#include <drm/display/drm_dp_helper.h>
#include <drm/display/drm_dp_mst_helper.h>
#include <drm/display/drm_hdcp_helper.h>
#include <drm/drm_print.h>
#include "i915_reg.h"
#include "intel_ddi.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_dp_hdcp.h"
#include "intel_hdcp.h"
#include "intel_hdcp_regs.h"
static u32 transcoder_to_stream_enc_status(enum transcoder cpu_transcoder)
{
switch (cpu_transcoder) {
case TRANSCODER_A:
return HDCP_STATUS_STREAM_A_ENC;
case TRANSCODER_B:
return HDCP_STATUS_STREAM_B_ENC;
case TRANSCODER_C:
return HDCP_STATUS_STREAM_C_ENC;
case TRANSCODER_D:
return HDCP_STATUS_STREAM_D_ENC;
default:
return 0;
}
}
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
long ret;
#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
msecs_to_jiffies(timeout));
if (!ret)
DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
u8 *an)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
u8 aksv[DRM_HDCP_KSV_LEN] = {};
ssize_t dpcd_ret;
dpcd_ret = drm_dp_dpcd_write(&dig_port->dp.aux, DP_AUX_HDCP_AN,
an, DRM_HDCP_AN_LEN);
if (dpcd_ret != DRM_HDCP_AN_LEN) {
drm_dbg_kms(&i915->drm,
"Failed to write An over DP/AUX (%zd)\n",
dpcd_ret);
return dpcd_ret >= 0 ? -EIO : dpcd_ret;
}
dpcd_ret = drm_dp_dpcd_write(&dig_port->dp.aux, DP_AUX_HDCP_AKSV,
aksv, DRM_HDCP_KSV_LEN);
if (dpcd_ret != DRM_HDCP_KSV_LEN) {
drm_dbg_kms(&i915->drm,
"Failed to write Aksv over DP/AUX (%zd)\n",
dpcd_ret);
return dpcd_ret >= 0 ? -EIO : dpcd_ret;
}
return 0;
}
static int intel_dp_hdcp_read_bksv(struct intel_digital_port *dig_port,
u8 *bksv)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
ssize_t ret;
ret = drm_dp_dpcd_read(&dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
DRM_HDCP_KSV_LEN);
if (ret != DRM_HDCP_KSV_LEN) {
drm_dbg_kms(&i915->drm,
"Read Bksv from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *dig_port,
u8 *bstatus)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
ssize_t ret;
ret = drm_dp_dpcd_read(&dig_port->dp.aux, DP_AUX_HDCP_BINFO,
bstatus, DRM_HDCP_BSTATUS_LEN);
if (ret != DRM_HDCP_BSTATUS_LEN) {
drm_dbg_kms(&i915->drm,
"Read bstatus from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *dig_port,
u8 *bcaps)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
ssize_t ret;
ret = drm_dp_dpcd_read(&dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
bcaps, 1);
if (ret != 1) {
drm_dbg_kms(&i915->drm,
"Read bcaps from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *dig_port,
bool *repeater_present)
{
ssize_t ret;
u8 bcaps;
ret = intel_dp_hdcp_read_bcaps(dig_port, &bcaps);
if (ret)
return ret;
*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
return 0;
}
static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
u8 *ri_prime)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
ssize_t ret;
ret = drm_dp_dpcd_read(&dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
ri_prime, DRM_HDCP_RI_LEN);
if (ret != DRM_HDCP_RI_LEN) {
drm_dbg_kms(&i915->drm, "Read Ri' from DP/AUX failed (%zd)\n",
ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
bool *ksv_ready)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
ssize_t ret;
u8 bstatus;
ret = drm_dp_dpcd_read(&dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
&bstatus, 1);
if (ret != 1) {
drm_dbg_kms(&i915->drm,
"Read bstatus from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
*ksv_ready = bstatus & DP_BSTATUS_READY;
return 0;
}
static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
int num_downstream, u8 *ksv_fifo)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
ssize_t ret;
int i;
for (i = 0; i < num_downstream; i += 3) {
size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
ret = drm_dp_dpcd_read(&dig_port->dp.aux,
DP_AUX_HDCP_KSV_FIFO,
ksv_fifo + i * DRM_HDCP_KSV_LEN,
len);
if (ret != len) {
drm_dbg_kms(&i915->drm,
"Read ksv[%d] from DP/AUX failed (%zd)\n",
i, ret);
return ret >= 0 ? -EIO : ret;
}
}
return 0;
}
static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
int i, u32 *part)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
ssize_t ret;
if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
return -EINVAL;
ret = drm_dp_dpcd_read(&dig_port->dp.aux,
DP_AUX_HDCP_V_PRIME(i), part,
DRM_HDCP_V_PRIME_PART_LEN);
if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
drm_dbg_kms(&i915->drm,
"Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
enum transcoder cpu_transcoder,
bool enable)
{
return 0;
}
static
bool intel_dp_hdcp_check_link(struct intel_digital_port *dig_port,
struct intel_connector *connector)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
ssize_t ret;
u8 bstatus;
ret = drm_dp_dpcd_read(&dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
&bstatus, 1);
if (ret != 1) {
drm_dbg_kms(&i915->drm,
"Read bstatus from DP/AUX failed (%zd)\n", ret);
return false;
}
return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}
static
int intel_dp_hdcp_capable(struct intel_digital_port *dig_port,
bool *hdcp_capable)
{
ssize_t ret;
u8 bcaps;
ret = intel_dp_hdcp_read_bcaps(dig_port, &bcaps);
if (ret)
return ret;
*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
return 0;
}
struct hdcp2_dp_errata_stream_type {
u8 msg_id;
u8 stream_type;
} __packed;
struct hdcp2_dp_msg_data {
u8 msg_id;
u32 offset;
bool msg_detectable;
u32 timeout;
u32 timeout2;
u32 msg_read_timeout;
};
static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0, 0},
{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
false, HDCP_2_2_CERT_TIMEOUT_MS, 0, HDCP_2_2_DP_CERT_READ_TIMEOUT_MS},
{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
false, 0, 0, 0 },
{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
false, 0, 0, 0 },
{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS, HDCP_2_2_DP_HPRIME_READ_TIMEOUT_MS},
{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
HDCP_2_2_PAIRING_TIMEOUT_MS, 0, HDCP_2_2_DP_PAIRING_READ_TIMEOUT_MS },
{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0, 0 },
{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0, 0 },
{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
0, 0, 0 },
{ HDCP_2_2_REP_SEND_RECVID_LIST,
DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0, 0 },
{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
0, 0, 0 },
{ HDCP_2_2_REP_STREAM_MANAGE,
DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
0, 0, 0},
{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0, 0 },
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50
{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
0, 0 },
};
static int
intel_dp_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
u8 *rx_status)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
ssize_t ret;
ret = drm_dp_dpcd_read(&dig_port->dp.aux,
DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
HDCP_2_2_DP_RXSTATUS_LEN);
if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
drm_dbg_kms(&i915->drm,
"Read bstatus from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static
int hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
u8 msg_id, bool *msg_ready)
{
u8 rx_status;
int ret;
*msg_ready = false;
ret = intel_dp_hdcp2_read_rx_status(dig_port, &rx_status);
if (ret < 0)
return ret;
switch (msg_id) {
case HDCP_2_2_AKE_SEND_HPRIME:
if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
*msg_ready = true;
break;
case HDCP_2_2_AKE_SEND_PAIRING_INFO:
if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
*msg_ready = true;
break;
case HDCP_2_2_REP_SEND_RECVID_LIST:
if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
*msg_ready = true;
break;
default:
DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
return -EINVAL;
}
return 0;
}
static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
const struct hdcp2_dp_msg_data *hdcp2_msg_data)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
struct intel_dp *dp = &dig_port->dp;
struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
u8 msg_id = hdcp2_msg_data->msg_id;
int ret, timeout;
bool msg_ready = false;
if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
timeout = hdcp2_msg_data->timeout2;
else
timeout = hdcp2_msg_data->timeout;
if (!hdcp2_msg_data->msg_detectable) {
mdelay(timeout);
ret = 0;
} else {
intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
ret = hdcp2_detect_msg_availability(dig_port,
msg_id, &msg_ready);
if (!msg_ready)
ret = -ETIMEDOUT;
}
if (ret)
drm_dbg_kms(&i915->drm,
"msg_id %d, ret %d, timeout(mSec): %d\n",
hdcp2_msg_data->msg_id, ret, timeout);
return ret;
}
static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
{
int i;
for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
if (hdcp2_dp_msg_data[i].msg_id == msg_id)
return &hdcp2_dp_msg_data[i];
return NULL;
}
static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *dig_port,
void *buf, size_t size)
{
unsigned int offset;
u8 *byte = buf;
ssize_t ret, bytes_to_write, len;
const struct hdcp2_dp_msg_data *hdcp2_msg_data;
hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
if (!hdcp2_msg_data)
return -EINVAL;
offset = hdcp2_msg_data->offset;
bytes_to_write = size - 1;
byte++;
while (bytes_to_write) {
len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
ret = drm_dp_dpcd_write(&dig_port->dp.aux,
offset, (void *)byte, len);
if (ret < 0)
return ret;
bytes_to_write -= ret;
byte += ret;
offset += ret;
}
return size;
}
static
ssize_t get_receiver_id_list_rx_info(struct intel_digital_port *dig_port, u32 *dev_cnt, u8 *byte)
{
ssize_t ret;
u8 *rx_info = byte;
ret = drm_dp_dpcd_read(&dig_port->dp.aux,
DP_HDCP_2_2_REG_RXINFO_OFFSET,
(void *)rx_info, HDCP_2_2_RXINFO_LEN);
if (ret != HDCP_2_2_RXINFO_LEN)
return ret >= 0 ? -EIO : ret;
*dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
if (*dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
*dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
return ret;
}
static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *dig_port,
u8 msg_id, void *buf, size_t size)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
struct intel_dp *dp = &dig_port->dp;
struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
unsigned int offset;
u8 *byte = buf;
ssize_t ret, bytes_to_recv, len;
const struct hdcp2_dp_msg_data *hdcp2_msg_data;
ktime_t msg_end = ktime_set(0, 0);
bool msg_expired;
u32 dev_cnt;
hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
if (!hdcp2_msg_data)
return -EINVAL;
offset = hdcp2_msg_data->offset;
ret = intel_dp_hdcp2_wait_for_msg(dig_port, hdcp2_msg_data);
if (ret < 0)
return ret;
hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
byte++;
if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
ret = get_receiver_id_list_rx_info(dig_port, &dev_cnt, byte);
if (ret < 0)
return ret;
byte += ret;
size = sizeof(struct hdcp2_rep_send_receiverid_list) -
HDCP_2_2_RXINFO_LEN - HDCP_2_2_RECEIVER_IDS_MAX_LEN +
(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
offset += HDCP_2_2_RXINFO_LEN;
}
bytes_to_recv = size - 1;
while (bytes_to_recv) {
len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
if (bytes_to_recv == size - 1 && hdcp2_msg_data->msg_read_timeout > 0)
msg_end = ktime_add_ms(ktime_get_raw(),
hdcp2_msg_data->msg_read_timeout);
ret = drm_dp_dpcd_read(&dig_port->dp.aux, offset,
(void *)byte, len);
if (ret < 0) {
drm_dbg_kms(&i915->drm, "msg_id %d, ret %zd\n",
msg_id, ret);
return ret;
}
bytes_to_recv -= ret;
byte += ret;
offset += ret;
}
if (hdcp2_msg_data->msg_read_timeout > 0) {
msg_expired = ktime_after(ktime_get_raw(), msg_end);
if (msg_expired) {
drm_dbg_kms(&i915->drm, "msg_id %d, entire msg read timeout(mSec): %d\n",
msg_id, hdcp2_msg_data->msg_read_timeout);
return -ETIMEDOUT;
}
}
byte = buf;
*byte = msg_id;
return size;
}
static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *dig_port,
bool is_repeater, u8 content_type)
{
int ret;
struct hdcp2_dp_errata_stream_type stream_type_msg;
if (is_repeater)
return 0;
stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
stream_type_msg.stream_type = content_type;
ret = intel_dp_hdcp2_write_msg(dig_port, &stream_type_msg,
sizeof(stream_type_msg));
return ret < 0 ? ret : 0;
}
static
int intel_dp_hdcp2_check_link(struct intel_digital_port *dig_port,
struct intel_connector *connector)
{
u8 rx_status;
int ret;
ret = intel_dp_hdcp2_read_rx_status(dig_port, &rx_status);
if (ret)
return ret;
if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
ret = HDCP_REAUTH_REQUEST;
else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
ret = HDCP_LINK_INTEGRITY_FAILURE;
else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
ret = HDCP_TOPOLOGY_CHANGE;
return ret;
}
static
int intel_dp_hdcp2_capable(struct intel_digital_port *dig_port,
bool *capable)
{
u8 rx_caps[3];
int ret;
*capable = false;
ret = drm_dp_dpcd_read(&dig_port->dp.aux,
DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
rx_caps, HDCP_2_2_RXCAPS_LEN);
if (ret != HDCP_2_2_RXCAPS_LEN)
return ret >= 0 ? -EIO : ret;
if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
*capable = true;
return 0;
}
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
.write_an_aksv = intel_dp_hdcp_write_an_aksv,
.read_bksv = intel_dp_hdcp_read_bksv,
.read_bstatus = intel_dp_hdcp_read_bstatus,
.repeater_present = intel_dp_hdcp_repeater_present,
.read_ri_prime = intel_dp_hdcp_read_ri_prime,
.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
.toggle_signalling = intel_dp_hdcp_toggle_signalling,
.check_link = intel_dp_hdcp_check_link,
.hdcp_capable = intel_dp_hdcp_capable,
.write_2_2_msg = intel_dp_hdcp2_write_msg,
.read_2_2_msg = intel_dp_hdcp2_read_msg,
.config_stream_type = intel_dp_hdcp2_config_stream_type,
.check_2_2_link = intel_dp_hdcp2_check_link,
.hdcp_2_2_capable = intel_dp_hdcp2_capable,
.protocol = HDCP_PROTOCOL_DP,
};
static int
intel_dp_mst_toggle_hdcp_stream_select(struct intel_connector *connector,
bool enable)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *i915 = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
int ret;
ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
hdcp->stream_transcoder, enable,
TRANS_DDI_HDCP_SELECT);
if (ret)
drm_err(&i915->drm, "%s HDCP stream select failed (%d)\n",
enable ? "Enable" : "Disable", ret);
return ret;
}
static int
intel_dp_mst_hdcp_stream_encryption(struct intel_connector *connector,
bool enable)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *i915 = to_i915(connector->base.dev);
struct intel_hdcp *hdcp = &connector->hdcp;
enum port port = dig_port->base.port;
enum transcoder cpu_transcoder = hdcp->stream_transcoder;
u32 stream_enc_status;
int ret;
ret = intel_dp_mst_toggle_hdcp_stream_select(connector, enable);
if (ret)
return ret;
stream_enc_status = transcoder_to_stream_enc_status(cpu_transcoder);
if (!stream_enc_status)
return -EINVAL;
if (intel_de_wait_for_register(i915,
HDCP_STATUS(i915, cpu_transcoder, port),
stream_enc_status,
enable ? stream_enc_status : 0,
HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
drm_err(&i915->drm, "Timed out waiting for transcoder: %s stream encryption %s\n",
transcoder_name(cpu_transcoder), enable ? "enabled" : "disabled");
return -ETIMEDOUT;
}
return 0;
}
static int
intel_dp_mst_hdcp2_stream_encryption(struct intel_connector *connector,
bool enable)
{
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
struct drm_i915_private *i915 = to_i915(connector->base.dev);
struct hdcp_port_data *data = &dig_port->hdcp_port_data;
struct intel_hdcp *hdcp = &connector->hdcp;
enum transcoder cpu_transcoder = hdcp->stream_transcoder;
enum pipe pipe = (enum pipe)cpu_transcoder;
enum port port = dig_port->base.port;
int ret;
drm_WARN_ON(&i915->drm, enable &&
!!(intel_de_read(i915, HDCP2_AUTH_STREAM(i915, cpu_transcoder, port))
& AUTH_STREAM_TYPE) != data->streams[0].stream_type);
ret = intel_dp_mst_toggle_hdcp_stream_select(connector, enable);
if (ret)
return ret;
if (intel_de_wait_for_register(i915,
HDCP2_STREAM_STATUS(i915, cpu_transcoder, pipe),
STREAM_ENCRYPTION_STATUS,
enable ? STREAM_ENCRYPTION_STATUS : 0,
HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
drm_err(&i915->drm, "Timed out waiting for transcoder: %s stream encryption %s\n",
transcoder_name(cpu_transcoder), enable ? "enabled" : "disabled");
return -ETIMEDOUT;
}
return 0;
}
static
int intel_dp_mst_hdcp2_check_link(struct intel_digital_port *dig_port,
struct intel_connector *connector)
{
struct intel_hdcp *hdcp = &connector->hdcp;
int ret;
if (hdcp->is_repeater) {
ret = intel_dp_hdcp2_check_link(dig_port, connector);
if (ret)
return ret;
}
return 0;
}
static const struct intel_hdcp_shim intel_dp_mst_hdcp_shim = {
.write_an_aksv = intel_dp_hdcp_write_an_aksv,
.read_bksv = intel_dp_hdcp_read_bksv,
.read_bstatus = intel_dp_hdcp_read_bstatus,
.repeater_present = intel_dp_hdcp_repeater_present,
.read_ri_prime = intel_dp_hdcp_read_ri_prime,
.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
.toggle_signalling = intel_dp_hdcp_toggle_signalling,
.stream_encryption = intel_dp_mst_hdcp_stream_encryption,
.check_link = intel_dp_hdcp_check_link,
.hdcp_capable = intel_dp_hdcp_capable,
.write_2_2_msg = intel_dp_hdcp2_write_msg,
.read_2_2_msg = intel_dp_hdcp2_read_msg,
.config_stream_type = intel_dp_hdcp2_config_stream_type,
.stream_2_2_encryption = intel_dp_mst_hdcp2_stream_encryption,
.check_2_2_link = intel_dp_mst_hdcp2_check_link,
.hdcp_2_2_capable = intel_dp_hdcp2_capable,
.protocol = HDCP_PROTOCOL_DP,
};
int intel_dp_hdcp_init(struct intel_digital_port *dig_port,
struct intel_connector *intel_connector)
{
struct drm_device *dev = intel_connector->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_encoder *intel_encoder = &dig_port->base;
enum port port = intel_encoder->port;
struct intel_dp *intel_dp = &dig_port->dp;
if (!is_hdcp_supported(dev_priv, port))
return 0;
if (intel_connector->mst_port)
return intel_hdcp_init(intel_connector, dig_port,
&intel_dp_mst_hdcp_shim);
else if (!intel_dp_is_edp(intel_dp))
return intel_hdcp_init(intel_connector, dig_port,
&intel_dp_hdcp_shim);
return 0;
}