B];
else
pHalData->EEPROMVersion = 1;
}
void Hal_EfuseParsePackageType_8723B(
struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 package;
u8 efuseContent;
Efuse_PowerSwitch(padapter, false, true);
efuse_OneByteRead(padapter, 0x1FB, &efuseContent, false);
Efuse_PowerSwitch(padapter, false, false);
package = efuseContent & 0x7;
switch (package) {
case 0x4:
pHalData->PackageType = PACKAGE_TFBGA79;
break;
case 0x5:
pHalData->PackageType = PACKAGE_TFBGA90;
break;
case 0x6:
pHalData->PackageType = PACKAGE_QFN68;
break;
case 0x7:
pHalData->PackageType = PACKAGE_TFBGA80;
break;
default:
pHalData->PackageType = PACKAGE_DEFAULT;
break;
}
}
void Hal_EfuseParseVoltage_8723B(
struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
)
{
struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
pEEPROM->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723B] & 0xf0) >> 4;
}
void Hal_EfuseParseChnlPlan_8723B(
struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
)
{
padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
padapter,
hwinfo ? hwinfo[EEPROM_ChannelPlan_8723B] : 0xFF,
padapter->registrypriv.channel_plan,
RT_CHANNEL_DOMAIN_WORLD_NULL,
AutoLoadFail
);
Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
}
void Hal_EfuseParseCustomerID_8723B(
struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
if (!AutoLoadFail)
pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723B];
else
pHalData->EEPROMCustomerID = 0;
}
void Hal_EfuseParseAntennaDiversity_8723B(
struct adapter *padapter,
u8 *hwinfo,
bool AutoLoadFail
)
{
}
void Hal_EfuseParseXtal_8723B(
struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
if (!AutoLoadFail) {
pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8723B];
if (pHalData->CrystalCap == 0xFF)
pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
} else
pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
}
void Hal_EfuseParseThermalMeter_8723B(
struct adapter *padapter, u8 *PROMContent, u8 AutoLoadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
if (!AutoLoadFail)
pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8723B];
else
pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
if ((pHalData->EEPROMThermalMeter == 0xff) || AutoLoadFail) {
pHalData->bAPKThermalMeterIgnore = true;
pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
}
}
void Hal_ReadRFGainOffset(
struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail
)
{
if (!AutoloadFail) {
Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
Adapter->eeprompriv.EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
} else {
Adapter->eeprompriv.EEPROMRFGainOffset = 0;
Adapter->eeprompriv.EEPROMRFGainVal = 0xFF;
}
}
u8 BWMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
{
u8 BWSettingOfDesc = 0;
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
if (pattrib->bwmode == CHANNEL_WIDTH_40)
BWSettingOfDesc = 1;
else
BWSettingOfDesc = 0;
} else
BWSettingOfDesc = 0;
return BWSettingOfDesc;
}
u8 SCMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
{
u8 SCSettingOfDesc = 0;
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
if (pattrib->bwmode == CHANNEL_WIDTH_40) {
SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
} else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) {
SCSettingOfDesc = HT_DATA_SC_20_UPPER_OF_40MHZ;
} else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) {
SCSettingOfDesc = HT_DATA_SC_20_LOWER_OF_40MHZ;
} else {
SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
}
}
} else {
SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
}
return SCSettingOfDesc;
}
static void rtl8723b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
{
u16 *usPtr = (u16 *)ptxdesc;
u32 count;
u32 index;
u16 checksum = 0;
ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
count = 16;
for (index = 0; index < count; index++) {
checksum |= le16_to_cpu(*(__le16 *)(usPtr + index));
}
ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
}
static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
{
u8 sectype = 0;
if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
switch (pattrib->encrypt) {
case _WEP40_:
case _WEP104_:
case _TKIP_:
case _TKIP_WTMIC_:
sectype = 1;
break;
case _AES_:
sectype = 3;
break;
case _NO_PRIVACY_:
default:
break;
}
}
return sectype;
}
static void fill_txdesc_vcs_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, struct txdesc_8723b *ptxdesc)
{
if (pattrib->vcs_mode) {
switch (pattrib->vcs_mode) {
case RTS_CTS:
ptxdesc->rtsen = 1;
ptxdesc->hw_rts_en = 1;
break;
case CTS_TO_SELF:
ptxdesc->cts2self = 1;
break;
case NONE_VCS:
default:
break;
}
ptxdesc->rtsrate = 8;
ptxdesc->rts_ratefb_lmt = 0xF;
if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
ptxdesc->rts_short = 1;
if (pattrib->ht_en)
ptxdesc->rts_sc = SCMapping_8723B(padapter, pattrib);
}
}
static void fill_txdesc_phy_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, struct txdesc_8723b *ptxdesc)
{
if (pattrib->ht_en) {
ptxdesc->data_bw = BWMapping_8723B(padapter, pattrib);
ptxdesc->data_sc = SCMapping_8723B(padapter, pattrib);
}
}
static void rtl8723b_fill_default_txdesc(
struct xmit_frame *pxmitframe, u8 *pbuf
)
{
struct adapter *padapter;
struct hal_com_data *pHalData;
struct mlme_ext_priv *pmlmeext;
struct mlme_ext_info *pmlmeinfo;
struct pkt_attrib *pattrib;
struct txdesc_8723b *ptxdesc;
s32 bmcst;
memset(pbuf, 0, TXDESC_SIZE);
padapter = pxmitframe->padapter;
pHalData = GET_HAL_DATA(padapter);
pmlmeext = &padapter->mlmeextpriv;
pmlmeinfo = &(pmlmeext->mlmext_info);
pattrib = &pxmitframe->attrib;
bmcst = is_multicast_ether_addr(pattrib->ra);
ptxdesc = (struct txdesc_8723b *)pbuf;
if (pxmitframe->frame_tag == DATA_FRAMETAG) {
u8 drv_userate = 0;
ptxdesc->macid = pattrib->mac_id;
ptxdesc->rate_id = pattrib->raid;
ptxdesc->qsel = pattrib->qsel;
ptxdesc->seq = pattrib->seqnum;
ptxdesc->sectype = fill_txdesc_sectype(pattrib);
fill_txdesc_vcs_8723b(padapter, pattrib, ptxdesc);
if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
drv_userate = 1;
if (
(pattrib->ether_type != 0x888e) &&
(pattrib->ether_type != 0x0806) &&
(pattrib->ether_type != 0x88B4) &&
(pattrib->dhcp_pkt != 1) &&
(drv_userate != 1)
) {
if (pattrib->ampdu_en) {
ptxdesc->agg_en = 1;
ptxdesc->max_agg_num = 0x1f;
ptxdesc->ampdu_density = pattrib->ampdu_spacing;
} else
ptxdesc->bk = 1;
fill_txdesc_phy_8723b(padapter, pattrib, ptxdesc);
ptxdesc->data_ratefb_lmt = 0x1F;
if (!pHalData->fw_ractrl) {
ptxdesc->userate = 1;
if (pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & BIT(7))
ptxdesc->data_short = 1;
ptxdesc->datarate = pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & 0x7F;
}
if (padapter->fix_rate != 0xFF) {
ptxdesc->userate = 1;
if (padapter->fix_rate & BIT(7))
ptxdesc->data_short = 1;
ptxdesc->datarate = (padapter->fix_rate & 0x7F);
ptxdesc->disdatafb = 1;
}
if (pattrib->ldpc)
ptxdesc->data_ldpc = 1;
if (pattrib->stbc)
ptxdesc->data_stbc = 1;
} else {
ptxdesc->bk = 1;
ptxdesc->userate = 1;
if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
ptxdesc->data_short = 1;
ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
}
ptxdesc->usb_txagg_num = pxmitframe->agg_num;
} else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
ptxdesc->macid = pattrib->mac_id;
ptxdesc->qsel = pattrib->qsel;
ptxdesc->rate_id = pattrib->raid;
ptxdesc->seq = pattrib->seqnum;
ptxdesc->userate = 1;
ptxdesc->mbssid = pattrib->mbssid & 0xF;
ptxdesc->rty_lmt_en = 1;
if (pattrib->retry_ctrl) {
ptxdesc->data_rt_lmt = 6;
} else {
ptxdesc->data_rt_lmt = 12;
}
ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
if (pxmitframe->ack_report) {
ptxdesc->spe_rpt = 1;
ptxdesc->sw_define = (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no);
}
} else {
ptxdesc->macid = pattrib->mac_id;
ptxdesc->rate_id = pattrib->raid;
ptxdesc->qsel = pattrib->qsel;
ptxdesc->seq = pattrib->seqnum;
ptxdesc->userate = 1;
ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
}
ptxdesc->pktlen = pattrib->last_txcmdsz;
ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
if (bmcst)
ptxdesc->bmc = 1;
if (!pattrib->qos_en)
ptxdesc->en_hwseq = 1;
}
void rtl8723b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
{
struct tx_desc *pdesc;
rtl8723b_fill_default_txdesc(pxmitframe, pbuf);
pdesc = (struct tx_desc *)pbuf;
rtl8723b_cal_txdesc_chksum(pdesc);
}
void rtl8723b_fill_fake_txdesc(
struct adapter *padapter,
u8 *pDesc,
u32 BufferLen,
u8 IsPsPoll,
u8 IsBTQosNull,
u8 bDataFrame
)
{
memset(pDesc, 0, TXDESC_SIZE);
SET_TX_DESC_FIRST_SEG_8723B(pDesc, 1);
SET_TX_DESC_LAST_SEG_8723B(pDesc, 1);
SET_TX_DESC_OFFSET_8723B(pDesc, 0x28);
SET_TX_DESC_PKT_SIZE_8723B(pDesc, BufferLen);
SET_TX_DESC_QUEUE_SEL_8723B(pDesc, QSLT_MGNT);
if (IsPsPoll) {
SET_TX_DESC_NAV_USE_HDR_8723B(pDesc, 1);
} else {
SET_TX_DESC_HWSEQ_EN_8723B(pDesc, 1);
SET_TX_DESC_HWSEQ_SEL_8723B(pDesc, 0);
}
if (IsBTQosNull) {
SET_TX_DESC_BT_INT_8723B(pDesc, 1);
}
SET_TX_DESC_USE_RATE_8723B(pDesc, 1);
SET_TX_DESC_OWN_8723B((u8 *)pDesc, 1);
SET_TX_DESC_TX_RATE_8723B(pDesc, DESC8723B_RATE1M);
if (bDataFrame) {
u32 EncAlg;
EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
switch (EncAlg) {
case _NO_PRIVACY_:
SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
break;
case _WEP40_:
case _WEP104_:
case _TKIP_:
SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x1);
break;
case _SMS4_:
SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x2);
break;
case _AES_:
SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x3);
break;
default:
SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
break;
}
}
rtl8723b_cal_txdesc_chksum((struct tx_desc *)pDesc);
}
static void hw_var_set_opmode(struct adapter *padapter, u8 variable, u8 *val)
{
u8 val8;
u8 mode = *((u8 *)val);
{
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 |= DIS_TSF_UDT;
rtw_write8(padapter, REG_BCN_CTRL, val8);
Set_MSR(padapter, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
{
StopTxBeacon(padapter);
}
rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
} else if (mode == _HW_STATE_ADHOC_) {
ResumeTxBeacon(padapter);
rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
} else if (mode == _HW_STATE_AP_) {
ResumeTxBeacon(padapter);
rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
rtw_write32(padapter, REG_RCR, 0x7000208e);
rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
rtw_write8(padapter, REG_BCNDMATIM, 0x02);
rtw_write8(padapter, REG_ATIMWND, 0x0a);
rtw_write16(padapter, REG_BCNTCFG, 0x00);
rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);
rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
rtw_write8(
padapter,
REG_CCK_CHECK_8723B,
(rtw_read8(padapter, REG_CCK_CHECK_8723B)&~BIT_BCN_PORT_SEL)
);
val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
val8 |= DIS_ATIM;
rtw_write8(padapter, REG_BCN_CTRL_1, val8);
}
}
}
static void hw_var_set_macaddr(struct adapter *padapter, u8 variable, u8 *val)
{
u8 idx = 0;
u32 reg_macid;
reg_macid = REG_MACID;
for (idx = 0 ; idx < 6; idx++)
rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
}
static void hw_var_set_bssid(struct adapter *padapter, u8 variable, u8 *val)
{
u8 idx = 0;
u32 reg_bssid;
reg_bssid = REG_BSSID;
for (idx = 0 ; idx < 6; idx++)
rtw_write8(padapter, (reg_bssid+idx), val[idx]);
}
static void hw_var_set_bcn_func(struct adapter *padapter, u8 variable, u8 *val)
{
u32 bcn_ctrl_reg;
bcn_ctrl_reg = REG_BCN_CTRL;
if (*(u8 *)val)
rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
else {
u8 val8;
val8 = rtw_read8(padapter, bcn_ctrl_reg);
val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
if (REG_BCN_CTRL == bcn_ctrl_reg)
val8 |= EN_BCN_FUNCTION;
rtw_write8(padapter, bcn_ctrl_reg, val8);
}
}
static void hw_var_set_correct_tsf(struct adapter *padapter, u8 variable, u8 *val)
{
u8 val8;
u64 tsf;
struct mlme_ext_priv *pmlmeext;
struct mlme_ext_info *pmlmeinfo;
pmlmeext = &padapter->mlmeextpriv;
pmlmeinfo = &pmlmeext->mlmext_info;
tsf = pmlmeext->TSFValue-do_div(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024))-1024;
if (
((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
)
StopTxBeacon(padapter);
{
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 &= ~EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL, val8);
rtw_write32(padapter, REG_TSFTR, tsf);
rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 |= EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL, val8);
}
if (
((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
)
ResumeTxBeacon(padapter);
}
static void hw_var_set_mlme_disconnect(struct adapter *padapter, u8 variable, u8 *val)
{
u8 val8;
rtw_write16(padapter, REG_RXFLTMAP2, 0);
rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 |= DIS_TSF_UDT;
rtw_write8(padapter, REG_BCN_CTRL, val8);
}
static void hw_var_set_mlme_sitesurvey(struct adapter *padapter, u8 variable, u8 *val)
{
u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
u16 value_rxfltmap2;
u8 val8;
struct hal_com_data *pHalData;
struct mlme_priv *pmlmepriv;
pHalData = GET_HAL_DATA(padapter);
pmlmepriv = &padapter->mlmepriv;
reg_bcn_ctl = REG_BCN_CTRL;
rcr_clear_bit = RCR_CBSSID_BCN;
value_rxfltmap2 = 0;
if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == true))
rcr_clear_bit = RCR_CBSSID_BCN;
value_rcr = rtw_read32(padapter, REG_RCR);
if (*((u8 *)val)) {
value_rcr &= ~(rcr_clear_bit);
rtw_write32(padapter, REG_RCR, value_rcr);
rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
val8 = rtw_read8(padapter, reg_bcn_ctl);
val8 |= DIS_TSF_UDT;
rtw_write8(padapter, reg_bcn_ctl, val8);
}
pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
} else {
if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)))
rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
val8 = rtw_read8(padapter, reg_bcn_ctl);
val8 &= ~DIS_TSF_UDT;
rtw_write8(padapter, reg_bcn_ctl, val8);
}
value_rcr |= rcr_clear_bit;
rtw_write32(padapter, REG_RCR, value_rcr);
rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
}
}
static void hw_var_set_mlme_join(struct adapter *padapter, u8 variable, u8 *val)
{
u8 val8;
u16 val16;
u32 val32;
u8 RetryLimit;
u8 type;
struct mlme_priv *pmlmepriv;
struct eeprom_priv *pEEPROM;
RetryLimit = 0x30;
type = *(u8 *)val;
pmlmepriv = &padapter->mlmepriv;
pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
if (type == 0) {
rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
val32 = rtw_read32(padapter, REG_RCR);
if (padapter->in_cta_test)
val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
else
val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
rtw_write32(padapter, REG_RCR, val32);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
else
RetryLimit = 0x7;
} else if (type == 1)
rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
else if (type == 2) {
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 &= ~DIS_TSF_UDT;
rtw_write8(padapter, REG_BCN_CTRL, val8);
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
RetryLimit = 0x7;
}
val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
rtw_write16(padapter, REG_RL, val16);
}
void CCX_FwC2HTxRpt_8723b(struct adapter *padapter, u8 *pdata, u8 len)
{
#define GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(_Header) LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
#define GET_8723B_C2H_TX_RPT_RETRY_OVER(_Header) LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
if (GET_8723B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
}
else
rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
}
s32 c2h_id_filter_ccx_8723b(u8 *buf)
{
struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
s32 ret = false;
if (c2h_evt->id == C2H_CCX_TX_RPT)
ret = true;
return ret;
}
s32 c2h_handler_8723b(struct adapter *padapter, u8 *buf)
{
struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
s32 ret = _SUCCESS;
if (!pC2hEvent) {
ret = _FAIL;
goto exit;
}
switch (pC2hEvent->id) {
case C2H_AP_RPT_RSP:
break;
case C2H_DBG:
{
}
break;
case C2H_CCX_TX_RPT:
break;
case C2H_EXT_RA_RPT:
break;
case C2H_HW_INFO_EXCH:
break;
case C2H_8723B_BT_INFO:
hal_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
break;
default:
break;
}
exit:
return ret;
}
static void process_c2h_event(struct adapter *padapter, struct c2h_evt_hdr_t *pC2hEvent, u8 *c2hBuf)
{
if (!c2hBuf)
return;
switch (pC2hEvent->CmdID) {
case C2H_AP_RPT_RSP:
break;
case C2H_DBG:
{
}
break;
case C2H_CCX_TX_RPT:
break;
case C2H_EXT_RA_RPT:
break;
case C2H_HW_INFO_EXCH:
break;
case C2H_8723B_BT_INFO:
hal_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
break;
default:
break;
}
}
void C2HPacketHandler_8723B(struct adapter *padapter, u8 *pbuffer, u16 length)
{
struct c2h_evt_hdr_t C2hEvent;
u8 *tmpBuf = NULL;
C2hEvent.CmdID = pbuffer[0];
C2hEvent.CmdSeq = pbuffer[1];
C2hEvent.CmdLen = length-2;
tmpBuf = pbuffer+2;
process_c2h_event(padapter, &C2hEvent, tmpBuf);
}
void SetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 val8;
u32 val32;
switch (variable) {
case HW_VAR_MEDIA_STATUS:
val8 = rtw_read8(padapter, MSR) & 0x0c;
val8 |= *val;
rtw_write8(padapter, MSR, val8);
break;
case HW_VAR_MEDIA_STATUS1:
val8 = rtw_read8(padapter, MSR) & 0x03;
val8 |= *val << 2;
rtw_write8(padapter, MSR, val8);
break;
case HW_VAR_SET_OPMODE:
hw_var_set_opmode(padapter, variable, val);
break;
case HW_VAR_MAC_ADDR:
hw_var_set_macaddr(padapter, variable, val);
break;
case HW_VAR_BSSID:
hw_var_set_bssid(padapter, variable, val);
break;
case HW_VAR_BASIC_RATE:
{
struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
u16 BrateCfg = 0;
u16 rrsr_2g_force_mask = (RRSR_11M|RRSR_5_5M|RRSR_1M);
u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
HalSetBrateCfg(padapter, val, &BrateCfg);
BrateCfg |= rrsr_2g_force_mask;
BrateCfg &= rrsr_2g_allow_mask;
if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
if ((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
BrateCfg |= RRSR_6M;
}
pHalData->BasicRateSet = BrateCfg;
rtw_write16(padapter, REG_RRSR, BrateCfg);
rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
}
break;
case HW_VAR_TXPAUSE:
rtw_write8(padapter, REG_TXPAUSE, *val);
break;
case HW_VAR_BCN_FUNC:
hw_var_set_bcn_func(padapter, variable, val);
break;
case HW_VAR_CORRECT_TSF:
hw_var_set_correct_tsf(padapter, variable, val);
break;
case HW_VAR_CHECK_BSSID:
{
u32 val32;
val32 = rtw_read32(padapter, REG_RCR);
if (*val)
val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
else
val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
rtw_write32(padapter, REG_RCR, val32);
}
break;
case HW_VAR_MLME_DISCONNECT:
hw_var_set_mlme_disconnect(padapter, variable, val);
break;
case HW_VAR_MLME_SITESURVEY:
hw_var_set_mlme_sitesurvey(padapter, variable, val);
hal_btcoex_ScanNotify(padapter, *val?true:false);
break;
case HW_VAR_MLME_JOIN:
hw_var_set_mlme_join(padapter, variable, val);
switch (*val) {
case 0:
hal_btcoex_ConnectNotify(padapter, true);
break;
case 1:
hal_btcoex_ConnectNotify(padapter, false);
break;
case 2:
break;
}
break;
case HW_VAR_ON_RCR_AM:
val32 = rtw_read32(padapter, REG_RCR);
val32 |= RCR_AM;
rtw_write32(padapter, REG_RCR, val32);
break;
case HW_VAR_OFF_RCR_AM:
val32 = rtw_read32(padapter, REG_RCR);
val32 &= ~RCR_AM;
rtw_write32(padapter, REG_RCR, val32);
break;
case HW_VAR_BEACON_INTERVAL:
rtw_write16(padapter, REG_BCN_INTERVAL, *((u16 *)val));
break;
case HW_VAR_SLOT_TIME:
rtw_write8(padapter, REG_SLOT, *val);
break;
case HW_VAR_RESP_SIFS:
rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]);
rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]);
rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]);
rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]);
break;
case HW_VAR_ACK_PREAMBLE:
{
u8 regTmp;
u8 bShortPreamble = *val;
regTmp = 0;
if (bShortPreamble)
regTmp |= 0x80;
rtw_write8(padapter, REG_RRSR+2, regTmp);
}
break;
case HW_VAR_CAM_EMPTY_ENTRY:
{
u8 ucIndex = *val;
u8 i;
u32 ulCommand = 0;
u32 ulContent = 0;
u32 ulEncAlgo = CAM_AES;
for (i = 0; i < CAM_CONTENT_COUNT; i++) {
if (i == 0) {
ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
} else
ulContent = 0;
ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
rtw_write32(padapter, WCAMI, ulContent);
rtw_write32(padapter, RWCAM, ulCommand);
}
}
break;
case HW_VAR_CAM_INVALID_ALL:
rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
break;
case HW_VAR_CAM_WRITE:
{
u32 cmd;
u32 *cam_val = (u32 *)val;
rtw_write32(padapter, WCAMI, cam_val[0]);
cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
rtw_write32(padapter, RWCAM, cmd);
}
break;
case HW_VAR_AC_PARAM_VO:
rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
break;
case HW_VAR_AC_PARAM_VI:
rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
break;
case HW_VAR_AC_PARAM_BE:
pHalData->AcParam_BE = ((u32 *)(val))[0];
rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
break;
case HW_VAR_AC_PARAM_BK:
rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
break;
case HW_VAR_ACM_CTRL:
{
u8 ctrl = *((u8 *)val);
u8 hwctrl = 0;
if (ctrl != 0) {
hwctrl |= AcmHw_HwEn;
if (ctrl & BIT(1))
hwctrl |= AcmHw_BeqEn;
if (ctrl & BIT(2))
hwctrl |= AcmHw_ViqEn;
if (ctrl & BIT(3))
hwctrl |= AcmHw_VoqEn;
}
rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
}
break;
case HW_VAR_AMPDU_FACTOR:
{
u32 AMPDULen = (*((u8 *)val));
if (AMPDULen < HT_AGG_SIZE_32K)
AMPDULen = (0x2000 << (*((u8 *)val)))-1;
else
AMPDULen = 0x7fff;
rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8723B, AMPDULen);
}
break;
case HW_VAR_H2C_FW_PWRMODE:
{
u8 psmode = *val;
if (psmode != PS_MODE_ACTIVE) {
ODM_RF_Saving(&pHalData->odmpriv, true);
}
rtl8723b_set_FwPwrMode_cmd(padapter, psmode);
}
break;
case HW_VAR_H2C_PS_TUNE_PARAM:
rtl8723b_set_FwPsTuneParam_cmd(padapter);
break;
case HW_VAR_H2C_FW_JOINBSSRPT:
rtl8723b_set_FwJoinBssRpt_cmd(padapter, *val);
break;
case HW_VAR_INITIAL_GAIN:
{
struct dig_t *pDigTable = &pHalData->odmpriv.DM_DigTable;
u32 rx_gain = *(u32 *)val;
if (rx_gain == 0xff) {
ODM_Write_DIG(&pHalData->odmpriv, pDigTable->BackupIGValue);
} else {
pDigTable->BackupIGValue = pDigTable->CurIGValue;
ODM_Write_DIG(&pHalData->odmpriv, rx_gain);
}
}
break;
case HW_VAR_EFUSE_USAGE:
pHalData->EfuseUsedPercentage = *val;
break;
case HW_VAR_EFUSE_BYTES:
pHalData->EfuseUsedBytes = *((u16 *)val);
break;
case HW_VAR_EFUSE_BT_USAGE:
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
#endif
break;
case HW_VAR_EFUSE_BT_BYTES:
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
#else
BTEfuseUsedBytes = *((u16 *)val);
#endif
break;
case HW_VAR_FIFO_CLEARN_UP:
{
#define RW_RELEASE_EN BIT(18)
#define RXDMA_IDLE BIT(17)
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
u8 trycnt = 100;
rtw_write8(padapter, REG_TXPAUSE, 0xff);
padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
if (!pwrpriv->bkeepfwalive) {
val32 = rtw_read32(padapter, REG_RXPKT_NUM);
val32 |= RW_RELEASE_EN;
rtw_write32(padapter, REG_RXPKT_NUM, val32);
do {
val32 = rtw_read32(padapter, REG_RXPKT_NUM);
val32 &= RXDMA_IDLE;
if (val32)
break;
} while (--trycnt);
rtw_write16(padapter, REG_RQPN_NPQ, 0);
rtw_write32(padapter, REG_RQPN, 0x80000000);
mdelay(2);
}
}
break;
case HW_VAR_APFM_ON_MAC:
pHalData->bMacPwrCtrlOn = *val;
break;
case HW_VAR_NAV_UPPER:
{
u32 usNavUpper = *((u32 *)val);
if (usNavUpper > HAL_NAV_UPPER_UNIT_8723B * 0xFF)
break;
usNavUpper = DIV_ROUND_UP(usNavUpper,
HAL_NAV_UPPER_UNIT_8723B);
rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
}
break;
case HW_VAR_H2C_MEDIA_STATUS_RPT:
{
u16 mstatus_rpt = (*(u16 *)val);
u8 mstatus, macId;
mstatus = (u8) (mstatus_rpt & 0xFF);
macId = (u8)(mstatus_rpt >> 8);
rtl8723b_set_FwMediaStatusRpt_cmd(padapter, mstatus, macId);
}
break;
case HW_VAR_BCN_VALID:
{
val8 = rtw_read8(padapter, REG_TDECTRL+2);
val8 |= BIT(0);
rtw_write8(padapter, REG_TDECTRL+2, val8);
}
break;
case HW_VAR_DL_BCN_SEL:
{
val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8723B+2);
val8 &= ~BIT(4);
rtw_write8(padapter, REG_DWBCN1_CTRL_8723B+2, val8);
}
break;
case HW_VAR_DO_IQK:
pHalData->bNeedIQK = true;
break;
case HW_VAR_DL_RSVD_PAGE:
if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true)
rtl8723b_download_BTCoex_AP_mode_rsvd_page(padapter);
else
rtl8723b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
break;
case HW_VAR_MACID_SLEEP:
val32 = *(u32 *)val;
if (val32 > 31)
break;
val8 = (u8)val32;
val32 = rtw_read32(padapter, REG_MACID_SLEEP);
if (val32 & BIT(val8))
break;
val32 |= BIT(val8);
rtw_write32(padapter, REG_MACID_SLEEP, val32);
break;
case HW_VAR_MACID_WAKEUP:
val32 = *(u32 *)val;
if (val32 > 31)
break;
val8 = (u8)val32;
val32 = rtw_read32(padapter, REG_MACID_SLEEP);
if (!(val32 & BIT(val8)))
break;
val32 &= ~BIT(val8);
rtw_write32(padapter, REG_MACID_SLEEP, val32);
break;
default:
SetHwReg(padapter, variable, val);
break;
}
}
void GetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 val8;
u16 val16;
switch (variable) {
case HW_VAR_TXPAUSE:
*val = rtw_read8(padapter, REG_TXPAUSE);
break;
case HW_VAR_BCN_VALID:
{
val8 = rtw_read8(padapter, REG_TDECTRL+2);
*val = (BIT(0) & val8) ? true : false;
}
break;
case HW_VAR_FWLPS_RF_ON:
{
u32 valRCR;
if (
padapter->bSurpriseRemoved ||
(adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
) {
*val = true;
} else {
valRCR = rtw_read32(padapter, REG_RCR);
valRCR &= 0x00070000;
if (valRCR)
*val = false;
else
*val = true;
}
}
break;
case HW_VAR_EFUSE_USAGE:
*val = pHalData->EfuseUsedPercentage;
break;
case HW_VAR_EFUSE_BYTES:
*((u16 *)val) = pHalData->EfuseUsedBytes;
break;
case HW_VAR_EFUSE_BT_USAGE:
#ifdef HAL_EFUSE_MEMORY
*val = pHalData->EfuseHal.BTEfuseUsedPercentage;
#endif
break;
case HW_VAR_EFUSE_BT_BYTES:
#ifdef HAL_EFUSE_MEMORY
*((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
#else
*((u16 *)val) = BTEfuseUsedBytes;
#endif
break;
case HW_VAR_APFM_ON_MAC:
*val = pHalData->bMacPwrCtrlOn;
break;
case HW_VAR_CHK_HI_QUEUE_EMPTY:
val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
*val = (val16 & BIT(10)) ? true:false;
break;
default:
GetHwReg(padapter, variable, val);
break;
}
}
u8 SetHalDefVar8723B(struct adapter *padapter, enum hal_def_variable variable, void *pval)
{
u8 bResult;
bResult = _SUCCESS;
switch (variable) {
default:
bResult = SetHalDefVar(padapter, variable, pval);
break;
}
return bResult;
}
u8 GetHalDefVar8723B(struct adapter *padapter, enum hal_def_variable variable, void *pval)
{
u8 bResult;
bResult = _SUCCESS;
switch (variable) {
case HAL_DEF_MAX_RECVBUF_SZ:
*((u32 *)pval) = MAX_RECVBUF_SZ;
break;
case HAL_DEF_RX_PACKET_OFFSET:
*((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
break;
case HW_VAR_MAX_RX_AMPDU_FACTOR:
*(u32 *)pval = IEEE80211_HT_MAX_AMPDU_16K;
break;
case HAL_DEF_TX_LDPC:
case HAL_DEF_RX_LDPC:
*((u8 *)pval) = false;
break;
case HAL_DEF_TX_STBC:
*((u8 *)pval) = 0;
break;
case HAL_DEF_RX_STBC:
*((u8 *)pval) = 1;
break;
case HAL_DEF_EXPLICIT_BEAMFORMER:
case HAL_DEF_EXPLICIT_BEAMFORMEE:
*((u8 *)pval) = false;
break;
case HW_DEF_RA_INFO_DUMP:
{
u8 mac_id = *(u8 *)pval;
u32 cmd;
cmd = 0x40000100 | mac_id;
rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
msleep(10);
rtw_read32(padapter, 0x2F0);
cmd = 0x40000400 | mac_id;
rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
msleep(10);
rtw_read32(padapter, 0x2F0);
rtw_read32(padapter, 0x2F4);
rtw_read32(padapter, 0x2F8);
rtw_read32(padapter, 0x2FC);
}
break;
case HAL_DEF_TX_PAGE_BOUNDARY:
if (!padapter->registrypriv.wifi_spec) {
*(u8 *)pval = TX_PAGE_BOUNDARY_8723B;
} else {
*(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723B;
}
break;
case HAL_DEF_MACID_SLEEP:
*(u8 *)pval = true;
break;
default:
bResult = GetHalDefVar(padapter, variable, pval);
break;
}
return bResult;
}
void rtl8723b_start_thread(struct adapter *padapter)
{
struct xmit_priv *xmitpriv = &padapter->xmitpriv;
xmitpriv->SdioXmitThread = kthread_run(rtl8723bs_xmit_thread, padapter, "RTWHALXT");
}
void rtl8723b_stop_thread(struct adapter *padapter)
{
struct xmit_priv *xmitpriv = &padapter->xmitpriv;
if (xmitpriv->SdioXmitThread) {
complete(&xmitpriv->SdioXmitStart);
wait_for_completion(&xmitpriv->SdioXmitTerminate);
xmitpriv->SdioXmitThread = NULL;
}
}