// SPDX-License-Identifier: GPL-2.0-or-later
/*
	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
	Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
	Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
	Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>

	Based on the original rt2800pci.c and rt2800usb.c.
	  Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	  Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	  Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	  Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	  Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	  Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	  <http://rt2x00.serialmonkey.com>

 */

/*
	Module: rt2800lib
	Abstract: rt2800 generic device routines.
 */

#include <linux/crc-ccitt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>

#include "rt2x00.h"
#include "rt2800lib.h"
#include "rt2800.h"

static bool modparam_watchdog;
module_param_named(watchdog, modparam_watchdog, bool, S_IRUGO);
MODULE_PARM_DESC(watchdog, "Enable watchdog to detect tx/rx hangs and reset hardware if detected");

/*
 * Register access.
 * All access to the CSR registers will go through the methods
 * rt2800_register_read and rt2800_register_write.
 * BBP and RF register require indirect register access,
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
 * The _lock versions must be used if you already hold the csr_mutex
 */
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
#define WAIT_FOR_RFCSR(__dev, __reg) \
	rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
#define WAIT_FOR_RFCSR_MT7620(__dev, __reg) \
	rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY_MT7620, \
			    (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
#define WAIT_FOR_MCU(__dev, __reg) \
	rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
			    H2M_MAILBOX_CSR_OWNER, (__reg))

static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev)
{
	/* check for rt2872 on SoC */
	if (!rt2x00_is_soc(rt2x00dev) ||
	    !rt2x00_rt(rt2x00dev, RT2872))
		return false;

	/* we know for sure that these rf chipsets are used on rt305x boards */
	if (rt2x00_rf(rt2x00dev, RF3020) ||
	    rt2x00_rf(rt2x00dev, RF3021) ||
	    rt2x00_rf(rt2x00dev, RF3022))
		return true;

	rt2x00_warn(rt2x00dev, "Unknown RF chipset on rt305x\n");
	return false;
}

static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
			     const unsigned int word, const u8 value)
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);

		rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}

static u8 rt2800_bbp_read(struct rt2x00_dev *rt2x00dev, const unsigned int word)
{
	u32 reg;
	u8 value;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
	 */
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
		rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);

		rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);

		WAIT_FOR_BBP(rt2x00dev, &reg);
	}

	value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);

	mutex_unlock(&rt2x00dev->csr_mutex);

	return value;
}

static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
			       const unsigned int word, const u8 value)
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the RFCSR becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	switch (rt2x00dev->chip.rt) {
	case RT6352:
		if (WAIT_FOR_RFCSR_MT7620(rt2x00dev, &reg)) {
			reg = 0;
			rt2x00_set_field32(&reg, RF_CSR_CFG_DATA_MT7620, value);
			rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM_MT7620,
					   word);
			rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE_MT7620, 1);
			rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY_MT7620, 1);

			rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
		}
		break;

	default:
		if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
			reg = 0;
			rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
			rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
			rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
			rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);

			rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
		}
		break;
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}

static void rt2800_rfcsr_write_bank(struct rt2x00_dev *rt2x00dev, const u8 bank,
				    const unsigned int reg, const u8 value)
{
	rt2800_rfcsr_write(rt2x00dev, (reg | (bank << 6)), value);
}

static void rt2800_rfcsr_write_chanreg(struct rt2x00_dev *rt2x00dev,
				       const unsigned int reg, const u8 value)
{
	rt2800_rfcsr_write_bank(rt2x00dev, 4, reg, value);
	rt2800_rfcsr_write_bank(rt2x00dev, 6, reg, value);
}

static void rt2800_rfcsr_write_dccal(struct rt2x00_dev *rt2x00dev,
				     const unsigned int reg, const u8 value)
{
	rt2800_rfcsr_write_bank(rt2x00dev, 5, reg, value);
	rt2800_rfcsr_write_bank(rt2x00dev, 7, reg, value);
}

static void rt2800_bbp_dcoc_write(struct rt2x00_dev *rt2x00dev,
				  const u8 reg, const u8 value)
{
	rt2800_bbp_write(rt2x00dev, 158, reg);
	rt2800_bbp_write(rt2x00dev, 159, value);
}

static u8 rt2800_bbp_dcoc_read(struct rt2x00_dev *rt2x00dev, const u8 reg)
{
	rt2800_bbp_write(rt2x00dev, 158, reg);
	return rt2800_bbp_read(rt2x00dev, 159);
}

static void rt2800_bbp_glrt_write(struct rt2x00_dev *rt2x00dev,
				  const u8 reg, const u8 value)
{
	rt2800_bbp_write(rt2x00dev, 195, reg);
	rt2800_bbp_write(rt2x00dev, 196, value);
}

static u8 rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
			    const unsigned int word)
{
	u32 reg;
	u8 value;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the RFCSR becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
	 */
	switch (rt2x00dev->chip.rt) {
	case RT6352:
		if (WAIT_FOR_RFCSR_MT7620(rt2x00dev, &reg)) {
			reg = 0;
			rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM_MT7620,
					   word);
			rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE_MT7620, 0);
			rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY_MT7620, 1);

			rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);

			WAIT_FOR_RFCSR_MT7620(rt2x00dev, &reg);
		}

		value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA_MT7620);
		break;

	default:
		if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
			reg = 0;
			rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
			rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
			rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);

			rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);

			WAIT_FOR_RFCSR(rt2x00dev, &reg);
		}

		value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
		break;
	}

	mutex_unlock(&rt2x00dev->csr_mutex);

	return value;
}

static u8 rt2800_rfcsr_read_bank(struct rt2x00_dev *rt2x00dev, const u8 bank,
				 const unsigned int reg)
{
	return rt2800_rfcsr_read(rt2x00dev, (reg | (bank << 6)));
}

static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
			    const unsigned int word, const u32 value)
{
	u32 reg;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
		rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
		rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
		rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);

		rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}

static const unsigned int rt2800_eeprom_map[EEPROM_WORD_COUNT] = {
	[EEPROM_CHIP_ID]		= 0x0000,
	[EEPROM_VERSION]		= 0x0001,
	[EEPROM_MAC_ADDR_0]		= 0x0002,
	[EEPROM_MAC_ADDR_1]		= 0x0003,
	[EEPROM_MAC_ADDR_2]		= 0x0004,
	[EEPROM_NIC_CONF0]		= 0x001a,
	[EEPROM_NIC_CONF1]		= 0x001b,
	[EEPROM_FREQ]			= 0x001d,
	[EEPROM_LED_AG_CONF]		= 0x001e,
	[EEPROM_LED_ACT_CONF]		= 0x001f,
	[EEPROM_LED_POLARITY]		= 0x0020,
	[EEPROM_NIC_CONF2]		= 0x0021,
	[EEPROM_LNA]			= 0x0022,
	[EEPROM_RSSI_BG]		= 0x0023,
	[EEPROM_RSSI_BG2]		= 0x0024,
	[EEPROM_TXMIXER_GAIN_BG]	= 0x0024, /* overlaps with RSSI_BG2 */
	[EEPROM_RSSI_A]			= 0x0025,
	[EEPROM_RSSI_A2]		= 0x0026,
	[EEPROM_TXMIXER_GAIN_A]		= 0x0026, /* overlaps with RSSI_A2 */
	[EEPROM_EIRP_MAX_TX_POWER]	= 0x0027,
	[EEPROM_TXPOWER_DELTA]		= 0x0028,
	[EEPROM_TXPOWER_BG1]		= 0x0029,
	[EEPROM_TXPOWER_BG2]		= 0x0030,
	[EEPROM_TSSI_BOUND_BG1]		= 0x0037,
	[EEPROM_TSSI_BOUND_BG2]		= 0x0038,
	[EEPROM_TSSI_BOUND_BG3]		= 0x0039,
	[EEPROM_TSSI_BOUND_BG4]		= 0x003a,
	[EEPROM_TSSI_BOUND_BG5]		= 0x003b,
	[EEPROM_TXPOWER_A1]		= 0x003c,
	[EEPROM_TXPOWER_A2]		= 0x0053,
	[EEPROM_TXPOWER_INIT]		= 0x0068,
	[EEPROM_TSSI_BOUND_A1]		= 0x006a,
	[EEPROM_TSSI_BOUND_A2]		= 0x006b,
	[EEPROM_TSSI_BOUND_A3]		= 0x006c,
	[EEPROM_TSSI_BOUND_A4]		= 0x006d,
	[EEPROM_TSSI_BOUND_A5]		= 0x006e,
	[EEPROM_TXPOWER_BYRATE]		= 0x006f,
	[EEPROM_BBP_START]		= 0x0078,
};

static const unsigned int rt2800_eeprom_map_ext[EEPROM_WORD_COUNT] = {
	[EEPROM_CHIP_ID]		= 0x0000,
	[EEPROM_VERSION]		= 0x0001,
	[EEPROM_MAC_ADDR_0]		= 0x0002,
	[EEPROM_MAC_ADDR_1]		= 0x0003,
	[EEPROM_MAC_ADDR_2]		= 0x0004,
	[EEPROM_NIC_CONF0]		= 0x001a,
	[EEPROM_NIC_CONF1]		= 0x001b,
	[EEPROM_NIC_CONF2]		= 0x001c,
	[EEPROM_EIRP_MAX_TX_POWER]	= 0x0020,
	[EEPROM_FREQ]			= 0x0022,
	[EEPROM_LED_AG_CONF]		= 0x0023,
	[EEPROM_LED_ACT_CONF]		= 0x0024,
	[EEPROM_LED_POLARITY]		= 0x0025,
	[EEPROM_LNA]			= 0x0026,
	[EEPROM_EXT_LNA2]		= 0x0027,
	[EEPROM_RSSI_BG]		= 0x0028,
	[EEPROM_RSSI_BG2]		= 0x0029,
	[EEPROM_RSSI_A]			= 0x002a,
	[EEPROM_RSSI_A2]		= 0x002b,
	[EEPROM_TXPOWER_BG1]		= 0x0030,
	[EEPROM_TXPOWER_BG2]		= 0x0037,
	[EEPROM_EXT_TXPOWER_BG3]	= 0x003e,
	[EEPROM_TSSI_BOUND_BG1]		= 0x0045,
	[EEPROM_TSSI_BOUND_BG2]		= 0x0046,
	[EEPROM_TSSI_BOUND_BG3]		= 0x0047,
	[EEPROM_TSSI_BOUND_BG4]		= 0x0048,
	[EEPROM_TSSI_BOUND_BG5]		= 0x0049,
	[EEPROM_TXPOWER_A1]		= 0x004b,
	[EEPROM_TXPOWER_A2]		= 0x0065,
	[EEPROM_EXT_TXPOWER_A3]		= 0x007f,
	[EEPROM_TSSI_BOUND_A1]		= 0x009a,
	[EEPROM_TSSI_BOUND_A2]		= 0x009b,
	[EEPROM_TSSI_BOUND_A3]		= 0x009c,
	[EEPROM_TSSI_BOUND_A4]		= 0x009d,
	[EEPROM_TSSI_BOUND_A5]		= 0x009e,
	[EEPROM_TXPOWER_BYRATE]		= 0x00a0,
};

static unsigned int rt2800_eeprom_word_index(struct rt2x00_dev *rt2x00dev,
					     const enum rt2800_eeprom_word word)
{
	const unsigned int *map;
	unsigned int index;

	if (WARN_ONCE(word >= EEPROM_WORD_COUNT,
		      "%s: invalid EEPROM word %d\n",
		      wiphy_name(rt2x00dev->hw->wiphy), word))
		return 0;

	if (rt2x00_rt(rt2x00dev, RT3593) ||
	    rt2x00_rt(rt2x00dev, RT3883))
		map = rt2800_eeprom_map_ext;
	else
		map = rt2800_eeprom_map;

	index = map[word];

	/* Index 0 is valid only for EEPROM_CHIP_ID.
	 * Otherwise it means that the offset of the
	 * given word is not initialized in the map,
	 * or that the field is not usable on the
	 * actual chipset.
	 */
	WARN_ONCE(word != EEPROM_CHIP_ID && index == 0,
		  "%s: invalid access of EEPROM word %d\n",
		  wiphy_name(rt2x00dev->hw->wiphy), word);

	return index;
}

static void *rt2800_eeprom_addr(struct rt2x00_dev *rt2x00dev,
				const enum rt2800_eeprom_word word)
{
	unsigned int index;

	index = rt2800_eeprom_word_index(rt2x00dev, word);
	return rt2x00_eeprom_addr(rt2x00dev, index);
}

static u16 rt2800_eeprom_read(struct rt2x00_dev *rt2x00dev,
			      const enum rt2800_eeprom_word word)
{
	unsigned int index;

	index = rt2800_eeprom_word_index(rt2x00dev, word);
	return rt2x00_eeprom_read(rt2x00dev, index);
}

static void rt2800_eeprom_write(struct rt2x00_dev *rt2x00dev,
				const enum rt2800_eeprom_word word, u16 data)
{
	unsigned int index;

	index = rt2800_eeprom_word_index(rt2x00dev, word);
	rt2x00_eeprom_write(rt2x00dev, index, data);
}

static u16 rt2800_eeprom_read_from_array(struct rt2x00_dev *rt2x00dev,
					 const enum rt2800_eeprom_word array,
					 unsigned int offset)
{
	unsigned int index;

	index = rt2800_eeprom_word_index(rt2x00dev, array);
	return rt2x00_eeprom_read(rt2x00dev, index + offset);
}

static int rt2800_enable_wlan_rt3290(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	int i, count;

	reg = rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL);
	rt2x00_set_field32(&reg, WLAN_GPIO_OUT_OE_BIT_ALL, 0xff);
	rt2x00_set_field32(&reg, FRC_WL_ANT_SET, 1);
	rt2x00_set_field32(&reg, WLAN_CLK_EN, 0);
	rt2x00_set_field32(&reg, WLAN_EN, 1);
	rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);

	udelay(REGISTER_BUSY_DELAY);

	count = 0;
	do {
		/*
		 * Check PLL_LD & XTAL_RDY.
		 */
		for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
			reg = rt2800_register_read(rt2x00dev, CMB_CTRL);
			if (rt2x00_get_field32(reg, PLL_LD) &&
			    rt2x00_get_field32(reg, XTAL_RDY))
				break;
			udelay(REGISTER_BUSY_DELAY);
		}

		if (i >= REGISTER_BUSY_COUNT) {

			if (count >= 10)
				return -EIO;

			rt2800_register_write(rt2x00dev, 0x58, 0x018);
			udelay(REGISTER_BUSY_DELAY);
			rt2800_register_write(rt2x00dev, 0x58, 0x418);
			udelay(REGISTER_BUSY_DELAY);
			rt2800_register_write(rt2x00dev, 0x58, 0x618);
			udelay(REGISTER_BUSY_DELAY);
			count++;
		} else {
			count = 0;
		}

		reg = rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL);
		rt2x00_set_field32(&reg, PCIE_APP0_CLK_REQ, 0);
		rt2x00_set_field32(&reg, WLAN_CLK_EN, 1);
		rt2x00_set_field32(&reg, WLAN_RESET, 1);
		rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
		udelay(10);
		rt2x00_set_field32(&reg, WLAN_RESET, 0);
		rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
		udelay(10);
		rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, 0x7fffffff);
	} while (count != 0);

	return 0;
}

void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
			const u8 command, const u8 token,
			const u8 arg0, const u8 arg1)
{
	u32 reg;

	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

	mutex_lock(&rt2x00dev->csr_mutex);

	/*
	 * Wait until the MCU becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
		rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);

		reg = 0;
		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
		rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
	}

	mutex_unlock(&rt2x00dev->csr_mutex);
}
EXPORT_SYMBOL_GPL(rt2800_mcu_request);

int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i = 0;
	u32 reg;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		reg = rt2800_register_read(rt2x00dev, MAC_CSR0);
		if (reg && reg != ~0)
			return 0;
		msleep(1);
	}

	rt2x00_err(rt2x00dev, "Unstable hardware\n");
	return -EBUSY;
}
EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready);

int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u32 reg;

	/*
	 * Some devices are really slow to respond here. Wait a whole second
	 * before timing out.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		reg = rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG);
		if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
		    !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
			return 0;

		msleep(10);
	}

	rt2x00_err(rt2x00dev, "WPDMA TX/RX busy [0x%08x]\n", reg);
	return -EACCES;
}
EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready);

void rt2800_disable_wpdma(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	reg = rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
}
EXPORT_SYMBOL_GPL(rt2800_disable_wpdma);

void rt2800_get_txwi_rxwi_size(struct rt2x00_dev *rt2x00dev,
			       unsigned short *txwi_size,
			       unsigned short *rxwi_size)
{
	switch (rt2x00dev->chip.rt) {
	case RT3593:
	case RT3883:
		*txwi_size = TXWI_DESC_SIZE_4WORDS;
		*rxwi_size = RXWI_DESC_SIZE_5WORDS;
		break;

	case RT5592:
	case RT6352:
		*txwi_size = TXWI_DESC_SIZE_5WORDS;
		*rxwi_size = RXWI_DESC_SIZE_6WORDS;
		break;

	default:
		*txwi_size = TXWI_DESC_SIZE_4WORDS;
		*rxwi_size = RXWI_DESC_SIZE_4WORDS;
		break;
	}
}
EXPORT_SYMBOL_GPL(rt2800_get_txwi_rxwi_size);

static bool rt2800_check_firmware_crc(const u8 *data, const size_t len)
{
	u16 fw_crc;
	u16 crc;

	/*
	 * The last 2 bytes in the firmware array are the crc checksum itself,
	 * this means that we should never pass those 2 bytes to the crc
	 * algorithm.
	 */
	fw_crc = (data[len - 2] << 8 | data[len - 1]);

	/*
	 * Use the crc ccitt algorithm.
	 * This will return the same value as the legacy driver which
	 * used bit ordering reversion on the both the firmware bytes
	 * before input input as well as on the final output.
	 * Obviously using crc ccitt directly is much more efficient.
	 */
	crc = crc_ccitt(~0, data, len - 2);

	/*
	 * There is a small difference between the crc-itu-t + bitrev and
	 * the crc-ccitt crc calculation. In the latter method the 2 bytes
	 * will be swapped, use swab16 to convert the crc to the correct
	 * value.
	 */
	crc = swab16(crc);

	return fw_crc == crc;
}

int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
			  const u8 *data, const size_t len)
{
	size_t offset = 0;
	size_t fw_len;
	bool multiple;

	/*
	 * PCI(e) & SOC devices require firmware with a length
	 * of 8kb. USB devices require firmware files with a length
	 * of 4kb. Certain USB chipsets however require different firmware,
	 * which Ralink only provides attached to the original firmware
	 * file. Thus for USB devices, firmware files have a length
	 * which is a multiple of 4kb. The firmware for rt3290 chip also
	 * have a length which is a multiple of 4kb.
	 */
	if (rt2x00_is_usb(rt2x00dev) || rt2x00_rt(rt2x00dev, RT3290))
		fw_len = 4096;
	else
		fw_len = 8192;

	multiple = true;
	/*
	 * Validate the firmware length
	 */
	if (len != fw_len && (!multiple || (len % fw_len) != 0))
		return FW_BAD_LENGTH;

	/*
	 * Check if the chipset requires one of the upper parts
	 * of the firmware.
	 */
	if (rt2x00_is_usb(rt2x00dev) &&
	    !rt2x00_rt(rt2x00dev, RT2860) &&
	    !rt2x00_rt(rt2x00dev, RT2872) &&
	    !rt2x00_rt(rt2x00dev, RT3070) &&
	    ((len / fw_len) == 1))
		return FW_BAD_VERSION;

	/*
	 * 8kb firmware files must be checked as if it were
	 * 2 separate firmware files.
	 */
	while (offset < len) {
		if (!rt2800_check_firmware_crc(data + offset, fw_len))
			return FW_BAD_CRC;

		offset += fw_len;
	}

	return FW_OK;
}
EXPORT_SYMBOL_GPL(rt2800_check_firmware);

int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
			 const u8 *data, const size_t len)
{
	unsigned int i;
	u32 reg;
	int retval;

	if (rt2x00_rt(rt2x00dev, RT3290)) {
		retval = rt2800_enable_wlan_rt3290(rt2x00dev);
		if (retval)
			return -EBUSY;
	}

	/*
	 * If driver doesn't wake up firmware here,
	 * rt2800_load_firmware will hang forever when interface is up again.
	 */
	rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);

	/*
	 * Wait for stable hardware.
	 */
	if (rt2800_wait_csr_ready(rt2x00dev))
		return -EBUSY;

	if (rt2x00_is_pci(rt2x00dev)) {
		if (rt2x00_rt(rt2x00dev, RT3290) ||
		    rt2x00_rt(rt2x00dev, RT3572) ||
		    rt2x00_rt(rt2x00dev, RT5390) ||
		    rt2x00_rt(rt2x00dev, RT5392)) {
			reg = rt2800_register_read(rt2x00dev, AUX_CTRL);
			rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
			rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
			rt2800_register_write(rt2x00dev, AUX_CTRL, reg);
		}
		rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
	}

	rt2800_disable_wpdma(rt2x00dev);

	/*
	 * Write firmware to the device.
	 */
	rt2800_drv_write_firmware(rt2x00dev, data, len);

	/*
	 * Wait for device to stabilize.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		reg = rt2800_register_read(rt2x00dev, PBF_SYS_CTRL);
		if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
			break;
		msleep(1);
	}

	if (i == REGISTER_BUSY_COUNT) {
		rt2x00_err(rt2x00dev, "PBF system register not ready\n");
		return -EBUSY;
	}

	/*
	 * Disable DMA, will be reenabled later when enabling
	 * the radio.
	 */
	rt2800_disable_wpdma(rt2x00dev);

	/*
	 * Initialize firmware.
	 */
	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
	if (rt2x00_is_usb(rt2x00dev)) {
		rt2800_register_write(rt2x00dev, H2M_INT_SRC, 0);
		rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
	}
	msleep(1);

	return 0;
}
EXPORT_SYMBOL_GPL(rt2800_load_firmware);

void rt2800_write_tx_data(struct queue_entry *entry,
			  struct txentry_desc *txdesc)
{
	__le32 *txwi = rt2800_drv_get_txwi(entry);
	u32 word;
	int i;

	/*
	 * Initialize TX Info descriptor
	 */
	word = rt2x00_desc_read(txwi, 0);
	rt2x00_set_field32(&word, TXWI_W0_FRAG,
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_MIMO_PS,
			   test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
	rt2x00_set_field32(&word, TXWI_W0_TS,
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_AMPDU,
			   test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY,
			   txdesc->u.ht.mpdu_density);
	rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->u.ht.txop);
	rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->u.ht.mcs);
	rt2x00_set_field32(&word, TXWI_W0_BW,
			   test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
			   test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->u.ht.stbc);
	rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
	rt2x00_desc_write(txwi, 0, word);

	word = rt2x00_desc_read(txwi, 1);
	rt2x00_set_field32(&word, TXWI_W1_ACK,
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W1_NSEQ,
			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->u.ht.ba_size);
	rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
			   test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
			   txdesc->key_idx : txdesc->u.ht.wcid);
	rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
			   txdesc->length);
	rt2x00_set_field32(&word, TXWI_W1_PACKETID_QUEUE, entry->queue->qid);
	rt2x00_set_field32(&word, TXWI_W1_PACKETID_ENTRY, (entry->entry_idx % 3) + 1);
	rt2x00_desc_write(txwi, 1, word);

	/*
	 * Always write 0 to IV/EIV fields (word 2 and 3), hardware will insert
	 * the IV from the IVEIV register when TXD_W3_WIV is set to 0.
	 * When TXD_W3_WIV is set to 1 it will use the IV data
	 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
	 * crypto entry in the registers should be used to encrypt the frame.
	 *
	 * Nulify all remaining words as well, we don't know how to program them.
	 */
	for (i = 2; i < entry->queue->winfo_size / sizeof(__le32); i++)
		_rt2x00_desc_write(txwi, i, 0);
}
EXPORT_SYMBOL_GPL(rt2800_write_tx_data);

static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, u32 rxwi_w2)
{
	s8 rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0);
	s8 rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1);
	s8 rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2);
	u16 eeprom;
	u8 offset0;
	u8 offset1;
	u8 offset2;

	if (rt2x00dev->curr_band == NL80211_BAND_2GHZ) {
		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG);
		offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0);
		offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1);
		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2);
		offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2);
	} else {
		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A);
		offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0);
		offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1);
		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A2);
		offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2);
	}

	/*
	 * Convert the value from the descriptor into the RSSI value
	 * If the value in the descriptor is 0, it is considered invalid
	 * and the default (extremely low) rssi value is assumed
	 */
	rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128;
	rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128;
	rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128;

	/*
	 * mac80211 only accepts a single RSSI value. Calculating the
	 * average doesn't deliver a fair answer either since -60:-60 would
	 * be considered equally good as -50:-70 while the second is the one
	 * which gives less energy...
	 */
	rssi0 = max(rssi0, rssi1);
	return (int)max(rssi0, rssi2);
}

void rt2800_process_rxwi(struct queue_entry *entry,
			 struct rxdone_entry_desc *rxdesc)
{
	__le32 *rxwi = (__le32 *) entry->skb->data;
	u32 word;

	word = rt2x00_desc_read(rxwi, 0);

	rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF);
	rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);

	word = rt2x00_desc_read(rxwi, 1);

	if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI))
		rxdesc->enc_flags |= RX_ENC_FLAG_SHORT_GI;

	if (rt2x00_get_field32(word, RXWI_W1_BW))
		rxdesc->bw = RATE_INFO_BW_40;

	/*
	 * Detect RX rate, always use MCS as signal type.
	 */
	rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
	rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS);
	rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE);

	/*
	 * Mask of 0x8 bit to remove the short preamble flag.
	 */
	if (rxdesc->rate_mode == RATE_MODE_CCK)
		rxdesc->signal &= ~0x8;

	word = rt2x00_desc_read(rxwi, 2);

	/*
	 * Convert descriptor AGC value to RSSI value.
	 */
	rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word);
	/*
	 * Remove RXWI descriptor from start of the buffer.
	 */
	skb_pull(entry->skb, entry->queue->winfo_size);
}
EXPORT_SYMBOL_GPL(rt2800_process_rxwi);

static void rt2800_rate_from_status(struct skb_frame_desc *skbdesc,
				    u32 status, enum nl80211_band band)
{
	u8 flags = 0;
	u8 idx = rt2x00_get_field32(status, TX_STA_FIFO_MCS);

	switch (rt2x00_get_field32(status, TX_STA_FIFO_PHYMODE)) {
	case RATE_MODE_HT_GREENFIELD:
		flags |= IEEE80211_TX_RC_GREEN_FIELD;
		fallthrough;
	case RATE_MODE_HT_MIX:
		flags |= IEEE80211_TX_RC_MCS;
		break;
	case RATE_MODE_OFDM:
		if (band == NL80211_BAND_2GHZ)
			idx += 4;
		break;
	case RATE_MODE_CCK:
		if (idx >= 8)
			idx -= 8;
		break;
	}

	if (rt2x00_get_field32(status, TX_STA_FIFO_BW))
		flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;

	if (rt2x00_get_field32(status, TX_STA_FIFO_SGI))
		flags |= IEEE80211_TX_RC_SHORT_GI;

	skbdesc->tx_rate_idx = idx;
	skbdesc->tx_rate_flags = flags;
}

static bool rt2800_txdone_entry_check(struct queue_entry *entry, u32 reg)
{
	__le32 *txwi;
	u32 word;
	int wcid, ack, pid;
	int tx_wcid, tx_ack, tx_pid, is_agg;

	/*
	 * This frames has returned with an IO error,
	 * so the status report is not intended for this
	 * frame.
	 */
	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
		return false;

	wcid	= rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
	ack	= rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
	pid	= rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
	is_agg	= rt2x00_get_field32(reg, TX_STA_FIFO_TX_AGGRE);

	/*
	 * Validate if this TX status report is intended for
	 * this entry by comparing the WCID/ACK/PID fields.
	 */
	txwi = rt2800_drv_get_txwi(entry);

	word = rt2x00_desc_read(txwi, 1);
	tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
	tx_ack  = rt2x00_get_field32(word, TXWI_W1_ACK);
	tx_pid  = rt2x00_get_field32(word, TXWI_W1_PACKETID);

	if (wcid != tx_wcid || ack != tx_ack || (!is_agg && pid != tx_pid)) {
		rt2x00_dbg(entry->queue->rt2x00dev,
			   "TX status report missed for queue %d entry %d\n",
			   entry->queue->qid, entry->entry_idx);
		return false;
	}

	return true;
}

void rt2800_txdone_entry(struct queue_entry *entry, u32 status, __le32 *txwi,
			 bool match)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct txdone_entry_desc txdesc;
	u32 word;
	u16 mcs, real_mcs;
	int aggr, ampdu, wcid, ack_req;

	/*
	 * Obtain the status about this packet.
	 */
	txdesc.flags = 0;
	word = rt2x00_desc_read(txwi, 0);

	mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
	ampdu = rt2x00_get_field32(word, TXWI_W0_AMPDU);

	real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS);
	aggr = rt2x00_get_field32(status, TX_STA_FIFO_TX_AGGRE);
	wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
	ack_req	= rt2x00_get_field32(status, TX_STA_FIFO_TX_ACK_REQUIRED);

	/*
	 * If a frame was meant to be sent as a single non-aggregated MPDU
	 * but ended up in an aggregate the used tx rate doesn't correlate
	 * with the one specified in the TXWI as the whole aggregate is sent
	 * with the same rate.
	 *
	 * For example: two frames are sent to rt2x00, the first one sets
	 * AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0
	 * and requests MCS15. If the hw aggregates both frames into one
	 * AMDPU the tx status for both frames will contain MCS7 although
	 * the frame was sent successfully.
	 *
	 * Hence, replace the requested rate with the real tx rate to not
	 * confuse the rate control algortihm by providing clearly wrong
	 * data.
	 *
	 * FIXME: if we do not find matching entry, we tell that frame was
	 * posted without any retries. We need to find a way to fix that
	 * and provide retry count.
	 */
	if (unlikely((aggr == 1 && ampdu == 0 && real_mcs != mcs)) || !match) {
		rt2800_rate_from_status(skbdesc, status, rt2x00dev->curr_band);
		mcs = real_mcs;
	}

	if (aggr == 1 || ampdu == 1)
		__set_bit(TXDONE_AMPDU, &txdesc.flags);

	if (!ack_req)
		__set_bit(TXDONE_NO_ACK_REQ, &txdesc.flags);

	/*
	 * Ralink has a retry mechanism using a global fallback
	 * table. We setup this fallback table to try the immediate
	 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
	 * always contains the MCS used for the last transmission, be
	 * it successful or not.
	 */
	if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) {
		/*
		 * Transmission succeeded. The number of retries is
		 * mcs - real_mcs
		 */
		__set_bit(TXDONE_SUCCESS, &txdesc.flags);
		txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
	} else {
		/*
		 * Transmission failed. The number of retries is
		 * always 7 in this case (for a total number of 8
		 * frames sent).
		 */
		__set_bit(TXDONE_FAILURE, &txdesc.flags);
		txdesc.retry = rt2x00dev->long_retry;
	}

	/*
	 * the frame was retried at least once
	 * -> hw used fallback rates
	 */
	if (txdesc.retry)
		__set_bit(TXDONE_FALLBACK, &txdesc.flags);

	if (!match) {
		/* RCU assures non-null sta will not be freed by mac80211. */
		rcu_read_lock();
		if (likely(wcid >= WCID_START && wcid <= WCID_END))
			skbdesc->sta = drv_data->wcid_to_sta[wcid - WCID_START];
		else
			skbdesc->sta = NULL;
		rt2x00lib_txdone_nomatch(entry, &txdesc);
		rcu_read_unlock();
	} else {
		rt2x00lib_txdone(entry, &txdesc);
	}
}
EXPORT_SYMBOL_GPL(rt2800_txdone_entry);

void rt2800_txdone(struct rt2x00_dev *rt2x00dev, unsigned int quota)
{
	struct data_queue *queue;
	struct queue_entry *entry;
	u32 reg;
	u8 qid;
	bool match;

	while (quota-- > 0 && kfifo_get(&rt2x00dev->txstatus_fifo, &reg)) {
		/*
		 * TX_STA_FIFO_PID_QUEUE is a 2-bit field, thus qid is
		 * guaranteed to be one of the TX QIDs .
		 */
		qid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_QUEUE);
		queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);

		if (unlikely(rt2x00queue_empty(queue))) {
			rt2x00_dbg(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
				   qid);
			break;
		}

		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);

		if (unlikely(test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags) ||
			     !test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))) {
			rt2x00_warn(rt2x00dev, "Data pending for entry %u in queue %u\n",
				    entry->entry_idx, qid);
			break;
		}

		match = rt2800_txdone_entry_check(entry, reg);
		rt2800_txdone_entry(entry, reg, rt2800_drv_get_txwi(entry), match);
	}
}
EXPORT_SYMBOL_GPL(rt2800_txdone);

static inline bool rt2800_entry_txstatus_timeout(struct rt2x00_dev *rt2x00dev,
						 struct queue_entry *entry)
{
	bool ret;
	unsigned long tout;

	if (!test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))
		return false;

	if (test_bit(DEVICE_STATE_FLUSHING, &rt2x00dev->flags))
		tout = msecs_to_jiffies(50);
	else
		tout = msecs_to_jiffies(2000);

	ret = time_after(jiffies, entry->last_action + tout);
	if (unlikely(ret))
		rt2x00_dbg(entry->queue->rt2x00dev,
			   "TX status timeout for entry %d in queue %d\n",
			   entry->entry_idx, entry->queue->qid);
	return ret;
}

bool rt2800_txstatus_timeout(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	struct queue_entry *entry;

	tx_queue_for_each(rt2x00dev, queue) {
		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
		if (rt2800_entry_txstatus_timeout(rt2x00dev, entry))
			return true;
	}

	return false;
}
EXPORT_SYMBOL_GPL(rt2800_txstatus_timeout);

/*
 * test if there is an entry in any TX queue for which DMA is done
 * but the TX status has not been returned yet
 */
bool rt2800_txstatus_pending(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;

	tx_queue_for_each(rt2x00dev, queue) {
		if (rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE) !=
		    rt2x00queue_get_entry(queue, Q_INDEX_DONE))
			return true;
	}
	return false;
}
EXPORT_SYMBOL_GPL(rt2800_txstatus_pending);

void rt2800_txdone_nostatus(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	struct queue_entry *entry;

	/*
	 * Process any trailing TX status reports for IO failures,
	 * we loop until we find the first non-IO error entry. This
	 * can either be a frame which is free, is being uploaded,
	 * or has completed the upload but didn't have an entry
	 * in the TX_STAT_FIFO register yet.
	 */
	tx_queue_for_each(rt2x00dev, queue) {
		while (!rt2x00queue_empty(queue)) {
			entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);

			if (test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags) ||
			    !test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))
				break;

			if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags) ||
			    rt2800_entry_txstatus_timeout(rt2x00dev, entry))
				rt2x00lib_txdone_noinfo(entry, TXDONE_FAILURE);
			else
				break;
		}
	}
}
EXPORT_SYMBOL_GPL(rt2800_txdone_nostatus);

static int rt2800_check_hung(struct data_queue *queue)
{
	unsigned int cur_idx = rt2800_drv_get_dma_done(queue);

	if (queue->wd_idx != cur_idx)
		queue->wd_count = 0;
	else
		queue->wd_count++;

	return queue->wd_count > 16;
}

static void rt2800_update_survey(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_channel *chan = rt2x00dev->hw->conf.chandef.chan;
	struct rt2x00_chan_survey *chan_survey =
		   &rt2x00dev->chan_survey[chan->hw_value];

	chan_survey->time_idle += rt2800_register_read(rt2x00dev, CH_IDLE_STA);
	chan_survey->time_busy += rt2800_register_read(rt2x00dev, CH_BUSY_STA);
	chan_survey->time_ext_busy += rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC);
}

void rt2800_watchdog(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	bool hung_tx = false;
	bool hung_rx = false;

	if (test_bit(DEVICE_STATE_SCANNING, &rt2x00dev->flags))
		return;

	rt2800_update_survey(rt2x00dev);

	queue_for_each(rt2x00dev, queue) {
		switch (queue->qid) {
		case QID_AC_VO:
		case QID_AC_VI:
		case QID_AC_BE:
		case QID_AC_BK:
		case QID_MGMT:
			if (rt2x00queue_empty(queue))
				continue;
			hung_tx = rt2800_check_hung(queue);
			break;
		case QID_RX:
			/* For station mode we should reactive at least
			 * beacons. TODO: need to find good way detect
			 * RX hung for AP mode.
			 */
			if (rt2x00dev->intf_sta_count == 0)
				continue;
			hung_rx = rt2800_check_hung(queue);
			break;
		default:
			break;
		}
	}

	if (hung_tx)
		rt2x00_warn(rt2x00dev, "Watchdog TX hung detected\n");

	if (hung_rx)
		rt2x00_warn(rt2x00dev, "Watchdog RX hung detected\n");

	if (hung_tx || hung_rx)
		ieee80211_restart_hw(rt2x00dev->hw);
}
EXPORT_SYMBOL_GPL(rt2800_watchdog);

static unsigned int rt2800_hw_beacon_base(struct rt2x00_dev *rt2x00dev,
					  unsigned int index)
{
	return HW_BEACON_BASE(index);
}

static inline u8 rt2800_get_beacon_offset(struct rt2x00_dev *rt2x00dev,
					  unsigned int index)
{
	return BEACON_BASE_TO_OFFSET(rt2800_hw_beacon_base(rt2x00dev, index));
}

static void rt2800_update_beacons_setup(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue = rt2x00dev->bcn;
	struct queue_entry *entry;
	int i, bcn_num = 0;
	u64 off, reg = 0;
	u32 bssid_dw1;

	/*
	 * Setup offsets of all active beacons in BCN_OFFSET{0,1} registers.
	 */
	for (i = 0; i < queue->limit; i++) {
		entry = &queue->entries[i];
		if (!test_bit(ENTRY_BCN_ENABLED, &entry->flags))
			continue;
		off = rt2800_get_beacon_offset(rt2x00dev, entry->entry_idx);
		reg |= off << (8 * bcn_num);
		bcn_num++;
	}

	rt2800_register_write(rt2x00dev, BCN_OFFSET0, (u32) reg);
	rt2800_register_write(rt2x00dev, BCN_OFFSET1, (u32) (reg >> 32));

	/*
	 * H/W sends up to MAC_BSSID_DW1_BSS_BCN_NUM + 1 consecutive beacons.
	 */
	bssid_dw1 = rt2800_register_read(rt2x00dev, MAC_BSSID_DW1);
	rt2x00_set_field32(&bssid_dw1, MAC_BSSID_DW1_BSS_BCN_NUM,
			   bcn_num > 0 ? bcn_num - 1 : 0);
	rt2800_register_write(rt2x00dev, MAC_BSSID_DW1, bssid_dw1);
}

void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	unsigned int beacon_base;
	unsigned int padding_len;
	u32 orig_reg, reg;
	const int txwi_desc_size = entry->queue->winfo_size;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	reg = rt2800_register_read(rt2x00dev, BCN_TIME_CFG);
	orig_reg = reg;
	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);

	/*
	 * Add space for the TXWI in front of the skb.
	 */
	memset(skb_push(entry->skb, txwi_desc_size), 0, txwi_desc_size);

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
	skbdesc->desc = entry->skb->data;
	skbdesc->desc_len = txwi_desc_size;

	/*
	 * Add the TXWI for the beacon to the skb.
	 */
	rt2800_write_tx_data(entry, txdesc);

	/*
	 * Dump beacon to userspace through debugfs.
	 */
	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);

	/*
	 * Write entire beacon with TXWI and padding to register.
	 */
	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
	if (padding_len && skb_pad(entry->skb, padding_len)) {
		rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
		/* skb freed by skb_pad() on failure */
		entry->skb = NULL;
		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
		return;
	}

	beacon_base = rt2800_hw_beacon_base(rt2x00dev, entry->entry_idx);

	rt2800_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
				   entry->skb->len + padding_len);
	__set_bit(ENTRY_BCN_ENABLED, &entry->flags);

	/*
	 * Change global beacons settings.
	 */
	rt2800_update_beacons_setup(rt2x00dev);

	/*
	 * Restore beaconing state.
	 */
	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);

	/*
	 * Clean up beacon skb.
	 */
	dev_kfree_skb_any(entry->skb);
	entry->skb = NULL;
}
EXPORT_SYMBOL_GPL(rt2800_write_beacon);

static inline void rt2800_clear_beacon_register(struct rt2x00_dev *rt2x00dev,
						unsigned int index)
{
	int i;
	const int txwi_desc_size = rt2x00dev->bcn->winfo_size;
	unsigned int beacon_base;

	beacon_base = rt2800_hw_beacon_base(rt2x00dev, index);

	/*
	 * For the Beacon base registers we only need to clear
	 * the whole TXWI which (when set to 0) will invalidate
	 * the entire beacon.
	 */
	for (i = 0; i < txwi_desc_size; i += sizeof(__le32))
		rt2800_register_write(rt2x00dev, beacon_base + i, 0);
}

void rt2800_clear_beacon(struct queue_entry *entry)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	u32 orig_reg, reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	orig_reg = rt2800_register_read(rt2x00dev, BCN_TIME_CFG);
	reg = orig_reg;
	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);

	/*
	 * Clear beacon.
	 */
	rt2800_clear_beacon_register(rt2x00dev, entry->entry_idx);
	__clear_bit(ENTRY_BCN_ENABLED, &entry->flags);

	/*
	 * Change global beacons settings.
	 */
	rt2800_update_beacons_setup(rt2x00dev);
	/*
	 * Restore beaconing state.
	 */
	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
}
EXPORT_SYMBOL_GPL(rt2800_clear_beacon);

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
const struct rt2x00debug rt2800_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
		.read		= rt2800_register_read,
		.write		= rt2800_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		/* NOTE: The local EEPROM access functions can't
		 * be used here, use the generic versions instead.
		 */
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
		.word_base	= EEPROM_BASE,
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt2800_bbp_read,
		.write		= rt2800_bbp_write,
		.word_base	= BBP_BASE,
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt2800_rf_write,
		.word_base	= RF_BASE,
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
	.rfcsr	= {
		.read		= rt2800_rfcsr_read,
		.write		= rt2800_rfcsr_write,
		.word_base	= RFCSR_BASE,
		.word_size	= sizeof(u8),
		.word_count	= RFCSR_SIZE / sizeof(u8),
	},
};
EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	if (rt2x00_rt(rt2x00dev, RT3290)) {
		reg = rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL);
		return rt2x00_get_field32(reg, WLAN_GPIO_IN_BIT0);
	} else {
		reg = rt2800_register_read(rt2x00dev, GPIO_CTRL);
		return rt2x00_get_field32(reg, GPIO_CTRL_VAL2);
	}
}
EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);

#ifdef CONFIG_RT2X00_LIB_LEDS
static void rt2800_brightness_set(struct led_classdev *led_cdev,
				  enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	unsigned int bg_mode =
	    (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
	unsigned int polarity =
		rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
				   EEPROM_FREQ_LED_POLARITY);
	unsigned int ledmode =
		rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
				   EEPROM_FREQ_LED_MODE);
	u32 reg;

	/* Check for SoC (SOC devices don't support MCU requests) */
	if (rt2x00_is_soc(led->rt2x00dev)) {
		reg = rt2800_register_read(led->rt2x00dev, LED_CFG);

		/* Set LED Polarity */
		rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, polarity);

		/* Set LED Mode */
		if (led->type == LED_TYPE_RADIO) {
			rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE,
					   enabled ? 3 : 0);
		} else if (led->type == LED_TYPE_ASSOC) {
			rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE,
					   enabled ? 3 : 0);
		} else if (led->type == LED_TYPE_QUALITY) {
			rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE,
					   enabled ? 3 : 0);
		}

		rt2800_register_write(led->rt2x00dev, LED_CFG, reg);

	} else {
		if (led->type == LED_TYPE_RADIO) {
			rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
					      enabled ? 0x20 : 0);
		} else if (led->type == LED_TYPE_ASSOC) {
			rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
					      enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
		} else if (led->type == LED_TYPE_QUALITY) {
			/*
			 * The brightness is divided into 6 levels (0 - 5),
			 * The specs tell us the following levels:
			 *	0, 1 ,3, 7, 15, 31
			 * to determine the level in a simple way we can simply
			 * work with bitshifting:
			 *	(1 << level) - 1
			 */
			rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
					      (1 << brightness / (LED_FULL / 6)) - 1,
					      polarity);
		}
	}
}

static void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
		     struct rt2x00_led *led, enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt2800_brightness_set;
	led->flags = LED_INITIALIZED;
}
#endif /* CONFIG_RT2X00_LIB_LEDS */

/*
 * Configuration handlers.
 */
static void rt2800_config_wcid(struct rt2x00_dev *rt2x00dev,
			       const u8 *address,
			       int wcid)
{
	struct mac_wcid_entry wcid_entry;
	u32 offset;

	offset = MAC_WCID_ENTRY(wcid);

	memset(&wcid_entry, 0xff, sizeof(wcid_entry));
	if (address)
		memcpy(wcid_entry.mac, address, ETH_ALEN);

	rt2800_register_multiwrite(rt2x00dev, offset,
				      &wcid_entry, sizeof(wcid_entry));
}

static void rt2800_delete_wcid_attr(struct rt2x00_dev *rt2x00dev, int wcid)
{
	u32 offset;
	offset = MAC_WCID_ATTR_ENTRY(wcid);
	rt2800_register_write(rt2x00dev, offset, 0);
}

static void rt2800_config_wcid_attr_bssidx(struct rt2x00_dev *rt2x00dev,
					   int wcid, u32 bssidx)
{
	u32 offset = MAC_WCID_ATTR_ENTRY(wcid);
	u32 reg;

	/*
	 * The BSS Idx numbers is split in a main value of 3 bits,
	 * and a extended field for adding one additional bit to the value.
	 */
	reg = rt2800_register_read(rt2x00dev, offset);
	rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX, (bssidx & 0x7));
	rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT,
			   (bssidx & 0x8) >> 3);
	rt2800_register_write(rt2x00dev, offset, reg);
}

static void rt2800_config_wcid_attr_cipher(struct rt2x00_dev *rt2x00dev,
					   struct rt2x00lib_crypto *crypto,
					   struct ieee80211_key_conf *key)
{
	struct mac_iveiv_entry iveiv_entry;
	u32 offset;
	u32 reg;

	offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);

	if (crypto->cmd == SET_KEY) {
		reg = rt2800_register_read(rt2x00dev, offset);
		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
				   !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
		/*
		 * Both the cipher as the BSS Idx numbers are split in a main
		 * value of 3 bits, and a extended field for adding one additional
		 * bit to the value.
		 */
		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
				   (crypto->cipher & 0x7));
		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT,
				   (crypto->cipher & 0x8) >> 3);
		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
		rt2800_register_write(rt2x00dev, offset, reg);
	} else {
		/* Delete the cipher without touching the bssidx */
		reg = rt2800_register_read(rt2x00dev, offset);
		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB, 0);
		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER, 0);
		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT, 0);
		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, 0);
		rt2800_register_write(rt2x00dev, offset, reg);
	}

	if (test_bit(DEVICE_STATE_RESET, &rt2x00dev->flags))
		return;

	offset = MAC_IVEIV_ENTRY(key->hw_key_idx);

	memset(&iveiv_entry, 0, sizeof(iveiv_entry));
	if ((crypto->cipher == CIPHER_TKIP) ||
	    (crypto->cipher == CIPHER_TKIP_NO_MIC) ||
	    (crypto->cipher == CIPHER_AES))
		iveiv_entry.iv[3] |= 0x20;
	iveiv_entry.iv[3] |= key->keyidx << 6;
	rt2800_register_multiwrite(rt2x00dev, offset,
				   &iveiv_entry, sizeof(iveiv_entry));
}

int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
			     struct rt2x00lib_crypto *crypto,
			     struct ieee80211_key_conf *key)
{
	struct hw_key_entry key_entry;
	struct rt2x00_field32 field;
	u32 offset;
	u32 reg;

	if (crypto->cmd == SET_KEY) {
		key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;

		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		offset = SHARED_KEY_ENTRY(key->hw_key_idx);
		rt2800_register_multiwrite(rt2x00dev, offset,
					      &key_entry, sizeof(key_entry));
	}

	/*
	 * The cipher types are stored over multiple registers
	 * starting with SHARED_KEY_MODE_BASE each word will have
	 * 32 bits and contains the cipher types for 2 bssidx each.
	 * Using the correct defines correctly will cause overhead,
	 * so just calculate the correct offset.
	 */
	field.bit_offset = 4 * (key->hw_key_idx % 8);
	field.bit_mask = 0x7 << field.bit_offset;

	offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);

	reg = rt2800_register_read(rt2x00dev, offset);
	rt2x00_set_field32(&reg, field,
			   (crypto->cmd == SET_KEY) * crypto->cipher);
	rt2800_register_write(rt2x00dev, offset, reg);

	/*
	 * Update WCID information
	 */
	rt2800_config_wcid(rt2x00dev, crypto->address, key->hw_key_idx);
	rt2800_config_wcid_attr_bssidx(rt2x00dev, key->hw_key_idx,
				       crypto->bssidx);
	rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key);

	return 0;
}
EXPORT_SYMBOL_GPL(rt2800_config_shared_key);

int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00lib_crypto *crypto,
			       struct ieee80211_key_conf *key)
{
	struct hw_key_entry key_entry;
	u32 offset;

	if (crypto->cmd == SET_KEY) {
		/*
		 * Allow key configuration only for STAs that are
		 * known by the hw.
		 */
		if (crypto->wcid > WCID_END)
			return -ENOSPC;
		key->hw_key_idx = crypto->wcid;

		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
		rt2800_register_multiwrite(rt2x00dev, offset,
					      &key_entry, sizeof(key_entry));
	}

	/*
	 * Update WCID information
	 */
	rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key);

	return 0;
}
EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);

static void rt2800_set_max_psdu_len(struct rt2x00_dev *rt2x00dev)
{
	u8 i, max_psdu;
	u32 reg;
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;

	for (i = 0; i < 3; i++)
		if (drv_data->ampdu_factor_cnt[i] > 0)
			break;

	max_psdu = min(drv_data->max_psdu, i);

	reg = rt2800_register_read(rt2x00dev, MAX_LEN_CFG);
	rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, max_psdu);
	rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
}

int rt2800_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
		   struct ieee80211_sta *sta)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	struct rt2x00_sta *sta_priv = sta_to_rt2x00_sta(sta);
	int wcid;

	/*
	 * Limit global maximum TX AMPDU length to smallest value of all
	 * connected stations. In AP mode this can be suboptimal, but we
	 * do not have a choice if some connected STA is not capable to
	 * receive the same amount of data like the others.
	 */
	if (sta->deflink.ht_cap.ht_supported) {
		drv_data->ampdu_factor_cnt[sta->deflink.ht_cap.ampdu_factor & 3]++;
		rt2800_set_max_psdu_len(rt2x00dev);
	}

	/*
	 * Search for the first free WCID entry and return the corresponding
	 * index.
	 */
	wcid = find_first_zero_bit(drv_data->sta_ids, STA_IDS_SIZE) + WCID_START;

	/*
	 * Store selected wcid even if it is invalid so that we can
	 * later decide if the STA is uploaded into the hw.
	 */
	sta_priv->wcid = wcid;

	/*
	 * No space left in the device, however, we can still communicate
	 * with the STA -> No error.
	 */
	if (wcid > WCID_END)
		return 0;

	__set_bit(wcid - WCID_START, drv_data->sta_ids);
	drv_data->wcid_to_sta[wcid - WCID_START] = sta;

	/*
	 * Clean up WCID attributes and write STA address to the device.
	 */
	rt2800_delete_wcid_attr(rt2x00dev, wcid);
	rt2800_config_wcid(rt2x00dev, sta->addr, wcid);
	rt2800_config_wcid_attr_bssidx(rt2x00dev, wcid,
				       rt2x00lib_get_bssidx(rt2x00dev, vif));
	return 0;
}
EXPORT_SYMBOL_GPL(rt2800_sta_add);

int rt2800_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
		      struct ieee80211_sta *sta)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	struct rt2x00_sta *sta_priv = sta_to_rt2x00_sta(sta);
	int wcid = sta_priv->wcid;

	if (sta->deflink.ht_cap.ht_supported) {
		drv_data->ampdu_factor_cnt[sta->deflink.ht_cap.ampdu_factor & 3]--;
		rt2800_set_max_psdu_len(rt2x00dev);
	}

	if (wcid > WCID_END)
		return 0;
	/*
	 * Remove WCID entry, no need to clean the attributes as they will
	 * get renewed when the WCID is reused.
	 */
	rt2800_config_wcid(rt2x00dev, NULL, wcid);
	drv_data->wcid_to_sta[wcid - WCID_START] = NULL;
	__clear_bit(wcid - WCID_START, drv_data->sta_ids);

	return 0;
}
EXPORT_SYMBOL_GPL(rt2800_sta_remove);

void rt2800_pre_reset_hw(struct rt2x00_dev *rt2x00dev)
{
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	struct data_queue *queue = rt2x00dev->bcn;
	struct queue_entry *entry;
	int i, wcid;

	for (wcid = WCID_START; wcid < WCID_END; wcid++) {
		drv_data->wcid_to_sta[wcid - WCID_START] = NULL;
		__clear_bit(wcid - WCID_START, drv_data->sta_ids);
	}

	for (i = 0; i < queue->limit; i++) {
		entry = &queue->entries[i];
		clear_bit(ENTRY_BCN_ASSIGNED, &entry->flags);
	}
}
EXPORT_SYMBOL_GPL(rt2800_pre_reset_hw);

void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
			  const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
	reg = rt2800_register_read(rt2x00dev, RX_FILTER_CFG);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME,
			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
			   !(filter_flags & FIF_ALLMULTI));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
			   !(filter_flags & FIF_PSPOLL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA, 0);
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
			   !(filter_flags & FIF_CONTROL));
	rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
}
EXPORT_SYMBOL_GPL(rt2800_config_filter);

void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
			struct rt2x00intf_conf *conf, const unsigned int flags)
{
	u32 reg;
	bool update_bssid = false;

	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Enable synchronisation.
		 */
		reg = rt2800_register_read(rt2x00dev, BCN_TIME_CFG);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);

		if (conf->sync == TSF_SYNC_AP_NONE) {
			/*
			 * Tune beacon queue transmit parameters for AP mode
			 */
			reg = rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG);
			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_CWMIN, 0);
			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_AIFSN, 1);
			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_TBTT_ADJUST, 0);
			rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
		} else {
			reg = rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG);
			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_CWMIN, 4);
			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_AIFSN, 2);
			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_TBTT_ADJUST, 16);
			rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
		}
	}

	if (flags & CONFIG_UPDATE_MAC) {
		if (flags & CONFIG_UPDATE_TYPE &&
		    conf->sync == TSF_SYNC_AP_NONE) {
			/*
			 * The BSSID register has to be set to our own mac
			 * address in AP mode.
			 */
			memcpy(conf->bssid, conf->mac, sizeof(conf->mac));
			update_bssid = true;
		}

		if (!is_zero_ether_addr((const u8 *)conf->mac)) {
			reg = le32_to_cpu(conf->mac[1]);
			rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
			conf->mac[1] = cpu_to_le32(reg);
		}

		rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
					      conf->mac, sizeof(conf->mac));
	}

	if ((flags & CONFIG_UPDATE_BSSID) || update_bssid) {
		if (!is_zero_ether_addr((const u8 *)conf->bssid)) {
			reg = le32_to_cpu(conf->bssid[1]);
			rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 3);
			rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 0);
			conf->bssid[1] = cpu_to_le32(reg);
		}

		rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
					      conf->bssid, sizeof(conf->bssid));
	}
}
EXPORT_SYMBOL_GPL(rt2800_config_intf);

static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev,
				    struct rt2x00lib_erp *erp)
{
	bool any_sta_nongf = !!(erp->ht_opmode &
				IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
	u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION;
	u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode;
	u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate;
	u32 reg;

	/* default protection rate for HT20: OFDM 24M */
	mm20_rate = gf20_rate = 0x4004;

	/* default protection rate for HT40: duplicate OFDM 24M */
	mm40_rate = gf40_rate = 0x4084;

	switch (protection) {
	case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
		/*
		 * All STAs in this BSS are HT20/40 but there might be
		 * STAs not supporting greenfield mode.
		 * => Disable protection for HT transmissions.
		 */
		mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0;

		break;
	case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
		/*
		 * All STAs in this BSS are HT20 or HT20/40 but there
		 * might be STAs not supporting greenfield mode.
		 * => Protect all HT40 transmissions.
		 */
		mm20_mode = gf20_mode = 0;
		mm40_mode = gf40_mode = 1;

		break;
	case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
		/*
		 * Nonmember protection:
		 * According to 802.11n we _should_ protect all
		 * HT transmissions (but we don't have to).
		 *
		 * But if cts_protection is enabled we _shall_ protect
		 * all HT transmissions using a CCK rate.
		 *
		 * And if any station is non GF we _shall_ protect
		 * GF transmissions.
		 *
		 * We decide to protect everything
		 * -> fall through to mixed mode.
		 */
	case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
		/*
		 * Legacy STAs are present
		 * => Protect all HT transmissions.
		 */
		mm20_mode = mm40_mode = gf20_mode = gf40_mode = 1;

		/*
		 * If erp protection is needed we have to protect HT
		 * transmissions with CCK 11M long preamble.
		 */
		if (erp->cts_protection) {
			/* don't duplicate RTS/CTS in CCK mode */
			mm20_rate = mm40_rate = 0x0003;
			gf20_rate = gf40_rate = 0x0003;
		}
		break;
	}

	/* check for STAs not supporting greenfield mode */
	if (any_sta_nongf)
		gf20_mode = gf40_mode = 1;

	/* Update HT protection config */
	reg = rt2800_register_read(rt2x00dev, MM20_PROT_CFG);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, mm20_rate);
	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode);
	rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);

	reg = rt2800_register_read(rt2x00dev, MM40_PROT_CFG);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, mm40_rate);
	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode);
	rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);

	reg = rt2800_register_read(rt2x00dev, GF20_PROT_CFG);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, gf20_rate);
	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode);
	rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);

	reg = rt2800_register_read(rt2x00dev, GF40_PROT_CFG);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, gf40_rate);
	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode);
	rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
}

void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp,
		       u32 changed)
{
	u32 reg;

	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
		reg = rt2800_register_read(rt2x00dev, AUTO_RSP_CFG);
		rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
				   !!erp->short_preamble);
		rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
	}

	if (changed & BSS_CHANGED_ERP_CTS_PROT) {
		reg = rt2800_register_read(rt2x00dev, OFDM_PROT_CFG);
		rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
				   erp->cts_protection ? 2 : 0);
		rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
	}

	if (changed & BSS_CHANGED_BASIC_RATES) {
		rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
				      0xff0 | erp->basic_rates);
		rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
	}

	if (changed & BSS_CHANGED_ERP_SLOT) {
		reg = rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG);
		rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME,
				   erp->slot_time);
		rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);

		reg = rt2800_register_read(rt2x00dev, XIFS_TIME_CFG);
		rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
		rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
	}

	if (changed & BSS_CHANGED_BEACON_INT) {
		reg = rt2800_register_read(rt2x00dev, BCN_TIME_CFG);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
				   erp->beacon_int * 16);
		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
	}

	if (changed & BSS_CHANGED_HT)
		rt2800_config_ht_opmode(rt2x00dev, erp);
}
EXPORT_SYMBOL_GPL(rt2800_config_erp);

static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev,
				    const struct rt2x00_field32 mask)
{
	unsigned int i;
	u32 reg;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		reg = rt2800_register_read(rt2x00dev, MAC_STATUS_CFG);
		if (!rt2x00_get_field32(reg, mask))
			return 0;

		udelay(REGISTER_BUSY_DELAY);
	}

	rt2x00_err(rt2x00dev, "BBP/RF register access failed, aborting\n");
	return -EACCES;
}

static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u8 value;

	/*
	 * BBP was enabled after firmware was loaded,
	 * but we need to reactivate it now.
	 */
	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
	msleep(1);

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		value = rt2800_bbp_read(rt2x00dev, 0);
		if ((value != 0xff) && (value != 0x00))
			return 0;
		udelay(REGISTER_BUSY_DELAY);
	}

	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
	return -EACCES;
}

static void rt2800_config_3572bt_ant(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 eeprom;
	u8 led_ctrl, led_g_mode, led_r_mode;

	reg = rt2800_register_read(rt2x00dev, GPIO_SWITCH);
	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
		rt2x00_set_field32(&reg, GPIO_SWITCH_0, 1);
		rt2x00_set_field32(&reg, GPIO_SWITCH_1, 1);
	} else {
		rt2x00_set_field32(&reg, GPIO_SWITCH_0, 0);
		rt2x00_set_field32(&reg, GPIO_SWITCH_1, 0);
	}
	rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);

	reg = rt2800_register_read(rt2x00dev, LED_CFG);
	led_g_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 3 : 0;
	led_r_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 0 : 3;
	if (led_g_mode != rt2x00_get_field32(reg, LED_CFG_G_LED_MODE) ||
	    led_r_mode != rt2x00_get_field32(reg, LED_CFG_R_LED_MODE)) {
		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_FREQ);
		led_ctrl = rt2x00_get_field16(eeprom, EEPROM_FREQ_LED_MODE);
		if (led_ctrl == 0 || led_ctrl > 0x40) {
			rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, led_g_mode);
			rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, led_r_mode);
			rt2800_register_write(rt2x00dev, LED_CFG, reg);
		} else {
			rt2800_mcu_request(rt2x00dev, MCU_BAND_SELECT, 0xff,
					   (led_g_mode << 2) | led_r_mode, 1);
		}
	}
}

static void rt2800_set_ant_diversity(struct rt2x00_dev *rt2x00dev,
				     enum antenna ant)
{
	u32 reg;
	u8 eesk_pin = (ant == ANTENNA_A) ? 1 : 0;
	u8 gpio_bit3 = (ant == ANTENNA_A) ? 0 : 1;

	if (rt2x00_is_pci(rt2x00dev)) {
		reg = rt2800_register_read(rt2x00dev, E2PROM_CSR);
		rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK, eesk_pin);
		rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
	} else if (rt2x00_is_usb(rt2x00dev))
		rt2800_mcu_request(rt2x00dev, MCU_ANT_SELECT, 0xff,
				   eesk_pin, 0);

	reg = rt2800_register_read(rt2x00dev, GPIO_CTRL);
	rt2x00_set_field32(&reg, GPIO_CTRL_DIR3, 0);
	rt2x00_set_field32(&reg, GPIO_CTRL_VAL3, gpio_bit3);
	rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
}

void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
{
	u8 r1;
	u8 r3;
	u16 eeprom;

	r1 = rt2800_bbp_read(rt2x00dev, 1);
	r3 = rt2800_bbp_read(rt2x00dev, 3);

	if (rt2x00_rt(rt2x00dev, RT3572) &&
	    rt2x00_has_cap_bt_coexist(rt2x00dev))
		rt2800_config_3572bt_ant(rt2x00dev);

	/*
	 * Configure the TX antenna.
	 */
	switch (ant->tx_chain_num) {
	case 1:
		rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
		break;
	case 2:
		if (rt2x00_rt(rt2x00dev, RT3572) &&
		    rt2x00_has_cap_bt_coexist(rt2x00dev))
			rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 1);
		else
			rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
		break;
	case 3:
		rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx_chain_num) {
	case 1:
		if (rt2x00_rt(rt2x00dev, RT3070) ||
		    rt2x00_rt(rt2x00dev, RT3090) ||
		    rt2x00_rt(rt2x00dev, RT3352) ||
		    rt2x00_rt(rt2x00dev, RT3390)) {
			eeprom = rt2800_eeprom_read(rt2x00dev,
						    EEPROM_NIC_CONF1);
			if (rt2x00_get_field16(eeprom,
						EEPROM_NIC_CONF1_ANT_DIVERSITY))
				rt2800_set_ant_diversity(rt2x00dev,
						rt2x00dev->default_ant.rx);
		}
		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
		break;
	case 2:
		if (rt2x00_rt(rt2x00dev, RT3572) &&
		    rt2x00_has_cap_bt_coexist(rt2x00dev)) {
			rt2x00_set_field8(&r3, BBP3_RX_ADC, 1);
			rt2x00_set_field8(&r3, BBP3_RX_ANTENNA,
				rt2x00dev->curr_band == NL80211_BAND_5GHZ);
			rt2800_set_ant_diversity(rt2x00dev, ANTENNA_B);
		} else {
			rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
		}
		break;
	case 3:
		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
		break;
	}

	rt2800_bbp_write(rt2x00dev, 3, r3);
	rt2800_bbp_write(rt2x00dev, 1, r1);

	if (rt2x00_rt(rt2x00dev, RT3593) ||
	    rt2x00_rt(rt2x00dev, RT3883)) {
		if (ant->rx_chain_num == 1)
			rt2800_bbp_write(rt2x00dev, 86, 0x00);
		else
			rt2800_bbp_write(rt2x00dev, 86, 0x46);
	}
}
EXPORT_SYMBOL_GPL(rt2800_config_ant);

static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
				   struct rt2x00lib_conf *libconf)
{
	u16 eeprom;
	short lna_gain;

	if (libconf->rf.channel <= 14) {
		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_LNA);
		lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
	} else if (libconf->rf.channel <= 64) {
		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_LNA);
		lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
	} else if (libconf->rf.channel <= 128) {
		if (rt2x00_rt(rt2x00dev, RT3593) ||
		    rt2x00_rt(rt2x00dev, RT3883)) {
			eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_EXT_LNA2);
			lna_gain = rt2x00_get_field16(eeprom,
						      EEPROM_EXT_LNA2_A1);
		} else {
			eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2);
			lna_gain = rt2x00_get_field16(eeprom,
						      EEPROM_RSSI_BG2_LNA_A1);
		}
	} else {
		if (rt2x00_rt(rt2x00dev, RT3593) ||
		    rt2x00_rt(rt2x00dev, RT3883)) {
			eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_EXT_LNA2);
			lna_gain = rt2x00_get_field16(eeprom,
						      EEPROM_EXT_LNA2_A2);
		} else {
			eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A2);
			lna_gain = rt2x00_get_field16(eeprom,
						      EEPROM_RSSI_A2_LNA_A2);
		}
	}

	rt2x00dev->lna_gain = lna_gain;
}

static inline bool rt2800_clk_is_20mhz(struct rt2x00_dev *rt2x00dev)
{
	return clk_get_rate(rt2x00dev->clk) == 20000000;
}

#define FREQ_OFFSET_BOUND	0x5f

static void rt2800_freq_cal_mode1(struct rt2x00_dev *rt2x00dev)
{
	u8 freq_offset, prev_freq_offset;
	u8 rfcsr, prev_rfcsr;

	freq_offset = rt2x00_get_field8(rt2x00dev->freq_offset, RFCSR17_CODE);
	freq_offset = min_t(u8, freq_offset, FREQ_OFFSET_BOUND);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 17);
	prev_rfcsr = rfcsr;

	rt2x00_set_field8(&rfcsr, RFCSR17_CODE, freq_offset);
	if (rfcsr == prev_rfcsr)
		return;

	if (rt2x00_is_usb(rt2x00dev)) {
		rt2800_mcu_request(rt2x00dev, MCU_FREQ_OFFSET, 0xff,
				   freq_offset, prev_rfcsr);
		return;
	}

	prev_freq_offset = rt2x00_get_field8(prev_rfcsr, RFCSR17_CODE);
	while (prev_freq_offset != freq_offset) {
		if (prev_freq_offset < freq_offset)
			prev_freq_offset++;
		else
			prev_freq_offset--;

		rt2x00_set_field8(&rfcsr, RFCSR17_CODE, prev_freq_offset);
		rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);

		usleep_range(1000, 1500);
	}
}

static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_conf *conf,
					 struct rf_channel *rf,
					 struct channel_info *info)
{
	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);

	if (rt2x00dev->default_ant.tx_chain_num == 1)
		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);

	if (rt2x00dev->default_ant.rx_chain_num == 1) {
		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
	} else if (rt2x00dev->default_ant.rx_chain_num == 2)
		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);

	if (rf->channel > 14) {
		/*
		 * When TX power is below 0, we should increase it by 7 to
		 * make it a positive value (Minimum value is -7).
		 * However this means that values between 0 and 7 have
		 * double meaning, and we should set a 7DBm boost flag.
		 */
		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
				   (info->default_power1 >= 0));

		if (info->default_power1 < 0)
			info->default_power1 += 7;

		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1);

		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
				   (info->default_power2 >= 0));

		if (info->default_power2 < 0)
			info->default_power2 += 7;

		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2);
	} else {
		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1);
		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2);
	}

	rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));

	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
	rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt2800_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
	rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
	rt2800_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
	rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt2800_rf_write(rt2x00dev, 4, rf->rf4);
}

static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_conf *conf,
					 struct rf_channel *rf,
					 struct channel_info *info)
{
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	u8 rfcsr, calib_tx, calib_rx;

	rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 3);
	rt2x00_set_field8(&rfcsr, RFCSR3_K, rf->rf3);
	rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 6);
	rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
	rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 12);
	rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1);
	rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 13);
	rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2);
	rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD,
			  rt2x00dev->default_ant.rx_chain_num <= 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD,
			  rt2x00dev->default_ant.rx_chain_num <= 2);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD,
			  rt2x00dev->default_ant.tx_chain_num <= 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD,
			  rt2x00dev->default_ant.tx_chain_num <= 2);
	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 23);
	rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
	rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);

	if (rt2x00_rt(rt2x00dev, RT3390)) {
		calib_tx = conf_is_ht40(conf) ? 0x68 : 0x4f;
		calib_rx = conf_is_ht40(conf) ? 0x6f : 0x4f;
	} else {
		if (conf_is_ht40(conf)) {
			calib_tx = drv_data->calibration_bw40;
			calib_rx = drv_data->calibration_bw40;
		} else {
			calib_tx = drv_data->calibration_bw20;
			calib_rx = drv_data->calibration_bw20;
		}
	}

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 24);
	rt2x00_set_field8(&rfcsr, RFCSR24_TX_CALIB, calib_tx);
	rt2800_rfcsr_write(rt2x00dev, 24, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 31);
	rt2x00_set_field8(&rfcsr, RFCSR31_RX_CALIB, calib_rx);
	rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 7);
	rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
	rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 30);
	rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);

	usleep_range(1000, 1500);

	rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
}

static void rt2800_config_channel_rf3052(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_conf *conf,
					 struct rf_channel *rf,
					 struct channel_info *info)
{
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	u8 rfcsr;
	u32 reg;

	if (rf->channel <= 14) {
		rt2800_bbp_write(rt2x00dev, 25, drv_data->bbp25);
		rt2800_bbp_write(rt2x00dev, 26, drv_data->bbp26);
	} else {
		rt2800_bbp_write(rt2x00dev, 25, 0x09);
		rt2800_bbp_write(rt2x00dev, 26, 0xff);
	}

	rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
	rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 6);
	rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
	if (rf->channel <= 14)
		rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 2);
	else
		rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 1);
	rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 5);
	if (rf->channel <= 14)
		rt2x00_set_field8(&rfcsr, RFCSR5_R1, 1);
	else
		rt2x00_set_field8(&rfcsr, RFCSR5_R1, 2);
	rt2800_rfcsr_write(rt2x00dev, 5, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 12);
	if (rf->channel <= 14) {
		rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 3);
		rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
				  info->default_power1);
	} else {
		rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 7);
		rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
				(info->default_power1 & 0x3) |
				((info->default_power1 & 0xC) << 1));
	}
	rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 13);
	if (rf->channel <= 14) {
		rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 3);
		rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
				  info->default_power2);
	} else {
		rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 7);
		rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
				(info->default_power2 & 0x3) |
				((info->default_power2 & 0xC) << 1));
	}
	rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
	if (rt2x00_has_cap_bt_coexist(rt2x00dev)) {
		if (rf->channel <= 14) {
			rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
			rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
		}
		rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
		rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
	} else {
		switch (rt2x00dev->default_ant.tx_chain_num) {
		case 1:
			rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
			fallthrough;
		case 2:
			rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
			break;
		}

		switch (rt2x00dev->default_ant.rx_chain_num) {
		case 1:
			rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
			fallthrough;
		case 2:
			rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
			break;
		}
	}
	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 23);
	rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
	rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);

	if (conf_is_ht40(conf)) {
		rt2800_rfcsr_write(rt2x00dev, 24, drv_data->calibration_bw40);
		rt2800_rfcsr_write(rt2x00dev, 31, drv_data->calibration_bw40);
	} else {
		rt2800_rfcsr_write(rt2x00dev, 24, drv_data->calibration_bw20);
		rt2800_rfcsr_write(rt2x00dev, 31, drv_data->calibration_bw20);
	}

	if (rf->channel <= 14) {
		rt2800_rfcsr_write(rt2x00dev, 7, 0xd8);
		rt2800_rfcsr_write(rt2x00dev, 9, 0xc3);
		rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
		rt2800_rfcsr_write(rt2x00dev, 11, 0xb9);
		rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
		rfcsr = 0x4c;
		rt2x00_set_field8(&rfcsr, RFCSR16_TXMIXER_GAIN,
				  drv_data->txmixer_gain_24g);
		rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);
		rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
		rt2800_rfcsr_write(rt2x00dev, 19, 0x93);
		rt2800_rfcsr_write(rt2x00dev, 20, 0xb3);
		rt2800_rfcsr_write(rt2x00dev, 25, 0x15);
		rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
		rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
		rt2800_rfcsr_write(rt2x00dev, 29, 0x9b);
	} else {
		rfcsr = rt2800_rfcsr_read(rt2x00dev, 7);
		rt2x00_set_field8(&rfcsr, RFCSR7_BIT2, 1);
		rt2x00_set_field8(&rfcsr, RFCSR7_BIT3, 0);
		rt2x00_set_field8(&rfcsr, RFCSR7_BIT4, 1);
		rt2x00_set_field8(&rfcsr, RFCSR7_BITS67, 0);
		rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
		rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
		rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
		rt2800_rfcsr_write(rt2x00dev, 11, 0x00);
		rt2800_rfcsr_write(rt2x00dev, 15, 0x43);
		rfcsr = 0x7a;
		rt2x00_set_field8(&rfcsr, RFCSR16_TXMIXER_GAIN,
				  drv_data->txmixer_gain_5g);
		rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);
		rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
		if (rf->channel <= 64) {
			rt2800_rfcsr_write(rt2x00dev, 19, 0xb7);
			rt2800_rfcsr_write(rt2x00dev, 20, 0xf6);
			rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
		} else if (rf->channel <= 128) {
			rt2800_rfcsr_write(rt2x00dev, 19, 0x74);
			rt2800_rfcsr_write(rt2x00dev, 20, 0xf4);
			rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
		} else {
			rt2800_rfcsr_write(rt2x00dev, 19, 0x72);
			rt2800_rfcsr_write(rt2x00dev, 20, 0xf3);
			rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
		}
		rt2800_rfcsr_write(rt2x00dev, 26, 0x87);
		rt2800_rfcsr_write(rt2x00dev, 27, 0x01);
		rt2800_rfcsr_write(rt2x00dev, 29, 0x9f);
	}

	reg = rt2800_register_read(rt2x00dev, GPIO_CTRL);
	rt2x00_set_field32(&reg, GPIO_CTRL_DIR7, 0);
	if (rf->channel <= 14)
		rt2x00_set_field32(&reg, GPIO_CTRL_VAL7, 1);
	else
		rt2x00_set_field32(&reg, GPIO_CTRL_VAL7, 0);
	rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 7);
	rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
	rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
}

static void rt2800_config_channel_rf3053(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_conf *conf,
					 struct rf_channel *rf,
					 struct channel_info *info)
{
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	u8 txrx_agc_fc;
	u8 txrx_h20m;
	u8 rfcsr;
	u8 bbp;
	const bool txbf_enabled = false; /* TODO */

	/* TODO: use TX{0,1,2}FinePowerControl values from EEPROM */
	bbp = rt2800_bbp_read(rt2x00dev, 109);
	rt2x00_set_field8(&bbp, BBP109_TX0_POWER, 0);
	rt2x00_set_field8(&bbp, BBP109_TX1_POWER, 0);
	rt2800_bbp_write(rt2x00dev, 109, bbp);

	bbp = rt2800_bbp_read(rt2x00dev, 110);
	rt2x00_set_field8(&bbp, BBP110_TX2_POWER, 0);
	rt2800_bbp_write(rt2x00dev, 110, bbp);

	if (rf->channel <= 14) {
		/* Restore BBP 25 & 26 for 2.4 GHz */
		rt2800_bbp_write(rt2x00dev, 25, drv_data->bbp25);
		rt2800_bbp_write(rt2x00dev, 26, drv_data->bbp26);
	} else {
		/* Hard code BBP 25 & 26 for 5GHz */

		/* Enable IQ Phase correction */
		rt2800_bbp_write(rt2x00dev, 25, 0x09);
		/* Setup IQ Phase correction value */
		rt2800_bbp_write(rt2x00dev, 26, 0xff);
	}

	rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
	rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3 & 0xf);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 11);
	rt2x00_set_field8(&rfcsr, RFCSR11_R, (rf->rf2 & 0x3));
	rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 11);
	rt2x00_set_field8(&rfcsr, RFCSR11_PLL_IDOH, 1);
	if (rf->channel <= 14)
		rt2x00_set_field8(&rfcsr, RFCSR11_PLL_MOD, 1);
	else
		rt2x00_set_field8(&rfcsr, RFCSR11_PLL_MOD, 2);
	rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 53);
	if (rf->channel <= 14) {
		rfcsr = 0;
		rt2x00_set_field8(&rfcsr, RFCSR53_TX_POWER,
				  info->default_power1 & 0x1f);
	} else {
		if (rt2x00_is_usb(rt2x00dev))
			rfcsr = 0x40;

		rt2x00_set_field8(&rfcsr, RFCSR53_TX_POWER,
				  ((info->default_power1 & 0x18) << 1) |
				  (info->default_power1 & 7));
	}
	rt2800_rfcsr_write(rt2x00dev, 53, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 55);
	if (rf->channel <= 14) {
		rfcsr = 0;
		rt2x00_set_field8(&rfcsr, RFCSR55_TX_POWER,
				  info->default_power2 & 0x1f);
	} else {
		if (rt2x00_is_usb(rt2x00dev))
			rfcsr = 0x40;

		rt2x00_set_field8(&rfcsr, RFCSR55_TX_POWER,
				  ((info->default_power2 & 0x18) << 1) |
				  (info->default_power2 & 7));
	}
	rt2800_rfcsr_write(rt2x00dev, 55, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 54);
	if (rf->channel <= 14) {
		rfcsr = 0;
		rt2x00_set_field8(&rfcsr, RFCSR54_TX_POWER,
				  info->default_power3 & 0x1f);
	} else {
		if (rt2x00_is_usb(rt2x00dev))
			rfcsr = 0x40;

		rt2x00_set_field8(&rfcsr, RFCSR54_TX_POWER,
				  ((info->default_power3 & 0x18) << 1) |
				  (info->default_power3 & 7));
	}
	rt2800_rfcsr_write(rt2x00dev, 54, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);

	switch (rt2x00dev->default_ant.tx_chain_num) {
	case 3:
		rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
		fallthrough;
	case 2:
		rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
		fallthrough;
	case 1:
		rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
		break;
	}

	switch (rt2x00dev->default_ant.rx_chain_num) {
	case 3:
		rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
		fallthrough;
	case 2:
		rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
		fallthrough;
	case 1:
		rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
		break;
	}
	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);

	rt2800_freq_cal_mode1(rt2x00dev);

	if (conf_is_ht40(conf)) {
		txrx_agc_fc = rt2x00_get_field8(drv_data->calibration_bw40,
						RFCSR24_TX_AGC_FC);
		txrx_h20m = rt2x00_get_field8(drv_data->calibration_bw40,
					      RFCSR24_TX_H20M);
	} else {
		txrx_agc_fc = rt2x00_get_field8(drv_data->calibration_bw20,
						RFCSR24_TX_AGC_FC);
		txrx_h20m = rt2x00_get_field8(drv_data->calibration_bw20,
					      RFCSR24_TX_H20M);
	}

	/* NOTE: the reference driver does not writes the new value
	 * back to RFCSR 32
	 */
	rfcsr = rt2800_rfcsr_read(rt2x00dev, 32);
	rt2x00_set_field8(&rfcsr, RFCSR32_TX_AGC_FC, txrx_agc_fc);

	if (rf->channel <= 14)
		rfcsr = 0xa0;
	else
		rfcsr = 0x80;
	rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 30);
	rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M, txrx_h20m);
	rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M, txrx_h20m);
	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);

	/* Band selection */
	rfcsr = rt2800_rfcsr_read(rt2x00dev, 36);
	if (rf->channel <= 14)
		rt2x00_set_field8(&rfcsr, RFCSR36_RF_BS, 1);
	else
		rt2x00_set_field8(&rfcsr, RFCSR36_RF_BS, 0);
	rt2800_rfcsr_write(rt2x00dev, 36, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 34);
	if (rf->channel <= 14)
		rfcsr = 0x3c;
	else
		rfcsr = 0x20;
	rt2800_rfcsr_write(rt2x00dev, 34, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 12);
	if (rf->channel <= 14)
		rfcsr = 0x1a;
	else
		rfcsr = 0x12;
	rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 6);
	if (rf->channel >= 1 && rf->channel <= 14)
		rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 1);
	else if (rf->channel >= 36 && rf->channel <= 64)
		rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 2);
	else if (rf->channel >= 100 && rf->channel <= 128)
		rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 2);
	else
		rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 1);
	rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 30);
	rt2x00_set_field8(&rfcsr, RFCSR30_RX_VCM, 2);
	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);

	rt2800_rfcsr_write(rt2x00dev, 46, 0x60);

	if (rf->channel <= 14) {
		rt2800_rfcsr_write(rt2x00dev, 10, 0xd3);
		rt2800_rfcsr_write(rt2x00dev, 13, 0x12);
	} else {
		rt2800_rfcsr_write(rt2x00dev, 10, 0xd8);
		rt2800_rfcsr_write(rt2x00dev, 13, 0x23);
	}

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 51);
	rt2x00_set_field8(&rfcsr, RFCSR51_BITS01, 1);
	rt2800_rfcsr_write(rt2x00dev, 51, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 51);
	if (rf->channel <= 14) {
		rt2x00_set_field8(&rfcsr, RFCSR51_BITS24, 5);
		rt2x00_set_field8(&rfcsr, RFCSR51_BITS57, 3);
	} else {
		rt2x00_set_field8(&rfcsr, RFCSR51_BITS24, 4);
		rt2x00_set_field8(&rfcsr, RFCSR51_BITS57, 2);
	}
	rt2800_rfcsr_write(rt2x00dev, 51, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 49);
	if (rf->channel <= 14)
		rt2x00_set_field8(&rfcsr, RFCSR49_TX_LO1_IC, 3);
	else
		rt2x00_set_field8(&rfcsr, RFCSR49_TX_LO1_IC, 2);

	if (txbf_enabled)
		rt2x00_set_field8(&rfcsr, RFCSR49_TX_DIV, 1);

	rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 50);
	rt2x00_set_field8(&rfcsr, RFCSR50_TX_LO1_EN, 0);
	rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 57);
	if (rf->channel <= 14)
		rt2x00_set_field8(&rfcsr, RFCSR57_DRV_CC, 0x1b);
	else
		rt2x00_set_field8(&rfcsr, RFCSR57_DRV_CC, 0x0f);
	rt2800_rfcsr_write(rt2x00dev, 57, rfcsr);

	if (rf->channel <= 14) {
		rt2800_rfcsr_write(rt2x00dev, 44, 0x93);
		rt2800_rfcsr_write(rt2x00dev, 52, 0x45);
	} else {
		rt2800_rfcsr_write(rt2x00dev, 44, 0x9b);
		rt2800_rfcsr_write(rt2x00dev, 52, 0x05);
	}

	/* Initiate VCO calibration */
	rfcsr = rt2800_rfcsr_read(rt2x00dev, 3);
	if (rf->channel <= 14) {
		rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
	} else {
		rt2x00_set_field8(&rfcsr, RFCSR3_BIT1, 1);
		rt2x00_set_field8(&rfcsr, RFCSR3_BIT2, 1);
		rt2x00_set_field8(&rfcsr, RFCSR3_BIT3, 1);
		rt2x00_set_field8(&rfcsr, RFCSR3_BIT4, 1);
		rt2x00_set_field8(&rfcsr, RFCSR3_BIT5, 1);
		rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
	}
	rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);

	if (rf->channel >= 1 && rf->channel <= 14) {
		rfcsr = 0x23;
		if (txbf_enabled)
			rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
		rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);

		rt2800_rfcsr_write(rt2x00dev, 45, 0xbb);
	} else if (rf->channel >= 36 && rf->channel <= 64) {
		rfcsr = 0x36;
		if (txbf_enabled)
			rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
		rt2800_rfcsr_write(rt2x00dev, 39, 0x36);

		rt2800_rfcsr_write(rt2x00dev, 45, 0xeb);
	} else if (rf->channel >= 100 && rf->channel <= 128) {
		rfcsr = 0x32;
		if (txbf_enabled)
			rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
		rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);

		rt2800_rfcsr_write(rt2x00dev, 45, 0xb3);
	} else {
		rfcsr = 0x30;
		if (txbf_enabled)
			rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
		rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);

		rt2800_rfcsr_write(rt2x00dev, 45, 0x9b);
	}
}

static void rt2800_config_channel_rf3853(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_conf *conf,
					 struct rf_channel *rf,
					 struct channel_info *info)
{
	u8 rfcsr;
	u8 bbp;
	u8 pwr1, pwr2, pwr3;

	const bool txbf_enabled = false; /* TODO */

	/* TODO: add band selection */

	if (rf->channel <= 14)
		rt2800_rfcsr_write(rt2x00dev, 6, 0x40);
	else if (rf->channel < 132)
		rt2800_rfcsr_write(rt2x00dev, 6, 0x80);
	else
		rt2800_rfcsr_write(rt2x00dev, 6, 0x40);

	rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
	rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);

	if (rf->channel <= 14)
		rt2800_rfcsr_write(rt2x00dev, 11, 0x46);
	else
		rt2800_rfcsr_write(rt2x00dev, 11, 0x48);

	if (rf->channel <= 14)
		rt2800_rfcsr_write(rt2x00dev, 12, 0x1a);
	else
		rt2800_rfcsr_write(rt2x00dev, 12, 0x52);

	rt2800_rfcsr_write(rt2x00dev, 13, 0x12);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);

	switch (rt2x00dev->default_ant.tx_chain_num) {
	case 3:
		rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
		fallthrough;
	case 2:
		rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
		fallthrough;
	case 1:
		rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
		break;
	}

	switch (rt2x00dev->default_ant.rx_chain_num) {
	case 3:
		rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
		fallthrough;
	case 2:
		rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
		fallthrough;
	case 1:
		rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
		break;
	}
	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);

	rt2800_freq_cal_mode1(rt2x00dev);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 30);
	if (!conf_is_ht40(conf))
		rfcsr &= ~(0x06);
	else
		rfcsr |= 0x06;
	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);

	if (rf->channel <= 14)
		rt2800_rfcsr_write(rt2x00dev, 31, 0xa0);
	else
		rt2800_rfcsr_write(rt2x00dev, 31, 0x80);

	if (conf_is_ht40(conf))
		rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
	else
		rt2800_rfcsr_write(rt2x00dev, 32, 0xd8);

	if (rf->channel <= 14)
		rt2800_rfcsr_write(rt2x00dev, 34, 0x3c);
	else
		rt2800_rfcsr_write(rt2x00dev, 34, 0x20);

	/* loopback RF_BS */
	rfcsr = rt2800_rfcsr_read(rt2x00dev, 36);
	if (rf->channel <= 14)
		rt2x00_set_field8(&rfcsr, RFCSR36_RF_BS, 1);
	else
		rt2x00_set_field8(&rfcsr, RFCSR36_RF_BS, 0);
	rt2800_rfcsr_write(rt2x00dev, 36, rfcsr);

	if (rf->channel <= 14)
		rfcsr = 0x23;
	else if (rf->channel < 100)
		rfcsr = 0x36;
	else if (rf->channel < 132)
		rfcsr = 0x32;
	else
		rfcsr = 0x30;

	if (txbf_enabled)
		rfcsr |= 0x40;

	rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);

	if (rf->channel <= 14)
		rt2800_rfcsr_write(rt2x00dev, 44, 0x93);
	else
		rt2800_rfcsr_write(rt2x00dev, 44, 0x9b);

	if (rf->channel <= 14)
		rfcsr = 0xbb;
	else if (rf->channel < 100)
		rfcsr = 0xeb;
	else if (rf->channel < 132)
		rfcsr = 0xb3;
	else
		rfcsr = 0x9b;
	rt2800_rfcsr_write(rt2x00dev, 45, rfcsr);

	if (rf->channel <= 14)
		rfcsr = 0x8e;
	else
		rfcsr = 0x8a;

	if (txbf_enabled)
		rfcsr |= 0x20;

	rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);

	rt2800_rfcsr_write(rt2x00dev, 50, 0x86);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 51);
	if (rf->channel <= 14)
		rt2800_rfcsr_write(rt2x00dev, 51, 0x75);
	else
		rt2800_rfcsr_write(rt2x00dev, 51, 0x51);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 52);
	if (rf->channel <= 14)
		rt2800_rfcsr_write(rt2x00dev, 52, 0x45);
	else
		rt2800_rfcsr_write(rt2x00dev, 52, 0x05);

	if (rf->channel <= 14) {
		pwr1 = info->default_power1 & 0x1f;
		pwr2 = info->default_power2 & 0x1f;
		pwr3 = info->default_power3 & 0x1f;
	} else {
		pwr1 = 0x48 | ((info->default_power1 & 0x18) << 1) |
			(info->default_power1 & 0x7);
		pwr2 = 0x48 | ((info->default_power2 & 0x18) << 1) |
			(info->default_power2 & 0x7);
		pwr3 = 0x48 | ((info->default_power3 & 0x18) << 1) |
			(info->default_power3 & 0x7);
	}

	rt2800_rfcsr_write(rt2x00dev, 53, pwr1);
	rt2800_rfcsr_write(rt2x00dev, 54, pwr2);
	rt2800_rfcsr_write(rt2x00dev, 55, pwr3);

	rt2x00_dbg(rt2x00dev, "Channel:%d, pwr1:%02x, pwr2:%02x, pwr3:%02x\n",
		   rf->channel, pwr1, pwr2, pwr3);

	bbp = (info->default_power1 >> 5) |
	      ((info->default_power2 & 0xe0) >> 1);
	rt2800_bbp_write(rt2x00dev, 109, bbp);

	bbp = rt2800_bbp_read(rt2x00dev, 110);
	bbp &= 0x0f;
	bbp |= (info->default_power3 & 0xe0) >> 1;
	rt2800_bbp_write(rt2x00dev, 110, bbp);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 57);
	if (rf->channel <= 14)
		rt2800_rfcsr_write(rt2x00dev, 57, 0x6e);
	else
		rt2800_rfcsr_write(rt2x00dev, 57, 0x3e);

	/* Enable RF tuning */
	rfcsr = rt2800_rfcsr_read(rt2x00dev, 3);
	rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
	rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);

	udelay(2000);

	bbp = rt2800_bbp_read(rt2x00dev, 49);
	/* clear update flag */
	rt2800_bbp_write(rt2x00dev, 49, bbp & 0xfe);
	rt2800_bbp_write(rt2x00dev, 49, bbp);

	/* TODO: add calibration for TxBF */
}

#define POWER_BOUND		0x27
#define POWER_BOUND_5G		0x2b

static void rt2800_config_channel_rf3290(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_conf *conf,
					 struct rf_channel *rf,
					 struct channel_info *info)
{
	u8 rfcsr;

	rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
	rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
	rfcsr = rt2800_rfcsr_read(rt2x00dev, 11);
	rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
	rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 49);
	if (info->default_power1 > POWER_BOUND)
		rt2x00_set_field8(&rfcsr, RFCSR49_TX, POWER_BOUND);
	else
		rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
	rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);

	rt2800_freq_cal_mode1(rt2x00dev);

	if (rf->channel <= 14) {
		if (rf->channel == 6)
			rt2800_bbp_write(rt2x00dev, 68, 0x0c);
		else
			rt2800_bbp_write(rt2x00dev, 68, 0x0b);

		if (rf->channel >= 1 && rf->channel <= 6)
			rt2800_bbp_write(rt2x00dev, 59, 0x0f);
		else if (rf->channel >= 7 && rf->channel <= 11)
			rt2800_bbp_write(rt2x00dev, 59, 0x0e);
		else if (rf->channel >= 12 && rf->channel <= 14)
			rt2800_bbp_write(rt2x00dev, 59, 0x0d);
	}
}

static void rt2800_config_channel_rf3322(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_conf *conf,
					 struct rf_channel *rf,
					 struct channel_info *info)
{
	u8 rfcsr;

	rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
	rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);

	rt2800_rfcsr_write(rt2x00dev, 11, 0x42);
	rt2800_rfcsr_write(rt2x00dev, 12, 0x1c);
	rt2800_rfcsr_write(rt2x00dev, 13, 0x00);

	if (info->default_power1 > POWER_BOUND)
		rt2800_rfcsr_write(rt2x00dev, 47, POWER_BOUND);
	else
		rt2800_rfcsr_write(rt2x00dev, 47, info->default_power1);

	if (info->default_power2 > POWER_BOUND)
		rt2800_rfcsr_write(rt2x00dev, 48, POWER_BOUND);
	else
		rt2800_rfcsr_write(rt2x00dev, 48, info->default_power2);

	rt2800_freq_cal_mode1(rt2x00dev);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);

	if ( rt2x00dev->default_ant.tx_chain_num == 2 )
		rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
	else
		rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);

	if ( rt2x00dev->default_ant.rx_chain_num == 2 )
		rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
	else
		rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);

	rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);

	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);

	rt2800_rfcsr_write(rt2x00dev, 31, 80);
}

static void rt2800_config_channel_rf53xx(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_conf *conf,
					 struct rf_channel *rf,
					 struct channel_info *info)
{
	u8 rfcsr;
	int idx = rf->channel-1;

	rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
	rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
	rfcsr = rt2800_rfcsr_read(rt2x00dev, 11);
	rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
	rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 49);
	if (info->default_power1 > POWER_BOUND)
		rt2x00_set_field8(&rfcsr, RFCSR49_TX, POWER_BOUND);
	else
		rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
	rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);

	if (rt2x00_rt(rt2x00dev, RT5392)) {
		rfcsr = rt2800_rfcsr_read(rt2x00dev, 50);
		if (info->default_power2 > POWER_BOUND)
			rt2x00_set_field8(&rfcsr, RFCSR50_TX, POWER_BOUND);
		else
			rt2x00_set_field8(&rfcsr, RFCSR50_TX,
					  info->default_power2);
		rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
	}

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
	if (rt2x00_rt(rt2x00dev, RT5392)) {
		rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
		rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
	}
	rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);

	rt2800_freq_cal_mode1(rt2x00dev);

	if (rt2x00_has_cap_bt_coexist(rt2x00dev)) {
		if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
			/* r55/r59 value array of channel 1~14 */
			static const u8 r55_bt_rev[] = {0x83, 0x83,
				0x83, 0x73, 0x73, 0x63, 0x53, 0x53,
				0x53, 0x43, 0x43, 0x43, 0x43, 0x43};
			static const u8 r59_bt_rev[] = {0x0e, 0x0e,
				0x0e, 0x0e, 0x0e, 0x0b, 0x0a, 0x09,
				0x07, 0x07, 0x07, 0x07, 0x07, 0x07};

			rt2800_rfcsr_write(rt2x00dev, 55,
					   r55_bt_rev[idx]);
			rt2800_rfcsr_write(rt2x00dev, 59,
					   r59_bt_rev[idx]);
		} else {
			static const u8 r59_bt[] = {0x8b, 0x8b, 0x8b,
				0x8b, 0x8b, 0x8b, 0x8b, 0x8a, 0x89,
				0x88, 0x88, 0x86, 0x85, 0x84};

			rt2800_rfcsr_write(rt2x00dev, 59, r59_bt[idx]);
		}
	} else {
		if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
			static const u8 r55_nonbt_rev[] = {0x23, 0x23,
				0x23, 0x23, 0x13, 0x13, 0x03, 0x03,
				0x03, 0x03, 0x03, 0x03, 0x03, 0x03};
			static const u8 r59_nonbt_rev[] = {0x07, 0x07,
				0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
				0x07, 0x07, 0x06, 0x05, 0x04, 0x04};

			rt2800_rfcsr_write(rt2x00dev, 55,
					   r55_nonbt_rev[idx]);
			rt2800_rfcsr_write(rt2x00dev, 59,
					   r59_nonbt_rev[idx]);
		} else if (rt2x00_rt(rt2x00dev, RT5390) ||
			   rt2x00_rt(rt2x00dev, RT5392) ||
			   rt2x00_rt(rt2x00dev, RT6352)) {
			static const u8 r59_non_bt[] = {0x8f, 0x8f,
				0x8f, 0x8f, 0x8f, 0x8f, 0x8f, 0x8d,
				0x8a, 0x88, 0x88, 0x87, 0x87, 0x86};

			rt2800_rfcsr_write(rt2x00dev, 59,
					   r59_non_bt[idx]);
		} else if (rt2x00_rt(rt2x00dev, RT5350)) {
			static const u8 r59_non_bt[] = {0x0b, 0x0b,
				0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0a,
				0x0a, 0x09, 0x08, 0x07, 0x07, 0x06};

			rt2800_rfcsr_write(rt2x00dev, 59,
					   r59_non_bt[idx]);
		}
	}
}

static void rt2800_config_channel_rf55xx(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_conf *conf,
					 struct rf_channel *rf,
					 struct channel_info *info)
{
	u8 rfcsr, ep_reg;
	u32 reg;
	int power_bound;

	/* TODO */
	const bool is_11b = false;
	const bool is_type_ep = false;

	reg = rt2800_register_read(rt2x00dev, LDO_CFG0);
	rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL,
			   (rf->channel > 14 || conf_is_ht40(conf)) ? 5 : 0);
	rt2800_register_write(rt2x00dev, LDO_CFG0, reg);

	/* Order of values on rf_channel entry: N, K, mod, R */
	rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1 & 0xff);

	rfcsr = rt2800_rfcsr_read(rt2x00dev,  9);
	rt2x00_set_field8(&rfcsr, RFCSR9_K, rf->rf2 & 0xf);
	rt2x00_set_field8(&rfcsr, RFCSR9_N, (rf->rf1 & 0x100) >> 8);
	rt2x00_set_field8(&rfcsr, RFCSR9_MOD, ((rf->rf3 - 8) & 0x4) >> 2);
	rt2800_rfcsr_write(rt2x00dev, 9, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 11);
	rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf4 - 1);
	rt2x00_set_field8(&rfcsr, RFCSR11_MOD, (rf->rf3 - 8) & 0x3);
	rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);

	if (rf->channel <= 14) {
		rt2800_rfcsr_write(rt2x00dev, 10, 0x90);
		/* FIXME: RF11 owerwrite ? */
		rt2800_rfcsr_write(rt2x00dev, 11, 0x4A);
		rt2800_rfcsr_write(rt2x00dev, 12, 0x52);
		rt2800_rfcsr_write(rt2x00dev, 13, 0x42);
		rt2800_rfcsr_write(rt2x00dev, 22, 0x40);
		rt2800_rfcsr_write(rt2x00dev, 24, 0x4A);
		rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
		rt2800_rfcsr_write(rt2x00dev, 27, 0x42);
		rt2800_rfcsr_write(rt2x00dev, 36, 0x80);
		rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
		rt2800_rfcsr_write(rt2x00dev, 38, 0x89);
		rt2800_rfcsr_write(rt2x00dev, 39, 0x1B);
		rt2800_rfcsr_write(rt2x00dev, 40, 0x0D);
		rt2800_rfcsr_write(rt2x00dev, 41, 0x9B);
		rt2800_rfcsr_write(rt2x00dev, 42, 0xD5);
		rt2800_rfcsr_write(rt2x00dev, 43, 0x72);
		rt2800_rfcsr_write(rt2x00dev, 44, 0x0E);
		rt2800_rfcsr_write(rt2x00dev, 45, 0xA2);
		rt2800_rfcsr_write(rt2x00dev, 46, 0x6B);
		rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
		rt2800_rfcsr_write(rt2x00dev, 51, 0x3E);
		rt2800_rfcsr_write(rt2x00dev, 52, 0x48);
		rt2800_rfcsr_write(rt2x00dev, 54, 0x38);
		rt2800_rfcsr_write(rt2x00dev, 56, 0xA1);
		rt2800_rfcsr_write(rt2x00dev, 57, 0x00);
		rt2800_rfcsr_write(rt2x00dev, 58, 0x39);
		rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
		rt2800_rfcsr_write(rt2x00dev, 61, 0x91);
		rt2800_rfcsr_write(rt2x00dev, 62, 0x39);

		/* TODO RF27 <- tssi */

		rfcsr = rf->channel <= 10 ? 0x07 : 0x06;
		rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
		rt2800_rfcsr_write(rt2x00dev, 59, rfcsr);

		if (is_11b) {
			/* CCK */
			rt2800_rfcsr_write(rt2x00dev, 31, 0xF8);
			rt2800_rfcsr_write(rt2x00dev, 32, 0xC0);
			if (is_type_ep)
				rt2800_rfcsr_write(rt2x00dev, 55, 0x06);
			else
				rt2800_rfcsr_write(rt2x00dev, 55, 0x47);
		} else {
			/* OFDM */
			if (is_type_ep)
				rt2800_rfcsr_write(rt2x00dev, 55, 0x03);
			else
				rt2800_rfcsr_write(rt2x00dev, 55, 0x43);
		}

		power_bound = POWER_BOUND;
		ep_reg = 0x2;
	} else {
		rt2800_rfcsr_write(rt2x00dev, 10, 0x97);
		/* FIMXE: RF11 overwrite */
		rt2800_rfcsr_write(rt2x00dev, 11, 0x40);
		rt2800_rfcsr_write(rt2x00dev, 25, 0xBF);
		rt2800_rfcsr_write(rt2x00dev, 27, 0x42);
		rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
		rt2800_rfcsr_write(rt2x00dev, 37, 0x04);
		rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
		rt2800_rfcsr_write(rt2x00dev, 40, 0x42);
		rt2800_rfcsr_write(rt2x00dev, 41, 0xBB);
		rt2800_rfcsr_write(rt2x00dev, 42, 0xD7);
		rt2800_rfcsr_write(rt2x00dev, 45, 0x41);
		rt2800_rfcsr_write(rt2x00dev, 48, 0x00);
		rt2800_rfcsr_write(rt2x00dev, 57, 0x77);
		rt2800_rfcsr_write(rt2x00dev, 60, 0x05);
		rt2800_rfcsr_write(rt2x00dev, 61, 0x01);

		/* TODO RF27 <- tssi */

		if (rf->channel >= 36 && rf->channel <= 64) {

			rt2800_rfcsr_write(rt2x00dev, 12, 0x2E);
			rt2800_rfcsr_write(rt2x00dev, 13, 0x22);
			rt2800_rfcsr_write(rt2x00dev, 22, 0x60);
			rt2800_rfcsr_write(rt2x00dev, 23, 0x7F);
			if (rf->channel <= 50)
				rt2800_rfcsr_write(rt2x00dev, 24, 0x09);
			else if (rf->channel >= 52)
				rt2800_rfcsr_write(rt2x00dev, 24, 0x07);
			rt2800_rfcsr_write(rt2x00dev, 39, 0x1C);
			rt2800_rfcsr_write(rt2x00dev, 43, 0x5B);
			rt2800_rfcsr_write(rt2x00dev, 44, 0X40);
			rt2800_rfcsr_write(rt2x00dev, 46, 0X00);
			rt2800_rfcsr_write(rt2x00dev, 51, 0xFE);
			rt2800_rfcsr_write(rt2x00dev, 52, 0x0C);
			rt2800_rfcsr_write(rt2x00dev, 54, 0xF8);
			if (rf->channel <= 50) {
				rt2800_rfcsr_write(rt2x00dev, 55, 0x06),
				rt2800_rfcsr_write(rt2x00dev, 56, 0xD3);
			} else if (rf->channel >= 52) {
				rt2800_rfcsr_write(rt2x00dev, 55, 0x04);
				rt2800_rfcsr_write(rt2x00dev, 56, 0xBB);
			}

			rt2800_rfcsr_write(rt2x00dev, 58, 0x15);
			rt2800_rfcsr_write(rt2x00dev, 59, 0x7F);
			rt2800_rfcsr_write(rt2x00dev, 62, 0x15);

		} else if (rf->channel >= 100 && rf->channel <= 165) {

			rt2800_rfcsr_write(rt2x00dev, 12, 0x0E);
			rt2800_rfcsr_write(rt2x00dev, 13, 0x42);
			rt2800_rfcsr_write(rt2x00dev, 22, 0x40);
			if (rf->channel <= 153) {
				rt2800_rfcsr_write(rt2x00dev, 23, 0x3C);
				rt2800_rfcsr_write(rt2x00dev, 24, 0x06);
			} else if (rf->channel >= 155) {
				rt2800_rfcsr_write(rt2x00dev, 23, 0x38);
				rt2800_rfcsr_write(rt2x00dev, 24, 0x05);
			}
			if (rf->channel <= 138) {
				rt2800_rfcsr_write(rt2x00dev, 39, 0x1A);
				rt2800_rfcsr_write(rt2x00dev, 43, 0x3B);
				rt2800_rfcsr_write(rt2x00dev, 44, 0x20);
				rt2800_rfcsr_write(rt2x00dev, 46, 0x18);
			} else if (rf->channel >= 140) {
				rt2800_rfcsr_write(rt2x00dev, 39, 0x18);
				rt2800_rfcsr_write(rt2x00dev, 43, 0x1B);
				rt2800_rfcsr_write(rt2x00dev, 44, 0x10);
				rt2800_rfcsr_write(rt2x00dev, 46, 0X08);
			}
			if (rf->channel <= 124)
				rt2800_rfcsr_write(rt2x00dev, 51, 0xFC);
			else if (rf->channel >= 126)
				rt2800_rfcsr_write(rt2x00dev, 51, 0xEC);
			if (rf->channel <= 138)
				rt2800_rfcsr_write(rt2x00dev, 52, 0x06);
			else if (rf->channel >= 140)
				rt2800_rfcsr_write(rt2x00dev, 52, 0x06);
			rt2800_rfcsr_write(rt2x00dev, 54, 0xEB);
			if (rf->channel <= 138)
				rt2800_rfcsr_write(rt2x00dev, 55, 0x01);
			else if (rf->channel >= 140)
				rt2800_rfcsr_write(rt2x00dev, 55, 0x00);
			if (rf->channel <= 128)
				rt2800_rfcsr_write(rt2x00dev, 56, 0xBB);
			else if (rf->channel >= 130)
				rt2800_rfcsr_write(rt2x00dev, 56, 0xAB);
			if (rf->channel <= 116)
				rt2800_rfcsr_write(rt2x00dev, 58, 0x1D);
			else if (rf->channel >= 118)
				rt2800_rfcsr_write(rt2x00dev, 58, 0x15);
			if (rf->channel <= 138)
				rt2800_rfcsr_write(rt2x00dev, 59, 0x3F);
			else if (rf->channel >= 140)
				rt2800_rfcsr_write(rt2x00dev, 59, 0x7C);
			if (rf->channel <= 116)
				rt2800_rfcsr_write(rt2x00dev, 62, 0x1D);
			else if (rf->channel >= 118)
				rt2800_rfcsr_write(rt2x00dev, 62, 0x15);
		}

		power_bound = POWER_BOUND_5G;
		ep_reg = 0x3;
	}

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 49);
	if (info->default_power1 > power_bound)
		rt2x00_set_field8(&rfcsr, RFCSR49_TX, power_bound);
	else
		rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
	if (is_type_ep)
		rt2x00_set_field8(&rfcsr, RFCSR49_EP, ep_reg);
	rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 50);
	if (info->default_power2 > power_bound)
		rt2x00_set_field8(&rfcsr, RFCSR50_TX, power_bound);
	else
		rt2x00_set_field8(&rfcsr, RFCSR50_TX, info->default_power2);
	if (is_type_ep)
		rt2x00_set_field8(&rfcsr, RFCSR50_EP, ep_reg);
	rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);

	rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD,
			  rt2x00dev->default_ant.tx_chain_num >= 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD,
			  rt2x00dev->default_ant.tx_chain_num == 2);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);

	rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD,
			  rt2x00dev->default_ant.rx_chain_num >= 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD,
			  rt2x00dev->default_ant.rx_chain_num == 2);
	rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);

	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
	rt2800_rfcsr_write(rt2x00dev, 6, 0xe4);

	if (conf_is_ht40(conf))
		rt2800_rfcsr_write(rt2x00dev, 30, 0x16);
	else
		rt2800_rfcsr_write(rt2x00dev, 30, 0x10);

	if (!is_11b) {
		rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
		rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
	}

	/* TODO proper frequency adjustment */
	rt2800_freq_cal_mode1(rt2x00dev);

	/* TODO merge with others */
	rfcsr = rt2800_rfcsr_read(rt2x00dev, 3);
	rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
	rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);

	/* BBP settings */
	rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
	rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
	rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);

	rt2800_bbp_write(rt2x00dev, 79, (rf->channel <= 14) ? 0x1C : 0x18);
	rt2800_bbp_write(rt2x00dev, 80, (rf->channel <= 14) ? 0x0E : 0x08);
	rt2800_bbp_write(rt2x00dev, 81, (rf->channel <= 14) ? 0x3A : 0x38);
	rt2800_bbp_write(rt2x00dev, 82, (rf->channel <= 14) ? 0x62 : 0x92);

	/* GLRT band configuration */
	rt2800_bbp_write(rt2x00dev, 195, 128);
	rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0xE0 : 0xF0);
	rt2800_bbp_write(rt2x00dev, 195, 129);
	rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x1F : 0x1E);
	rt2800_bbp_write(rt2x00dev, 195, 130);
	rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x38 : 0x28);
	rt2800_bbp_write(rt2x00dev, 195, 131);
	rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x32 : 0x20);
	rt2800_bbp_write(rt2x00dev, 195, 133);
	rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x28 : 0x7F);
	rt2800_bbp_write(rt2x00dev, 195, 124);
	rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x19 : 0x7F);
}

static void rt2800_config_channel_rf7620(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_conf *conf,
					 struct rf_channel *rf,
					 struct channel_info *info)
{
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	u8 rx_agc_fc, tx_agc_fc;
	u8 rfcsr;

	/* Frequeny plan setting */
	/* Rdiv setting (set 0x03 if Xtal==20)
	 * R13[1:0]
	 */
	rfcsr = rt2800_rfcsr_read(rt2x00dev, 13);
	rt2x00_set_field8(&rfcsr, RFCSR13_RDIV_MT7620,
			  rt2800_clk_is_20mhz(rt2x00dev) ? 3 : 0);
	rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);

	/* N setting
	 * R20[7:0] in rf->rf1
	 * R21[0] always 0
	 */
	rfcsr = rt2800_rfcsr_read(rt2x00dev, 20);
	rfcsr = (rf->rf1 & 0x00ff);
	rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 21);
	rt2x00_set_field8(&rfcsr, RFCSR21_BIT1, 0);
	rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);

	/* K setting (always 0)
	 * R16[3:0] (RF PLL freq selection)
	 */
	rfcsr = rt2800_rfcsr_read(rt2x00dev, 16);
	rt2x00_set_field8(&rfcsr, RFCSR16_RF_PLL_FREQ_SEL_MT7620, 0);
	rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);

	/* D setting (always 0)
	 * R22[2:0] (D=15, R22[2:0]=<111>)
	 */
	rfcsr = rt2800_rfcsr_read(rt2x00dev, 22);
	rt2x00_set_field8(&rfcsr, RFCSR22_FREQPLAN_D_MT7620, 0);
	rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);

	/* Ksd setting
	 * Ksd: R17<7:0> in rf->rf2
	 *      R18<7:0> in rf->rf3
	 *      R19<1:0> in rf->rf4
	 */
	rfcsr = rt2800_rfcsr_read(rt2x00dev, 17);
	rfcsr = rf->rf2;
	rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 18);
	rfcsr = rf->rf3;
	rt2800_rfcsr_write(rt2x00dev, 18, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 19);
	rt2x00_set_field8(&rfcsr, RFCSR19_K, rf->rf4);
	rt2800_rfcsr_write(rt2x00dev, 19, rfcsr);

	/* Default: XO=20MHz , SDM mode */
	rfcsr = rt2800_rfcsr_read(rt2x00dev, 16);
	rt2x00_set_field8(&rfcsr, RFCSR16_SDM_MODE_MT7620, 0x80);
	rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 21);
	rt2x00_set_field8(&rfcsr, RFCSR21_BIT8, 1);
	rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 1);
	rt2x00_set_field8(&rfcsr, RFCSR1_TX2_EN_MT7620,
			  rt2x00dev->default_ant.tx_chain_num != 1);
	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 2);
	rt2x00_set_field8(&rfcsr, RFCSR2_TX2_EN_MT7620,
			  rt2x00dev->default_ant.tx_chain_num != 1);
	rt2x00_set_field8(&rfcsr, RFCSR2_RX2_EN_MT7620,
			  rt2x00dev->default_ant.rx_chain_num != 1);
	rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 42);
	rt2x00_set_field8(&rfcsr, RFCSR42_TX2_EN_MT7620,
			  rt2x00dev->default_ant.tx_chain_num != 1);
	rt2800_rfcsr_write(rt2x00dev, 42, rfcsr);

	/* RF for DC Cal BW */
	if (conf_is_ht40(conf)) {
		rt2800_rfcsr_write_dccal(rt2x00dev, 6, 0x10);
		rt2800_rfcsr_write_dccal(rt2x00dev, 7, 0x10);
		rt2800_rfcsr_write_dccal(rt2x00dev, 8, 0x04);
		rt2800_rfcsr_write_dccal(rt2x00dev, 58, 0x10);
		rt2800_rfcsr_write_dccal(rt2x00dev, 59, 0x10);
	} else {
		rt2800_rfcsr_write_dccal(rt2x00dev, 6, 0x20);
		rt2800_rfcsr_write_dccal(rt2x00dev, 7, 0x20);
		rt2800_rfcsr_write_dccal(rt2x00dev, 8, 0x00);
		rt2800_rfcsr_write_dccal(rt2x00dev, 58, 0x20);
		rt2800_rfcsr_write_dccal(rt2x00dev, 59, 0x20);
	}

	if (conf_is_ht40(conf)) {
		rt2800_rfcsr_write_dccal(rt2x00dev, 58, 0x08);
		rt2800_rfcsr_write_dccal(rt2x00dev, 59, 0x08);
	} else {
		rt2800_rfcsr_write_dccal(rt2x00dev, 58, 0x28);
		rt2800_rfcsr_write_dccal(rt2x00dev, 59, 0x28);
	}

	rfcsr = rt2800_rfcsr_read(rt2x00dev, 28);
	rt2x00_set_field8(&rfcsr, RFCSR28_CH11_HT40,
			  conf_is_ht40(conf) && (rf->channel == 11));
	rt2800_rfcsr_write(rt2x00dev, 28, rfcsr);

	if (!test_bit(DEVICE_STATE_SCANNING, &rt2x00dev->flags)) {
		if (conf_is_ht40(conf)) {
			rx_agc_fc = drv_data->rx_calibration_bw40;
			tx_agc_fc = drv_data->tx_calibration_bw40;
		} else {
			rx_agc_fc = drv_data->rx_calibration_bw20;
			tx_agc_fc = drv_data->tx_calibration_bw20;
		}
		rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 5, 6);
		rfcsr &= (~0x3F);
		rfcsr |= rx_agc_fc;
		rt2800_rfcsr_write_bank(rt2x00dev, 5, 6, rfcsr);
		rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 5, 7);
		rfcsr &= (~0x3F);
		rfcsr |= rx_agc_fc;
		rt2800_rfcsr_write_bank(rt2x00dev, 5, 7, rfcsr);
		rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 7, 6);
		rfcsr &= (~0x3F);
		rfcsr |= rx_agc_fc;
		rt2800_rfcsr_write_bank(rt2x00dev, 7, 6, rfcsr);
		rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 7, 7);
		rfcsr &= (~0x3F);
		rfcsr |= rx_agc_fc;
		rt2800_rfcsr_write_bank(rt2x00dev, 7, 7, rfcsr);

		rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 5, 58);
		rfcsr &= (~0x3F);
		rfcsr |= tx_agc_fc;
		rt2800_rfcsr_write_bank(rt2x00dev, 5, 58, rfcsr);
		rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 5, 59);
		rfcsr &= (~0x3F);
		rfcsr |= tx_agc_fc;
		rt2800_rfcsr_write_bank(rt2x00dev, 5, 59, rfcsr);
		rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 7, 58);
		rfcsr &= (~0x3F);
		rfcsr |= tx_agc_fc;
		rt2800_rfcsr_write_bank(rt2x00dev, 7, 58, rfcsr);
		rfcsr = rt2800_rfcsr_read_bank(rt2x00dev, 7, 59);
		rfcsr &= (~0x3F);
		rfcsr |= tx_agc_fc;
		rt2800_rfcsr_write_bank(rt2x00dev, 7, 59, rfcsr);
	}

	if (conf_is_ht40(conf)) {
		rt2800_bbp_glrt_write(rt2x00dev, 141, 0x10);
		rt2800_bbp_glrt_write(rt2x00dev, 157, 0x2f);
	} else {
		rt2800_bbp_glrt_write(rt2x00dev, 141, 0x1a);
		rt2800_bbp_glrt_write(rt2x00dev, 157, 0x40);
	}
}

static void rt2800_config_alc(struct rt2x00_dev *rt2x00dev,
			      struct ieee80211_channel *chan,
			      int power_level) {
	u16 eeprom, target_power, max_power;
	u32 mac_sys_ctrl;
	u32 reg;
	u8 bbp;

	/* hardware unit is 0.5dBm, limited to 23.5dBm */
	power_level *= 2;
	if (power_level > 0x2f)
		power_level = 0x2f;

	max_power = chan->max_power * 2;
	if (max_power > 0x2f)
		max_power = 0x2f;

	reg = rt2800_register_read(rt2x00dev, TX_ALC_CFG_0);
	rt2x00_set_field32(&reg, TX_ALC_CFG_0_CH_INIT_0, power_level);
	rt2x00_set_field32(&reg, TX_ALC_CFG_0_CH_INIT_1, power_level);
	rt2x00_set_field32(&reg, TX_ALC_CFG_0_LIMIT_0, max_power);
	rt2x00_set_field32(&reg, TX_ALC_CFG_0_LIMIT_1, max_power);

	eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1);
	if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_INTERNAL_TX_ALC)) {
		/* init base power by eeprom target power */
		target_power = rt2800_eeprom_read(rt2x00dev,
						  EEPROM_TXPOWER_INIT);
		rt2x00_set_field32(&reg, TX_ALC_CFG_0_CH_INIT_0, target_power);
		rt2x00_set_field32(&reg, TX_ALC_CFG_0_CH_INIT_1, target_power);
	}
	rt2800_register_write(rt2x00dev, TX_ALC_CFG_0, reg);

	reg = rt2800_register_read(rt2x00dev, TX_ALC_CFG_1);
	rt2x00_set_field32(&reg, TX_ALC_CFG_1_TX_TEMP_COMP, 0);
	rt2800_register_write(rt2x00dev, TX_ALC_CFG_1, reg);

	/* Save MAC SYS CTRL registers */
	mac_sys_ctrl = rt2800_register_read(rt2x00dev, MAC_SYS_CTRL);
	/* Disable Tx/Rx */
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
	/* Check MAC Tx/Rx idle */
	if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev, MAC_STATUS_CFG_BBP_RF_BUSY)))
		rt2x00_warn(rt2x00dev, "RF busy while configuring ALC\n");

	if (chan->center_freq > 2457) {
		bbp = rt2800_bbp_read(rt2x00dev, 30);
		bbp = 0x40;
		rt2800_bbp_write(rt2x00dev, 30, bbp);
		rt2800_rfcsr_write(rt2x00dev, 39, 0);
		if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
			rt2800_rfcsr_write(rt2x00dev, 42, 0xfb);
		else
			rt2800_rfcsr_write(rt2x00dev, 42, 0x7b);
	} else {
		bbp = rt2800_bbp_read(rt2x00dev, 30);
		bbp = 0x1f;
		rt2800_bbp_write(rt2x00dev, 30, bbp);
		rt2800_rfcsr_write(rt2x00dev, 39, 0x80);
		if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
			rt2800_rfcsr_write(rt2x00dev, 42, 0xdb);
		else
			rt2800_rfcsr_write(rt2x00dev, 42, 0x5b);
	}
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, mac_sys_ctrl);

	rt2800_vco_calibration(rt2x00dev);
}

static void rt2800_bbp_write_with_rx_chain(struct rt2x00_dev *rt2x00dev,
					   const unsigned int word,
					   const u8 value)
{
	u8 chain, reg;

	for (chain = 0; chain < rt2x00dev->default_ant.rx_chain_num; chain++) {
		reg = rt2800_bbp_read(rt2x00dev, 27);
		rt2x00_set_field8(&reg,  BBP27_RX_CHAIN_SEL, chain);
		rt2800_bbp_write(rt2x00dev, 27, reg);

		rt2800_bbp_write(rt2x00dev, word, value);
	}
}

static void rt2800_iq_calibrate(struct rt2x00_dev *rt2x00dev, int channel)
{
	u8 cal;

	/* TX0 IQ Gain */
	rt2800_bbp_write(rt2x00dev, 158, 0x2c);
	if (channel <= 14)
		cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_GAIN_CAL_TX0_2G);
	else if (channel >= 36 && channel <= 64)
		cal = rt2x00_eeprom_byte(rt2x00dev,
					 EEPROM_IQ_GAIN_CAL_TX0_CH36_TO_CH64_5G);
	else if (channel >= 100 && channel <= 138)
		cal = rt2x00_eeprom_byte(rt2x00dev,
					 EEPROM_IQ_GAIN_CAL_TX0_CH100_TO_CH138_5G);
	else if (channel >= 140 && channel <= 165)
		cal = rt2x00_eeprom_byte(rt2x00dev,
					 EEPROM_IQ_GAIN_CAL_TX0_CH140_TO_CH165_5G);
	else
		cal = 0;
	rt2800_bbp_write(rt2x00dev, 159, cal);

	/* TX0 IQ Phase */
	rt2800_bbp_write(rt2x00dev, 158, 0x2d);
	if (channel <= 14)
		cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_PHASE_CAL_TX0_2G);
	else if (channel >= 36 && channel <= 64)
		cal = rt2x00_eeprom_byte(rt2x00dev,
					 EEPROM_IQ_PHASE_CAL_TX0_CH36_TO_CH64_5G);
	else if (channel >= 100 && channel <= 138)
		cal = rt2x00_eeprom_byte(rt2x00dev,
					 EEPROM_IQ_PHASE_CAL_TX0_CH100_TO_CH138_5G);
	else if (channel >= 140 && channel <= 165)
		cal = rt2x00_eeprom_byte(rt2x00dev,
					 EEPROM_IQ_PHASE_CAL_TX0_CH140_TO_CH165_5G);
	else
		cal = 0;
	rt2800_bbp_write(rt2x00dev, 159, cal);

	/* TX1 IQ Gain */
	rt2800_bbp_write(rt2x00dev, 158, 0x4a);
	if (channel <= 14)
		cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_GAIN_CAL_TX1_2G);
	else if (channel >= 36 && channel <= 64)
		cal = rt2x00_eeprom_byte(rt2x00dev,
					 EEPROM_IQ_GAIN_CAL_TX1_CH36_TO_CH64_5G);
	else if (channel >= 100 && channel <= 138)
		cal = rt2x00_eeprom_byte(rt2x00dev,
					 EEPROM_IQ_GAIN_CAL_TX1_CH100_TO_CH138_5G);
	else if (channel >= 140 && channel <= 165)
		cal = rt2x00_eeprom_byte(rt2x00dev,
					 EEPROM_IQ_GAIN_CAL_TX1_CH140_TO_CH165_5G);
	else
		cal = 0;
	rt2800_bbp_write(rt2x00dev, 159, cal);

	/* TX1 IQ Phase */
	rt2800_bbp_write(rt2x00dev, 158, 0x4b);
	if (channel <= 14)
		cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_PHASE_CAL_TX1_2G);
	else if (channel >= 36 && channel <= 64)
		cal = rt2x00_eeprom_byte(rt2x00dev,
					 EEPROM_IQ_PHASE_CAL_TX1_CH36_TO_CH64_5G);
	else if (channel >= 100 && channel <= 138)
		cal = rt2x00_eeprom_byte(rt2x00dev,
					 EEPROM_IQ_PHASE_CAL_TX1_CH100_TO_CH138_5G);
	else if (channel >= 140 && channel <= 165)
		cal = rt2x00_eeprom_byte(rt2x00dev,
					 EEPROM_IQ_PHASE_CAL_TX1_CH140_TO_CH165_5G);
	else
		cal = 0;
	rt2800_bbp_write(rt2x00dev, 159, cal);

	/* FIXME: possible RX0, RX1 callibration ? */

	/* RF IQ compensation control */
	rt2800_bbp_write(rt2x00dev, 158, 0x04);
	cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_RF_IQ_COMPENSATION_CONTROL);
	rt2800_bbp_write(rt2x00dev, 159, cal != 0xff ? cal : 0);

	/* RF IQ imbalance compensation control */
	rt2800_bbp_write(rt2x00dev, 158, 0x03);
	cal = rt2x00_eeprom_byte(rt2x00dev,
				 EEPROM_RF_IQ_IMBALANCE_COMPENSATION_CONTROL);
	rt2800_bbp_write(rt2x00dev, 159, cal != 0xff ? cal : 0);
}

static s8 rt2800_txpower_to_dev(struct rt2x00_dev *rt2x00dev,
				  unsigned int channel,
				  s8 txpower)
{
	if (rt2x00_rt(rt2x00dev, RT3593) ||
	    rt2x00_rt(rt2x00dev, RT3883))
		txpower = rt2x00_get_field8(txpower, EEPROM_TXPOWER_ALC);

	if (channel <= 14)
		return clamp_t(s8, txpower, MIN_G_TXPOWER, MAX_G_TXPOWER);

	if (rt2x00_rt(rt2x00dev, RT3593) ||
	    rt2x00_rt(rt2x00dev, RT3883))
		return clamp_t(s8, txpower, MIN_A_TXPOWER_3593,
			       MAX_A_TXPOWER_3593);
	else
		return clamp_t(s8, txpower, MIN_A_TXPOWER, MAX_A_TXPOWER);
}

static void rt3883_bbp_adjust(struct rt2x00_dev *rt2x00dev,
			      struct rf_channel *rf)
{
	u8 bbp;

	bbp = (rf->channel > 14) ? 0x48 : 0x38;
	rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, bbp);

	rt2800_bbp_write(rt2x00dev, 69, 0x12);

	if (rf->channel <= 14) {
		rt2800_bbp_write(rt2x00dev, 70, 0x0a);
	} else {
		/* Disable CCK packet detection */
		rt2800_bbp_write(rt2x00dev, 70, 0x00);
	}

	rt2800_bbp_write(rt2x00dev, 73, 0x10);

	if (rf->channel > 14) {
		rt2800_bbp_write(rt2x00dev, 62, 0x1d);
		rt2800_bbp_write(rt2x00dev, 63, 0x1d);
		rt2800_bbp_write(rt2x00dev, 64, 0x1d);
	} else {
		rt2800_bbp_write(rt2x00dev, 62, 0x2d);
		rt2800_bbp_write(rt2x00dev, 63, 0x2d);
		rt2800_bbp_write(rt2x00dev, 64, 0x2d);
	}
}

static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev,
				  struct ieee80211_conf *conf,
				  struct rf_channel *rf,
				  struct channel_info *info)
{
	u32 reg;
	u32 tx_pin;
	u8 bbp, rfcsr;

	info->default_power1 = rt2800_txpower_to_dev(rt2x00dev, rf->channel,
						     info->default_power1);
	info->default_power2 = rt2800_txpower_to_dev(rt2x00dev, rf->channel,
						     info->default_power2);
	if (rt2x00dev->default_ant.tx_chain_num > 2)
		info->default_power3 =
			rt2800_txpower_to_dev(rt2x00dev, rf->channel,
					      info->default_power3);

	switch (rt2x00dev->chip.rt) {
	case RT3883:
		rt3883_bbp_adjust(rt2x00dev, rf);
		break;
	}

	switch (rt2x00dev->chip.rf) {
	case RF2020:
	case RF3020:
	case RF3021:
	case RF3022:
	case RF3320:
		rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info);
		break;
	case RF3052:
		rt2800_config_channel_rf3052(rt2x00dev, conf, rf, info);
		break;
	case RF3053:
		rt2800_config_channel_rf3053(rt2x00dev, conf, rf, info);
		break;
	case RF3290:
		rt2800_config_channel_rf3290(rt2x00dev, conf, rf, info);
		break;
	case RF3322:
		rt2800_config_channel_rf3322(rt2x00dev, conf, rf, info);
		break;
	case RF3853:
		rt2800_config_channel_rf3853(rt2x00dev, conf, rf, info);
		break;
	case RF3070:
	case RF5350:
	case RF5360:
	case RF5362:
	case RF5370:
	case RF5372:
	case RF5390:
	case RF5392:
		rt2800_config_channel_rf53xx(rt2x00dev, conf, rf, info);
		break;
	case RF5592:
		rt2800_config_channel_rf55xx(rt2x00dev, conf, rf, info);
		break;
	case RF7620:
		rt2800_config_channel_rf7620(rt2x00dev, conf, rf, info);
		break;
	default:
		rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info);
	}

	if (rt2x00_rf(rt2x00dev, RF3070) ||
	    rt2x00_rf(rt2x00dev, RF3290) ||
	    rt2x00_rf(rt2x00dev, RF3322) ||
	    rt2x00_rf(rt2x00dev, RF5350) ||
	    rt2x00_rf(rt2x00dev, RF5360) ||
	    rt2x00_rf(rt2x00dev, RF5362) ||
	    rt2x00_rf(rt2x00dev, RF5370) ||
	    rt2x00_rf(rt2x00dev, RF5372) ||
	    rt2x00_rf(rt2x00dev, RF5390) ||
	    rt2x00_rf(rt2x00dev, RF5392)) {
		rfcsr = rt2800_rfcsr_read(rt2x00dev, 30);
		if (rt2x00_rf(rt2x00dev, RF3322)) {
			rt2x00_set_field8(&rfcsr, RF3322_RFCSR30_TX_H20M,
					  conf_is_ht40(conf));
			rt2x00_set_field8(&rfcsr, RF3322_RFCSR30_RX_H20M,
					  conf_is_ht40(conf));
		} else {
			rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M,
					  conf_is_ht40(conf));
			rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M,
					  conf_is_ht40(conf));
		}
		rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);

		rfcsr = rt2800_rfcsr_read(rt2x00dev, 3);
		rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
		rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
	}

	/*
	 * Change BBP settings
	 */

	if (rt2x00_rt(rt2x00dev, RT3352)) {
		rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
		rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
		rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);

		rt2800_bbp_write(rt2x00dev, 27, 0x0);
		rt2800_bbp_write(rt2x00dev, 66, 0x26 + rt2x00dev->lna_gain);
		rt2800_bbp_write(rt2x00dev, 27, 0x20);
		rt2800_bbp_write(rt2x00dev, 66, 0x26 + rt2x00dev->lna_gain);
		rt2800_bbp_write(rt2x00dev, 86, 0x38);
		rt2800_bbp_write(rt2x00dev, 83, 0x6a);
	} else if (rt2x00_rt(rt2x00dev, RT3593)) {
		if (rf->channel > 14) {
			/* Disable CCK Packet detection on 5GHz */
			rt2800_bbp_write(rt2x00dev, 70, 0x00);
		} else {
			rt2800_bbp_write(rt2x00dev, 70, 0x0a);
		}

		if (conf_is_ht40(conf))
			rt2800_bbp_write(rt2x00dev, 105, 0x04);
		else
			rt2800_bbp_write(rt2x00dev, 105, 0x34);

		rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
		rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
		rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
		rt2800_bbp_write(rt2x00dev, 77, 0x98);
	} else if (rt2x00_rt(rt2x00dev, RT3883)) {
		rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
		rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
		rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);

		if (rt2x00dev->default_ant.rx_chain_num > 1)
			rt2800_bbp_write(rt2x00dev, 86, 0x46);
		else
			rt2800_bbp_write(rt2x00dev, 86, 0);
	} else {
		rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
		rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
		rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
		if (rt2x00_rt(rt2x00dev, RT6352))
			rt2800_bbp_write(rt2x00dev, 86, 0x38);
		else
			rt2800_bbp_write(rt2x00dev, 86, 0);
	}

	if (rf->channel <= 14) {
		if (!rt2x00_rt(rt2x00dev, RT5390) &&
		    !rt2x00_rt(rt2x00dev, RT5392) &&
		    !rt2x00_rt(rt2x00dev, RT6352)) {
			if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
				rt2800_bbp_write(rt2x00dev, 82, 0x62);
				rt2800_bbp_write(rt2x00dev, 82, 0x62);
				rt2800_bbp_write(rt2x00dev, 75, 0x46);
			} else {
				if (rt2x00_rt(rt2x00dev, RT3593))
					rt2800_bbp_write(rt2x00dev, 82, 0x62);
				else
					rt2800_bbp_write(rt2x00dev, 82, 0x84);
				rt2800_bbp_write(rt2x00dev, 75, 0x50);
			}
			if (rt2x00_rt(rt2x00dev, RT3593) ||
			    rt2x00_rt(rt2x00dev, RT3883))
				rt2800_bbp_write(rt2x00dev, 83, 0x8a);
		}

	} else {
		if (rt2x00_rt(rt2x00dev, RT3572))
			rt2800_bbp_write(rt2x00dev, 82, 0x94);
		else if (rt2x00_rt(rt2x00dev, RT3593) ||
			 rt2x00_rt(rt2x00dev, RT3883))
			rt2800_bbp_write(rt2x00dev, 82, 0x82);
		else if (!rt2x00_rt(rt2x00dev, RT6352))
			rt2800_bbp_write(rt2x00dev, 82, 0xf2);

		if (rt2x00_rt(rt2x00dev, RT3593) ||
		    rt2x00_rt(rt2x00dev, RT3883))
			rt2800_bbp_write(rt2x00dev, 83, 0x9a);

		if (rt2x00_has_cap_external_lna_a(rt2x00dev))
			rt2800_bbp_write(rt2x00dev, 75, 0x46);
		else
			rt2800_bbp_write(rt2x00dev, 75, 0x50);
	}

	reg = rt2800_register_read(rt2x00dev, TX_BAND_CFG);
	rt2x00_set_field32(&reg, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf));
	rt2x00_set_field32(&reg, TX_BAND_CFG_A, rf->channel > 14);
	rt2x00_set_field32(&reg, TX_BAND_CFG_BG, rf->channel <= 14);
	rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);

	if (rt2x00_rt(rt2x00dev, RT3572))
		rt2800_rfcsr_write(rt2x00dev, 8, 0);

	if (rt2x00_rt(rt2x00dev, RT6352)) {
		tx_pin = rt2800_register_read(rt2x00dev, TX_PIN_CFG);
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFRX_EN, 1);
	} else {
		tx_pin = 0;
	}

	switch (rt2x00dev->default_ant.tx_chain_num) {
	case 3:
		/* Turn on tertiary PAs */
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A2_EN,
				   rf->channel > 14);
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G2_EN,
				   rf->channel <= 14);
		fallthrough;
	case 2:
		/* Turn on secondary PAs */
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN,
				   rf->channel > 14);
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN,
				   rf->channel <= 14);
		fallthrough;
	case 1:
		/* Turn on primary PAs */
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN,
				   rf->channel > 14);
		if (rt2x00_has_cap_bt_coexist(rt2x00dev))
			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, 1);
		else
			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN,
					   rf->channel <= 14);
		break;
	}

	switch (rt2x00dev->default_ant.rx_chain_num) {
	case 3:
		/* Turn on tertiary LNAs */
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A2_EN, 1);
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G2_EN, 1);
		fallthrough;
	case 2:
		/* Turn on secondary LNAs */
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
		fallthrough;
	case 1:
		/* Turn on primary LNAs */
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
		break;
	}

	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);

	rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);

	if (rt2x00_rt(rt2x00dev, RT3572)) {
		rt2800_rfcsr_write(rt2x00dev, 8, 0x80);

		/* AGC init */
		if (rf->channel <= 14)
			reg = 0x1c + (2 * rt2x00dev->lna_gain);
		else
			reg = 0x22 + ((rt2x00dev->lna_gain * 5) / 3);

		rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, reg);
	}

	if (rt2x00_rt(rt2x00dev, RT3593)) {
		reg = rt2800_register_read(rt2x00dev, GPIO_CTRL);

		/* Band selection */
		if (rt2x00_is_usb(rt2x00dev) ||
		    rt2x00_is_pcie(rt2x00dev)) {
			/* GPIO #8 controls all paths */
			rt2x00_set_field32(&reg, GPIO_CTRL_DIR8, 0);
			if (rf->channel <= 14)
				rt2x00_set_field32(&reg, GPIO_CTRL_VAL8, 1);
			else
				rt2x00_set_field32(&reg, GPIO_CTRL_VAL8, 0);
		}

		/* LNA PE control. */
		if (rt2x00_is_usb(rt2x00dev)) {
			/* GPIO #4 controls PE0 and PE1,
			 * GPIO #7 controls PE2
			 */
			rt2x00_set_field32(&reg, GPIO_CTRL_DIR4, 0);
			rt2x00_set_field32(&reg, GPIO_CTRL_DIR7, 0);

			rt2x00_set_field32(&reg, GPIO_CTRL_VAL4, 1);
			rt2x00_set_field32(&reg, GPIO_CTRL_VAL7, 1);
		} else if (rt2x00_is_pcie(rt2x00dev)) {
			/* GPIO #4 controls PE0, PE1 and PE2 */
			rt2x00_set_field32(&reg, GPIO_CTRL_DIR4, 0);
			rt2x00_set_field32(&reg, GPIO_CTRL_VAL4, 1);
		}

		rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);

		/* AGC init */
		if (rf->channel <= 14)
			reg = 0x1c + 2 * rt2x00dev->lna_gain;
		else
			reg = 0x22 + ((rt2x00dev->lna_gain * 5) / 3);

		rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, reg);

		usleep_range(1000, 1500);
	}

	if (rt2x00_rt(rt2x00dev, RT3883)) {
		if (!conf_is_ht40(conf))
			rt2800_bbp_write(rt2x00dev, 105, 0x34);
		else
			rt2800_bbp_write(rt2x00dev, 105, 0x04);

		/* AGC init */
		if (rf->channel <= 14)
			reg = 0x2e + rt2x00dev->lna_gain;
		else
			reg = 0x20 + ((rt2x00dev->lna_gain * 5) / 3);

		rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, reg);

		usleep_range(1000, 1500);
	}

	if (rt2x00_rt(rt2x00dev, RT5592) || rt2x00_rt(rt2x00dev, RT6352)) {
		reg = 0x10;
		if (!conf_is_ht40(conf)) {
			if (rt2x00_rt(rt2x00dev, RT6352) &&
			    rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
				reg |= 0x5;
			} else {
				reg |= 0xa;
			}
		}
		rt2800_bbp_write(rt2x00dev, 195, 141);
		rt2800_bbp_write(rt2x00dev, 196, reg);

		/* AGC init.
		 * Despite the vendor driver using different values here for
		 * RT6352 chip, we use 0x1c for now. This may have to be changed
		 * once TSSI got implemented.
		 */
		reg = (rf->channel <= 14 ? 0x1c : 0x24) + 2*rt2x00dev->lna_gain;
		rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, reg);

		if (rt2x00_rt(rt2x00dev, RT5592))
			rt2800_iq_calibrate(rt2x00dev, rf->channel);
	}

	if (rt2x00_rt(rt2x00dev, RT6352)) {
		if (test_bit(CAPABILITY_EXTERNAL_PA_TX0,
			     &rt2x00dev->cap_flags)) {
			reg = rt2800_register_read(rt2x00dev, RF_CONTROL3);
			reg |= 0x00000101;
			rt2800_register_write(rt2x00dev, RF_CONTROL3, reg);

			reg = rt2800_register_read(rt2x00dev, RF_BYPASS3);
			reg |= 0x00000101;
			rt2800_register_write(rt2x00dev, RF_BYPASS3, reg);

			rt2800_rfcsr_write_chanreg(rt2x00dev, 43, 0x73);
			rt2800_rfcsr_write_chanreg(rt2x00dev, 44, 0x73);
			rt2800_rfcsr_write_chanreg(rt2x00dev, 45, 0x73);
			rt2800_rfcsr_write_chanreg(rt2x00dev, 46, 0x27);
			rt2800_rfcsr_write_chanreg(rt2x00dev, 47, 0xC8);
			rt2800_rfcsr_write_chanreg(rt2x00dev, 48, 0xA4);
			rt2800_rfcsr_write_chanreg(rt2x00dev, 49, 0x05);
			rt2800_rfcsr_write_chanreg(rt2x00dev, 54, 0x27);
			rt2800_rfcsr_write_chanreg(rt2x00dev, 55, 0xC8);
			rt2800_rfcsr_write_chanreg(rt2x00dev, 56, 0xA4);
			rt2800_rfcsr_write_chanreg(rt2x00dev, 57, 0x05);
			rt2800_rfcsr_write_chanreg(rt2x00dev, 58, 0x27);
			rt2800_rfcsr_write_chanreg(rt2x00dev, 59, 0xC8);
			rt2800_rfcsr_write_chanreg(rt2x00dev, 60, 0xA4);
			rt2800_rfcsr_write_chanreg(rt2x00dev, 61, 0x05);
			rt2800_rfcsr_write_dccal(rt2x00dev, 05, 0x00);

			rt2800_register_write(rt2x00dev, TX0_RF_GAIN_CORRECT,
					      0x36303636);
			rt2800_register_write(rt2x00dev, TX0_RF_GAIN_ATTEN,
					      0x6C6C6B6C);
			rt2800_register_write(rt2x00dev, TX1_RF_GAIN_ATTEN,
					      0x6C6C6B6C);
		}
	}

	bbp = rt2800_bbp_read(rt2x00dev, 4);
	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
	rt2800_bbp_write(rt2x00dev, 4, bbp);

	bbp = rt2800_bbp_read(rt2x00dev, 3);
	rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf));
	rt2800_bbp_write(rt2x00dev, 3, bbp);

	if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
		if (conf_is_ht40(conf)) {
			rt2800_bbp_write(rt2x00dev, 69, 0x1a);
			rt2800_bbp_write(rt2x00dev, 70, 0x0a);
			rt2800_bbp_write(rt2x00dev, 73, 0x16);
		} else {
			rt2800_bbp_write(rt2x00dev, 69, 0x16);
			rt2800_bbp_write(rt2x00dev, 70, 0x08);
			rt2800_bbp_write(rt2x00dev, 73, 0x11);
		}
	}

	usleep_range(1000, 1500);

	/*
	 * Clear channel statistic counters
	 */
	reg = rt2800_register_read(rt2x00dev, CH_IDLE_STA);
	reg = rt2800_register_read(rt2x00dev, CH_BUSY_STA);
	reg = rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC);

	/*
	 * Clear update flag
	 */
	if (rt2x00_rt(rt2x00dev, RT3352) ||
	    rt2x00_rt(rt2x00dev, RT5350)) {
		bbp = rt2800_bbp_read(rt2x00dev, 49);
		rt2x00_set_field8(&bbp, BBP49_UPDATE_FLAG, 0);
		rt2800_bbp_write(rt2x00dev, 49, bbp);
	}
}

static int rt2800_get_gain_calibration_delta(struct rt2x00_dev *rt2x00dev)
{
	u8 tssi_bounds[9];
	u8 current_tssi;
	u16 eeprom;
	u8 step;
	int i;

	/*
	 * First check if temperature compensation is supported.
	 */
	eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1);
	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC))
		return 0;

	/*
	 * Read TSSI boundaries for temperature compensation from
	 * the EEPROM.
	 *
	 * Array idx               0    1    2    3    4    5    6    7    8
	 * Matching Delta value   -4   -3   -2   -1    0   +1   +2   +3   +4
	 * Example TSSI bounds  0xF0 0xD0 0xB5 0xA0 0x88 0x45 0x25 0x15 0x00
	 */
	if (rt2x00dev->curr_band == NL80211_BAND_2GHZ) {
		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG1);
		tssi_bounds[0] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_BG1_MINUS4);
		tssi_bounds[1] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_BG1_MINUS3);

		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG2);
		tssi_bounds[2] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_BG2_MINUS2);
		tssi_bounds[3] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_BG2_MINUS1);

		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG3);
		tssi_bounds[4] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_BG3_REF);
		tssi_bounds[5] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_BG3_PLUS1);

		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG4);
		tssi_bounds[6] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_BG4_PLUS2);
		tssi_bounds[7] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_BG4_PLUS3);

		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG5);
		tssi_bounds[8] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_BG5_PLUS4);

		step = rt2x00_get_field16(eeprom,
					  EEPROM_TSSI_BOUND_BG5_AGC_STEP);
	} else {
		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A1);
		tssi_bounds[0] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_A1_MINUS4);
		tssi_bounds[1] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_A1_MINUS3);

		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A2);
		tssi_bounds[2] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_A2_MINUS2);
		tssi_bounds[3] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_A2_MINUS1);

		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A3);
		tssi_bounds[4] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_A3_REF);
		tssi_bounds[5] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_A3_PLUS1);

		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A4);
		tssi_bounds[6] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_A4_PLUS2);
		tssi_bounds[7] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_A4_PLUS3);

		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A5);
		tssi_bounds[8] = rt2x00_get_field16(eeprom,
					EEPROM_TSSI_BOUND_A5_PLUS4);

		step = rt2x00_get_field16(eeprom,
					  EEPROM_TSSI_BOUND_A5_AGC_STEP);
	}

	/*
	 * Check if temperature compensation is supported.
	 */
	if (tssi_bounds[4] == 0xff || step == 0xff)
		return 0;

	/*
	 * Read current TSSI (BBP 49).
	 */
	current_tssi = rt2800_bbp_read(rt2x00dev, 49);

	/*
	 * Compare TSSI value (BBP49) with the compensation boundaries
	 * from the EEPROM and increase or decrease tx power.
	 */
	for (i = 0; i <= 3; i++) {
		if (current_tssi > tssi_bounds[i])
			break;
	}

	if (i == 4) {
		for (i = 8; i >= 5; i--) {
			if (current_tssi < tssi_bounds[i])
				break;
		}
	}

	return (i - 4) * step;
}

static int rt2800_get_txpower_bw_comp(struct rt2x00_dev *rt2x00dev,
				      enum nl80211_band band)
{
	u16 eeprom;
	u8 comp_en;
	u8 comp_type;
	int comp_value = 0;

	eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_TXPOWER_DELTA);

	/*
	 * HT40 compensation not required.
	 */
	if (eeprom == 0xffff ||
	    !test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
		return 0;

	if (band == NL80211_BAND_2GHZ) {
		comp_en = rt2x00_get_field16(eeprom,
				 EEPROM_TXPOWER_DELTA_ENABLE_2G);
		if (comp_en) {
			comp_type = rt2x00_get_field16(eeprom,
					   EEPROM_TXPOWER_DELTA_TYPE_2G);
			comp_value = rt2x00_get_field16(eeprom,
					    EEPROM_TXPOWER_DELTA_VALUE_2G);
			if (!comp_type)
				comp_value = -comp_value;
		}
	} else {
		comp_en = rt2x00_get_field16(eeprom,
				 EEPROM_TXPOWER_DELTA_ENABLE_5G);
		if (comp_en) {
			comp_type = rt2x00_get_field16(eeprom,
					   EEPROM_TXPOWER_DELTA_TYPE_5G);
			comp_value = rt2x00_get_field16(eeprom,
					    EEPROM_TXPOWER_DELTA_VALUE_5G);
			if (!comp_type)
				comp_value = -comp_value;
		}
	}

	return comp_value;
}

static int rt2800_get_txpower_reg_delta(struct rt2x00_dev *rt2x00dev,
					int power_level, int max_power)
{
	int delta;

	if (rt2x00_has_cap_power_limit(rt2x00dev))
		return 0;

	/*
	 * XXX: We don't know the maximum transmit power of our hardware since
	 * the EEPROM doesn't expose it. We only know that we are calibrated
	 * to 100% tx power.
	 *
	 * Hence, we assume the regulatory limit that cfg80211 calulated for
	 * the current channel is our maximum and if we are requested to lower
	 * the value we just reduce our tx power accordingly.
	 */
	delta = power_level - max_power;
	return min(delta, 0);
}

static u8 rt2800_compensate_txpower(struct rt2x00_dev *rt2x00dev, int is_rate_b,
				   enum nl80211_band band, int power_level,
				   u8 txpower, int delta)
{
	u16 eeprom;
	u8 criterion;
	u8 eirp_txpower;
	u8 eirp_txpower_criterion;
	u8 reg_limit;

	if (rt2x00_rt(rt2x00dev, RT3593))
		return min_t(u8, txpower, 0xc);

	if (rt2x00_rt(rt2x00dev, RT3883))
		return min_t(u8, txpower, 0xf);

	if (rt2x00_has_cap_power_limit(rt2x00dev)) {
		/*
		 * Check if eirp txpower exceed txpower_limit.
		 * We use OFDM 6M as criterion and its eirp txpower
		 * is stored at EEPROM_EIRP_MAX_TX_POWER.
		 * .11b data rate need add additional 4dbm
		 * when calculating eirp txpower.
		 */
		eeprom = rt2800_eeprom_read_from_array(rt2x00dev,
						       EEPROM_TXPOWER_BYRATE,
						       1);
		criterion = rt2x00_get_field16(eeprom,
					       EEPROM_TXPOWER_BYRATE_RATE0);

		eeprom = rt2800_eeprom_read(rt2x00dev, EEPROM_EIRP_MAX_TX_POWER);

		if (band == NL80211_BAND_2GHZ)
			eirp_txpower_criterion = rt2x00_get_field16(eeprom,
						 EEPROM_EIRP_MAX_TX_POWER_2GHZ);
		else
			eirp_txpower_criterion = rt2x00_get_field16(eeprom,
						 EEPROM_EIRP_MAX_TX_POWER_5GHZ);

		eirp_txpower = eirp_txpower_criterion + (txpower - criterion) +
			       (is_rate_b ? 4 : 0) + delta;

		reg_limit = (eirp_txpower > power_level) ?
					(eirp_txpower - power_level) : 0;
	} else
		reg_limit = 0;

	txpower = max(0, txpower + delta - reg_limit);
	return min_t(u8, txpower, 0xc);
}


enum {
	TX_PWR_CFG_0_IDX,
	TX_PWR_CFG_1_IDX,
	TX_PWR_CFG_2_IDX,
	TX_PWR_CFG_3_IDX,
	TX_PWR_CFG_4_IDX,
	TX_PWR_CFG_5_IDX,
	TX_PWR_CFG_6_IDX,
	TX_PWR_CFG_7_IDX,
	TX_PWR_CFG_8_IDX,
	TX_PWR_CFG_9_IDX,
	TX_PWR_CFG_0_EXT_IDX,
	TX_PWR_CFG_1_EXT_IDX,
	TX_PWR_CFG_2_EXT_IDX,
	TX_PWR_CFG_3_EXT_IDX,
	TX_PWR_CFG_4_EXT_IDX,
	TX_PWR_CFG_IDX_COUNT,
};

static void rt2800_config_txpower_rt3593(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_channel *chan,
					 int power_level)
{
	u8 txpower;
	u16 eeprom;
	u32 regs[TX_PWR_CFG_IDX_COUNT];
	unsigned int offset;
	enum nl80211_band band = chan->band;
	int delta;
	int i;

	memset(regs, '\0', sizeof(regs));

	/* TODO: adapt TX power reduction from the rt28xx code */

	/* calculate temperature compensation delta */
	delta = rt2800_get_gain_calibration_delta(rt2x00dev);

	if (band == NL80211_BAND_5GHZ)
		offset = 16;
	else
		offset = 0;

	if (test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
		offset += 8;

	/* read the next four txpower values */
	eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
					       offset);

	/* CCK 1MBS,2MBS */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
	txpower = rt2800_compensate_txpower(rt2x00dev, 1, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
			   TX_PWR_CFG_0_CCK1_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
			   TX_PWR_CFG_0_CCK1_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_0_EXT_IDX],
			   TX_PWR_CFG_0_EXT_CCK1_CH2, txpower);

	/* CCK 5.5MBS,11MBS */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
	txpower = rt2800_compensate_txpower(rt2x00dev, 1, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
			   TX_PWR_CFG_0_CCK5_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
			   TX_PWR_CFG_0_CCK5_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_0_EXT_IDX],
			   TX_PWR_CFG_0_EXT_CCK5_CH2, txpower);

	/* OFDM 6MBS,9MBS */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
			   TX_PWR_CFG_0_OFDM6_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
			   TX_PWR_CFG_0_OFDM6_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_0_EXT_IDX],
			   TX_PWR_CFG_0_EXT_OFDM6_CH2, txpower);

	/* OFDM 12MBS,18MBS */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
			   TX_PWR_CFG_0_OFDM12_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
			   TX_PWR_CFG_0_OFDM12_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_0_EXT_IDX],
			   TX_PWR_CFG_0_EXT_OFDM12_CH2, txpower);

	/* read the next four txpower values */
	eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
					       offset + 1);

	/* OFDM 24MBS,36MBS */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
			   TX_PWR_CFG_1_OFDM24_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
			   TX_PWR_CFG_1_OFDM24_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_1_EXT_IDX],
			   TX_PWR_CFG_1_EXT_OFDM24_CH2, txpower);

	/* OFDM 48MBS */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
			   TX_PWR_CFG_1_OFDM48_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
			   TX_PWR_CFG_1_OFDM48_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_1_EXT_IDX],
			   TX_PWR_CFG_1_EXT_OFDM48_CH2, txpower);

	/* OFDM 54MBS */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
			   TX_PWR_CFG_7_OFDM54_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
			   TX_PWR_CFG_7_OFDM54_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
			   TX_PWR_CFG_7_OFDM54_CH2, txpower);

	/* read the next four txpower values */
	eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
					       offset + 2);

	/* MCS 0,1 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
			   TX_PWR_CFG_1_MCS0_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
			   TX_PWR_CFG_1_MCS0_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_1_EXT_IDX],
			   TX_PWR_CFG_1_EXT_MCS0_CH2, txpower);

	/* MCS 2,3 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
			   TX_PWR_CFG_1_MCS2_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
			   TX_PWR_CFG_1_MCS2_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_1_EXT_IDX],
			   TX_PWR_CFG_1_EXT_MCS2_CH2, txpower);

	/* MCS 4,5 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
			   TX_PWR_CFG_2_MCS4_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
			   TX_PWR_CFG_2_MCS4_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_2_EXT_IDX],
			   TX_PWR_CFG_2_EXT_MCS4_CH2, txpower);

	/* MCS 6 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
			   TX_PWR_CFG_2_MCS6_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
			   TX_PWR_CFG_2_MCS6_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_2_EXT_IDX],
			   TX_PWR_CFG_2_EXT_MCS6_CH2, txpower);

	/* read the next four txpower values */
	eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
					       offset + 3);

	/* MCS 7 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
			   TX_PWR_CFG_7_MCS7_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
			   TX_PWR_CFG_7_MCS7_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
			   TX_PWR_CFG_7_MCS7_CH2, txpower);

	/* MCS 8,9 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
			   TX_PWR_CFG_2_MCS8_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
			   TX_PWR_CFG_2_MCS8_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_2_EXT_IDX],
			   TX_PWR_CFG_2_EXT_MCS8_CH2, txpower);

	/* MCS 10,11 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
			   TX_PWR_CFG_2_MCS10_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
			   TX_PWR_CFG_2_MCS10_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_2_EXT_IDX],
			   TX_PWR_CFG_2_EXT_MCS10_CH2, txpower);

	/* MCS 12,13 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
			   TX_PWR_CFG_3_MCS12_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
			   TX_PWR_CFG_3_MCS12_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_3_EXT_IDX],
			   TX_PWR_CFG_3_EXT_MCS12_CH2, txpower);

	/* read the next four txpower values */
	eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
					       offset + 4);

	/* MCS 14 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
			   TX_PWR_CFG_3_MCS14_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
			   TX_PWR_CFG_3_MCS14_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_3_EXT_IDX],
			   TX_PWR_CFG_3_EXT_MCS14_CH2, txpower);

	/* MCS 15 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
			   TX_PWR_CFG_8_MCS15_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
			   TX_PWR_CFG_8_MCS15_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
			   TX_PWR_CFG_8_MCS15_CH2, txpower);

	/* MCS 16,17 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
			   TX_PWR_CFG_5_MCS16_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
			   TX_PWR_CFG_5_MCS16_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
			   TX_PWR_CFG_5_MCS16_CH2, txpower);

	/* MCS 18,19 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
			   TX_PWR_CFG_5_MCS18_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
			   TX_PWR_CFG_5_MCS18_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
			   TX_PWR_CFG_5_MCS18_CH2, txpower);

	/* read the next four txpower values */
	eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
					       offset + 5);

	/* MCS 20,21 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
			   TX_PWR_CFG_6_MCS20_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
			   TX_PWR_CFG_6_MCS20_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
			   TX_PWR_CFG_6_MCS20_CH2, txpower);

	/* MCS 22 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
			   TX_PWR_CFG_6_MCS22_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
			   TX_PWR_CFG_6_MCS22_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
			   TX_PWR_CFG_6_MCS22_CH2, txpower);

	/* MCS 23 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
			   TX_PWR_CFG_8_MCS23_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
			   TX_PWR_CFG_8_MCS23_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
			   TX_PWR_CFG_8_MCS23_CH2, txpower);

	/* read the next four txpower values */
	eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
					       offset + 6);

	/* STBC, MCS 0,1 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
			   TX_PWR_CFG_3_STBC0_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
			   TX_PWR_CFG_3_STBC0_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_3_EXT_IDX],
			   TX_PWR_CFG_3_EXT_STBC0_CH2, txpower);

	/* STBC, MCS 2,3 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
			   TX_PWR_CFG_3_STBC2_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
			   TX_PWR_CFG_3_STBC2_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_3_EXT_IDX],
			   TX_PWR_CFG_3_EXT_STBC2_CH2, txpower);

	/* STBC, MCS 4,5 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_4_EXT_IDX], TX_PWR_CFG_RATE0,
			   txpower);

	/* STBC, MCS 6 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE2, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE3, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_4_EXT_IDX], TX_PWR_CFG_RATE2,
			   txpower);

	/* read the next four txpower values */
	eeprom = rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
					       offset + 7);

	/* STBC, MCS 7 */
	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
					    txpower, delta);
	rt2x00_set_field32(&regs[TX_PWR_CFG_9_IDX],
			   TX_PWR_CFG_9_STBC7_CH0, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_9_IDX],
			   TX_PWR_CFG_9_STBC7_CH1, txpower);
	rt2x00_set_field32(&regs[TX_PWR_CFG_9_IDX],
			   TX_PWR_CFG_9_STBC7_CH2, txpower);

	rt2800_register_write(rt2x00dev, TX_PWR_CFG_0, regs[TX_PWR_CFG_0_IDX]);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_1, regs[TX_PWR_CFG_1_IDX]);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_2, regs[TX_PWR_CFG_2_IDX]);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_3, regs[TX_PWR_CFG_3_IDX]);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_4, regs[TX_PWR_CFG_4_IDX]);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_5, regs[TX_PWR_CFG_5_IDX]);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_6, regs[TX_PWR_CFG_6_IDX]);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_7, regs[TX_PWR_CFG_7_IDX]);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_8, regs[TX_PWR_CFG_8_IDX]);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_9, regs[TX_PWR_CFG_9_IDX]);

	rt2800_register_write(rt2x00dev, TX_PWR_CFG_0_EXT,
			      regs[TX_PWR_CFG_0_EXT_IDX]);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_1_EXT,
			      regs[TX_PWR_CFG_1_EXT_IDX]);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_2_EXT,
			      regs[TX_PWR_CFG_2_EXT_IDX]);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_3_EXT,
			      regs[TX_PWR_CFG_3_EXT_IDX]);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_4_EXT,
			      regs[TX_PWR_CFG_4_EXT_IDX]);

	for (i = 0; i < TX_PWR_CFG_IDX_COUNT; i++)
		rt2x00_dbg(rt2x00dev,
			   "band:%cGHz, BW:%c0MHz, TX_PWR_CFG_%d%s = %08lx\n",
			   (band == NL80211_BAND_5GHZ) ? '5' : '2',
			   (test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags)) ?
								'4' : '2',
			   (i > TX_PWR_CFG_9_IDX) ?
					(i - TX_PWR_CFG_9_IDX - 1) : i,
			   (i > TX_PWR_CFG_9_IDX) ? "_EXT" : "",
			   (unsigned long) regs[i]);
}

static void rt2800_config_txpower_rt6352(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_channel *chan,
					 int power_level)
{
	u32 reg, pwreg;
	u16 eeprom;
	u32 data, gdata;
	u8 t, i;
	enum nl80211_band band = chan->band;
	int delta;

	/* Warn user if bw_comp is set in EEPROM */
	delta = rt2800_get_txpower_bw_comp(rt2x00dev, band);

	if (delta)
		rt2x00_warn(rt2x00dev, "ignoring EEPROM HT40 power delta: %d\n",
			    delta);

	/* populate TX_PWR_CFG_0 up to TX_PWR_CFG_4 from EEPROM for HT20, limit
	 * value to 0x3f and replace 0x20 by 0x21 as this is what the vendor
	 * driver does as well, though it looks kinda wrong.
	 * Maybe some misunderstanding of what a signed 8-bit value is? Maybe
	 * the hardware has a problem handling 0x20, and as the code initially
	 * used a fixed offset between HT20 and HT40 rates they had to work-
	 * around that issue and most likely just forgot about it later on.
	 * Maybe we should use rt2800_get_txpower_bw_comp() here as well,
	 * however, the corresponding EEPROM value is not respected by the
	 * vendor driver, so maybe this is rather being taken care of the
	 * TXALC and the driver doesn't need to handle it...?
	 * Though this is all very awkward, just do as they did, as that's what
	 * board vendors expected when they populated the EEPROM...
	 */
	for (i = 0; i < 5; i++) {
		eeprom = rt2800_eeprom_read_from_array(rt2x00dev,
						       EEPROM_TXPOWER_BYRATE,
						       i * 2);

		data = eeprom;

		t = eeprom & 0x3f;
		if (t == 32)
			t++;

		gdata = t;

		t = (eeprom & 0x3f00) >> 8;
		if (t == 32)
			t++;

		gdata |= (t << 8);

		eeprom = rt2800_eeprom_read_from_array(rt2x00dev,
						       EEPROM_TXPOWER_BYRATE,
						       (i * 2) + 1);

		t = eeprom & 0x3f;
		if (t == 32)
			t++;

		gdata |= (t << 16);

		t = (eeprom & 0x3f00) >> 8;
		if (t == 32)
			t++;

		gdata |= (t << 24);
		data |= (eeprom << 16);

		if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags)) {
			/* HT20 */
			if (data != 0xffffffff)
				rt2800_register_write(rt2x00dev,
						      TX_PWR_CFG_0 + (i * 4),
						      data);
		} else {
			/* HT40 */
			if (gdata != 0xffffffff)
				rt2800_register_write(rt2x00dev,
						      TX_PWR_CFG_0 + (i * 4),
						      gdata);
		}
	}

	/* Aparently Ralink ran out of space in the BYRATE calibration section
	 * of the EERPOM which is copied to the corresponding TX_PWR_CFG_x
	 * registers. As recent 2T chips use 8-bit instead of 4-bit values for
	 * power-offsets more space would be needed. Ralink decided to keep the
	 * EEPROM layout untouched and rather have some shared values covering
	 * multiple bitrates.
	 * Populate the registers not covered by the EEPROM in the same way the
	 * vendor driver does.
	 */

	/* For OFDM 54MBS use value from OFDM 48MBS */
	pwreg = 0;
	reg = rt2800_register_read(rt2x00dev, TX_PWR_CFG_1);
	t = rt2x00_get_field32(reg, TX_PWR_CFG_1B_48MBS);
	rt2x00_set_field32(&pwreg, TX_PWR_CFG_7B_54MBS, t);

	/* For MCS 7 use value from MCS 6 */
	reg = rt2800_register_read(rt2x00dev, TX_PWR_CFG_2);
	t = rt2x00_get_field32(reg, TX_PWR_CFG_2B_MCS6_MCS7);
	rt2x00_set_field32(&pwreg, TX_PWR_CFG_7B_MCS7, t);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_7, pwreg);

	/* For MCS 15 use value from MCS 14 */
	pwreg = 0;
	reg = rt2800_register_read(rt2x00dev, TX_PWR_CFG_3);
	t = rt2x00_get_field32(reg, TX_PWR_CFG_3B_MCS14);
	rt2x00_set_field32(&pwreg, TX_PWR_CFG_8B_MCS15, t);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_8, pwreg);

	/* For STBC MCS 7 use value from STBC MCS 6 */
	pwreg = 0;
	reg = rt2800_register_read(rt2x00dev, TX_PWR_CFG_4);
	t = rt2x00_get_field32(reg, TX_PWR_CFG_4B_STBC_MCS6);
	rt2x00_set_field32(&pwreg, TX_PWR_CFG_9B_STBC_MCS7, t);
	rt2800_register_write(rt2x00dev, TX_PWR_CFG_9, pwreg);

	rt2800_config_alc(rt2x00dev, chan, power_level);

	/* TODO: temperature compensation code! */
}

/*
 * We configure transmit power using MAC TX_PWR_CFG_{0,...,N} registers and
 * BBP R1 register. TX_PWR_CFG_X allow to configure per rate TX power values,
 * 4 bits for each rate (tune from 0 to 15 dBm). BBP_R1 controls transmit power
 * for all rates, but allow to set only 4 discrete values: -12, -6, 0 and 6 dBm.
 * Reference per rate transmit power values are located in the EEPROM at
 * EEPROM_TXPOWER_BYRATE offset. We adjust them and BBP R1 settings according to
 * current conditions (i.e. band, bandwidth, temperature, user settings).
 */
static void rt2800_config_txpower_rt28xx(struct rt2x00_dev *rt2x00dev,
					 struct ieee80211_channel *chan,
					 int power_level)
{
	u8 txpower, r1;
	u16 eeprom;
	u32 reg, offset;
	int i, is_rate_b, delta, power_ctrl;
	enum nl80211_band band = chan->band;

	/*
	 * Calculate HT40 compensation. For 40MHz we need to add or subtract
	 * value read from EEPROM (different for 2GHz and for 5GHz).
	 */
	delta = rt2800_get_txpower_bw_comp(rt2x00dev, band);

	/*
	 * Calculate temperature compensation. Depends on measurement of current
	 * TSSI (Transmitter Signal Strength Indication) we know TX power (due
	 * to temperature or maybe other factors) is smaller or bigger than
	 * expected. We adjust it, based on TSSI reference and boundaries values
	 * provided in EEPROM.
	 */
	switch (rt2x00dev->chip.rt) {
	case RT2860:
	case RT2872:
	case RT2883:
	case RT3070:
	case RT3071:
	case RT3090:
	case RT3572:
		delta += rt2800_get_gain_calibration_delta(rt2x00dev);
		break;
	default:
		/* TODO: temperature compensation code for other chips. */
		break;
	}

	/*
	 * Decrease power according to user settings, on devices with unknown
	 * maximum tx power. For other devices we take user power_level into
	 * consideration on rt2800_compensate_txpower().
	 */
	delta += rt2800_get_txpower_reg_delta(rt2x00dev, power_level,
					      chan->max_power);

	/*
	 * BBP_R1 controls TX power for all rates, it allow to set the following
	 * gains -12, -6, 0, +6 dBm by setting values 2, 1, 0, 3 respectively.
	 *
	 * TODO: we do not use +6 dBm option to do not increase power beyond
	 * regulatory limit, however this could be utilized for devices with
	 * CAPABILITY_POWER_LIMIT.
	 */
	if (delta <= -12) {
		power_ctrl = 2;
		delta += 12;
	} else if (delta <= -6) {
		power_ctrl = 1;
		delta += 6;
	} else {
		power_ctrl = 0;
	}
	r1 = rt2800_bbp_read(rt2x00dev, 1);
	rt2x00_set_field8(&r1, BBP1_TX_POWER_CTRL, power_ctrl);
	rt2800_bbp_write(rt2x00dev, 1, r1);

	offset = TX_PWR_CFG_0;

	for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) {
		/* just to be safe */
		if (offset > TX_PWR_CFG_4)
			break;

		reg = rt2800_register_read(rt2x00dev, offset);

		/* read the next four txpower values */
		eeprom = rt2800_eeprom_read_from_array(rt2x00dev,
						       EEPROM_TXPOWER_BYRATE,
						       i);

		is_rate_b = i ? 0 : 1;
		/*
		 * TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
		 * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
		 * TX_PWR_CFG_4: unknown
		 */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE0);
		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
					     power_level, txpower, delta);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE0, txpower);

		/*
		 * TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
		 * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
		 * TX_PWR_CFG_4: unknown
		 */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE1);
		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
					     power_level, txpower, delta);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE1, txpower);

		/*
		 * TX_PWR_CFG_0: 5.5MBS, TX_PWR_CFG_1: 48MBS,
		 * TX_PWR_CFG_2: MCS6,  TX_PWR_CFG_3: MCS14,
		 * TX_PWR_CFG_4: unknown
		 */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE2);
		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
					     power_level, txpower, delta);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE2, txpower);

		/*
		 * TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
		 * TX_PWR_CFG_2: MCS7,  TX_PWR_CFG_3: MCS15,
		 * TX_PWR_CFG_4: unknown
		 */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE3);
		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
					     power_level, txpower, delta);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE3, txpower);

		/* read the next four txpower values */
		eeprom = rt2800_eeprom_read_from_array(rt2x00dev,
						       EEPROM_TXPOWER_BYRATE,
						       i + 1);

		is_rate_b = 0;
		/*
		 * TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
		 * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
		 * TX_PWR_CFG_4: unknown
		 */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE0);
		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
					     power_level, txpower, delta);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE4, txpower);

		/*
		 * TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
		 * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
		 * TX_PWR_CFG_4: unknown
		 */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE1);
		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
					     power_level, txpower, delta);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE5, txpower);

		/*
		 * TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
		 * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
		 * TX_PWR_CFG_4: unknown
		 */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE2);
		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
					     power_level, txpower, delta);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE6, txpower);

		/*
		 * TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
		 * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
		 * TX_PWR_CFG_4: unknown
		 */
		txpower = rt2x00_get_field16(eeprom,
					     EEPROM_TXPOWER_BYRATE_RATE3);
		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
					     power_level, txpower, delta);
		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE7, txpower);

		rt2800_register_write(rt2x00dev, offset, reg);

		/* next TX_PWR_CFG register */
		offset += 4;
	}
}

static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev,
				  struct ieee80211_channel *chan,
				  int power_level)
{
	if (rt2x00_rt(rt2x00dev, RT3593) ||
	    rt2x00_rt(rt2x00dev, RT3883))
		rt2800_config_txpower_rt3593(rt2x00dev, chan, power_level);
	else if (rt2x00_rt(rt2x00dev, RT6352))
		rt2800_config_txpower_rt6352(rt2x00dev, chan, power_level);
	else
		rt2800_config_txpower_rt28xx(rt2x00dev, chan, power_level);
}

void rt2800_gain_calibration(struct rt2x00_dev *rt2x00dev)
{
	rt2800_config_txpower(rt2x00dev, rt2x00dev->hw->conf.chandef.chan,
			      rt2x00dev->tx_power);
}
EXPORT_SYMBOL_GPL(rt2800_gain_calibration);

void rt2800_vco_calibration(struct rt2x00_dev *rt2x00dev)
{
	u32	tx_pin;
	u8	rfcsr;
	unsigned long min_sleep = 0;

	/*
	 * A voltage-controlled oscillator(VCO) is an electronic oscillator
	 * designed to be controlled in oscillation frequency by a voltage
	 * input. Maybe the temperature will affect the frequency of
	 * oscillation to be shifted. The VCO calibration will be called
	 * periodically to adjust the frequency to be precision.
	*/

	tx_pin = rt2800_register_read(rt2x00dev, TX_PIN_CFG);
	tx_pin &= TX_PIN_CFG_PA_PE_DISABLE;
	rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);

	switch (rt2x00dev->chip.rf) {
	case RF2020:
	case RF3020:
	case RF3021:
	case RF3022:
	case RF3320:
	case RF3052:
		rfcsr = rt2800_rfcsr_read(rt2x00dev, 7);
		rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
		rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
		break;
	case RF3053:
	case RF3070:
	case RF3290:
	case RF3853:
	case RF5350:
	case RF5360:
	case RF5362:
	case RF5370:
	case RF5372:
	case RF5390:
	case RF5392:
	case RF5592:
		rfcsr = rt2800_rfcsr_read(rt2x00dev, 3);
		rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
		rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
		min_sleep = 1000;
		break;
	case RF7620:
		rt2800_rfcsr_write(rt2x00dev, 5, 0x40);
		rt2800_rfcsr_write(rt2x00dev, 4, 0x0C);
		rfcsr = rt2800_rfcsr_read(rt2x00dev, 4);
		rt2x00_set_field8(&rfcsr, RFCSR4_VCOCAL_EN, 1);
		rt2800_rfcsr_write(rt2x00dev, 4, rfcsr);
		min_sleep = 2000;
		break;
	default:
		WARN_ONCE(1, "Not supported RF chipset %x for VCO recalibration",
			  rt2x00dev->chip.rf);
		return;
	}

	if (min_sleep > 0)
		usleep_range(min_sleep, min_sleep * 2);

	tx_pin = rt2800_register_read(rt2x00dev, TX_PIN_CFG);
	if (rt2x00dev->rf_channel <= 14) {
		switch (rt2x00dev->default_ant.tx_chain_num) {
		case 3:
			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G2_EN, 1);
			fallthrough;
		case 2:
			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
			fallthrough;
		case 1:
		default:
			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, 1);
			break;
		}
	} else {
		switch (rt2x00dev->default_ant.tx_chain_num) {
		case 3:
			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A2_EN, 1);
			fallthrough;
		case 2:
			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
			fallthrough;
		case 1:
		default:
			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, 1);
			break;
		}
	}
	rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);

	if (rt2x00_rt(rt2x00dev, RT6352)) {
		if (rt2x00dev->default_ant.rx_chain_num == 1) {
			rt2800_bbp_write(rt2x00dev, 91, 0x07);
			rt2800_bbp_write(rt2x00dev, 95, 0x1A);
			rt2800_bbp_write(rt2x00dev, 195, 128);
			rt2800_bbp_write(rt2x00dev, 196, 0xA0);
			rt2800_bbp_write(rt2x00dev, 195, 170);
			rt2800_bbp_write(rt2x00dev, 196, 0x12);
			rt2800_bbp_write(rt2x00dev, 195, 171);
			rt2800_bbp_write(rt2x00dev, 196, 0x10);
		} else {
			rt2800_bbp_write(rt2x00dev, 91, 0x06);
			rt2800_bbp_write(rt2x00dev, 95, 0x9A);
			rt2800_bbp_write(rt2x00dev, 195, 128);
			rt2800_bbp_write(rt2x00dev, 196, 0xE0);
			rt2800_bbp_write(rt2x00dev,