// SPDX-License-Identifier: ISC
/*
 * Copyright (c) 2005-2011 Atheros Communications Inc.
 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
 */

#include "mac.h"

#include <net/cfg80211.h>
#include <net/mac80211.h>
#include <linux/etherdevice.h>
#include <linux/acpi.h>
#include <linux/of.h>
#include <linux/bitfield.h>

#include "hif.h"
#include "core.h"
#include "debug.h"
#include "wmi.h"
#include "htt.h"
#include "txrx.h"
#include "testmode.h"
#include "wmi-tlv.h"
#include "wmi-ops.h"
#include "wow.h"

/*********/
/* Rates */
/*********/

static struct ieee80211_rate ath10k_rates[] = {
	{ .bitrate = 10,
	  .hw_value = ATH10K_HW_RATE_CCK_LP_1M },
	{ .bitrate = 20,
	  .hw_value = ATH10K_HW_RATE_CCK_LP_2M,
	  .hw_value_short = ATH10K_HW_RATE_CCK_SP_2M,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
	{ .bitrate = 55,
	  .hw_value = ATH10K_HW_RATE_CCK_LP_5_5M,
	  .hw_value_short = ATH10K_HW_RATE_CCK_SP_5_5M,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
	{ .bitrate = 110,
	  .hw_value = ATH10K_HW_RATE_CCK_LP_11M,
	  .hw_value_short = ATH10K_HW_RATE_CCK_SP_11M,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },

	{ .bitrate = 60, .hw_value = ATH10K_HW_RATE_OFDM_6M },
	{ .bitrate = 90, .hw_value = ATH10K_HW_RATE_OFDM_9M },
	{ .bitrate = 120, .hw_value = ATH10K_HW_RATE_OFDM_12M },
	{ .bitrate = 180, .hw_value = ATH10K_HW_RATE_OFDM_18M },
	{ .bitrate = 240, .hw_value = ATH10K_HW_RATE_OFDM_24M },
	{ .bitrate = 360, .hw_value = ATH10K_HW_RATE_OFDM_36M },
	{ .bitrate = 480, .hw_value = ATH10K_HW_RATE_OFDM_48M },
	{ .bitrate = 540, .hw_value = ATH10K_HW_RATE_OFDM_54M },
};

static struct ieee80211_rate ath10k_rates_rev2[] = {
	{ .bitrate = 10,
	  .hw_value = ATH10K_HW_RATE_REV2_CCK_LP_1M },
	{ .bitrate = 20,
	  .hw_value = ATH10K_HW_RATE_REV2_CCK_LP_2M,
	  .hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_2M,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
	{ .bitrate = 55,
	  .hw_value = ATH10K_HW_RATE_REV2_CCK_LP_5_5M,
	  .hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_5_5M,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
	{ .bitrate = 110,
	  .hw_value = ATH10K_HW_RATE_REV2_CCK_LP_11M,
	  .hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_11M,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },

	{ .bitrate = 60, .hw_value = ATH10K_HW_RATE_OFDM_6M },
	{ .bitrate = 90, .hw_value = ATH10K_HW_RATE_OFDM_9M },
	{ .bitrate = 120, .hw_value = ATH10K_HW_RATE_OFDM_12M },
	{ .bitrate = 180, .hw_value = ATH10K_HW_RATE_OFDM_18M },
	{ .bitrate = 240, .hw_value = ATH10K_HW_RATE_OFDM_24M },
	{ .bitrate = 360, .hw_value = ATH10K_HW_RATE_OFDM_36M },
	{ .bitrate = 480, .hw_value = ATH10K_HW_RATE_OFDM_48M },
	{ .bitrate = 540, .hw_value = ATH10K_HW_RATE_OFDM_54M },
};

static const struct cfg80211_sar_freq_ranges ath10k_sar_freq_ranges[] = {
	{.start_freq = 2402, .end_freq = 2494 },
	{.start_freq = 5170, .end_freq = 5875 },
};

static const struct cfg80211_sar_capa ath10k_sar_capa = {
	.type = NL80211_SAR_TYPE_POWER,
	.num_freq_ranges = (ARRAY_SIZE(ath10k_sar_freq_ranges)),
	.freq_ranges = &ath10k_sar_freq_ranges[0],
};

#define ATH10K_MAC_FIRST_OFDM_RATE_IDX 4

#define ath10k_a_rates (ath10k_rates + ATH10K_MAC_FIRST_OFDM_RATE_IDX)
#define ath10k_a_rates_size (ARRAY_SIZE(ath10k_rates) - \
			     ATH10K_MAC_FIRST_OFDM_RATE_IDX)
#define ath10k_g_rates (ath10k_rates + 0)
#define ath10k_g_rates_size (ARRAY_SIZE(ath10k_rates))

#define ath10k_g_rates_rev2 (ath10k_rates_rev2 + 0)
#define ath10k_g_rates_rev2_size (ARRAY_SIZE(ath10k_rates_rev2))

#define ath10k_wmi_legacy_rates ath10k_rates

static bool ath10k_mac_bitrate_is_cck(int bitrate)
{
	switch (bitrate) {
	case 10:
	case 20:
	case 55:
	case 110:
		return true;
	}

	return false;
}

static u8 ath10k_mac_bitrate_to_rate(int bitrate)
{
	return DIV_ROUND_UP(bitrate, 5) |
	       (ath10k_mac_bitrate_is_cck(bitrate) ? BIT(7) : 0);
}

u8 ath10k_mac_hw_rate_to_idx(const struct ieee80211_supported_band *sband,
			     u8 hw_rate, bool cck)
{
	const struct ieee80211_rate *rate;
	int i;

	for (i = 0; i < sband->n_bitrates; i++) {
		rate = &sband->bitrates[i];

		if (ath10k_mac_bitrate_is_cck(rate->bitrate) != cck)
			continue;

		if (rate->hw_value == hw_rate)
			return i;
		else if (rate->flags & IEEE80211_RATE_SHORT_PREAMBLE &&
			 rate->hw_value_short == hw_rate)
			return i;
	}

	return 0;
}

u8 ath10k_mac_bitrate_to_idx(const struct ieee80211_supported_band *sband,
			     u32 bitrate)
{
	int i;

	for (i = 0; i < sband->n_bitrates; i++)
		if (sband->bitrates[i].bitrate == bitrate)
			return i;

	return 0;
}

static int ath10k_mac_get_rate_hw_value(int bitrate)
{
	int i;
	u8 hw_value_prefix = 0;

	if (ath10k_mac_bitrate_is_cck(bitrate))
		hw_value_prefix = WMI_RATE_PREAMBLE_CCK << 6;

	for (i = 0; i < ARRAY_SIZE(ath10k_rates); i++) {
		if (ath10k_rates[i].bitrate == bitrate)
			return hw_value_prefix | ath10k_rates[i].hw_value;
	}

	return -EINVAL;
}

static int ath10k_mac_get_max_vht_mcs_map(u16 mcs_map, int nss)
{
	switch ((mcs_map >> (2 * nss)) & 0x3) {
	case IEEE80211_VHT_MCS_SUPPORT_0_7: return BIT(8) - 1;
	case IEEE80211_VHT_MCS_SUPPORT_0_8: return BIT(9) - 1;
	case IEEE80211_VHT_MCS_SUPPORT_0_9: return BIT(10) - 1;
	}
	return 0;
}

static u32
ath10k_mac_max_ht_nss(const u8 ht_mcs_mask[IEEE80211_HT_MCS_MASK_LEN])
{
	int nss;

	for (nss = IEEE80211_HT_MCS_MASK_LEN - 1; nss >= 0; nss--)
		if (ht_mcs_mask[nss])
			return nss + 1;

	return 1;
}

static u32
ath10k_mac_max_vht_nss(const u16 vht_mcs_mask[NL80211_VHT_NSS_MAX])
{
	int nss;

	for (nss = NL80211_VHT_NSS_MAX - 1; nss >= 0; nss--)
		if (vht_mcs_mask[nss])
			return nss + 1;

	return 1;
}

int ath10k_mac_ext_resource_config(struct ath10k *ar, u32 val)
{
	enum wmi_host_platform_type platform_type;
	int ret;

	if (test_bit(WMI_SERVICE_TX_MODE_DYNAMIC, ar->wmi.svc_map))
		platform_type = WMI_HOST_PLATFORM_LOW_PERF;
	else
		platform_type = WMI_HOST_PLATFORM_HIGH_PERF;

	ret = ath10k_wmi_ext_resource_config(ar, platform_type, val);

	if (ret && ret != -EOPNOTSUPP) {
		ath10k_warn(ar, "failed to configure ext resource: %d\n", ret);
		return ret;
	}

	return 0;
}

/**********/
/* Crypto */
/**********/

static int ath10k_send_key(struct ath10k_vif *arvif,
			   struct ieee80211_key_conf *key,
			   enum set_key_cmd cmd,
			   const u8 *macaddr, u32 flags)
{
	struct ath10k *ar = arvif->ar;
	struct wmi_vdev_install_key_arg arg = {
		.vdev_id = arvif->vdev_id,
		.key_idx = key->keyidx,
		.key_len = key->keylen,
		.key_data = key->key,
		.key_flags = flags,
		.macaddr = macaddr,
	};

	lockdep_assert_held(&arvif->ar->conf_mutex);

	switch (key->cipher) {
	case WLAN_CIPHER_SUITE_CCMP:
		arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_AES_CCM];
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT;
		break;
	case WLAN_CIPHER_SUITE_TKIP:
		arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_TKIP];
		arg.key_txmic_len = 8;
		arg.key_rxmic_len = 8;
		break;
	case WLAN_CIPHER_SUITE_WEP40:
	case WLAN_CIPHER_SUITE_WEP104:
		arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_WEP];
		break;
	case WLAN_CIPHER_SUITE_CCMP_256:
		arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_AES_CCM];
		break;
	case WLAN_CIPHER_SUITE_GCMP:
	case WLAN_CIPHER_SUITE_GCMP_256:
		arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_AES_GCM];
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT;
		break;
	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
	case WLAN_CIPHER_SUITE_AES_CMAC:
		WARN_ON(1);
		return -EINVAL;
	default:
		ath10k_warn(ar, "cipher %d is not supported\n", key->cipher);
		return -EOPNOTSUPP;
	}

	if (test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags))
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;

	if (cmd == DISABLE_KEY) {
		arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_NONE];
		arg.key_data = NULL;
	}

	return ath10k_wmi_vdev_install_key(arvif->ar, &arg);
}

static int ath10k_install_key(struct ath10k_vif *arvif,
			      struct ieee80211_key_conf *key,
			      enum set_key_cmd cmd,
			      const u8 *macaddr, u32 flags)
{
	struct ath10k *ar = arvif->ar;
	int ret;
	unsigned long time_left;

	lockdep_assert_held(&ar->conf_mutex);

	reinit_completion(&ar->install_key_done);

	if (arvif->nohwcrypt)
		return 1;

	ret = ath10k_send_key(arvif, key, cmd, macaddr, flags);
	if (ret)
		return ret;

	time_left = wait_for_completion_timeout(&ar->install_key_done, 3 * HZ);
	if (time_left == 0)
		return -ETIMEDOUT;

	return 0;
}

static int ath10k_install_peer_wep_keys(struct ath10k_vif *arvif,
					const u8 *addr)
{
	struct ath10k *ar = arvif->ar;
	struct ath10k_peer *peer;
	int ret;
	int i;
	u32 flags;

	lockdep_assert_held(&ar->conf_mutex);

	if (WARN_ON(arvif->vif->type != NL80211_IFTYPE_AP &&
		    arvif->vif->type != NL80211_IFTYPE_ADHOC &&
		    arvif->vif->type != NL80211_IFTYPE_MESH_POINT))
		return -EINVAL;

	spin_lock_bh(&ar->data_lock);
	peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
	spin_unlock_bh(&ar->data_lock);

	if (!peer)
		return -ENOENT;

	for (i = 0; i < ARRAY_SIZE(arvif->wep_keys); i++) {
		if (arvif->wep_keys[i] == NULL)
			continue;

		switch (arvif->vif->type) {
		case NL80211_IFTYPE_AP:
			flags = WMI_KEY_PAIRWISE;

			if (arvif->def_wep_key_idx == i)
				flags |= WMI_KEY_TX_USAGE;

			ret = ath10k_install_key(arvif, arvif->wep_keys[i],
						 SET_KEY, addr, flags);
			if (ret < 0)
				return ret;
			break;
		case NL80211_IFTYPE_ADHOC:
			ret = ath10k_install_key(arvif, arvif->wep_keys[i],
						 SET_KEY, addr,
						 WMI_KEY_PAIRWISE);
			if (ret < 0)
				return ret;

			ret = ath10k_install_key(arvif, arvif->wep_keys[i],
						 SET_KEY, addr, WMI_KEY_GROUP);
			if (ret < 0)
				return ret;
			break;
		default:
			WARN_ON(1);
			return -EINVAL;
		}

		spin_lock_bh(&ar->data_lock);
		peer->keys[i] = arvif->wep_keys[i];
		spin_unlock_bh(&ar->data_lock);
	}

	/* In some cases (notably with static WEP IBSS with multiple keys)
	 * multicast Tx becomes broken. Both pairwise and groupwise keys are
	 * installed already. Using WMI_KEY_TX_USAGE in different combinations
	 * didn't seem help. Using def_keyid vdev parameter seems to be
	 * effective so use that.
	 *
	 * FIXME: Revisit. Perhaps this can be done in a less hacky way.
	 */
	if (arvif->vif->type != NL80211_IFTYPE_ADHOC)
		return 0;

	if (arvif->def_wep_key_idx == -1)
		return 0;

	ret = ath10k_wmi_vdev_set_param(arvif->ar,
					arvif->vdev_id,
					arvif->ar->wmi.vdev_param->def_keyid,
					arvif->def_wep_key_idx);
	if (ret) {
		ath10k_warn(ar, "failed to re-set def wpa key idxon vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	return 0;
}

static int ath10k_clear_peer_keys(struct ath10k_vif *arvif,
				  const u8 *addr)
{
	struct ath10k *ar = arvif->ar;
	struct ath10k_peer *peer;
	int first_errno = 0;
	int ret;
	int i;
	u32 flags = 0;

	lockdep_assert_held(&ar->conf_mutex);

	spin_lock_bh(&ar->data_lock);
	peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
	spin_unlock_bh(&ar->data_lock);

	if (!peer)
		return -ENOENT;

	for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
		if (peer->keys[i] == NULL)
			continue;

		/* key flags are not required to delete the key */
		ret = ath10k_install_key(arvif, peer->keys[i],
					 DISABLE_KEY, addr, flags);
		if (ret < 0 && first_errno == 0)
			first_errno = ret;

		if (ret < 0)
			ath10k_warn(ar, "failed to remove peer wep key %d: %d\n",
				    i, ret);

		spin_lock_bh(&ar->data_lock);
		peer->keys[i] = NULL;
		spin_unlock_bh(&ar->data_lock);
	}

	return first_errno;
}

bool ath10k_mac_is_peer_wep_key_set(struct ath10k *ar, const u8 *addr,
				    u8 keyidx)
{
	struct ath10k_peer *peer;
	int i;

	lockdep_assert_held(&ar->data_lock);

	/* We don't know which vdev this peer belongs to,
	 * since WMI doesn't give us that information.
	 *
	 * FIXME: multi-bss needs to be handled.
	 */
	peer = ath10k_peer_find(ar, 0, addr);
	if (!peer)
		return false;

	for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
		if (peer->keys[i] && peer->keys[i]->keyidx == keyidx)
			return true;
	}

	return false;
}

static int ath10k_clear_vdev_key(struct ath10k_vif *arvif,
				 struct ieee80211_key_conf *key)
{
	struct ath10k *ar = arvif->ar;
	struct ath10k_peer *peer;
	u8 addr[ETH_ALEN];
	int first_errno = 0;
	int ret;
	int i;
	u32 flags = 0;

	lockdep_assert_held(&ar->conf_mutex);

	for (;;) {
		/* since ath10k_install_key we can't hold data_lock all the
		 * time, so we try to remove the keys incrementally
		 */
		spin_lock_bh(&ar->data_lock);
		i = 0;
		list_for_each_entry(peer, &ar->peers, list) {
			for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
				if (peer->keys[i] == key) {
					ether_addr_copy(addr, peer->addr);
					peer->keys[i] = NULL;
					break;
				}
			}

			if (i < ARRAY_SIZE(peer->keys))
				break;
		}
		spin_unlock_bh(&ar->data_lock);

		if (i == ARRAY_SIZE(peer->keys))
			break;
		/* key flags are not required to delete the key */
		ret = ath10k_install_key(arvif, key, DISABLE_KEY, addr, flags);
		if (ret < 0 && first_errno == 0)
			first_errno = ret;

		if (ret)
			ath10k_warn(ar, "failed to remove key for %pM: %d\n",
				    addr, ret);
	}

	return first_errno;
}

static int ath10k_mac_vif_update_wep_key(struct ath10k_vif *arvif,
					 struct ieee80211_key_conf *key)
{
	struct ath10k *ar = arvif->ar;
	struct ath10k_peer *peer;
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	list_for_each_entry(peer, &ar->peers, list) {
		if (ether_addr_equal(peer->addr, arvif->vif->addr))
			continue;

		if (ether_addr_equal(peer->addr, arvif->bssid))
			continue;

		if (peer->keys[key->keyidx] == key)
			continue;

		ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vif vdev %i update key %i needs update\n",
			   arvif->vdev_id, key->keyidx);

		ret = ath10k_install_peer_wep_keys(arvif, peer->addr);
		if (ret) {
			ath10k_warn(ar, "failed to update wep keys on vdev %i for peer %pM: %d\n",
				    arvif->vdev_id, peer->addr, ret);
			return ret;
		}
	}

	return 0;
}

/*********************/
/* General utilities */
/*********************/

static inline enum wmi_phy_mode
chan_to_phymode(const struct cfg80211_chan_def *chandef)
{
	enum wmi_phy_mode phymode = MODE_UNKNOWN;

	switch (chandef->chan->band) {
	case NL80211_BAND_2GHZ:
		switch (chandef->width) {
		case NL80211_CHAN_WIDTH_20_NOHT:
			if (chandef->chan->flags & IEEE80211_CHAN_NO_OFDM)
				phymode = MODE_11B;
			else
				phymode = MODE_11G;
			break;
		case NL80211_CHAN_WIDTH_20:
			phymode = MODE_11NG_HT20;
			break;
		case NL80211_CHAN_WIDTH_40:
			phymode = MODE_11NG_HT40;
			break;
		default:
			phymode = MODE_UNKNOWN;
			break;
		}
		break;
	case NL80211_BAND_5GHZ:
		switch (chandef->width) {
		case NL80211_CHAN_WIDTH_20_NOHT:
			phymode = MODE_11A;
			break;
		case NL80211_CHAN_WIDTH_20:
			phymode = MODE_11NA_HT20;
			break;
		case NL80211_CHAN_WIDTH_40:
			phymode = MODE_11NA_HT40;
			break;
		case NL80211_CHAN_WIDTH_80:
			phymode = MODE_11AC_VHT80;
			break;
		case NL80211_CHAN_WIDTH_160:
			phymode = MODE_11AC_VHT160;
			break;
		case NL80211_CHAN_WIDTH_80P80:
			phymode = MODE_11AC_VHT80_80;
			break;
		default:
			phymode = MODE_UNKNOWN;
			break;
		}
		break;
	default:
		break;
	}

	WARN_ON(phymode == MODE_UNKNOWN);
	return phymode;
}

static u8 ath10k_parse_mpdudensity(u8 mpdudensity)
{
/*
 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
 *   0 for no restriction
 *   1 for 1/4 us
 *   2 for 1/2 us
 *   3 for 1 us
 *   4 for 2 us
 *   5 for 4 us
 *   6 for 8 us
 *   7 for 16 us
 */
	switch (mpdudensity) {
	case 0:
		return 0;
	case 1:
	case 2:
	case 3:
	/* Our lower layer calculations limit our precision to
	 * 1 microsecond
	 */
		return 1;
	case 4:
		return 2;
	case 5:
		return 4;
	case 6:
		return 8;
	case 7:
		return 16;
	default:
		return 0;
	}
}

int ath10k_mac_vif_chan(struct ieee80211_vif *vif,
			struct cfg80211_chan_def *def)
{
	struct ieee80211_chanctx_conf *conf;

	rcu_read_lock();
	conf = rcu_dereference(vif->bss_conf.chanctx_conf);
	if (!conf) {
		rcu_read_unlock();
		return -ENOENT;
	}

	*def = conf->def;
	rcu_read_unlock();

	return 0;
}

static void ath10k_mac_num_chanctxs_iter(struct ieee80211_hw *hw,
					 struct ieee80211_chanctx_conf *conf,
					 void *data)
{
	int *num = data;

	(*num)++;
}

static int ath10k_mac_num_chanctxs(struct ath10k *ar)
{
	int num = 0;

	ieee80211_iter_chan_contexts_atomic(ar->hw,
					    ath10k_mac_num_chanctxs_iter,
					    &num);

	return num;
}

static void
ath10k_mac_get_any_chandef_iter(struct ieee80211_hw *hw,
				struct ieee80211_chanctx_conf *conf,
				void *data)
{
	struct cfg80211_chan_def **def = data;

	*def = &conf->def;
}

static void ath10k_wait_for_peer_delete_done(struct ath10k *ar, u32 vdev_id,
					     const u8 *addr)
{
	unsigned long time_left;
	int ret;

	if (test_bit(WMI_SERVICE_SYNC_DELETE_CMDS, ar->wmi.svc_map)) {
		ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr);
		if (ret) {
			ath10k_warn(ar, "failed wait for peer deleted");
			return;
		}

		time_left = wait_for_completion_timeout(&ar->peer_delete_done,
							5 * HZ);
		if (!time_left)
			ath10k_warn(ar, "Timeout in receiving peer delete response\n");
	}
}

static int ath10k_peer_create(struct ath10k *ar,
			      struct ieee80211_vif *vif,
			      struct ieee80211_sta *sta,
			      u32 vdev_id,
			      const u8 *addr,
			      enum wmi_peer_type peer_type)
{
	struct ath10k_vif *arvif;
	struct ath10k_peer *peer;
	int num_peers = 0;
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	num_peers = ar->num_peers;

	/* Each vdev consumes a peer entry as well */
	list_for_each_entry(arvif, &ar->arvifs, list)
		num_peers++;

	if (num_peers >= ar->max_num_peers)
		return -ENOBUFS;

	ret = ath10k_wmi_peer_create(ar, vdev_id, addr, peer_type);
	if (ret) {
		ath10k_warn(ar, "failed to create wmi peer %pM on vdev %i: %i\n",
			    addr, vdev_id, ret);
		return ret;
	}

	ret = ath10k_wait_for_peer_created(ar, vdev_id, addr);
	if (ret) {
		ath10k_warn(ar, "failed to wait for created wmi peer %pM on vdev %i: %i\n",
			    addr, vdev_id, ret);
		return ret;
	}

	spin_lock_bh(&ar->data_lock);

	peer = ath10k_peer_find(ar, vdev_id, addr);
	if (!peer) {
		spin_unlock_bh(&ar->data_lock);
		ath10k_warn(ar, "failed to find peer %pM on vdev %i after creation\n",
			    addr, vdev_id);
		ath10k_wait_for_peer_delete_done(ar, vdev_id, addr);
		return -ENOENT;
	}

	peer->vif = vif;
	peer->sta = sta;

	spin_unlock_bh(&ar->data_lock);

	ar->num_peers++;

	return 0;
}

static int ath10k_mac_set_kickout(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;
	u32 param;
	int ret;

	param = ar->wmi.pdev_param->sta_kickout_th;
	ret = ath10k_wmi_pdev_set_param(ar, param,
					ATH10K_KICKOUT_THRESHOLD);
	if (ret) {
		ath10k_warn(ar, "failed to set kickout threshold on vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	param = ar->wmi.vdev_param->ap_keepalive_min_idle_inactive_time_secs;
	ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
					ATH10K_KEEPALIVE_MIN_IDLE);
	if (ret) {
		ath10k_warn(ar, "failed to set keepalive minimum idle time on vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	param = ar->wmi.vdev_param->ap_keepalive_max_idle_inactive_time_secs;
	ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
					ATH10K_KEEPALIVE_MAX_IDLE);
	if (ret) {
		ath10k_warn(ar, "failed to set keepalive maximum idle time on vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	param = ar->wmi.vdev_param->ap_keepalive_max_unresponsive_time_secs;
	ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
					ATH10K_KEEPALIVE_MAX_UNRESPONSIVE);
	if (ret) {
		ath10k_warn(ar, "failed to set keepalive maximum unresponsive time on vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	return 0;
}

static int ath10k_mac_set_rts(struct ath10k_vif *arvif, u32 value)
{
	struct ath10k *ar = arvif->ar;
	u32 vdev_param;

	vdev_param = ar->wmi.vdev_param->rts_threshold;
	return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value);
}

static int ath10k_peer_delete(struct ath10k *ar, u32 vdev_id, const u8 *addr)
{
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	ret = ath10k_wmi_peer_delete(ar, vdev_id, addr);
	if (ret)
		return ret;

	ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr);
	if (ret)
		return ret;

	if (test_bit(WMI_SERVICE_SYNC_DELETE_CMDS, ar->wmi.svc_map)) {
		unsigned long time_left;

		time_left = wait_for_completion_timeout
			    (&ar->peer_delete_done, 5 * HZ);

		if (!time_left) {
			ath10k_warn(ar, "Timeout in receiving peer delete response\n");
			return -ETIMEDOUT;
		}
	}

	ar->num_peers--;

	return 0;
}

static void ath10k_peer_map_cleanup(struct ath10k *ar, struct ath10k_peer *peer)
{
	int peer_id, i;

	lockdep_assert_held(&ar->conf_mutex);

	for_each_set_bit(peer_id, peer->peer_ids,
			 ATH10K_MAX_NUM_PEER_IDS) {
		ar->peer_map[peer_id] = NULL;
	}

	/* Double check that peer is properly un-referenced from
	 * the peer_map
	 */
	for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++) {
		if (ar->peer_map[i] == peer) {
			ath10k_warn(ar, "removing stale peer_map entry for %pM (ptr %pK idx %d)\n",
				    peer->addr, peer, i);
			ar->peer_map[i] = NULL;
		}
	}

	list_del(&peer->list);
	kfree(peer);
	ar->num_peers--;
}

static void ath10k_peer_cleanup(struct ath10k *ar, u32 vdev_id)
{
	struct ath10k_peer *peer, *tmp;

	lockdep_assert_held(&ar->conf_mutex);

	spin_lock_bh(&ar->data_lock);
	list_for_each_entry_safe(peer, tmp, &ar->peers, list) {
		if (peer->vdev_id != vdev_id)
			continue;

		ath10k_warn(ar, "removing stale peer %pM from vdev_id %d\n",
			    peer->addr, vdev_id);

		ath10k_peer_map_cleanup(ar, peer);
	}
	spin_unlock_bh(&ar->data_lock);
}

static void ath10k_peer_cleanup_all(struct ath10k *ar)
{
	struct ath10k_peer *peer, *tmp;
	int i;

	lockdep_assert_held(&ar->conf_mutex);

	spin_lock_bh(&ar->data_lock);
	list_for_each_entry_safe(peer, tmp, &ar->peers, list) {
		list_del(&peer->list);
		kfree(peer);
	}

	for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++)
		ar->peer_map[i] = NULL;

	spin_unlock_bh(&ar->data_lock);

	ar->num_peers = 0;
	ar->num_stations = 0;
}

static int ath10k_mac_tdls_peer_update(struct ath10k *ar, u32 vdev_id,
				       struct ieee80211_sta *sta,
				       enum wmi_tdls_peer_state state)
{
	int ret;
	struct wmi_tdls_peer_update_cmd_arg arg = {};
	struct wmi_tdls_peer_capab_arg cap = {};
	struct wmi_channel_arg chan_arg = {};

	lockdep_assert_held(&ar->conf_mutex);

	arg.vdev_id = vdev_id;
	arg.peer_state = state;
	ether_addr_copy(arg.addr, sta->addr);

	cap.peer_max_sp = sta->max_sp;
	cap.peer_uapsd_queues = sta->uapsd_queues;

	if (state == WMI_TDLS_PEER_STATE_CONNECTED &&
	    !sta->tdls_initiator)
		cap.is_peer_responder = 1;

	ret = ath10k_wmi_tdls_peer_update(ar, &arg, &cap, &chan_arg);
	if (ret) {
		ath10k_warn(ar, "failed to update tdls peer %pM on vdev %i: %i\n",
			    arg.addr, vdev_id, ret);
		return ret;
	}

	return 0;
}

/************************/
/* Interface management */
/************************/

void ath10k_mac_vif_beacon_free(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;

	lockdep_assert_held(&ar->data_lock);

	if (!arvif->beacon)
		return;

	if (!arvif->beacon_buf)
		dma_unmap_single(ar->dev, ATH10K_SKB_CB(arvif->beacon)->paddr,
				 arvif->beacon->len, DMA_TO_DEVICE);

	if (WARN_ON(arvif->beacon_state != ATH10K_BEACON_SCHEDULED &&
		    arvif->beacon_state != ATH10K_BEACON_SENT))
		return;

	dev_kfree_skb_any(arvif->beacon);

	arvif->beacon = NULL;
	arvif->beacon_state = ATH10K_BEACON_SCHEDULED;
}

static void ath10k_mac_vif_beacon_cleanup(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;

	lockdep_assert_held(&ar->data_lock);

	ath10k_mac_vif_beacon_free(arvif);

	if (arvif->beacon_buf) {
		if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
			kfree(arvif->beacon_buf);
		else
			dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN,
					  arvif->beacon_buf,
					  arvif->beacon_paddr);
		arvif->beacon_buf = NULL;
	}
}

static inline int ath10k_vdev_setup_sync(struct ath10k *ar)
{
	unsigned long time_left;

	lockdep_assert_held(&ar->conf_mutex);

	if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
		return -ESHUTDOWN;

	time_left = wait_for_completion_timeout(&ar->vdev_setup_done,
						ATH10K_VDEV_SETUP_TIMEOUT_HZ);
	if (time_left == 0)
		return -ETIMEDOUT;

	return ar->last_wmi_vdev_start_status;
}

static int ath10k_monitor_vdev_start(struct ath10k *ar, int vdev_id)
{
	struct cfg80211_chan_def *chandef = NULL;
	struct ieee80211_channel *channel = NULL;
	struct wmi_vdev_start_request_arg arg = {};
	int ret = 0;

	lockdep_assert_held(&ar->conf_mutex);

	ieee80211_iter_chan_contexts_atomic(ar->hw,
					    ath10k_mac_get_any_chandef_iter,
					    &chandef);
	if (WARN_ON_ONCE(!chandef))
		return -ENOENT;

	channel = chandef->chan;

	arg.vdev_id = vdev_id;
	arg.channel.freq = channel->center_freq;
	arg.channel.band_center_freq1 = chandef->center_freq1;
	arg.channel.band_center_freq2 = chandef->center_freq2;

	/* TODO setup this dynamically, what in case we
	 * don't have any vifs?
	 */
	arg.channel.mode = chan_to_phymode(chandef);
	arg.channel.chan_radar =
			!!(channel->flags & IEEE80211_CHAN_RADAR);

	arg.channel.min_power = 0;
	arg.channel.max_power = channel->max_power * 2;
	arg.channel.max_reg_power = channel->max_reg_power * 2;
	arg.channel.max_antenna_gain = channel->max_antenna_gain;

	reinit_completion(&ar->vdev_setup_done);
	reinit_completion(&ar->vdev_delete_done);

	ret = ath10k_wmi_vdev_start(ar, &arg);
	if (ret) {
		ath10k_warn(ar, "failed to request monitor vdev %i start: %d\n",
			    vdev_id, ret);
		return ret;
	}

	ret = ath10k_vdev_setup_sync(ar);
	if (ret) {
		ath10k_warn(ar, "failed to synchronize setup for monitor vdev %i start: %d\n",
			    vdev_id, ret);
		return ret;
	}

	ret = ath10k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr);
	if (ret) {
		ath10k_warn(ar, "failed to put up monitor vdev %i: %d\n",
			    vdev_id, ret);
		goto vdev_stop;
	}

	ar->monitor_vdev_id = vdev_id;

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i started\n",
		   ar->monitor_vdev_id);
	return 0;

vdev_stop:
	ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
	if (ret)
		ath10k_warn(ar, "failed to stop monitor vdev %i after start failure: %d\n",
			    ar->monitor_vdev_id, ret);

	return ret;
}

static int ath10k_monitor_vdev_stop(struct ath10k *ar)
{
	int ret = 0;

	lockdep_assert_held(&ar->conf_mutex);

	ret = ath10k_wmi_vdev_down(ar, ar->monitor_vdev_id);
	if (ret)
		ath10k_warn(ar, "failed to put down monitor vdev %i: %d\n",
			    ar->monitor_vdev_id, ret);

	reinit_completion(&ar->vdev_setup_done);
	reinit_completion(&ar->vdev_delete_done);

	ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
	if (ret)
		ath10k_warn(ar, "failed to request monitor vdev %i stop: %d\n",
			    ar->monitor_vdev_id, ret);

	ret = ath10k_vdev_setup_sync(ar);
	if (ret)
		ath10k_warn(ar, "failed to synchronize monitor vdev %i stop: %d\n",
			    ar->monitor_vdev_id, ret);

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i stopped\n",
		   ar->monitor_vdev_id);
	return ret;
}

static int ath10k_monitor_vdev_create(struct ath10k *ar)
{
	int bit, ret = 0;

	lockdep_assert_held(&ar->conf_mutex);

	if (ar->free_vdev_map == 0) {
		ath10k_warn(ar, "failed to find free vdev id for monitor vdev\n");
		return -ENOMEM;
	}

	bit = __ffs64(ar->free_vdev_map);

	ar->monitor_vdev_id = bit;

	ret = ath10k_wmi_vdev_create(ar, ar->monitor_vdev_id,
				     WMI_VDEV_TYPE_MONITOR,
				     0, ar->mac_addr);
	if (ret) {
		ath10k_warn(ar, "failed to request monitor vdev %i creation: %d\n",
			    ar->monitor_vdev_id, ret);
		return ret;
	}

	ar->free_vdev_map &= ~(1LL << ar->monitor_vdev_id);
	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d created\n",
		   ar->monitor_vdev_id);

	return 0;
}

static int ath10k_monitor_vdev_delete(struct ath10k *ar)
{
	int ret = 0;

	lockdep_assert_held(&ar->conf_mutex);

	ret = ath10k_wmi_vdev_delete(ar, ar->monitor_vdev_id);
	if (ret) {
		ath10k_warn(ar, "failed to request wmi monitor vdev %i removal: %d\n",
			    ar->monitor_vdev_id, ret);
		return ret;
	}

	ar->free_vdev_map |= 1LL << ar->monitor_vdev_id;

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d deleted\n",
		   ar->monitor_vdev_id);
	return ret;
}

static int ath10k_monitor_start(struct ath10k *ar)
{
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	ret = ath10k_monitor_vdev_create(ar);
	if (ret) {
		ath10k_warn(ar, "failed to create monitor vdev: %d\n", ret);
		return ret;
	}

	ret = ath10k_monitor_vdev_start(ar, ar->monitor_vdev_id);
	if (ret) {
		ath10k_warn(ar, "failed to start monitor vdev: %d\n", ret);
		ath10k_monitor_vdev_delete(ar);
		return ret;
	}

	ar->monitor_started = true;
	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor started\n");

	return 0;
}

static int ath10k_monitor_stop(struct ath10k *ar)
{
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	ret = ath10k_monitor_vdev_stop(ar);
	if (ret) {
		ath10k_warn(ar, "failed to stop monitor vdev: %d\n", ret);
		return ret;
	}

	ret = ath10k_monitor_vdev_delete(ar);
	if (ret) {
		ath10k_warn(ar, "failed to delete monitor vdev: %d\n", ret);
		return ret;
	}

	ar->monitor_started = false;
	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopped\n");

	return 0;
}

static bool ath10k_mac_monitor_vdev_is_needed(struct ath10k *ar)
{
	int num_ctx;

	/* At least one chanctx is required to derive a channel to start
	 * monitor vdev on.
	 */
	num_ctx = ath10k_mac_num_chanctxs(ar);
	if (num_ctx == 0)
		return false;

	/* If there's already an existing special monitor interface then don't
	 * bother creating another monitor vdev.
	 */
	if (ar->monitor_arvif)
		return false;

	return ar->monitor ||
	       (!test_bit(ATH10K_FW_FEATURE_ALLOWS_MESH_BCAST,
			  ar->running_fw->fw_file.fw_features) &&
		(ar->filter_flags & FIF_OTHER_BSS)) ||
	       test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
}

static bool ath10k_mac_monitor_vdev_is_allowed(struct ath10k *ar)
{
	int num_ctx;

	num_ctx = ath10k_mac_num_chanctxs(ar);

	/* FIXME: Current interface combinations and cfg80211/mac80211 code
	 * shouldn't allow this but make sure to prevent handling the following
	 * case anyway since multi-channel DFS hasn't been tested at all.
	 */
	if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags) && num_ctx > 1)
		return false;

	return true;
}

static int ath10k_monitor_recalc(struct ath10k *ar)
{
	bool needed;
	bool allowed;
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	needed = ath10k_mac_monitor_vdev_is_needed(ar);
	allowed = ath10k_mac_monitor_vdev_is_allowed(ar);

	ath10k_dbg(ar, ATH10K_DBG_MAC,
		   "mac monitor recalc started? %d needed? %d allowed? %d\n",
		   ar->monitor_started, needed, allowed);

	if (WARN_ON(needed && !allowed)) {
		if (ar->monitor_started) {
			ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopping disallowed monitor\n");

			ret = ath10k_monitor_stop(ar);
			if (ret)
				ath10k_warn(ar, "failed to stop disallowed monitor: %d\n",
					    ret);
				/* not serious */
		}

		return -EPERM;
	}

	if (needed == ar->monitor_started)
		return 0;

	if (needed)
		return ath10k_monitor_start(ar);
	else
		return ath10k_monitor_stop(ar);
}

static bool ath10k_mac_can_set_cts_prot(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;

	lockdep_assert_held(&ar->conf_mutex);

	if (!arvif->is_started) {
		ath10k_dbg(ar, ATH10K_DBG_MAC, "defer cts setup, vdev is not ready yet\n");
		return false;
	}

	return true;
}

static int ath10k_mac_set_cts_prot(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;
	u32 vdev_param;

	lockdep_assert_held(&ar->conf_mutex);

	vdev_param = ar->wmi.vdev_param->protection_mode;

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d cts_protection %d\n",
		   arvif->vdev_id, arvif->use_cts_prot);

	return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
					 arvif->use_cts_prot ? 1 : 0);
}

static int ath10k_recalc_rtscts_prot(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;
	u32 vdev_param, rts_cts = 0;

	lockdep_assert_held(&ar->conf_mutex);

	vdev_param = ar->wmi.vdev_param->enable_rtscts;

	rts_cts |= SM(WMI_RTSCTS_ENABLED, WMI_RTSCTS_SET);

	if (arvif->num_legacy_stations > 0)
		rts_cts |= SM(WMI_RTSCTS_ACROSS_SW_RETRIES,
			      WMI_RTSCTS_PROFILE);
	else
		rts_cts |= SM(WMI_RTSCTS_FOR_SECOND_RATESERIES,
			      WMI_RTSCTS_PROFILE);

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d recalc rts/cts prot %d\n",
		   arvif->vdev_id, rts_cts);

	return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
					 rts_cts);
}

static int ath10k_start_cac(struct ath10k *ar)
{
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	set_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);

	ret = ath10k_monitor_recalc(ar);
	if (ret) {
		ath10k_warn(ar, "failed to start monitor (cac): %d\n", ret);
		clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
		return ret;
	}

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac start monitor vdev %d\n",
		   ar->monitor_vdev_id);

	return 0;
}

static int ath10k_stop_cac(struct ath10k *ar)
{
	lockdep_assert_held(&ar->conf_mutex);

	/* CAC is not running - do nothing */
	if (!test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags))
		return 0;

	clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
	ath10k_monitor_stop(ar);

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac finished\n");

	return 0;
}

static void ath10k_mac_has_radar_iter(struct ieee80211_hw *hw,
				      struct ieee80211_chanctx_conf *conf,
				      void *data)
{
	bool *ret = data;

	if (!*ret && conf->radar_enabled)
		*ret = true;
}

static bool ath10k_mac_has_radar_enabled(struct ath10k *ar)
{
	bool has_radar = false;

	ieee80211_iter_chan_contexts_atomic(ar->hw,
					    ath10k_mac_has_radar_iter,
					    &has_radar);

	return has_radar;
}

static void ath10k_recalc_radar_detection(struct ath10k *ar)
{
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	ath10k_stop_cac(ar);

	if (!ath10k_mac_has_radar_enabled(ar))
		return;

	if (ar->num_started_vdevs > 0)
		return;

	ret = ath10k_start_cac(ar);
	if (ret) {
		/*
		 * Not possible to start CAC on current channel so starting
		 * radiation is not allowed, make this channel DFS_UNAVAILABLE
		 * by indicating that radar was detected.
		 */
		ath10k_warn(ar, "failed to start CAC: %d\n", ret);
		ieee80211_radar_detected(ar->hw);
	}
}

static int ath10k_vdev_stop(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	reinit_completion(&ar->vdev_setup_done);
	reinit_completion(&ar->vdev_delete_done);

	ret = ath10k_wmi_vdev_stop(ar, arvif->vdev_id);
	if (ret) {
		ath10k_warn(ar, "failed to stop WMI vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	ret = ath10k_vdev_setup_sync(ar);
	if (ret) {
		ath10k_warn(ar, "failed to synchronize setup for vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	WARN_ON(ar->num_started_vdevs == 0);

	if (ar->num_started_vdevs != 0) {
		ar->num_started_vdevs--;
		ath10k_recalc_radar_detection(ar);
	}

	return ret;
}

static int ath10k_vdev_start_restart(struct ath10k_vif *arvif,
				     const struct cfg80211_chan_def *chandef,
				     bool restart)
{
	struct ath10k *ar = arvif->ar;
	struct wmi_vdev_start_request_arg arg = {};
	int ret = 0;

	lockdep_assert_held(&ar->conf_mutex);

	reinit_completion(&ar->vdev_setup_done);
	reinit_completion(&ar->vdev_delete_done);

	arg.vdev_id = arvif->vdev_id;
	arg.dtim_period = arvif->dtim_period;
	arg.bcn_intval = arvif->beacon_interval;

	arg.channel.freq = chandef->chan->center_freq;
	arg.channel.band_center_freq1 = chandef->center_freq1;
	arg.channel.band_center_freq2 = chandef->center_freq2;
	arg.channel.mode = chan_to_phymode(chandef);

	arg.channel.min_power = 0;
	arg.channel.max_power = chandef->chan->max_power * 2;
	arg.channel.max_reg_power = chandef->chan->max_reg_power * 2;
	arg.channel.max_antenna_gain = chandef->chan->max_antenna_gain;

	if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
		arg.ssid = arvif->u.ap.ssid;
		arg.ssid_len = arvif->u.ap.ssid_len;
		arg.hidden_ssid = arvif->u.ap.hidden_ssid;

		/* For now allow DFS for AP mode */
		arg.channel.chan_radar =
			!!(chandef->chan->flags & IEEE80211_CHAN_RADAR);
	} else if (arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
		arg.ssid = arvif->vif->cfg.ssid;
		arg.ssid_len = arvif->vif->cfg.ssid_len;
	}

	ath10k_dbg(ar, ATH10K_DBG_MAC,
		   "mac vdev %d start center_freq %d phymode %s\n",
		   arg.vdev_id, arg.channel.freq,
		   ath10k_wmi_phymode_str(arg.channel.mode));

	if (restart)
		ret = ath10k_wmi_vdev_restart(ar, &arg);
	else
		ret = ath10k_wmi_vdev_start(ar, &arg);

	if (ret) {
		ath10k_warn(ar, "failed to start WMI vdev %i: %d\n",
			    arg.vdev_id, ret);
		return ret;
	}

	ret = ath10k_vdev_setup_sync(ar);
	if (ret) {
		ath10k_warn(ar,
			    "failed to synchronize setup for vdev %i restart %d: %d\n",
			    arg.vdev_id, restart, ret);
		return ret;
	}

	ar->num_started_vdevs++;
	ath10k_recalc_radar_detection(ar);

	return ret;
}

static int ath10k_vdev_start(struct ath10k_vif *arvif,
			     const struct cfg80211_chan_def *def)
{
	return ath10k_vdev_start_restart(arvif, def, false);
}

static int ath10k_vdev_restart(struct ath10k_vif *arvif,
			       const struct cfg80211_chan_def *def)
{
	return ath10k_vdev_start_restart(arvif, def, true);
}

static int ath10k_mac_setup_bcn_p2p_ie(struct ath10k_vif *arvif,
				       struct sk_buff *bcn)
{
	struct ath10k *ar = arvif->ar;
	struct ieee80211_mgmt *mgmt;
	const u8 *p2p_ie;
	int ret;

	if (arvif->vif->type != NL80211_IFTYPE_AP || !arvif->vif->p2p)
		return 0;

	mgmt = (void *)bcn->data;
	p2p_ie = cfg80211_find_vendor_ie(WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P,
					 mgmt->u.beacon.variable,
					 bcn->len - (mgmt->u.beacon.variable -
						     bcn->data));
	if (!p2p_ie)
		return -ENOENT;

	ret = ath10k_wmi_p2p_go_bcn_ie(ar, arvif->vdev_id, p2p_ie);
	if (ret) {
		ath10k_warn(ar, "failed to submit p2p go bcn ie for vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	return 0;
}

static int ath10k_mac_remove_vendor_ie(struct sk_buff *skb, unsigned int oui,
				       u8 oui_type, size_t ie_offset)
{
	size_t len;
	const u8 *next;
	const u8 *end;
	u8 *ie;

	if (WARN_ON(skb->len < ie_offset))
		return -EINVAL;

	ie = (u8 *)cfg80211_find_vendor_ie(oui, oui_type,
					   skb->data + ie_offset,
					   skb->len - ie_offset);
	if (!ie)
		return -ENOENT;

	len = ie[1] + 2;
	end = skb->data + skb->len;
	next = ie + len;

	if (WARN_ON(next > end))
		return -EINVAL;

	memmove(ie, next, end - next);
	skb_trim(skb, skb->len - len);

	return 0;
}

static int ath10k_mac_setup_bcn_tmpl(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;
	struct ieee80211_hw *hw = ar->hw;
	struct ieee80211_vif *vif = arvif->vif;
	struct ieee80211_mutable_offsets offs = {};
	struct sk_buff *bcn;
	int ret;

	if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map))
		return 0;

	if (arvif->vdev_type != WMI_VDEV_TYPE_AP &&
	    arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
		return 0;

	bcn = ieee80211_beacon_get_template(hw, vif, &offs, 0);
	if (!bcn) {
		ath10k_warn(ar, "failed to get beacon template from mac80211\n");
		return -EPERM;
	}

	ret = ath10k_mac_setup_bcn_p2p_ie(arvif, bcn);
	if (ret) {
		ath10k_warn(ar, "failed to setup p2p go bcn ie: %d\n", ret);
		kfree_skb(bcn);
		return ret;
	}

	/* P2P IE is inserted by firmware automatically (as configured above)
	 * so remove it from the base beacon template to avoid duplicate P2P
	 * IEs in beacon frames.
	 */
	ath10k_mac_remove_vendor_ie(bcn, WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P,
				    offsetof(struct ieee80211_mgmt,
					     u.beacon.variable));

	ret = ath10k_wmi_bcn_tmpl(ar, arvif->vdev_id, offs.tim_offset, bcn, 0,
				  0, NULL, 0);
	kfree_skb(bcn);

	if (ret) {
		ath10k_warn(ar, "failed to submit beacon template command: %d\n",
			    ret);
		return ret;
	}

	return 0;
}

static int ath10k_mac_setup_prb_tmpl(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;
	struct ieee80211_hw *hw = ar->hw;
	struct ieee80211_vif *vif = arvif->vif;
	struct sk_buff *prb;
	int ret;

	if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map))
		return 0;

	if (arvif->vdev_type != WMI_VDEV_TYPE_AP)
		return 0;

	 /* For mesh, probe response and beacon share the same template */
	if (ieee80211_vif_is_mesh(vif))
		return 0;

	prb = ieee80211_proberesp_get(hw, vif);
	if (!prb) {
		ath10k_warn(ar, "failed to get probe resp template from mac80211\n");
		return -EPERM;
	}

	ret = ath10k_wmi_prb_tmpl(ar, arvif->vdev_id, prb);
	kfree_skb(prb);

	if (ret) {
		ath10k_warn(ar, "failed to submit probe resp template command: %d\n",
			    ret);
		return ret;
	}

	return 0;
}

static int ath10k_mac_vif_fix_hidden_ssid(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;
	struct cfg80211_chan_def def;
	int ret;

	/* When originally vdev is started during assign_vif_chanctx() some
	 * information is missing, notably SSID. Firmware revisions with beacon
	 * offloading require the SSID to be provided during vdev (re)start to
	 * handle hidden SSID properly.
	 *
	 * Vdev restart must be done after vdev has been both started and
	 * upped. Otherwise some firmware revisions (at least 10.2) fail to
	 * deliver vdev restart response event causing timeouts during vdev
	 * syncing in ath10k.
	 *
	 * Note: The vdev down/up and template reinstallation could be skipped
	 * since only wmi-tlv firmware are known to have beacon offload and
	 * wmi-tlv doesn't seem to misbehave like 10.2 wrt vdev restart
	 * response delivery. It's probably more robust to keep it as is.
	 */
	if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map))
		return 0;

	if (WARN_ON(!arvif->is_started))
		return -EINVAL;

	if (WARN_ON(!arvif->is_up))
		return -EINVAL;

	if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def)))
		return -EINVAL;

	ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
	if (ret) {
		ath10k_warn(ar, "failed to bring down ap vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	/* Vdev down reset beacon & presp templates. Reinstall them. Otherwise
	 * firmware will crash upon vdev up.
	 */

	ret = ath10k_mac_setup_bcn_tmpl(arvif);
	if (ret) {
		ath10k_warn(ar, "failed to update beacon template: %d\n", ret);
		return ret;
	}

	ret = ath10k_mac_setup_prb_tmpl(arvif);
	if (ret) {
		ath10k_warn(ar, "failed to update presp template: %d\n", ret);
		return ret;
	}

	ret = ath10k_vdev_restart(arvif, &def);
	if (ret) {
		ath10k_warn(ar, "failed to restart ap vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
				 arvif->bssid);
	if (ret) {
		ath10k_warn(ar, "failed to bring up ap vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	return 0;
}

static void ath10k_control_beaconing(struct ath10k_vif *arvif,
				     struct ieee80211_bss_conf *info)
{
	struct ath10k *ar = arvif->ar;
	int ret = 0;

	lockdep_assert_held(&arvif->ar->conf_mutex);

	if (!info->enable_beacon) {
		ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
		if (ret)
			ath10k_warn(ar, "failed to down vdev_id %i: %d\n",
				    arvif->vdev_id, ret);

		arvif->is_up = false;

		spin_lock_bh(&arvif->ar->data_lock);
		ath10k_mac_vif_beacon_free(arvif);
		spin_unlock_bh(&arvif->ar->data_lock);

		return;
	}

	arvif->tx_seq_no = 0x1000;

	arvif->aid = 0;
	ether_addr_copy(arvif->bssid, info->bssid);

	ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
				 arvif->bssid);
	if (ret) {
		ath10k_warn(ar, "failed to bring up vdev %d: %i\n",
			    arvif->vdev_id, ret);
		return;
	}

	arvif->is_up = true;

	ret = ath10k_mac_vif_fix_hidden_ssid(arvif);
	if (ret) {
		ath10k_warn(ar, "failed to fix hidden ssid for vdev %i, expect trouble: %d\n",
			    arvif->vdev_id, ret);
		return;
	}

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id);
}

static void ath10k_control_ibss(struct ath10k_vif *arvif,
				struct ieee80211_vif *vif)
{
	struct ath10k *ar = arvif->ar;
	u32 vdev_param;
	int ret = 0;

	lockdep_assert_held(&arvif->ar->conf_mutex);

	if (!vif->cfg.ibss_joined) {
		if (is_zero_ether_addr(arvif->bssid))
			return;

		eth_zero_addr(arvif->bssid);

		return;
	}

	vdev_param = arvif->ar->wmi.vdev_param->atim_window;
	ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, vdev_param,
					ATH10K_DEFAULT_ATIM);
	if (ret)
		ath10k_warn(ar, "failed to set IBSS ATIM for vdev %d: %d\n",
			    arvif->vdev_id, ret);
}

static int ath10k_mac_vif_recalc_ps_wake_threshold(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;
	u32 param;
	u32 value;
	int ret;

	lockdep_assert_held(&arvif->ar->conf_mutex);

	if (arvif->u.sta.uapsd)
		value = WMI_STA_PS_TX_WAKE_THRESHOLD_NEVER;
	else
		value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS;

	param = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD;
	ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value);
	if (ret) {
		ath10k_warn(ar, "failed to submit ps wake threshold %u on vdev %i: %d\n",
			    value, arvif->vdev_id, ret);
		return ret;
	}

	return 0;
}

static int ath10k_mac_vif_recalc_ps_poll_count(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;
	u32 param;
	u32 value;
	int ret;

	lockdep_assert_held(&arvif->ar->conf_mutex);

	if (arvif->u.sta.uapsd)
		value = WMI_STA_PS_PSPOLL_COUNT_UAPSD;
	else
		value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX;

	param = WMI_STA_PS_PARAM_PSPOLL_COUNT;
	ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
					  param, value);
	if (ret) {
		ath10k_warn(ar, "failed to submit ps poll count %u on vdev %i: %d\n",
			    value, arvif->vdev_id, ret);
		return ret;
	}

	return 0;
}

static int ath10k_mac_num_vifs_started(struct ath10k *ar)
{
	struct ath10k_vif *arvif;
	int num = 0;

	lockdep_assert_held(&ar->conf_mutex);

	list_for_each_entry(arvif, &ar->arvifs, list)
		if (arvif->is_started)
			num++;

	return num;
}

static int ath10k_mac_vif_setup_ps(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;
	struct ieee80211_vif *vif = arvif->vif;
	struct ieee80211_conf *conf = &ar->hw->conf;
	enum wmi_sta_powersave_param param;
	enum wmi_sta_ps_mode psmode;
	int ret;
	int ps_timeout;
	bool enable_ps;

	lockdep_assert_held(&arvif->ar->conf_mutex);

	if (arvif->vif->type != NL80211_IFTYPE_STATION)
		return 0;

	enable_ps = arvif->ps;

	if (enable_ps && ath10k_mac_num_vifs_started(ar) > 1 &&
	    !test_bit(ATH10K_FW_FEATURE_MULTI_VIF_PS_SUPPORT,
		      ar->running_fw->fw_file.fw_features)) {
		ath10k_warn(ar, "refusing to enable ps on vdev %i: not supported by fw\n",
			    arvif->vdev_id);
		enable_ps = false;
	}

	if (!arvif->is_started) {
		/* mac80211 can update vif powersave state while disconnected.
		 * Firmware doesn't behave nicely and consumes more power than
		 * necessary if PS is disabled on a non-started vdev. Hence
		 * force-enable PS for non-running vdevs.
		 */
		psmode = WMI_STA_PS_MODE_ENABLED;
	} else if (enable_ps) {
		psmode = WMI_STA_PS_MODE_ENABLED;
		param = WMI_STA_PS_PARAM_INACTIVITY_TIME;

		ps_timeout = conf->dynamic_ps_timeout;
		if (ps_timeout == 0) {
			/* Firmware doesn't like 0 */
			ps_timeout = ieee80211_tu_to_usec(
				vif->bss_conf.beacon_int) / 1000;
		}

		ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param,
						  ps_timeout);
		if (ret) {
			ath10k_warn(ar, "failed to set inactivity time for vdev %d: %i\n",
				    arvif->vdev_id, ret);
			return ret;
		}
	} else {
		psmode = WMI_STA_PS_MODE_DISABLED;
	}

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d psmode %s\n",
		   arvif->vdev_id, psmode ? "enable" : "disable");

	ret = ath10k_wmi_set_psmode(ar, arvif->vdev_id, psmode);
	if (ret) {
		ath10k_warn(ar, "failed to set PS Mode %d for vdev %d: %d\n",
			    psmode, arvif->vdev_id, ret);
		return ret;
	}

	return 0;
}

static int ath10k_mac_vif_disable_keepalive(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;
	struct wmi_sta_keepalive_arg arg = {};
	int ret;

	lockdep_assert_held(&arvif->ar->conf_mutex);

	if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
		return 0;

	if (!test_bit(WMI_SERVICE_STA_KEEP_ALIVE, ar->wmi.svc_map))
		return 0;

	/* Some firmware revisions have a bug and ignore the `enabled` field.
	 * Instead use the interval to disable the keepalive.
	 */
	arg.vdev_id = arvif->vdev_id;
	arg.enabled = 1;
	arg.method = WMI_STA_KEEPALIVE_METHOD_NULL_FRAME;
	arg.interval = WMI_STA_KEEPALIVE_INTERVAL_DISABLE;

	ret = ath10k_wmi_sta_keepalive(ar, &arg);
	if (ret) {
		ath10k_warn(ar, "failed to submit keepalive on vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	return 0;
}

static void ath10k_mac_vif_ap_csa_count_down(struct ath10k_vif *arvif)
{
	struct ath10k *ar = arvif->ar;
	struct ieee80211_vif *vif = arvif->vif;
	int ret;

	lockdep_assert_held(&arvif->ar->conf_mutex);

	if (WARN_ON(!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)))
		return;

	if (arvif->vdev_type != WMI_VDEV_TYPE_AP)
		return;

	if (!vif->bss_conf.csa_active)
		return;

	if (!arvif->is_up)
		return;

	if (!ieee80211_beacon_cntdwn_is_complete(vif)) {
		ieee80211_beacon_update_cntdwn(vif);

		ret = ath10k_mac_setup_bcn_tmpl(arvif);
		if (ret)
			ath10k_warn(ar, "failed to update bcn tmpl during csa: %d\n",
				    ret);

		ret = ath10k_mac_setup_prb_tmpl(arvif);
		if (ret)
			ath10k_warn(ar, "failed to update prb tmpl during csa: %d\n",
				    ret);
	} else {
		ieee80211_csa_finish(vif);
	}
}

static void ath10k_mac_vif_ap_csa_work(struct work_struct *work)
{
	struct ath10k_vif *arvif = container_of(work, struct ath10k_vif,
						ap_csa_work);
	struct ath10k *ar = arvif->ar;

	mutex_lock(&ar->conf_mutex);
	ath10k_mac_vif_ap_csa_count_down(arvif);
	mutex_unlock(&ar->conf_mutex);
}

static void ath10k_mac_handle_beacon_iter(void *data, u8 *mac,
					  struct ieee80211_vif *vif)
{
	struct sk_buff *skb = data;
	struct ieee80211_mgmt *mgmt = (void *)skb->data;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;

	if (vif->type != NL80211_IFTYPE_STATION)
		return;

	if (!ether_addr_equal(mgmt->bssid, vif->bss_conf.bssid))
		return;

	cancel_delayed_work(&arvif->connection_loss_work);
}

void ath10k_mac_handle_beacon(struct ath10k *ar, struct sk_buff *skb)
{
	ieee80211_iterate_active_interfaces_atomic(ar->hw,
						   ATH10K_ITER_NORMAL_FLAGS,
						   ath10k_mac_handle_beacon_iter,
						   skb);
}

static void ath10k_mac_handle_beacon_miss_iter(void *data, u8 *mac,
					       struct ieee80211_vif *vif)
{
	u32 *vdev_id = data;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ath10k *ar = arvif->ar;
	struct ieee80211_hw *hw = ar->hw;

	if (arvif->vdev_id != *vdev_id)
		return;

	if (!arvif->is_up)
		return;

	ieee80211_beacon_loss(vif);

	/* Firmware doesn't report beacon loss events repeatedly. If AP probe
	 * (done by mac80211) succeeds but beacons do not resume then it
	 * doesn't make sense to continue operation. Queue connection loss work
	 * which can be cancelled when beacon is received.
	 */
	ieee80211_queue_delayed_work(hw, &arvif->connection_loss_work,
				     ATH10K_CONNECTION_LOSS_HZ);
}

void ath10k_mac_handle_beacon_miss(struct ath10k *ar, u32 vdev_id)
{
	ieee80211_iterate_active_interfaces_atomic(ar->hw,
						   ATH10K_ITER_NORMAL_FLAGS,
						   ath10k_mac_handle_beacon_miss_iter,
						   &vdev_id);
}

static void ath10k_mac_vif_sta_connection_loss_work(struct work_struct *work)
{
	struct ath10k_vif *arvif = container_of(work, struct ath10k_vif,
						connection_loss_work.work);
	struct ieee80211_vif *vif = arvif->vif;

	if (!arvif->is_up)
		return;

	ieee80211_connection_loss(vif);
}

/**********************/
/* Station management */
/**********************/

static u32 ath10k_peer_assoc_h_listen_intval(struct ath10k *ar,
					     struct ieee80211_vif *vif)
{
	/* Some firmware revisions have unstable STA powersave when listen
	 * interval is set too high (e.g. 5). The symptoms are firmware doesn't
	 * generate NullFunc frames properly even if buffered frames have been
	 * indicated in Beacon TIM. Firmware would seldom wake up to pull
	 * buffered frames. Often pinging the device from AP would simply fail.
	 *
	 * As a workaround set it to 1.
	 */
	if (vif->type == NL80211_IFTYPE_STATION)
		return 1;

	return ar->hw->conf.listen_interval;
}

static void ath10k_peer_assoc_h_basic(struct ath10k *ar,
				      struct ieee80211_vif *vif,
				      struct ieee80211_sta *sta,
				      struct wmi_peer_assoc_complete_arg *arg)
{
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	u32 aid;

	lockdep_assert_held(&ar->conf_mutex);

	if (vif->type == NL80211_IFTYPE_STATION)
		aid = vif->cfg.aid;
	else
		aid = sta->aid;

	ether_addr_copy(arg->addr, sta->addr);
	arg->vdev_id = arvif->vdev_id;
	arg->peer_aid = aid;
	arg->peer_flags |= arvif->ar->wmi.peer_flags->auth;
	arg->peer_listen_intval = ath10k_peer_assoc_h_listen_intval(ar, vif);
	arg->peer_num_spatial_streams = 1;
	arg->peer_caps = vif->bss_conf.assoc_capability;
}

static void ath10k_peer_assoc_h_crypto(struct ath10k *ar,
				       struct ieee80211_vif *vif,
				       struct ieee80211_sta *sta,
				       struct wmi_peer_assoc_complete_arg *arg)
{
	struct ieee80211_bss_conf *info = &vif->bss_conf;
	struct cfg80211_chan_def def;
	struct cfg80211_bss *bss;
	const u8 *rsnie = NULL;
	const u8 *wpaie = NULL;

	lockdep_assert_held(&ar->conf_mutex);

	if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
		return;

	bss = cfg80211_get_bss(ar->hw->wiphy, def.chan, info->bssid,
			       vif->cfg.ssid_len ? vif->cfg.ssid : NULL,
			       vif->cfg.ssid_len,
			       IEEE80211_BSS_TYPE_ANY, IEEE80211_PRIVACY_ANY);
	if (bss) {
		const struct cfg80211_bss_ies *ies;

		rcu_read_lock();
		rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN);

		ies = rcu_dereference(bss->ies);

		wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT,
						WLAN_OUI_TYPE_MICROSOFT_WPA,
						ies->data,
						ies->len);
		rcu_read_unlock();
		cfg80211_put_bss(ar->hw->wiphy, bss);
	}

	/* FIXME: base on RSN IE/WPA IE is a correct idea? */
	if (rsnie || wpaie) {
		ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: rsn ie found\n", __func__);
		arg->peer_flags |= ar->wmi.peer_flags->need_ptk_4_way;
	}

	if (wpaie) {
		ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: wpa ie found\n", __func__);
		arg->peer_flags |= ar->wmi.peer_flags->need_gtk_2_way;
	}

	if (sta->mfp &&
	    test_bit(ATH10K_FW_FEATURE_MFP_SUPPORT,
		     ar->running_fw->fw_file.fw_features)) {
		arg->peer_flags |= ar->wmi.peer_flags->pmf;
	}
}

static void ath10k_peer_assoc_h_rates(struct ath10k *ar,
				      struct ieee80211_vif *vif,
				      struct ieee80211_sta *sta,
				      struct wmi_peer_assoc_complete_arg *arg)
{
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates;
	struct cfg80211_chan_def def;
	const struct ieee80211_supported_band *sband;
	const struct ieee80211_rate *rates;
	enum nl80211_band band;
	u32 ratemask;
	u8 rate;
	int i;

	lockdep_assert_held(&ar->conf_mutex);

	if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
		return;

	band = def.chan->band;
	sband = ar->hw->wiphy->bands[band];
	ratemask = sta->deflink.supp_rates[band];
	ratemask &= arvif->bitrate_mask.control[band].legacy;
	rates = sband->bitrates;

	rateset->num_rates = 0;

	for (i = 0; i < 32; i++, ratemask >>= 1, rates++) {
		if (!(ratemask & 1))
			continue;

		rate = ath10k_mac_bitrate_to_rate(rates->bitrate);
		rateset->rates[rateset->num_rates] = rate;
		rateset->num_rates++;
	}
}

static bool
ath10k_peer_assoc_h_ht_masked(const u8 ht_mcs_mask[IEEE80211_HT_MCS_MASK_LEN])
{
	int nss;

	for (nss = 0; nss < IEEE80211_HT_MCS_MASK_LEN; nss++)
		if (ht_mcs_mask[nss])
			return false;

	return true;
}

static bool
ath10k_peer_assoc_h_vht_masked(const u16 vht_mcs_mask[NL80211_VHT_NSS_MAX])
{
	int nss;

	for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++)
		if (vht_mcs_mask[nss])
			return false;

	return true;
}

static void ath10k_peer_assoc_h_ht(struct ath10k *ar,
				   struct ieee80211_vif *vif,
				   struct ieee80211_sta *sta,
				   struct wmi_peer_assoc_complete_arg *arg)
{
	const struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct cfg80211_chan_def def;
	enum nl80211_band band;
	const u8 *ht_mcs_mask;
	const u16 *vht_mcs_mask;
	int i, n;
	u8 max_nss;
	u32 stbc;

	lockdep_assert_held(&ar->conf_mutex);

	if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
		return;

	if (!ht_cap->ht_supported)
		return;

	band = def.chan->band;
	ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
	vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;

	if (ath10k_peer_assoc_h_ht_masked(ht_mcs_mask) &&
	    ath10k_peer_assoc_h_vht_masked(vht_mcs_mask))
		return;

	arg->peer_flags |= ar->wmi.peer_flags->ht;
	arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
				    ht_cap->ampdu_factor)) - 1;

	arg->peer_mpdu_density =
		ath10k_parse_mpdudensity(ht_cap->ampdu_density);

	arg->peer_ht_caps = ht_cap->cap;
	arg->peer_rate_caps |= WMI_RC_HT_FLAG;

	if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING)
		arg->peer_flags |= ar->wmi.peer_flags->ldbc;

	if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) {
		arg->peer_flags |= ar->wmi.peer_flags->bw40;
		arg->peer_rate_caps |= WMI_RC_CW40_FLAG;
	}

	if (arvif->bitrate_mask.control[band].gi != NL80211_TXRATE_FORCE_LGI) {
		if (ht_cap->cap & IEEE80211_HT_CAP_SGI_20)
			arg->peer_rate_caps |= WMI_RC_SGI_FLAG;

		if (ht_cap->cap & IEEE80211_HT_CAP_SGI_40)
			arg->peer_rate_caps |= WMI_RC_SGI_FLAG;
	}

	if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) {
		arg->peer_rate_caps |= WMI_RC_TX_STBC_FLAG;
		arg->peer_flags |= ar->wmi.peer_flags->stbc;
	}

	if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) {
		stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC;
		stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT;
		stbc = stbc << WMI_RC_RX_STBC_FLAG_S;
		arg->peer_rate_caps |= stbc;
		arg->peer_flags |= ar->wmi.peer_flags->stbc;
	}

	if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2])
		arg->peer_rate_caps |= WMI_RC_TS_FLAG;
	else if (ht_cap->mcs.rx_mask[1])
		arg->peer_rate_caps |= WMI_RC_DS_FLAG;

	for (i = 0, n = 0, max_nss = 0; i < IEEE80211_HT_MCS_MASK_LEN * 8; i++)
		if ((ht_cap->mcs.rx_mask[i / 8] & BIT(i % 8)) &&
		    (ht_mcs_mask[i / 8] & BIT(i % 8))) {
			max_nss = (i / 8) + 1;
			arg->peer_ht_rates.rates[n++] = i;
		}

	/*
	 * This is a workaround for HT-enabled STAs which break the spec
	 * and have no HT capabilities RX mask (no HT RX MCS map).
	 *
	 * As per spec, in section 20.3.5 Modulation and coding scheme (MCS),
	 * MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs.
	 *
	 * Firmware asserts if such situation occurs.
	 */
	if (n == 0) {
		arg->peer_ht_rates.num_rates = 8;
		for (i = 0; i < arg->peer_ht_rates.num_rates; i++)
			arg->peer_ht_rates.rates[i] = i;
	} else {
		arg->peer_ht_rates.num_rates = n;
		arg->peer_num_spatial_streams = min(sta->deflink.rx_nss,
						    max_nss);
	}

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n",
		   arg->addr,
		   arg->peer_ht_rates.num_rates,
		   arg->peer_num_spatial_streams);
}

static int ath10k_peer_assoc_qos_ap(struct ath10k *ar,
				    struct ath10k_vif *arvif,
				    struct ieee80211_sta *sta)
{
	u32 uapsd = 0;
	u32 max_sp = 0;
	int ret = 0;

	lockdep_assert_held(&ar->conf_mutex);

	if (sta->wme && sta->uapsd_queues) {
		ath10k_dbg(ar, ATH10K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n",
			   sta->uapsd_queues, sta->max_sp);

		if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
			uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN |
				 WMI_AP_PS_UAPSD_AC3_TRIGGER_EN;
		if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI)
			uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN |
				 WMI_AP_PS_UAPSD_AC2_TRIGGER_EN;
		if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK)
			uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN |
				 WMI_AP_PS_UAPSD_AC1_TRIGGER_EN;
		if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE)
			uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN |
				 WMI_AP_PS_UAPSD_AC0_TRIGGER_EN;

		if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP)
			max_sp = sta->max_sp;

		ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
						 sta->addr,
						 WMI_AP_PS_PEER_PARAM_UAPSD,
						 uapsd);
		if (ret) {
			ath10k_warn(ar, "failed to set ap ps peer param uapsd for vdev %i: %d\n",
				    arvif->vdev_id, ret);
			return ret;
		}

		ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
						 sta->addr,
						 WMI_AP_PS_PEER_PARAM_MAX_SP,
						 max_sp);
		if (ret) {
			ath10k_warn(ar, "failed to set ap ps peer param max sp for vdev %i: %d\n",
				    arvif->vdev_id, ret);
			return ret;
		}

		/* TODO setup this based on STA listen interval and
		 * beacon interval. Currently we don't know
		 * sta->listen_interval - mac80211 patch required.
		 * Currently use 10 seconds
		 */
		ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr,
						 WMI_AP_PS_PEER_PARAM_AGEOUT_TIME,
						 10);
		if (ret) {
			ath10k_warn(ar, "failed to set ap ps peer param ageout time for vdev %i: %d\n",
				    arvif->vdev_id, ret);
			return ret;
		}
	}

	return 0;
}

static u16
ath10k_peer_assoc_h_vht_limit(u16 tx_mcs_set,
			      const u16 vht_mcs_limit[NL80211_VHT_NSS_MAX])
{
	int idx_limit;
	int nss;
	u16 mcs_map;
	u16 mcs;

	for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) {
		mcs_map = ath10k_mac_get_max_vht_mcs_map(tx_mcs_set, nss) &
			  vht_mcs_limit[nss];

		if (mcs_map)
			idx_limit = fls(mcs_map) - 1;
		else
			idx_limit = -1;

		switch (idx_limit) {
		case 0:
		case 1:
		case 2:
		case 3:
		case 4:
		case 5:
		case 6:
		default:
			/* see ath10k_mac_can_set_bitrate_mask() */
			WARN_ON(1);
			fallthrough;
		case -1:
			mcs = IEEE80211_VHT_MCS_NOT_SUPPORTED;
			break;
		case 7:
			mcs = IEEE80211_VHT_MCS_SUPPORT_0_7;
			break;
		case 8:
			mcs = IEEE80211_VHT_MCS_SUPPORT_0_8;
			break;
		case 9:
			mcs = IEEE80211_VHT_MCS_SUPPORT_0_9;
			break;
		}

		tx_mcs_set &= ~(0x3 << (nss * 2));
		tx_mcs_set |= mcs << (nss * 2);
	}

	return tx_mcs_set;
}

static u32 get_160mhz_nss_from_maxrate(int rate)
{
	u32 nss;

	switch (rate) {
	case 780:
		nss = 1;
		break;
	case 1560:
		nss = 2;
		break;
	case 2106:
		nss = 3; /* not support MCS9 from spec*/
		break;
	case 3120:
		nss = 4;
		break;
	default:
		 nss = 1;
	}

	return nss;
}

static void ath10k_peer_assoc_h_vht(struct ath10k *ar,
				    struct ieee80211_vif *vif,
				    struct ieee80211_sta *sta,
				    struct wmi_peer_assoc_complete_arg *arg)
{
	const struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ath10k_hw_params *hw = &ar->hw_params;
	struct cfg80211_chan_def def;
	enum nl80211_band band;
	const u16 *vht_mcs_mask;
	u8 ampdu_factor;
	u8 max_nss, vht_mcs;
	int i;

	if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
		return;

	if (!vht_cap->vht_supported)
		return;

	band = def.chan->band;
	vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;

	if (ath10k_peer_assoc_h_vht_masked(vht_mcs_mask))
		return;

	arg->peer_flags |= ar->wmi.peer_flags->vht;

	if (def.chan->band == NL80211_BAND_2GHZ)
		arg->peer_flags |= ar->wmi.peer_flags->vht_2g;

	arg->peer_vht_caps = vht_cap->cap;

	ampdu_factor = (vht_cap->cap &
			IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >>
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;

	/* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to
	 * zero in VHT IE. Using it would result in degraded throughput.
	 * arg->peer_max_mpdu at this point contains HT max_mpdu so keep
	 * it if VHT max_mpdu is smaller.
	 */
	arg->peer_max_mpdu = max(arg->peer_max_mpdu,
				 (1U << (IEEE80211_HT_MAX_AMPDU_FACTOR +
					ampdu_factor)) - 1);

	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
		arg->peer_flags |= ar->wmi.peer_flags->bw80;

	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160)
		arg->peer_flags |= ar->wmi.peer_flags->bw160;

	/* Calculate peer NSS capability from VHT capabilities if STA
	 * supports VHT.
	 */
	for (i = 0, max_nss = 0, vht_mcs = 0; i < NL80211_VHT_NSS_MAX; i++) {
		vht_mcs = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map) >>
			  (2 * i) & 3;

		if ((vht_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED) &&
		    vht_mcs_mask[i])
			max_nss = i + 1;
	}
	arg->peer_num_spatial_streams = min(sta->deflink.rx_nss, max_nss);
	arg->peer_vht_rates.rx_max_rate =
		__le16_to_cpu(vht_cap->vht_mcs.rx_highest);
	arg->peer_vht_rates.rx_mcs_set =
		__le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map);
	arg->peer_vht_rates.tx_max_rate =
		__le16_to_cpu(vht_cap->vht_mcs.tx_highest);
	arg->peer_vht_rates.tx_mcs_set = ath10k_peer_assoc_h_vht_limit(
		__le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map), vht_mcs_mask);

	/* Configure bandwidth-NSS mapping to FW
	 * for the chip's tx chains setting on 160Mhz bw
	 */
	if (arg->peer_phymode == MODE_11AC_VHT160 ||
	    arg->peer_phymode == MODE_11AC_VHT80_80) {
		u32 rx_nss;
		u32 max_rate;

		max_rate = arg->peer_vht_rates.rx_max_rate;
		rx_nss = get_160mhz_nss_from_maxrate(max_rate);

		if (rx_nss == 0)
			rx_nss = arg->peer_num_spatial_streams;
		else
			rx_nss = min(arg->peer_num_spatial_streams, rx_nss);

		max_rate = hw->vht160_mcs_tx_highest;
		rx_nss = min(rx_nss, get_160mhz_nss_from_maxrate(max_rate));

		arg->peer_bw_rxnss_override =
			FIELD_PREP(WMI_PEER_NSS_MAP_ENABLE, 1) |
			FIELD_PREP(WMI_PEER_NSS_160MHZ_MASK, (rx_nss - 1));

		if (arg->peer_phymode == MODE_11AC_VHT80_80) {
			arg->peer_bw_rxnss_override |=
			FIELD_PREP(WMI_PEER_NSS_80_80MHZ_MASK, (rx_nss - 1));
		}
	}
	ath10k_dbg(ar, ATH10K_DBG_MAC,
		   "mac vht peer %pM max_mpdu %d flags 0x%x peer_rx_nss_override 0x%x\n",
		   sta->addr, arg->peer_max_mpdu,
		   arg->peer_flags, arg->peer_bw_rxnss_override);
}

static void ath10k_peer_assoc_h_qos(struct ath10k *ar,
				    struct ieee80211_vif *vif,
				    struct ieee80211_sta *sta,
				    struct wmi_peer_assoc_complete_arg *arg)
{
	struct ath10k_vif *arvif = (void *)vif->drv_priv;

	switch (arvif->vdev_type) {
	case WMI_VDEV_TYPE_AP:
		if (sta->wme)
			arg->peer_flags |= arvif->ar->wmi.peer_flags->qos;

		if (sta->wme && sta->uapsd_queues) {
			arg->peer_flags |= arvif->ar->wmi.peer_flags->apsd;
			arg->peer_rate_caps |= WMI_RC_UAPSD_FLAG;
		}
		break;
	case WMI_VDEV_TYPE_STA:
		if (sta->wme)
			arg->peer_flags |= arvif->ar->wmi.peer_flags->qos;
		break;
	case WMI_VDEV_TYPE_IBSS:
		if (sta->wme)
			arg->peer_flags |= arvif->ar->wmi.peer_flags->qos;
		break;
	default:
		break;
	}

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM qos %d\n",
		   sta->addr, !!(arg->peer_flags &
		   arvif->ar->wmi.peer_flags->qos));
}

static bool ath10k_mac_sta_has_ofdm_only(struct ieee80211_sta *sta)
{
	return sta->deflink.supp_rates[NL80211_BAND_2GHZ] >>
	       ATH10K_MAC_FIRST_OFDM_RATE_IDX;
}

static enum wmi_phy_mode ath10k_mac_get_phymode_vht(struct ath10k *ar,
						    struct ieee80211_sta *sta)
{
	struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap;

	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) {
		switch (vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) {
		case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ:
			return MODE_11AC_VHT160;
		case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ:
			return MODE_11AC_VHT80_80;
		default:
			/* not sure if this is a valid case? */
			return MODE_11AC_VHT160;
		}
	}

	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
		return MODE_11AC_VHT80;

	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
		return MODE_11AC_VHT40;

	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20)
		return MODE_11AC_VHT20;

	return MODE_UNKNOWN;
}

static void ath10k_peer_assoc_h_phymode(struct ath10k *ar,
					struct ieee80211_vif *vif,
					struct ieee80211_sta *sta,
					struct wmi_peer_assoc_complete_arg *arg)
{
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct cfg80211_chan_def def;
	enum nl80211_band band;
	const u8 *ht_mcs_mask;
	const u16 *vht_mcs_mask;
	enum wmi_phy_mode phymode = MODE_UNKNOWN;

	if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
		return;

	band = def.chan->band;
	ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
	vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;

	switch (band) {
	case NL80211_BAND_2GHZ:
		if (sta->deflink.vht_cap.vht_supported &&
		    !ath10k_peer_assoc_h_vht_masked(vht_mcs_mask)) {
			if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
				phymode = MODE_11AC_VHT40;
			else
				phymode = MODE_11AC_VHT20;
		} else if (sta->deflink.ht_cap.ht_supported &&
			   !ath10k_peer_assoc_h_ht_masked(ht_mcs_mask)) {
			if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
				phymode = MODE_11NG_HT40;
			else
				phymode = MODE_11NG_HT20;
		} else if (ath10k_mac_sta_has_ofdm_only(sta)) {
			phymode = MODE_11G;
		} else {
			phymode = MODE_11B;
		}

		break;
	case NL80211_BAND_5GHZ:
		/*
		 * Check VHT first.
		 */
		if (sta->deflink.vht_cap.vht_supported &&
		    !ath10k_peer_assoc_h_vht_masked(vht_mcs_mask)) {
			phymode = ath10k_mac_get_phymode_vht(ar, sta);
		} else if (sta->deflink.ht_cap.ht_supported &&
			   !ath10k_peer_assoc_h_ht_masked(ht_mcs_mask)) {
			if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40)
				phymode = MODE_11NA_HT40;
			else
				phymode = MODE_11NA_HT20;
		} else {
			phymode = MODE_11A;
		}

		break;
	default:
		break;
	}

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM phymode %s\n",
		   sta->addr, ath10k_wmi_phymode_str(phymode));

	arg->peer_phymode = phymode;
	WARN_ON(phymode == MODE_UNKNOWN);
}

static int ath10k_peer_assoc_prepare(struct ath10k *ar,
				     struct ieee80211_vif *vif,
				     struct ieee80211_sta *sta,
				     struct wmi_peer_assoc_complete_arg *arg)
{
	lockdep_assert_held(&ar->conf_mutex);

	memset(arg, 0, sizeof(*arg));

	ath10k_peer_assoc_h_basic(ar, vif, sta, arg);
	ath10k_peer_assoc_h_crypto(ar, vif, sta, arg);
	ath10k_peer_assoc_h_rates(ar, vif, sta, arg);
	ath10k_peer_assoc_h_ht(ar, vif, sta, arg);
	ath10k_peer_assoc_h_phymode(ar, vif, sta, arg);
	ath10k_peer_assoc_h_vht(ar, vif, sta, arg);
	ath10k_peer_assoc_h_qos(ar, vif, sta, arg);

	return 0;
}

static const u32 ath10k_smps_map[] = {
	[WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC,
	[WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC,
	[WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE,
	[WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE,
};

static int ath10k_setup_peer_smps(struct ath10k *ar, struct ath10k_vif *arvif,
				  const u8 *addr,
				  const struct ieee80211_sta_ht_cap *ht_cap)
{
	int smps;

	if (!ht_cap->ht_supported)
		return 0;

	smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS;
	smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT;

	if (smps >= ARRAY_SIZE(ath10k_smps_map))
		return -EINVAL;

	return ath10k_wmi_peer_set_param(ar, arvif->vdev_id, addr,
					 ar->wmi.peer_param->smps_state,
					 ath10k_smps_map[smps]);
}

static int ath10k_mac_vif_recalc_txbf(struct ath10k *ar,
				      struct ieee80211_vif *vif,
				      struct ieee80211_sta_vht_cap vht_cap)
{
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	int ret;
	u32 param;
	u32 value;

	if (ath10k_wmi_get_txbf_conf_scheme(ar) != WMI_TXBF_CONF_AFTER_ASSOC)
		return 0;

	if (!(ar->vht_cap_info &
	      (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
	       IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
	       IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
	       IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)))
		return 0;

	param = ar->wmi.vdev_param->txbf;
	value = 0;

	if (WARN_ON(param == WMI_VDEV_PARAM_UNSUPPORTED))
		return 0;

	/* The following logic is correct. If a remote STA advertises support
	 * for being a beamformer then we should enable us being a beamformee.
	 */

	if (ar->vht_cap_info &
	    (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
	     IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) {
		if (vht_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)
			value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE;

		if (vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)
			value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFEE;
	}

	if (ar->vht_cap_info &
	    (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
	     IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) {
		if (vht_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)
			value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER;

		if (vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)
			value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFER;
	}

	if (value & WMI_VDEV_PARAM_TXBF_MU_TX_BFEE)
		value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE;

	if (value & WMI_VDEV_PARAM_TXBF_MU_TX_BFER)
		value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER;

	ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, value);
	if (ret) {
		ath10k_warn(ar, "failed to submit vdev param txbf 0x%x: %d\n",
			    value, ret);
		return ret;
	}

	return 0;
}

static bool ath10k_mac_is_connected(struct ath10k *ar)
{
	struct ath10k_vif *arvif;

	list_for_each_entry(arvif, &ar->arvifs, list) {
		if (arvif->is_up && arvif->vdev_type == WMI_VDEV_TYPE_STA)
			return true;
	}

	return false;
}

static int ath10k_mac_txpower_setup(struct ath10k *ar, int txpower)
{
	int ret;
	u32 param;
	int tx_power_2g, tx_power_5g;
	bool connected;

	lockdep_assert_held(&ar->conf_mutex);

	/* ath10k internally uses unit of 0.5 dBm so multiply by 2 */
	tx_power_2g = txpower * 2;
	tx_power_5g = txpower * 2;

	connected = ath10k_mac_is_connected(ar);

	if (connected && ar->tx_power_2g_limit)
		if (tx_power_2g > ar->tx_power_2g_limit)
			tx_power_2g = ar->tx_power_2g_limit;

	if (connected && ar->tx_power_5g_limit)
		if (tx_power_5g > ar->tx_power_5g_limit)
			tx_power_5g = ar->tx_power_5g_limit;

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac txpower 2g: %d, 5g: %d\n",
		   tx_power_2g, tx_power_5g);

	param = ar->wmi.pdev_param->txpower_limit2g;
	ret = ath10k_wmi_pdev_set_param(ar, param, tx_power_2g);
	if (ret) {
		ath10k_warn(ar, "failed to set 2g txpower %d: %d\n",
			    tx_power_2g, ret);
		return ret;
	}

	param = ar->wmi.pdev_param->txpower_limit5g;
	ret = ath10k_wmi_pdev_set_param(ar, param, tx_power_5g);
	if (ret) {
		ath10k_warn(ar, "failed to set 5g txpower %d: %d\n",
			    tx_power_5g, ret);
		return ret;
	}

	return 0;
}

static int ath10k_mac_txpower_recalc(struct ath10k *ar)
{
	struct ath10k_vif *arvif;
	int ret, txpower = -1;

	lockdep_assert_held(&ar->conf_mutex);

	list_for_each_entry(arvif, &ar->arvifs, list) {
		/* txpower not initialized yet? */
		if (arvif->txpower == INT_MIN)
			continue;

		if (txpower == -1)
			txpower = arvif->txpower;
		else
			txpower = min(txpower, arvif->txpower);
	}

	if (txpower == -1)
		return 0;

	ret = ath10k_mac_txpower_setup(ar, txpower);
	if (ret) {
		ath10k_warn(ar, "failed to setup tx power %d: %d\n",
			    txpower, ret);
		return ret;
	}

	return 0;
}

static int ath10k_mac_set_sar_power(struct ath10k *ar)
{
	if (!ar->hw_params.dynamic_sar_support)
		return -EOPNOTSUPP;

	if (!ath10k_mac_is_connected(ar))
		return 0;

	/* if connected, then arvif->txpower must be valid */
	return ath10k_mac_txpower_recalc(ar);
}

static int ath10k_mac_set_sar_specs(struct ieee80211_hw *hw,
				    const struct cfg80211_sar_specs *sar)
{
	const struct cfg80211_sar_sub_specs *sub_specs;
	struct ath10k *ar = hw->priv;
	u32 i;
	int ret;

	mutex_lock(&ar->conf_mutex);

	if (!ar->hw_params.dynamic_sar_support) {
		ret = -EOPNOTSUPP;
		goto err;
	}

	if (!sar || sar->type != NL80211_SAR_TYPE_POWER ||
	    sar->num_sub_specs == 0) {
		ret = -EINVAL;
		goto err;
	}

	sub_specs = sar->sub_specs;

	/* 0dbm is not a practical value for ath10k, so use 0
	 * as no SAR limitation on it.
	 */
	ar->tx_power_2g_limit = 0;
	ar->tx_power_5g_limit = 0;

	/* note the power is in 0.25dbm unit, while ath10k uses
	 * 0.5dbm unit.
	 */
	for (i = 0; i < sar->num_sub_specs; i++) {
		if (sub_specs->freq_range_index == 0)
			ar->tx_power_2g_limit = sub_specs->power / 2;
		else if (sub_specs->freq_range_index == 1)
			ar->tx_power_5g_limit = sub_specs->power / 2;

		sub_specs++;
	}

	ret = ath10k_mac_set_sar_power(ar);
	if (ret) {
		ath10k_warn(ar, "failed to set sar power: %d", ret);
		goto err;
	}

err:
	mutex_unlock(&ar->conf_mutex);
	return ret;
}

/* can be called only in mac80211 callbacks due to `key_count` usage */
static void ath10k_bss_assoc(struct ieee80211_hw *hw,
			     struct ieee80211_vif *vif,
			     struct ieee80211_bss_conf *bss_conf)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ieee80211_sta_ht_cap ht_cap;
	struct ieee80211_sta_vht_cap vht_cap;
	struct wmi_peer_assoc_complete_arg peer_arg;
	struct ieee80211_sta *ap_sta;
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i assoc bssid %pM aid %d\n",
		   arvif->vdev_id, arvif->bssid, arvif->aid);

	rcu_read_lock();

	ap_sta = ieee80211_find_sta(vif, bss_conf->bssid);
	if (!ap_sta) {
		ath10k_warn(ar, "failed to find station entry for bss %pM vdev %i\n",
			    bss_conf->bssid, arvif->vdev_id);
		rcu_read_unlock();
		return;
	}

	/* ap_sta must be accessed only within rcu section which must be left
	 * before calling ath10k_setup_peer_smps() which might sleep.
	 */
	ht_cap = ap_sta->deflink.ht_cap;
	vht_cap = ap_sta->deflink.vht_cap;

	ret = ath10k_peer_assoc_prepare(ar, vif, ap_sta, &peer_arg);
	if (ret) {
		ath10k_warn(ar, "failed to prepare peer assoc for %pM vdev %i: %d\n",
			    bss_conf->bssid, arvif->vdev_id, ret);
		rcu_read_unlock();
		return;
	}

	rcu_read_unlock();

	ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
	if (ret) {
		ath10k_warn(ar, "failed to run peer assoc for %pM vdev %i: %d\n",
			    bss_conf->bssid, arvif->vdev_id, ret);
		return;
	}

	ret = ath10k_setup_peer_smps(ar, arvif, bss_conf->bssid, &ht_cap);
	if (ret) {
		ath10k_warn(ar, "failed to setup peer SMPS for vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return;
	}

	ret = ath10k_mac_vif_recalc_txbf(ar, vif, vht_cap);
	if (ret) {
		ath10k_warn(ar, "failed to recalc txbf for vdev %i on bss %pM: %d\n",
			    arvif->vdev_id, bss_conf->bssid, ret);
		return;
	}

	ath10k_dbg(ar, ATH10K_DBG_MAC,
		   "mac vdev %d up (associated) bssid %pM aid %d\n",
		   arvif->vdev_id, bss_conf->bssid, vif->cfg.aid);

	WARN_ON(arvif->is_up);

	arvif->aid = vif->cfg.aid;
	ether_addr_copy(arvif->bssid, bss_conf->bssid);

	ret = ath10k_wmi_pdev_set_param(ar,
					ar->wmi.pdev_param->peer_stats_info_enable, 1);
	if (ret)
		ath10k_warn(ar, "failed to enable peer stats info: %d\n", ret);

	ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid);
	if (ret) {
		ath10k_warn(ar, "failed to set vdev %d up: %d\n",
			    arvif->vdev_id, ret);
		return;
	}

	arvif->is_up = true;

	ath10k_mac_set_sar_power(ar);

	/* Workaround: Some firmware revisions (tested with qca6174
	 * WLAN.RM.2.0-00073) have buggy powersave state machine and must be
	 * poked with peer param command.
	 */
	ret = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, arvif->bssid,
					ar->wmi.peer_param->dummy_var, 1);
	if (ret) {
		ath10k_warn(ar, "failed to poke peer %pM param for ps workaround on vdev %i: %d\n",
			    arvif->bssid, arvif->vdev_id, ret);
		return;
	}
}

static void ath10k_bss_disassoc(struct ieee80211_hw *hw,
				struct ieee80211_vif *vif)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ieee80211_sta_vht_cap vht_cap = {};
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i disassoc bssid %pM\n",
		   arvif->vdev_id, arvif->bssid);

	ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
	if (ret)
		ath10k_warn(ar, "failed to down vdev %i: %d\n",
			    arvif->vdev_id, ret);

	arvif->def_wep_key_idx = -1;

	ret = ath10k_mac_vif_recalc_txbf(ar, vif, vht_cap);
	if (ret) {
		ath10k_warn(ar, "failed to recalc txbf for vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return;
	}

	arvif->is_up = false;

	ath10k_mac_txpower_recalc(ar);

	cancel_delayed_work_sync(&arvif->connection_loss_work);
}

static int ath10k_new_peer_tid_config(struct ath10k *ar,
				      struct ieee80211_sta *sta,
				      struct ath10k_vif *arvif)
{
	struct wmi_per_peer_per_tid_cfg_arg arg = {};
	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
	bool config_apply;
	int ret, i;

	for (i = 0; i < ATH10K_TID_MAX; i++) {
		config_apply = false;
		if (arvif->retry_long[i] || arvif->ampdu[i] ||
		    arvif->rate_ctrl[i] || arvif->rtscts[i]) {
			config_apply = true;
			arg.tid = i;
			arg.vdev_id = arvif->vdev_id;
			arg.retry_count = arvif->retry_long[i];
			arg.aggr_control = arvif->ampdu[i];
			arg.rate_ctrl = arvif->rate_ctrl[i];
			arg.rcode_flags = arvif->rate_code[i];

			if (arvif->rtscts[i])
				arg.ext_tid_cfg_bitmap =
					WMI_EXT_TID_RTS_CTS_CONFIG;
			else
				arg.ext_tid_cfg_bitmap = 0;

			arg.rtscts_ctrl = arvif->rtscts[i];
		}

		if (arvif->noack[i]) {
			arg.ack_policy = arvif->noack[i];
			arg.rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_DEFAULT_LOWEST_RATE;
			arg.aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_DISABLE;
			config_apply = true;
		}

		/* Assign default value(-1) to newly connected station.
		 * This is to identify station specific tid configuration not
		 * configured for the station.
		 */
		arsta->retry_long[i] = -1;
		arsta->noack[i] = -1;
		arsta->ampdu[i] = -1;

		if (!config_apply)
			continue;

		ether_addr_copy(arg.peer_macaddr.addr, sta->addr);

		ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, &arg);
		if (ret) {
			ath10k_warn(ar, "failed to set per tid retry/aggr config for sta %pM: %d\n",
				    sta->addr, ret);
			return ret;
		}

		memset(&arg, 0, sizeof(arg));
	}

	return 0;
}

static int ath10k_station_assoc(struct ath10k *ar,
				struct ieee80211_vif *vif,
				struct ieee80211_sta *sta,
				bool reassoc)
{
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct wmi_peer_assoc_complete_arg peer_arg;
	int ret = 0;

	lockdep_assert_held(&ar->conf_mutex);

	ret = ath10k_peer_assoc_prepare(ar, vif, sta, &peer_arg);
	if (ret) {
		ath10k_warn(ar, "failed to prepare WMI peer assoc for %pM vdev %i: %i\n",
			    sta->addr, arvif->vdev_id, ret);
		return ret;
	}

	ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
	if (ret) {
		ath10k_warn(ar, "failed to run peer assoc for STA %pM vdev %i: %d\n",
			    sta->addr, arvif->vdev_id, ret);
		return ret;
	}

	/* Re-assoc is run only to update supported rates for given station. It
	 * doesn't make much sense to reconfigure the peer completely.
	 */
	if (!reassoc) {
		ret = ath10k_setup_peer_smps(ar, arvif, sta->addr,
					     &sta->deflink.ht_cap);
		if (ret) {
			ath10k_warn(ar, "failed to setup peer SMPS for vdev %d: %d\n",
				    arvif->vdev_id, ret);
			return ret;
		}

		ret = ath10k_peer_assoc_qos_ap(ar, arvif, sta);
		if (ret) {
			ath10k_warn(ar, "failed to set qos params for STA %pM for vdev %i: %d\n",
				    sta->addr, arvif->vdev_id, ret);
			return ret;
		}

		if (!sta->wme) {
			arvif->num_legacy_stations++;
			ret  = ath10k_recalc_rtscts_prot(arvif);
			if (ret) {
				ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
					    arvif->vdev_id, ret);
				return ret;
			}
		}

		/* Plumb cached keys only for static WEP */
		if ((arvif->def_wep_key_idx != -1) && (!sta->tdls)) {
			ret = ath10k_install_peer_wep_keys(arvif, sta->addr);
			if (ret) {
				ath10k_warn(ar, "failed to install peer wep keys for vdev %i: %d\n",
					    arvif->vdev_id, ret);
				return ret;
			}
		}
	}

	if (!test_bit(WMI_SERVICE_PEER_TID_CONFIGS_SUPPORT, ar->wmi.svc_map))
		return ret;

	return ath10k_new_peer_tid_config(ar, sta, arvif);
}

static int ath10k_station_disassoc(struct ath10k *ar,
				   struct ieee80211_vif *vif,
				   struct ieee80211_sta *sta)
{
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	int ret = 0;

	lockdep_assert_held(&ar->conf_mutex);

	if (!sta->wme) {
		arvif->num_legacy_stations--;
		ret = ath10k_recalc_rtscts_prot(arvif);
		if (ret) {
			ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
				    arvif->vdev_id, ret);
			return ret;
		}
	}

	ret = ath10k_clear_peer_keys(arvif, sta->addr);
	if (ret) {
		ath10k_warn(ar, "failed to clear all peer wep keys for vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	return ret;
}

/**************/
/* Regulatory */
/**************/

static int ath10k_update_channel_list(struct ath10k *ar)
{
	struct ieee80211_hw *hw = ar->hw;
	struct ieee80211_supported_band **bands;
	enum nl80211_band band;
	struct ieee80211_channel *channel;
	struct wmi_scan_chan_list_arg arg = {0};
	struct wmi_channel_arg *ch;
	bool passive;
	int len;
	int ret;
	int i;

	lockdep_assert_held(&ar->conf_mutex);

	bands = hw->wiphy->bands;
	for (band = 0; band < NUM_NL80211_BANDS; band++) {
		if (!bands[band])
			continue;

		for (i = 0; i < bands[band]->n_channels; i++) {
			if (bands[band]->channels[i].flags &
			    IEEE80211_CHAN_DISABLED)
				continue;

			arg.n_channels++;
		}
	}

	len = sizeof(struct wmi_channel_arg) * arg.n_channels;
	arg.channels = kzalloc(len, GFP_KERNEL);
	if (!arg.channels)
		return -ENOMEM;

	ch = arg.channels;
	for (band = 0; band < NUM_NL80211_BANDS; band++) {
		if (!bands[band])
			continue;

		for (i = 0; i < bands[band]->n_channels; i++) {
			channel = &bands[band]->channels[i];

			if (channel->flags & IEEE80211_CHAN_DISABLED)
				continue;

			ch->allow_ht = true;

			/* FIXME: when should we really allow VHT? */
			ch->allow_vht = true;

			ch->allow_ibss =
				!(channel->flags & IEEE80211_CHAN_NO_IR);

			ch->ht40plus =
				!(channel->flags & IEEE80211_CHAN_NO_HT40PLUS);

			ch->chan_radar =
				!!(channel->flags & IEEE80211_CHAN_RADAR);

			passive = channel->flags & IEEE80211_CHAN_NO_IR;
			ch->passive = passive;

			/* the firmware is ignoring the "radar" flag of the
			 * channel and is scanning actively using Probe Requests
			 * on "Radar detection"/DFS channels which are not
			 * marked as "available"
			 */
			ch->passive |= ch->chan_radar;

			ch->freq = channel->center_freq;
			ch->band_center_freq1 = channel->center_freq;
			ch->min_power = 0;
			ch->max_power = channel->max_power * 2;
			ch->max_reg_power = channel->max_reg_power * 2;
			ch->max_antenna_gain = channel->max_antenna_gain;
			ch->reg_class_id = 0; /* FIXME */

			/* FIXME: why use only legacy modes, why not any
			 * HT/VHT modes? Would that even make any
			 * difference?
			 */
			if (channel->band == NL80211_BAND_2GHZ)
				ch->mode = MODE_11G;
			else
				ch->mode = MODE_11A;

			if (WARN_ON_ONCE(ch->mode == MODE_UNKNOWN))
				continue;

			ath10k_dbg(ar, ATH10K_DBG_WMI,
				   "mac channel [%zd/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n",
				    ch - arg.channels, arg.n_channels,
				   ch->freq, ch->max_power, ch->max_reg_power,
				   ch->max_antenna_gain, ch->mode);

			ch++;
		}
	}

	ret = ath10k_wmi_scan_chan_list(ar, &arg);
	kfree(arg.channels);

	return ret;
}

static enum wmi_dfs_region
ath10k_mac_get_dfs_region(enum nl80211_dfs_regions dfs_region)
{
	switch (dfs_region) {
	case NL80211_DFS_UNSET:
		return WMI_UNINIT_DFS_DOMAIN;
	case NL80211_DFS_FCC:
		return WMI_FCC_DFS_DOMAIN;
	case NL80211_DFS_ETSI:
		return WMI_ETSI_DFS_DOMAIN;
	case NL80211_DFS_JP:
		return WMI_MKK4_DFS_DOMAIN;
	}
	return WMI_UNINIT_DFS_DOMAIN;
}

static void ath10k_regd_update(struct ath10k *ar)
{
	struct reg_dmn_pair_mapping *regpair;
	int ret;
	enum wmi_dfs_region wmi_dfs_reg;
	enum nl80211_dfs_regions nl_dfs_reg;

	lockdep_assert_held(&ar->conf_mutex);

	ret = ath10k_update_channel_list(ar);
	if (ret)
		ath10k_warn(ar, "failed to update channel list: %d\n", ret);

	regpair = ar->ath_common.regulatory.regpair;

	if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
		nl_dfs_reg = ar->dfs_detector->region;
		wmi_dfs_reg = ath10k_mac_get_dfs_region(nl_dfs_reg);
	} else {
		wmi_dfs_reg = WMI_UNINIT_DFS_DOMAIN;
	}

	/* Target allows setting up per-band regdomain but ath_common provides
	 * a combined one only
	 */
	ret = ath10k_wmi_pdev_set_regdomain(ar,
					    regpair->reg_domain,
					    regpair->reg_domain, /* 2ghz */
					    regpair->reg_domain, /* 5ghz */
					    regpair->reg_2ghz_ctl,
					    regpair->reg_5ghz_ctl,
					    wmi_dfs_reg);
	if (ret)
		ath10k_warn(ar, "failed to set pdev regdomain: %d\n", ret);
}

static void ath10k_mac_update_channel_list(struct ath10k *ar,
					   struct ieee80211_supported_band *band)
{
	int i;

	if (ar->low_5ghz_chan && ar->high_5ghz_chan) {
		for (i = 0; i < band->n_channels; i++) {
			if (band->channels[i].center_freq < ar->low_5ghz_chan ||
			    band->channels[i].center_freq > ar->high_5ghz_chan)
				band->channels[i].flags |=
					IEEE80211_CHAN_DISABLED;
		}
	}
}

static void ath10k_reg_notifier(struct wiphy *wiphy,
				struct regulatory_request *request)
{
	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
	struct ath10k *ar = hw->priv;
	bool result;

	ath_reg_notifier_apply(wiphy, request, &ar->ath_common.regulatory);

	if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
		ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "dfs region 0x%x\n",
			   request->dfs_region);
		result = ar->dfs_detector->set_dfs_domain(ar->dfs_detector,
							  request->dfs_region);
		if (!result)
			ath10k_warn(ar, "DFS region 0x%X not supported, will trigger radar for every pulse\n",
				    request->dfs_region);
	}

	mutex_lock(&ar->conf_mutex);
	if (ar->state == ATH10K_STATE_ON)
		ath10k_regd_update(ar);
	mutex_unlock(&ar->conf_mutex);

	if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY)
		ath10k_mac_update_channel_list(ar,
					       ar->hw->wiphy->bands[NL80211_BAND_5GHZ]);
}

static void ath10k_stop_radar_confirmation(struct ath10k *ar)
{
	spin_lock_bh(&ar->data_lock);
	ar->radar_conf_state = ATH10K_RADAR_CONFIRMATION_STOPPED;
	spin_unlock_bh(&ar->data_lock);

	cancel_work_sync(&ar->radar_confirmation_work);
}

/***************/
/* TX handlers */
/***************/

enum ath10k_mac_tx_path {
	ATH10K_MAC_TX_HTT,
	ATH10K_MAC_TX_HTT_MGMT,
	ATH10K_MAC_TX_WMI_MGMT,
	ATH10K_MAC_TX_UNKNOWN,
};

void ath10k_mac_tx_lock(struct ath10k *ar, int reason)
{
	lockdep_assert_held(&ar->htt.tx_lock);

	WARN_ON(reason >= ATH10K_TX_PAUSE_MAX);
	ar->tx_paused |= BIT(reason);
	ieee80211_stop_queues(ar->hw);
}

static void ath10k_mac_tx_unlock_iter(void *data, u8 *mac,
				      struct ieee80211_vif *vif)
{
	struct ath10k *ar = data;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;

	if (arvif->tx_paused)
		return;

	ieee80211_wake_queue(ar->hw, arvif->vdev_id);
}

void ath10k_mac_tx_unlock(struct ath10k *ar, int reason)
{
	lockdep_assert_held(&ar->htt.tx_lock);

	WARN_ON(reason >= ATH10K_TX_PAUSE_MAX);
	ar->tx_paused &= ~BIT(reason);

	if (ar->tx_paused)
		return;

	ieee80211_iterate_active_interfaces_atomic(ar->hw,
						   ATH10K_ITER_RESUME_FLAGS,
						   ath10k_mac_tx_unlock_iter,
						   ar);

	ieee80211_wake_queue(ar->hw, ar->hw->offchannel_tx_hw_queue);
}

void ath10k_mac_vif_tx_lock(struct ath10k_vif *arvif, int reason)
{
	struct ath10k *ar = arvif->ar;

	lockdep_assert_held(&ar->htt.tx_lock);

	WARN_ON(reason >= BITS_PER_LONG);
	arvif->tx_paused |= BIT(reason);
	ieee80211_stop_queue(ar->hw, arvif->vdev_id);
}

void ath10k_mac_vif_tx_unlock(struct ath10k_vif *arvif, int reason)
{
	struct ath10k *ar = arvif->ar;

	lockdep_assert_held(&ar->htt.tx_lock);

	WARN_ON(reason >= BITS_PER_LONG);
	arvif->tx_paused &= ~BIT(reason);

	if (ar->tx_paused)
		return;

	if (arvif->tx_paused)
		return;

	ieee80211_wake_queue(ar->hw, arvif->vdev_id);
}

static void ath10k_mac_vif_handle_tx_pause(struct ath10k_vif *arvif,
					   enum wmi_tlv_tx_pause_id pause_id,
					   enum wmi_tlv_tx_pause_action action)
{
	struct ath10k *ar = arvif->ar;

	lockdep_assert_held(&ar->htt.tx_lock);

	switch (action) {
	case WMI_TLV_TX_PAUSE_ACTION_STOP:
		ath10k_mac_vif_tx_lock(arvif, pause_id);
		break;
	case WMI_TLV_TX_PAUSE_ACTION_WAKE:
		ath10k_mac_vif_tx_unlock(arvif, pause_id);
		break;
	default:
		ath10k_dbg(ar, ATH10K_DBG_BOOT,
			   "received unknown tx pause action %d on vdev %i, ignoring\n",
			    action, arvif->vdev_id);
		break;
	}
}

struct ath10k_mac_tx_pause {
	u32 vdev_id;
	enum wmi_tlv_tx_pause_id pause_id;
	enum wmi_tlv_tx_pause_action action;
};

static void ath10k_mac_handle_tx_pause_iter(void *data, u8 *mac,
					    struct ieee80211_vif *vif)
{
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ath10k_mac_tx_pause *arg = data;

	if (arvif->vdev_id != arg->vdev_id)
		return;

	ath10k_mac_vif_handle_tx_pause(arvif, arg->pause_id, arg->action);
}

void ath10k_mac_handle_tx_pause_vdev(struct ath10k *ar, u32 vdev_id,
				     enum wmi_tlv_tx_pause_id pause_id,
				     enum wmi_tlv_tx_pause_action action)
{
	struct ath10k_mac_tx_pause arg = {
		.vdev_id = vdev_id,
		.pause_id = pause_id,
		.action = action,
	};

	spin_lock_bh(&ar->htt.tx_lock);
	ieee80211_iterate_active_interfaces_atomic(ar->hw,
						   ATH10K_ITER_RESUME_FLAGS,
						   ath10k_mac_handle_tx_pause_iter,
						   &arg);
	spin_unlock_bh(&ar->htt.tx_lock);
}

static enum ath10k_hw_txrx_mode
ath10k_mac_tx_h_get_txmode(struct ath10k *ar,
			   struct ieee80211_vif *vif,
			   struct ieee80211_sta *sta,
			   struct sk_buff *skb)
{
	const struct ieee80211_hdr *hdr = (void *)skb->data;
	const struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb);
	__le16 fc = hdr->frame_control;

	if (IEEE80211_SKB_CB(skb)->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)
		return ATH10K_HW_TXRX_ETHERNET;

	if (!vif || vif->type == NL80211_IFTYPE_MONITOR)
		return ATH10K_HW_TXRX_RAW;

	if (ieee80211_is_mgmt(fc))
		return ATH10K_HW_TXRX_MGMT;

	/* Workaround:
	 *
	 * NullFunc frames are mostly used to ping if a client or AP are still
	 * reachable and responsive. This implies tx status reports must be
	 * accurate - otherwise either mac80211 or userspace (e.g. hostapd) can
	 * come to a conclusion that the other end disappeared and tear down
	 * BSS connection or it can never disconnect from BSS/client (which is
	 * the case).
	 *
	 * Firmware with HTT older than 3.0 delivers incorrect tx status for
	 * NullFunc frames to driver. However there's a HTT Mgmt Tx command
	 * which seems to deliver correct tx reports for NullFunc frames. The
	 * downside of using it is it ignores client powersave state so it can
	 * end up disconnecting sleeping clients in AP mode. It should fix STA
	 * mode though because AP don't sleep.
	 */
	if (ar->htt.target_version_major < 3 &&
	    (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc)) &&
	    !test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX,
		      ar->running_fw->fw_file.fw_features))
		return ATH10K_HW_TXRX_MGMT;

	/* Workaround:
	 *
	 * Some wmi-tlv firmwares for qca6174 have broken Tx key selection for
	 * NativeWifi txmode - it selects AP key instead of peer key. It seems
	 * to work with Ethernet txmode so use it.
	 *
	 * FIXME: Check if raw mode works with TDLS.
	 */
	if (ieee80211_is_data_present(fc) && sta && sta->tdls)
		return ATH10K_HW_TXRX_ETHERNET;

	if (test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags) ||
	    skb_cb->flags & ATH10K_SKB_F_RAW_TX)
		return ATH10K_HW_TXRX_RAW;

	return ATH10K_HW_TXRX_NATIVE_WIFI;
}

static bool ath10k_tx_h_use_hwcrypto(struct ieee80211_vif *vif,
				     struct sk_buff *skb)
{
	const struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	const struct ieee80211_hdr *hdr = (void *)skb->data;
	const u32 mask = IEEE80211_TX_INTFL_DONT_ENCRYPT |
			 IEEE80211_TX_CTL_INJECTED;

	if (!ieee80211_has_protected(hdr->frame_control))
		return false;

	if ((info->flags & mask) == mask)
		return false;

	if (vif)
		return !((struct ath10k_vif *)vif->drv_priv)->nohwcrypt;

	return true;
}

/* HTT Tx uses Native Wifi tx mode which expects 802.11 frames without QoS
 * Control in the header.
 */
static void ath10k_tx_h_nwifi(struct ieee80211_hw *hw, struct sk_buff *skb)
{
	struct ieee80211_hdr *hdr = (void *)skb->data;
	struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
	u8 *qos_ctl;

	if (!ieee80211_is_data_qos(hdr->frame_control))
		return;

	qos_ctl = ieee80211_get_qos_ctl(hdr);
	memmove(skb->data + IEEE80211_QOS_CTL_LEN,
		skb->data, (void *)qos_ctl - (void *)skb->data);
	skb_pull(skb, IEEE80211_QOS_CTL_LEN);

	/* Some firmware revisions don't handle sending QoS NullFunc well.
	 * These frames are mainly used for CQM purposes so it doesn't really
	 * matter whether QoS NullFunc or NullFunc are sent.
	 */
	hdr = (void *)skb->data;
	if (ieee80211_is_qos_nullfunc(hdr->frame_control))
		cb->flags &= ~ATH10K_SKB_F_QOS;

	hdr->frame_control &= ~__cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
}

static void ath10k_tx_h_8023(struct sk_buff *skb)
{
	struct ieee80211_hdr *hdr;
	struct rfc1042_hdr *rfc1042;
	struct ethhdr *eth;
	size_t hdrlen;
	u8 da[ETH_ALEN];
	u8 sa[ETH_ALEN];
	__be16 type;

	hdr = (void *)skb->data;
	hdrlen = ieee80211_hdrlen(hdr->frame_control);
	rfc1042 = (void *)skb->data + hdrlen;

	ether_addr_copy(da, ieee80211_get_DA(hdr));
	ether_addr_copy(sa, ieee80211_get_SA(hdr));
	type = rfc1042->snap_type;

	skb_pull(skb, hdrlen + sizeof(*rfc1042));
	skb_push(skb, sizeof(*eth));

	eth = (void *)skb->data;
	ether_addr_copy(eth->h_dest, da);
	ether_addr_copy(eth->h_source, sa);
	eth->h_proto = type;
}

static void ath10k_tx_h_add_p2p_noa_ie(struct ath10k *ar,
				       struct ieee80211_vif *vif,
				       struct sk_buff *skb)
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;

	/* This is case only for P2P_GO */
	if (vif->type != NL80211_IFTYPE_AP || !vif->p2p)
		return;

	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) {
		spin_lock_bh(&ar->data_lock);
		if (arvif->u.ap.noa_data)
			if (!pskb_expand_head(skb, 0, arvif->u.ap.noa_len,
					      GFP_ATOMIC))
				skb_put_data(skb, arvif->u.ap.noa_data,
					     arvif->u.ap.noa_len);
		spin_unlock_bh(&ar->data_lock);
	}
}

static void ath10k_mac_tx_h_fill_cb(struct ath10k *ar,
				    struct ieee80211_vif *vif,
				    struct ieee80211_txq *txq,
				    struct ieee80211_sta *sta,
				    struct sk_buff *skb, u16 airtime)
{
	struct ieee80211_hdr *hdr = (void *)skb->data;
	struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
	const struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	bool is_data = ieee80211_is_data(hdr->frame_control) ||
			ieee80211_is_data_qos(hdr->frame_control);
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ath10k_sta *arsta;
	u8 tid, *qos_ctl;
	bool noack = false;

	cb->flags = 0;

	if (info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) {
		cb->flags |= ATH10K_SKB_F_QOS;	/* Assume data frames are QoS */
		goto finish_cb_fill;
	}

	if (!ath10k_tx_h_use_hwcrypto(vif, skb))
		cb->flags |= ATH10K_SKB_F_NO_HWCRYPT;

	if (ieee80211_is_mgmt(hdr->frame_control))
		cb->flags |= ATH10K_SKB_F_MGMT;

	if (ieee80211_is_data_qos(hdr->frame_control)) {
		cb->flags |= ATH10K_SKB_F_QOS;
		qos_ctl = ieee80211_get_qos_ctl(hdr);
		tid = (*qos_ctl) & IEEE80211_QOS_CTL_TID_MASK;

		if (arvif->noack[tid] == WMI_PEER_TID_CONFIG_NOACK)
			noack = true;

		if (sta) {
			arsta = (struct ath10k_sta *)sta->drv_priv;

			if (arsta->noack[tid] == WMI_PEER_TID_CONFIG_NOACK)
				noack = true;

			if (arsta->noack[tid] == WMI_PEER_TID_CONFIG_ACK)
				noack = false;
		}

		if (noack)
			cb->flags |= ATH10K_SKB_F_NOACK_TID;
	}

	/* Data frames encrypted in software will be posted to firmware
	 * with tx encap mode set to RAW. Ex: Multicast traffic generated
	 * for a specific VLAN group will always be encrypted in software.
	 */
	if (is_data && ieee80211_has_protected(hdr->frame_control) &&
	    !info->control.hw_key) {
		cb->flags |= ATH10K_SKB_F_NO_HWCRYPT;
		cb->flags |= ATH10K_SKB_F_RAW_TX;
	}

finish_cb_fill:
	cb->vif = vif;
	cb->txq = txq;
	cb->airtime_est = airtime;
	if (sta) {
		arsta = (struct ath10k_sta *)sta->drv_priv;
		spin_lock_bh(&ar->data_lock);
		cb->ucast_cipher = arsta->ucast_cipher;
		spin_unlock_bh(&ar->data_lock);
	}
}

bool ath10k_mac_tx_frm_has_freq(struct ath10k *ar)
{
	/* FIXME: Not really sure since when the behaviour changed. At some
	 * point new firmware stopped requiring creation of peer entries for
	 * offchannel tx (and actually creating them causes issues with wmi-htc
	 * tx credit replenishment and reliability). Assuming it's at least 3.4
	 * because that's when the `freq` was introduced to TX_FRM HTT command.
	 */
	return (ar->htt.target_version_major >= 3 &&
		ar->htt.target_version_minor >= 4 &&
		ar->running_fw->fw_file.htt_op_version == ATH10K_FW_HTT_OP_VERSION_TLV);
}

static int ath10k_mac_tx_wmi_mgmt(struct ath10k *ar, struct sk_buff *skb)
{
	struct sk_buff_head *q = &ar->wmi_mgmt_tx_queue;

	if (skb_queue_len_lockless(q) >= ATH10K_MAX_NUM_MGMT_PENDING) {
		ath10k_warn(ar, "wmi mgmt tx queue is full\n");
		return -ENOSPC;
	}

	skb_queue_tail(q, skb);
	ieee80211_queue_work(ar->hw, &ar->wmi_mgmt_tx_work);

	return 0;
}

static enum ath10k_mac_tx_path
ath10k_mac_tx_h_get_txpath(struct ath10k *ar,
			   struct sk_buff *skb,
			   enum ath10k_hw_txrx_mode txmode)
{
	switch (txmode) {
	case ATH10K_HW_TXRX_RAW:
	case ATH10K_HW_TXRX_NATIVE_WIFI:
	case ATH10K_HW_TXRX_ETHERNET:
		return ATH10K_MAC_TX_HTT;
	case ATH10K_HW_TXRX_MGMT:
		if (test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX,
			     ar->running_fw->fw_file.fw_features) ||
			     test_bit(WMI_SERVICE_MGMT_TX_WMI,
				      ar->wmi.svc_map))
			return ATH10K_MAC_TX_WMI_MGMT;
		else if (ar->htt.target_version_major >= 3)
			return ATH10K_MAC_TX_HTT;
		else
			return ATH10K_MAC_TX_HTT_MGMT;
	}

	return ATH10K_MAC_TX_UNKNOWN;
}

static int ath10k_mac_tx_submit(struct ath10k *ar,
				enum ath10k_hw_txrx_mode txmode,
				enum ath10k_mac_tx_path txpath,
				struct sk_buff *skb)
{
	struct ath10k_htt *htt = &ar->htt;
	int ret = -EINVAL;

	switch (txpath) {
	case ATH10K_MAC_TX_HTT:
		ret = ath10k_htt_tx(htt, txmode, skb);
		break;
	case ATH10K_MAC_TX_HTT_MGMT:
		ret = ath10k_htt_mgmt_tx(htt, skb);
		break;
	case ATH10K_MAC_TX_WMI_MGMT:
		ret = ath10k_mac_tx_wmi_mgmt(ar, skb);
		break;
	case ATH10K_MAC_TX_UNKNOWN:
		WARN_ON_ONCE(1);
		ret = -EINVAL;
		break;
	}

	if (ret) {
		ath10k_warn(ar, "failed to transmit packet, dropping: %d\n",
			    ret);
		ieee80211_free_txskb(ar->hw, skb);
	}

	return ret;
}

/* This function consumes the sk_buff regardless of return value as far as
 * caller is concerned so no freeing is necessary afterwards.
 */
static int ath10k_mac_tx(struct ath10k *ar,
			 struct ieee80211_vif *vif,
			 enum ath10k_hw_txrx_mode txmode,
			 enum ath10k_mac_tx_path txpath,
			 struct sk_buff *skb, bool noque_offchan)
{
	struct ieee80211_hw *hw = ar->hw;
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	const struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb);
	int ret;

	/* We should disable CCK RATE due to P2P */
	if (info->flags & IEEE80211_TX_CTL_NO_CCK_RATE)
		ath10k_dbg(ar, ATH10K_DBG_MAC, "IEEE80211_TX_CTL_NO_CCK_RATE\n");

	switch (txmode) {
	case ATH10K_HW_TXRX_MGMT:
	case ATH10K_HW_TXRX_NATIVE_WIFI:
		ath10k_tx_h_nwifi(hw, skb);
		ath10k_tx_h_add_p2p_noa_ie(ar, vif, skb);
		ath10k_tx_h_seq_no(vif, skb);
		break;
	case ATH10K_HW_TXRX_ETHERNET:
		/* Convert 802.11->802.3 header only if the frame was earlier
		 * encapsulated to 802.11 by mac80211. Otherwise pass it as is.
		 */
		if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP))
			ath10k_tx_h_8023(skb);
		break;
	case ATH10K_HW_TXRX_RAW:
		if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags) &&
		    !(skb_cb->flags & ATH10K_SKB_F_RAW_TX)) {
			WARN_ON_ONCE(1);
			ieee80211_free_txskb(hw, skb);
			return -ENOTSUPP;
		}
	}

	if (!noque_offchan && info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
		if (!ath10k_mac_tx_frm_has_freq(ar)) {
			ath10k_dbg(ar, ATH10K_DBG_MAC, "mac queued offchannel skb %pK len %d\n",
				   skb, skb->len);

			skb_queue_tail(&ar->offchan_tx_queue, skb);
			ieee80211_queue_work(hw, &ar->offchan_tx_work);
			return 0;
		}
	}

	ret = ath10k_mac_tx_submit(ar, txmode, txpath, skb);
	if (ret) {
		ath10k_warn(ar, "failed to submit frame: %d\n", ret);
		return ret;
	}

	return 0;
}

void ath10k_offchan_tx_purge(struct ath10k *ar)
{
	struct sk_buff *skb;

	for (;;) {
		skb = skb_dequeue(&ar->offchan_tx_queue);
		if (!skb)
			break;

		ieee80211_free_txskb(ar->hw, skb);
	}
}

void ath10k_offchan_tx_work(struct work_struct *work)
{
	struct ath10k *ar = container_of(work, struct ath10k, offchan_tx_work);
	struct ath10k_peer *peer;
	struct ath10k_vif *arvif;
	enum ath10k_hw_txrx_mode txmode;
	enum ath10k_mac_tx_path txpath;
	struct ieee80211_hdr *hdr;
	struct ieee80211_vif *vif;
	struct ieee80211_sta *sta;
	struct sk_buff *skb;
	const u8 *peer_addr;
	int vdev_id;
	int ret;
	unsigned long time_left;
	bool tmp_peer_created = false;

	/* FW requirement: We must create a peer before FW will send out
	 * an offchannel frame. Otherwise the frame will be stuck and
	 * never transmitted. We delete the peer upon tx completion.
	 * It is unlikely that a peer for offchannel tx will already be
	 * present. However it may be in some rare cases so account for that.
	 * Otherwise we might remove a legitimate peer and break stuff.
	 */

	for (;;) {
		skb = skb_dequeue(&ar->offchan_tx_queue);
		if (!skb)
			break;

		mutex_lock(&ar->conf_mutex);

		ath10k_dbg(ar, ATH10K_DBG_MAC, "mac offchannel skb %pK len %d\n",
			   skb, skb->len);

		hdr = (struct ieee80211_hdr *)skb->data;
		peer_addr = ieee80211_get_DA(hdr);

		spin_lock_bh(&ar->data_lock);
		vdev_id = ar->scan.vdev_id;
		peer = ath10k_peer_find(ar, vdev_id, peer_addr);
		spin_unlock_bh(&ar->data_lock);

		if (peer) {
			ath10k_warn(ar, "peer %pM on vdev %d already present\n",
				    peer_addr, vdev_id);
		} else {
			ret = ath10k_peer_create(ar, NULL, NULL, vdev_id,
						 peer_addr,
						 WMI_PEER_TYPE_DEFAULT);
			if (ret)
				ath10k_warn(ar, "failed to create peer %pM on vdev %d: %d\n",
					    peer_addr, vdev_id, ret);
			tmp_peer_created = (ret == 0);
		}

		spin_lock_bh(&ar->data_lock);
		reinit_completion(&ar->offchan_tx_completed);
		ar->offchan_tx_skb = skb;
		spin_unlock_bh(&ar->data_lock);

		/* It's safe to access vif and sta - conf_mutex guarantees that
		 * sta_state() and remove_interface() are locked exclusively
		 * out wrt to this offchannel worker.
		 */
		arvif = ath10k_get_arvif(ar, vdev_id);
		if (arvif) {
			vif = arvif->vif;
			sta = ieee80211_find_sta(vif, peer_addr);
		} else {
			vif = NULL;
			sta = NULL;
		}

		txmode = ath10k_mac_tx_h_get_txmode(ar, vif, sta, skb);
		txpath = ath10k_mac_tx_h_get_txpath(ar, skb, txmode);

		ret = ath10k_mac_tx(ar, vif, txmode, txpath, skb, true);
		if (ret) {
			ath10k_warn(ar, "failed to transmit offchannel frame: %d\n",
				    ret);
			/* not serious */
		}

		time_left =
		wait_for_completion_timeout(&ar->offchan_tx_completed, 3 * HZ);
		if (time_left == 0)
			ath10k_warn(ar, "timed out waiting for offchannel skb %pK, len: %d\n",
				    skb, skb->len);

		if (!peer && tmp_peer_created) {
			ret = ath10k_peer_delete(ar, vdev_id, peer_addr);
			if (ret)
				ath10k_warn(ar, "failed to delete peer %pM on vdev %d: %d\n",
					    peer_addr, vdev_id, ret);
		}

		mutex_unlock(&ar->conf_mutex);
	}
}

void ath10k_mgmt_over_wmi_tx_purge(struct ath10k *ar)
{
	struct sk_buff *skb;

	for (;;) {
		skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
		if (!skb)
			break;

		ieee80211_free_txskb(ar->hw, skb);
	}
}

void ath10k_mgmt_over_wmi_tx_work(struct work_struct *work)
{
	struct ath10k *ar = container_of(work, struct ath10k, wmi_mgmt_tx_work);
	struct sk_buff *skb;
	dma_addr_t paddr;
	int ret;

	for (;;) {
		skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
		if (!skb)
			break;

		if (test_bit(ATH10K_FW_FEATURE_MGMT_TX_BY_REF,
			     ar->running_fw->fw_file.fw_features)) {
			paddr = dma_map_single(ar->dev, skb->data,
					       skb->len, DMA_TO_DEVICE);
			if (dma_mapping_error(ar->dev, paddr)) {
				ieee80211_free_txskb(ar->hw, skb);
				continue;
			}
			ret = ath10k_wmi_mgmt_tx_send(ar, skb, paddr);
			if (ret) {
				ath10k_warn(ar, "failed to transmit management frame by ref via WMI: %d\n",
					    ret);
				/* remove this msdu from idr tracking */
				ath10k_wmi_cleanup_mgmt_tx_send(ar, skb);

				dma_unmap_single(ar->dev, paddr, skb->len,
						 DMA_TO_DEVICE);
				ieee80211_free_txskb(ar->hw, skb);
			}
		} else {
			ret = ath10k_wmi_mgmt_tx(ar, skb);
			if (ret) {
				ath10k_warn(ar, "failed to transmit management frame via WMI: %d\n",
					    ret);
				ieee80211_free_txskb(ar->hw, skb);
			}
		}
	}
}

static void ath10k_mac_txq_init(struct ieee80211_txq *txq)
{
	struct ath10k_txq *artxq;

	if (!txq)
		return;

	artxq = (void *)txq->drv_priv;
	INIT_LIST_HEAD(&artxq->list);
}

static void ath10k_mac_txq_unref(struct ath10k *ar, struct ieee80211_txq *txq)
{
	struct ath10k_skb_cb *cb;
	struct sk_buff *msdu;
	int msdu_id;

	if (!txq)
		return;

	spin_lock_bh(&ar->htt.tx_lock);
	idr_for_each_entry(&ar->htt.pending_tx, msdu, msdu_id) {
		cb = ATH10K_SKB_CB(msdu);
		if (cb->txq == txq)
			cb->txq = NULL;
	}
	spin_unlock_bh(&ar->htt.tx_lock);
}

struct ieee80211_txq *ath10k_mac_txq_lookup(struct ath10k *ar,
					    u16 peer_id,
					    u8 tid)
{
	struct ath10k_peer *peer;

	lockdep_assert_held(&ar->data_lock);

	peer = ar->peer_map[peer_id];
	if (!peer)
		return NULL;

	if (peer->removed)
		return NULL;

	if (peer->sta)
		return peer->sta->txq[tid];
	else if (peer->vif)
		return peer->vif->txq;
	else
		return NULL;
}

static bool ath10k_mac_tx_can_push(struct ieee80211_hw *hw,
				   struct ieee80211_txq *txq)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_txq *artxq = (void *)txq->drv_priv;

	/* No need to get locks */
	if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH)
		return true;

	if (ar->htt.num_pending_tx < ar->htt.tx_q_state.num_push_allowed)
		return true;

	if (artxq->num_fw_queued < artxq->num_push_allowed)
		return true;

	return false;
}

/* Return estimated airtime in microsecond, which is calculated using last
 * reported TX rate. This is just a rough estimation because host driver has no
 * knowledge of the actual transmit rate, retries or aggregation. If actual
 * airtime can be reported by firmware, then delta between estimated and actual
 * airtime can be adjusted from deficit.
 */
#define IEEE80211_ATF_OVERHEAD		100	/* IFS + some slot time */
#define IEEE80211_ATF_OVERHEAD_IFS	16	/* IFS only */
static u16 ath10k_mac_update_airtime(struct ath10k *ar,
				     struct ieee80211_txq *txq,
				     struct sk_buff *skb)
{
	struct ath10k_sta *arsta;
	u32 pktlen;
	u16 airtime = 0;

	if (!txq || !txq->sta)
		return airtime;

	if (test_bit(WMI_SERVICE_REPORT_AIRTIME, ar->wmi.svc_map))
		return airtime;

	spin_lock_bh(&ar->data_lock);
	arsta = (struct ath10k_sta *)txq->sta->drv_priv;

	pktlen = skb->len + 38; /* Assume MAC header 30, SNAP 8 for most case */
	if (arsta->last_tx_bitrate) {
		/* airtime in us, last_tx_bitrate in 100kbps */
		airtime = (pktlen * 8 * (1000 / 100))
				/ arsta->last_tx_bitrate;
		/* overhead for media access time and IFS */
		airtime += IEEE80211_ATF_OVERHEAD_IFS;
	} else {
		/* This is mostly for throttle excessive BC/MC frames, and the
		 * airtime/rate doesn't need be exact. Airtime of BC/MC frames
		 * in 2G get some discount, which helps prevent very low rate
		 * frames from being blocked for too long.
		 */
		airtime = (pktlen * 8 * (1000 / 100)) / 60; /* 6M */
		airtime += IEEE80211_ATF_OVERHEAD;
	}
	spin_unlock_bh(&ar->data_lock);

	return airtime;
}

int ath10k_mac_tx_push_txq(struct ieee80211_hw *hw,
			   struct ieee80211_txq *txq)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_htt *htt = &ar->htt;
	struct ath10k_txq *artxq = (void *)txq->drv_priv;
	struct ieee80211_vif *vif = txq->vif;
	struct ieee80211_sta *sta = txq->sta;
	enum ath10k_hw_txrx_mode txmode;
	enum ath10k_mac_tx_path txpath;
	struct sk_buff *skb;
	struct ieee80211_hdr *hdr;
	size_t skb_len;
	bool is_mgmt, is_presp;
	int ret;
	u16 airtime;

	spin_lock_bh(&ar->htt.tx_lock);
	ret = ath10k_htt_tx_inc_pending(htt);
	spin_unlock_bh(&ar->htt.tx_lock);

	if (ret)
		return ret;

	skb = ieee80211_tx_dequeue_ni(hw, txq);
	if (!skb) {
		spin_lock_bh(&ar->htt.tx_lock);
		ath10k_htt_tx_dec_pending(htt);
		spin_unlock_bh(&ar->htt.tx_lock);

		return -ENOENT;
	}

	airtime = ath10k_mac_update_airtime(ar, txq, skb);
	ath10k_mac_tx_h_fill_cb(ar, vif, txq, sta, skb, airtime);

	skb_len = skb->len;
	txmode = ath10k_mac_tx_h_get_txmode(ar, vif, sta, skb);
	txpath = ath10k_mac_tx_h_get_txpath(ar, skb, txmode);
	is_mgmt = (txpath == ATH10K_MAC_TX_HTT_MGMT);

	if (is_mgmt) {
		hdr = (struct ieee80211_hdr *)skb->data;
		is_presp = ieee80211_is_probe_resp(hdr->frame_control);

		spin_lock_bh(&ar->htt.tx_lock);
		ret = ath10k_htt_tx_mgmt_inc_pending(htt, is_mgmt, is_presp);

		if (ret) {
			ath10k_htt_tx_dec_pending(htt);
			spin_unlock_bh(&ar->htt.tx_lock);
			return ret;
		}
		spin_unlock_bh(&ar->htt.tx_lock);
	}

	ret = ath10k_mac_tx(ar, vif, txmode, txpath, skb, false);
	if (unlikely(ret)) {
		ath10k_warn(ar, "failed to push frame: %d\n", ret);

		spin_lock_bh(&ar->htt.tx_lock);
		ath10k_htt_tx_dec_pending(htt);
		if (is_mgmt)
			ath10k_htt_tx_mgmt_dec_pending(htt);
		spin_unlock_bh(&ar->htt.tx_lock);

		return ret;
	}

	spin_lock_bh(&ar->htt.tx_lock);
	artxq->num_fw_queued++;
	spin_unlock_bh(&ar->htt.tx_lock);

	return skb_len;
}

static int ath10k_mac_schedule_txq(struct ieee80211_hw *hw, u32 ac)
{
	struct ieee80211_txq *txq;
	int ret = 0;

	ieee80211_txq_schedule_start(hw, ac);
	while ((txq = ieee80211_next_txq(hw, ac))) {
		while (ath10k_mac_tx_can_push(hw, txq)) {
			ret = ath10k_mac_tx_push_txq(hw, txq);
			if (ret < 0)
				break;
		}
		ieee80211_return_txq(hw, txq, false);
		ath10k_htt_tx_txq_update(hw, txq);
		if (ret == -EBUSY)
			break;
	}
	ieee80211_txq_schedule_end(hw, ac);

	return ret;
}

void ath10k_mac_tx_push_pending(struct ath10k *ar)
{
	struct ieee80211_hw *hw = ar->hw;
	u32 ac;

	if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH)
		return;

	if (ar->htt.num_pending_tx >= (ar->htt.max_num_pending_tx / 2))
		return;

	rcu_read_lock();
	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
		if (ath10k_mac_schedule_txq(hw, ac) == -EBUSY)
			break;
	}
	rcu_read_unlock();
}
EXPORT_SYMBOL(ath10k_mac_tx_push_pending);

/************/
/* Scanning */
/************/

void __ath10k_scan_finish(struct ath10k *ar)
{
	lockdep_assert_held(&ar->data_lock);

	switch (ar->scan.state) {
	case ATH10K_SCAN_IDLE:
		break;
	case ATH10K_SCAN_RUNNING:
	case ATH10K_SCAN_ABORTING:
		if (!ar->scan.is_roc) {
			struct cfg80211_scan_info info = {
				.aborted = (ar->scan.state ==
					    ATH10K_SCAN_ABORTING),
			};

			ieee80211_scan_completed(ar->hw, &info);
		} else if (ar->scan.roc_notify) {
			ieee80211_remain_on_channel_expired(ar->hw);
		}
		fallthrough;
	case ATH10K_SCAN_STARTING:
		ar->scan.state = ATH10K_SCAN_IDLE;
		ar->scan_channel = NULL;
		ar->scan.roc_freq = 0;
		ath10k_offchan_tx_purge(ar);
		cancel_delayed_work(&ar->scan.timeout);
		complete(&ar->scan.completed);
		break;
	}
}

void ath10k_scan_finish(struct ath10k *ar)
{
	spin_lock_bh(&ar->data_lock);
	__ath10k_scan_finish(ar);
	spin_unlock_bh(&ar->data_lock);
}

static int ath10k_scan_stop(struct ath10k *ar)
{
	struct wmi_stop_scan_arg arg = {
		.req_id = 1, /* FIXME */
		.req_type = WMI_SCAN_STOP_ONE,
		.u.scan_id = ATH10K_SCAN_ID,
	};
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	ret = ath10k_wmi_stop_scan(ar, &arg);
	if (ret) {
		ath10k_warn(ar, "failed to stop wmi scan: %d\n", ret);
		goto out;
	}

	ret = wait_for_completion_timeout(&ar->scan.completed, 3 * HZ);
	if (ret == 0) {
		ath10k_warn(ar, "failed to receive scan abortion completion: timed out\n");
		ret = -ETIMEDOUT;
	} else if (ret > 0) {
		ret = 0;
	}

out:
	/* Scan state should be updated upon scan completion but in case
	 * firmware fails to deliver the event (for whatever reason) it is
	 * desired to clean up scan state anyway. Firmware may have just
	 * dropped the scan completion event delivery due to transport pipe
	 * being overflown with data and/or it can recover on its own before
	 * next scan request is submitted.
	 */
	spin_lock_bh(&ar->data_lock);
	if (ar->scan.state != ATH10K_SCAN_IDLE)
		__ath10k_scan_finish(ar);
	spin_unlock_bh(&ar->data_lock);

	return ret;
}

static void ath10k_scan_abort(struct ath10k *ar)
{
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	spin_lock_bh(&ar->data_lock);

	switch (ar->scan.state) {
	case ATH10K_SCAN_IDLE:
		/* This can happen if timeout worker kicked in and called
		 * abortion while scan completion was being processed.
		 */
		break;
	case ATH10K_SCAN_STARTING:
	case ATH10K_SCAN_ABORTING:
		ath10k_warn(ar, "refusing scan abortion due to invalid scan state: %s (%d)\n",
			    ath10k_scan_state_str(ar->scan.state),
			    ar->scan.state);
		break;
	case ATH10K_SCAN_RUNNING:
		ar->scan.state = ATH10K_SCAN_ABORTING;
		spin_unlock_bh(&ar->data_lock);

		ret = ath10k_scan_stop(ar);
		if (ret)
			ath10k_warn(ar, "failed to abort scan: %d\n", ret);

		spin_lock_bh(&ar->data_lock);
		break;
	}

	spin_unlock_bh(&ar->data_lock);
}

void ath10k_scan_timeout_work(struct work_struct *work)
{
	struct ath10k *ar = container_of(work, struct ath10k,
					 scan.timeout.work);

	mutex_lock(&ar->conf_mutex);
	ath10k_scan_abort(ar);
	mutex_unlock(&ar->conf_mutex);
}

static int ath10k_start_scan(struct ath10k *ar,
			     const struct wmi_start_scan_arg *arg)
{
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	ret = ath10k_wmi_start_scan(ar, arg);
	if (ret)
		return ret;

	ret = wait_for_completion_timeout(&ar->scan.started, 1 * HZ);
	if (ret == 0) {
		ret = ath10k_scan_stop(ar);
		if (ret)
			ath10k_warn(ar, "failed to stop scan: %d\n", ret);

		return -ETIMEDOUT;
	}

	/* If we failed to start the scan, return error code at
	 * this point.  This is probably due to some issue in the
	 * firmware, but no need to wedge the driver due to that...
	 */
	spin_lock_bh(&ar->data_lock);
	if (ar->scan.state == ATH10K_SCAN_IDLE) {
		spin_unlock_bh(&ar->data_lock);
		return -EINVAL;
	}
	spin_unlock_bh(&ar->data_lock);

	return 0;
}

/**********************/
/* mac80211 callbacks */
/**********************/

static void ath10k_mac_op_tx(struct ieee80211_hw *hw,
			     struct ieee80211_tx_control *control,
			     struct sk_buff *skb)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_htt *htt = &ar->htt;
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	struct ieee80211_vif *vif = info->control.vif;
	struct ieee80211_sta *sta = control->sta;
	struct ieee80211_txq *txq = NULL;
	enum ath10k_hw_txrx_mode txmode;
	enum ath10k_mac_tx_path txpath;
	bool is_htt;
	bool is_mgmt;
	int ret;
	u16 airtime;

	airtime = ath10k_mac_update_airtime(ar, txq, skb);
	ath10k_mac_tx_h_fill_cb(ar, vif, txq, sta, skb, airtime);

	txmode = ath10k_mac_tx_h_get_txmode(ar, vif, sta, skb);
	txpath = ath10k_mac_tx_h_get_txpath(ar, skb, txmode);
	is_htt = (txpath == ATH10K_MAC_TX_HTT ||
		  txpath == ATH10K_MAC_TX_HTT_MGMT);
	is_mgmt = (txpath == ATH10K_MAC_TX_HTT_MGMT);

	if (is_htt) {
		bool is_presp = false;

		spin_lock_bh(&ar->htt.tx_lock);
		if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)) {
			struct ieee80211_hdr *hdr = (void *)skb->data;

			is_presp = ieee80211_is_probe_resp(hdr->frame_control);
		}

		ret = ath10k_htt_tx_inc_pending(htt);
		if (ret) {
			ath10k_warn(ar, "failed to increase tx pending count: %d, dropping\n",
				    ret);
			spin_unlock_bh(&ar->htt.tx_lock);
			ieee80211_free_txskb(ar->hw, skb);
			return;
		}

		ret = ath10k_htt_tx_mgmt_inc_pending(htt, is_mgmt, is_presp);
		if (ret) {
			ath10k_dbg(ar, ATH10K_DBG_MAC, "failed to increase tx mgmt pending count: %d, dropping\n",
				   ret);
			ath10k_htt_tx_dec_pending(htt);
			spin_unlock_bh(&ar->htt.tx_lock);
			ieee80211_free_txskb(ar->hw, skb);
			return;
		}
		spin_unlock_bh(&ar->htt.tx_lock);
	}

	ret = ath10k_mac_tx(ar, vif, txmode, txpath, skb, false);
	if (ret) {
		ath10k_warn(ar, "failed to transmit frame: %d\n", ret);
		if (is_htt) {
			spin_lock_bh(&ar->htt.tx_lock);
			ath10k_htt_tx_dec_pending(htt);
			if (is_mgmt)
				ath10k_htt_tx_mgmt_dec_pending(htt);
			spin_unlock_bh(&ar->htt.tx_lock);
		}
		return;
	}
}

static void ath10k_mac_op_wake_tx_queue(struct ieee80211_hw *hw,
					struct ieee80211_txq *txq)
{
	struct ath10k *ar = hw->priv;
	int ret;
	u8 ac = txq->ac;

	ath10k_htt_tx_txq_update(hw, txq);
	if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH)
		return;

	spin_lock_bh(&ar->queue_lock[ac]);

	ieee80211_txq_schedule_start(hw, ac);
	txq = ieee80211_next_txq(hw, ac);
	if (!txq)
		goto out;

	while (ath10k_mac_tx_can_push(hw, txq)) {
		ret = ath10k_mac_tx_push_txq(hw, txq);
		if (ret < 0)
			break;
	}
	ieee80211_return_txq(hw, txq, false);
	ath10k_htt_tx_txq_update(hw, txq);
out:
	ieee80211_txq_schedule_end(hw, ac);
	spin_unlock_bh(&ar->queue_lock[ac]);
}

/* Must not be called with conf_mutex held as workers can use that also. */
void ath10k_drain_tx(struct ath10k *ar)
{
	lockdep_assert_not_held(&ar->conf_mutex);

	/* make sure rcu-protected mac80211 tx path itself is drained */
	synchronize_net();

	ath10k_offchan_tx_purge(ar);
	ath10k_mgmt_over_wmi_tx_purge(ar);

	cancel_work_sync(&ar->offchan_tx_work);
	cancel_work_sync(&ar->wmi_mgmt_tx_work);
}

void ath10k_halt(struct ath10k *ar)
{
	struct ath10k_vif *arvif;

	lockdep_assert_held(&ar->conf_mutex);

	clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
	ar->filter_flags = 0;
	ar->monitor = false;
	ar->monitor_arvif = NULL;

	if (ar->monitor_started)
		ath10k_monitor_stop(ar);

	ar->monitor_started = false;
	ar->tx_paused = 0;

	ath10k_scan_finish(ar);
	ath10k_peer_cleanup_all(ar);
	ath10k_stop_radar_confirmation(ar);
	ath10k_core_stop(ar);
	ath10k_hif_power_down(ar);

	spin_lock_bh(&ar->data_lock);
	list_for_each_entry(arvif, &ar->arvifs, list)
		ath10k_mac_vif_beacon_cleanup(arvif);
	spin_unlock_bh(&ar->data_lock);
}

static int ath10k_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant)
{
	struct ath10k *ar = hw->priv;

	mutex_lock(&ar->conf_mutex);

	*tx_ant = ar->cfg_tx_chainmask;
	*rx_ant = ar->cfg_rx_chainmask;

	mutex_unlock(&ar->conf_mutex);

	return 0;
}

static bool ath10k_check_chain_mask(struct ath10k *ar, u32 cm, const char *dbg)
{
	/* It is not clear that allowing gaps in chainmask
	 * is helpful.  Probably it will not do what user
	 * is hoping for, so warn in that case.
	 */
	if (cm == 15 || cm == 7 || cm == 3 || cm == 1 || cm == 0)
		return true;

	ath10k_warn(ar, "mac %s antenna chainmask is invalid: 0x%x.  Suggested values: 15, 7, 3, 1 or 0.\n",
		    dbg, cm);
	return false;
}

static int ath10k_mac_get_vht_cap_bf_sts(struct ath10k *ar)
{
	int nsts = ar->vht_cap_info;

	nsts &= IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK;
	nsts >>= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT;

	/* If firmware does not deliver to host number of space-time
	 * streams supported, assume it support up to 4 BF STS and return
	 * the value for VHT CAP: nsts-1)
	 */
	if (nsts == 0)
		return 3;

	return nsts;
}

static int ath10k_mac_get_vht_cap_bf_sound_dim(struct ath10k *ar)
{
	int sound_dim = ar->vht_cap_info;

	sound_dim &= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK;
	sound_dim >>= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT;

	/* If the sounding dimension is not advertised by the firmware,
	 * let's use a default value of 1
	 */
	if (sound_dim == 0)
		return 1;

	return sound_dim;
}

static struct ieee80211_sta_vht_cap ath10k_create_vht_cap(struct ath10k *ar)
{
	struct ieee80211_sta_vht_cap vht_cap = {0};
	struct ath10k_hw_params *hw = &ar->hw_params;
	u16 mcs_map;
	u32 val;
	int i;

	vht_cap.vht_supported = 1;
	vht_cap.cap = ar->vht_cap_info;

	if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
				IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) {
		val = ath10k_mac_get_vht_cap_bf_sts(ar);
		val <<= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT;
		val &= IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK;

		vht_cap.cap |= val;
	}

	if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
				IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) {
		val = ath10k_mac_get_vht_cap_bf_sound_dim(ar);
		val <<= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT;
		val &= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK;

		vht_cap.cap |= val;
	}

	mcs_map = 0;
	for (i = 0; i < 8; i++) {
		if ((i < ar->num_rf_chains) && (ar->cfg_tx_chainmask & BIT(i)))
			mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2);
		else
			mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2);
	}

	if (ar->cfg_tx_chainmask <= 1)
		vht_cap.cap &= ~IEEE80211_VHT_CAP_TXSTBC;

	vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
	vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);

	/* If we are supporting 160Mhz or 80+80, then the NIC may be able to do
	 * a restricted NSS for 160 or 80+80 vs what it can do for 80Mhz.  Give
	 * user-space a clue if that is the case.
	 */
	if ((vht_cap.cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) &&
	    (hw->vht160_mcs_rx_highest != 0 ||
	     hw->vht160_mcs_tx_highest != 0)) {
		vht_cap.vht_mcs.rx_highest = cpu_to_le16(hw->vht160_mcs_rx_highest);
		vht_cap.vht_mcs.tx_highest = cpu_to_le16(hw->vht160_mcs_tx_highest);
	}

	return vht_cap;
}

static struct ieee80211_sta_ht_cap ath10k_get_ht_cap(struct ath10k *ar)
{
	int i;
	struct ieee80211_sta_ht_cap ht_cap = {0};

	if (!(ar->ht_cap_info & WMI_HT_CAP_ENABLED))
		return ht_cap;

	ht_cap.ht_supported = 1;
	ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
	ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
	ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
	ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40;
	ht_cap.cap |=
		WLAN_HT_CAP_SM_PS_DISABLED << IEEE80211_HT_CAP_SM_PS_SHIFT;

	if (ar->ht_cap_info & WMI_HT_CAP_HT20_SGI)
		ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;

	if (ar->ht_cap_info & WMI_HT_CAP_HT40_SGI)
		ht_cap.cap |= IEEE80211_HT_CAP_SGI_40;

	if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) {
		u32 smps;

		smps   = WLAN_HT_CAP_SM_PS_DYNAMIC;
		smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;

		ht_cap.cap |= smps;
	}

	if (ar->ht_cap_info & WMI_HT_CAP_TX_STBC && (ar->cfg_tx_chainmask > 1))
		ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC;

	if (ar->ht_cap_info & WMI_HT_CAP_RX_STBC) {
		u32 stbc;

		stbc   = ar->ht_cap_info;
		stbc  &= WMI_HT_CAP_RX_STBC;
		stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT;
		stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT;
		stbc  &= IEEE80211_HT_CAP_RX_STBC;

		ht_cap.cap |= stbc;
	}

	if (ar->ht_cap_info & WMI_HT_CAP_LDPC || (ar->ht_cap_info &
	    WMI_HT_CAP_RX_LDPC && (ar->ht_cap_info & WMI_HT_CAP_TX_LDPC)))
		ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING;

	if (ar->ht_cap_info & WMI_HT_CAP_L_SIG_TXOP_PROT)
		ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT;

	/* max AMSDU is implicitly taken from vht_cap_info */
	if (ar->vht_cap_info & WMI_VHT_CAP_MAX_MPDU_LEN_MASK)
		ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU;

	for (i = 0; i < ar->num_rf_chains; i++) {
		if (ar->cfg_rx_chainmask & BIT(i))
			ht_cap.mcs.rx_mask[i] = 0xFF;
	}

	ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;

	return ht_cap;
}

static void ath10k_mac_setup_ht_vht_cap(struct ath10k *ar)
{
	struct ieee80211_supported_band *band;
	struct ieee80211_sta_vht_cap vht_cap;
	struct ieee80211_sta_ht_cap ht_cap;

	ht_cap = ath10k_get_ht_cap(ar);
	vht_cap = ath10k_create_vht_cap(ar);

	if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) {
		band = &ar->mac.sbands[NL80211_BAND_2GHZ];
		band->ht_cap = ht_cap;
	}
	if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) {
		band = &ar->mac.sbands[NL80211_BAND_5GHZ];
		band->ht_cap = ht_cap;
		band->vht_cap = vht_cap;
	}
}

static int __ath10k_set_antenna(struct ath10k *ar, u32 tx_ant, u32 rx_ant)
{
	int ret;
	bool is_valid_tx_chain_mask, is_valid_rx_chain_mask;

	lockdep_assert_held(&ar->conf_mutex);

	is_valid_tx_chain_mask = ath10k_check_chain_mask(ar, tx_ant, "tx");
	is_valid_rx_chain_mask = ath10k_check_chain_mask(ar, rx_ant, "rx");

	if (!is_valid_tx_chain_mask || !is_valid_rx_chain_mask)
		return -EINVAL;

	ar->cfg_tx_chainmask = tx_ant;
	ar->cfg_rx_chainmask = rx_ant;

	if ((ar->state != ATH10K_STATE_ON) &&
	    (ar->state != ATH10K_STATE_RESTARTED))
		return 0;

	ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->tx_chain_mask,
					tx_ant);
	if (ret) {
		ath10k_warn(ar, "failed to set tx-chainmask: %d, req 0x%x\n",
			    ret, tx_ant);
		return ret;
	}

	ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rx_chain_mask,
					rx_ant);
	if (ret) {
		ath10k_warn(ar, "failed to set rx-chainmask: %d, req 0x%x\n",
			    ret, rx_ant);
		return ret;
	}

	/* Reload HT/VHT capability */
	ath10k_mac_setup_ht_vht_cap(ar);

	return 0;
}

static int ath10k_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant)
{
	struct ath10k *ar = hw->priv;
	int ret;

	mutex_lock(&ar->conf_mutex);
	ret = __ath10k_set_antenna(ar, tx_ant, rx_ant);
	mutex_unlock(&ar->conf_mutex);
	return ret;
}

static int __ath10k_fetch_bb_timing_dt(struct ath10k *ar,
				       struct wmi_bb_timing_cfg_arg *bb_timing)
{
	struct device_node *node;
	const char *fem_name;
	int ret;

	node = ar->dev->of_node;
	if (!node)
		return -ENOENT;

	ret = of_property_read_string_index(node, "ext-fem-name", 0, &fem_name);
	if (ret)
		return -ENOENT;

	/*
	 * If external Front End module used in hardware, then default base band timing
	 * parameter cannot be used since they were fine tuned for reference hardware,
	 * so choosing different value suitable for that external FEM.
	 */
	if (!strcmp("microsemi-lx5586", fem_name)) {
		bb_timing->bb_tx_timing = 0x00;
		bb_timing->bb_xpa_timing = 0x0101;
	} else {
		return -ENOENT;
	}

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot bb_tx_timing 0x%x bb_xpa_timing 0x%x\n",
		   bb_timing->bb_tx_timing, bb_timing->bb_xpa_timing);
	return 0;
}

static int ath10k_mac_rfkill_config(struct ath10k *ar)
{
	u32 param;
	int ret;

	if (ar->hw_values->rfkill_pin == 0) {
		ath10k_warn(ar, "ath10k does not support hardware rfkill with this device\n");
		return -EOPNOTSUPP;
	}

	ath10k_dbg(ar, ATH10K_DBG_MAC,
		   "mac rfkill_pin %d rfkill_cfg %d rfkill_on_level %d",
		   ar->hw_values->rfkill_pin, ar->hw_values->rfkill_cfg,
		   ar->hw_values->rfkill_on_level);

	param = FIELD_PREP(WMI_TLV_RFKILL_CFG_RADIO_LEVEL,
			   ar->hw_values->rfkill_on_level) |
		FIELD_PREP(WMI_TLV_RFKILL_CFG_GPIO_PIN_NUM,
			   ar->hw_values->rfkill_pin) |
		FIELD_PREP(WMI_TLV_RFKILL_CFG_PIN_AS_GPIO,
			   ar->hw_values->rfkill_cfg);

	ret = ath10k_wmi_pdev_set_param(ar,
					ar->wmi.pdev_param->rfkill_config,
					param);
	if (ret) {
		ath10k_warn(ar,
			    "failed to set rfkill config 0x%x: %d\n",
			    param, ret);
		return ret;
	}
	return 0;
}

int ath10k_mac_rfkill_enable_radio(struct ath10k *ar, bool enable)
{
	enum wmi_tlv_rfkill_enable_radio param;
	int ret;

	if (enable)
		param = WMI_TLV_RFKILL_ENABLE_RADIO_ON;
	else
		param = WMI_TLV_RFKILL_ENABLE_RADIO_OFF;

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac rfkill enable %d", param);

	ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rfkill_enable,
					param);
	if (ret) {
		ath10k_warn(ar, "failed to set rfkill enable param %d: %d\n",
			    param, ret);
		return ret;
	}

	return 0;
}

static int ath10k_start(struct ieee80211_hw *hw)
{
	struct ath10k *ar = hw->priv;
	u32 param;
	int ret = 0;
	struct wmi_bb_timing_cfg_arg bb_timing = {0};

	/*
	 * This makes sense only when restarting hw. It is harmless to call
	 * unconditionally. This is necessary to make sure no HTT/WMI tx
	 * commands will be submitted while restarting.
	 */
	ath10k_drain_tx(ar);

	mutex_lock(&ar->conf_mutex);

	switch (ar->state) {
	case ATH10K_STATE_OFF:
		ar->state = ATH10K_STATE_ON;
		break;
	case ATH10K_STATE_RESTARTING:
		ar->state = ATH10K_STATE_RESTARTED;
		break;
	case ATH10K_STATE_ON:
	case ATH10K_STATE_RESTARTED:
	case ATH10K_STATE_WEDGED:
		WARN_ON(1);
		ret = -EINVAL;
		goto err;
	case ATH10K_STATE_UTF:
		ret = -EBUSY;
		goto err;
	}

	spin_lock_bh(&ar->data_lock);

	if (ar->hw_rfkill_on) {
		ar->hw_rfkill_on = false;
		spin_unlock_bh(&ar->data_lock);
		goto err;
	}

	spin_unlock_bh(&ar->data_lock);

	ret = ath10k_hif_power_up(ar, ATH10K_FIRMWARE_MODE_NORMAL);
	if (ret) {
		ath10k_err(ar, "Could not init hif: %d\n", ret);
		goto err_off;
	}

	ret = ath10k_core_start(ar, ATH10K_FIRMWARE_MODE_NORMAL,
				&ar->normal_mode_fw);
	if (ret) {
		ath10k_err(ar, "Could not init core: %d\n", ret);
		goto err_power_down;
	}

	if (ar->sys_cap_info & WMI_TLV_SYS_CAP_INFO_RFKILL) {
		ret = ath10k_mac_rfkill_config(ar);
		if (ret && ret != -EOPNOTSUPP) {
			ath10k_warn(ar, "failed to configure rfkill: %d", ret);
			goto err_core_stop;
		}
	}

	param = ar->wmi.pdev_param->pmf_qos;
	ret = ath10k_wmi_pdev_set_param(ar, param, 1);
	if (ret) {
		ath10k_warn(ar, "failed to enable PMF QOS: %d\n", ret);
		goto err_core_stop;
	}

	param = ar->wmi.pdev_param->dynamic_bw;
	ret = ath10k_wmi_pdev_set_param(ar, param, 1);
	if (ret) {
		ath10k_warn(ar, "failed to enable dynamic BW: %d\n", ret);
		goto err_core_stop;
	}

	if (test_bit(WMI_SERVICE_SPOOF_MAC_SUPPORT, ar->wmi.svc_map)) {
		ret = ath10k_wmi_scan_prob_req_oui(ar, ar->mac_addr);
		if (ret) {
			ath10k_err(ar, "failed to set prob req oui: %i\n", ret);
			goto err_core_stop;
		}
	}

	if (test_bit(WMI_SERVICE_ADAPTIVE_OCS, ar->wmi.svc_map)) {
		ret = ath10k_wmi_adaptive_qcs(ar, true);
		if (ret) {
			ath10k_warn(ar, "failed to enable adaptive qcs: %d\n",
				    ret);
			goto err_core_stop;
		}
	}

	if (test_bit(WMI_SERVICE_BURST, ar->wmi.svc_map)) {
		param = ar->wmi.pdev_param->burst_enable;
		ret = ath10k_wmi_pdev_set_param(ar, param, 0);
		if (ret) {
			ath10k_warn(ar, "failed to disable burst: %d\n", ret);
			goto err_core_stop;
		}
	}

	param = ar->wmi.pdev_param->idle_ps_config;
	ret = ath10k_wmi_pdev_set_param(ar, param, 1);
	if (ret && ret != -EOPNOTSUPP) {
		ath10k_warn(ar, "failed to enable idle_ps_config: %d\n", ret);
		goto err_core_stop;
	}

	__ath10k_set_antenna(ar, ar->cfg_tx_chainmask, ar->cfg_rx_chainmask);

	/*
	 * By default FW set ARP frames ac to voice (6). In that case ARP
	 * exchange is not working properly for UAPSD enabled AP. ARP requests
	 * which arrives with access category 0 are processed by network stack
	 * and send back with access category 0, but FW changes access category
	 * to 6. Set ARP frames access category to best effort (0) solves
	 * this problem.
	 */

	param = ar->wmi.pdev_param->arp_ac_override;
	ret = ath10k_wmi_pdev_set_param(ar, param, 0);
	if (ret) {
		ath10k_warn(ar, "failed to set arp ac override parameter: %d\n",
			    ret);
		goto err_core_stop;
	}

	if (test_bit(ATH10K_FW_FEATURE_SUPPORTS_ADAPTIVE_CCA,
		     ar->running_fw->fw_file.fw_features)) {
		ret = ath10k_wmi_pdev_enable_adaptive_cca(ar, 1,
							  WMI_CCA_DETECT_LEVEL_AUTO,
							  WMI_CCA_DETECT_MARGIN_AUTO);
		if (ret) {
			ath10k_warn(ar, "failed to enable adaptive cca: %d\n",
				    ret);
			goto err_core_stop;
		}
	}

	param = ar->wmi.pdev_param->ani_enable;
	ret = ath10k_wmi_pdev_set_param(ar, param, 1);
	if (ret) {
		ath10k_warn(ar, "failed to enable ani by default: %d\n",
			    ret);
		goto err_core_stop;
	}

	ar->ani_enabled = true;

	if (ath10k_peer_stats_enabled(ar)) {
		param = ar->wmi.pdev_param->peer_stats_update_period;
		ret = ath10k_wmi_pdev_set_param(ar, param,
						PEER_DEFAULT_STATS_UPDATE_PERIOD);
		if (ret) {
			ath10k_warn(ar,
				    "failed to set peer stats period : %d\n",
				    ret);
			goto err_core_stop;
		}
	}

	param = ar->wmi.pdev_param->enable_btcoex;
	if (test_bit(WMI_SERVICE_COEX_GPIO, ar->wmi.svc_map) &&
	    test_bit(ATH10K_FW_FEATURE_BTCOEX_PARAM,
		     ar->running_fw->fw_file.fw_features) &&
	    ar->coex_support) {
		ret = ath10k_wmi_pdev_set_param(ar, param, 0);
		if (ret) {
			ath10k_warn(ar,
				    "failed to set btcoex param: %d\n", ret);
			goto err_core_stop;
		}
		clear_bit(ATH10K_FLAG_BTCOEX, &ar->dev_flags);
	}

	if (test_bit(WMI_SERVICE_BB_TIMING_CONFIG_SUPPORT, ar->wmi.svc_map)) {
		ret = __ath10k_fetch_bb_timing_dt(ar, &bb_timing);
		if (!ret) {
			ret = ath10k_wmi_pdev_bb_timing(ar, &bb_timing);
			if (ret) {
				ath10k_warn(ar,
					    "failed to set bb timings: %d\n",
					    ret);
				goto err_core_stop;
			}
		}
	}

	ar->num_started_vdevs = 0;
	ath10k_regd_update(ar);

	ath10k_spectral_start(ar);
	ath10k_thermal_set_throttling(ar);

	ar->radar_conf_state = ATH10K_RADAR_CONFIRMATION_IDLE;

	mutex_unlock(&ar->conf_mutex);
	return 0;

err_core_stop:
	ath10k_core_stop(ar);

err_power_down:
	ath10k_hif_power_down(ar);

err_off:
	ar->state = ATH10K_STATE_OFF;

err:
	mutex_unlock(&ar->conf_mutex);
	return ret;
}

static void ath10k_stop(struct ieee80211_hw *hw)
{
	struct ath10k *ar = hw->priv;
	u32 opt;

	ath10k_drain_tx(ar);

	mutex_lock(&ar->conf_mutex);
	if (ar->state != ATH10K_STATE_OFF) {
		if (!ar->hw_rfkill_on) {
			/* If the current driver state is RESTARTING but not yet
			 * fully RESTARTED because of incoming suspend event,
			 * then ath10k_halt() is already called via
			 * ath10k_core_restart() and should not be called here.
			 */
			if (ar->state != ATH10K_STATE_RESTARTING) {
				ath10k_halt(ar);
			} else {
				/* Suspending here, because when in RESTARTING
				 * state, ath10k_core_stop() skips
				 * ath10k_wait_for_suspend().
				 */
				opt = WMI_PDEV_SUSPEND_AND_DISABLE_INTR;
				ath10k_wait_for_suspend(ar, opt);
			}
		}
		ar->state = ATH10K_STATE_OFF;
	}
	mutex_unlock(&ar->conf_mutex);

	cancel_work_sync(&ar->set_coverage_class_work);
	cancel_delayed_work_sync(&ar->scan.timeout);
	cancel_work_sync(&ar->restart_work);
}

static int ath10k_config_ps(struct ath10k *ar)
{
	struct ath10k_vif *arvif;
	int ret = 0;

	lockdep_assert_held(&ar->conf_mutex);

	list_for_each_entry(arvif, &ar->arvifs, list) {
		ret = ath10k_mac_vif_setup_ps(arvif);
		if (ret) {
			ath10k_warn(ar, "failed to setup powersave: %d\n", ret);
			break;
		}
	}

	return ret;
}

static int ath10k_config(struct ieee80211_hw *hw, u32 changed)
{
	struct ath10k *ar = hw->priv;
	struct ieee80211_conf *conf = &hw->conf;
	int ret = 0;

	mutex_lock(&ar->conf_mutex);

	if (changed & IEEE80211_CONF_CHANGE_PS)
		ath10k_config_ps(ar);

	if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
		ar->monitor = conf->flags & IEEE80211_CONF_MONITOR;
		ret = ath10k_monitor_recalc(ar);
		if (ret)
			ath10k_warn(ar, "failed to recalc monitor: %d\n", ret);
	}

	mutex_unlock(&ar->conf_mutex);
	return ret;
}

static u32 get_nss_from_chainmask(u16 chain_mask)
{
	if ((chain_mask & 0xf) == 0xf)
		return 4;
	else if ((chain_mask & 0x7) == 0x7)
		return 3;
	else if ((chain_mask & 0x3) == 0x3)
		return 2;
	return 1;
}

static int ath10k_mac_set_txbf_conf(struct ath10k_vif *arvif)
{
	u32 value = 0;
	struct ath10k *ar = arvif->ar;
	int nsts;
	int sound_dim;

	if (ath10k_wmi_get_txbf_conf_scheme(ar) != WMI_TXBF_CONF_BEFORE_ASSOC)
		return 0;

	nsts = ath10k_mac_get_vht_cap_bf_sts(ar);
	if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
				IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE))
		value |= SM(nsts, WMI_TXBF_STS_CAP_OFFSET);

	sound_dim = ath10k_mac_get_vht_cap_bf_sound_dim(ar);
	if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
				IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE))
		value |= SM(sound_dim, WMI_BF_SOUND_DIM_OFFSET);

	if (!value)
		return 0;

	if (ar->vht_cap_info & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)
		value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER;

	if (ar->vht_cap_info & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)
		value |= (WMI_VDEV_PARAM_TXBF_MU_TX_BFER |
			  WMI_VDEV_PARAM_TXBF_SU_TX_BFER);

	if (ar->vht_cap_info & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)
		value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE;

	if (ar->vht_cap_info & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)
		value |= (WMI_VDEV_PARAM_TXBF_MU_TX_BFEE |
			  WMI_VDEV_PARAM_TXBF_SU_TX_BFEE);

	return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
					 ar->wmi.vdev_param->txbf, value);
}

static void ath10k_update_vif_offload(struct ieee80211_hw *hw,
				      struct ieee80211_vif *vif)
{
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ath10k *ar = hw->priv;
	u32 vdev_param;
	int ret;

	if (ath10k_frame_mode != ATH10K_HW_TXRX_ETHERNET ||
	    ar->wmi.vdev_param->tx_encap_type == WMI_VDEV_PARAM_UNSUPPORTED ||
	     (vif->type != NL80211_IFTYPE_STATION &&
	      vif->type != NL80211_IFTYPE_AP))
		vif->offload_flags &= ~IEEE80211_OFFLOAD_ENCAP_ENABLED;

	vdev_param = ar->wmi.vdev_param->tx_encap_type;
	ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
					ATH10K_HW_TXRX_NATIVE_WIFI);
	/* 10.X firmware does not support this VDEV parameter. Do not warn */
	if (ret && ret != -EOPNOTSUPP) {
		ath10k_warn(ar, "failed to set vdev %i TX encapsulation: %d\n",
			    arvif->vdev_id, ret);
	}
}

/*
 * TODO:
 * Figure out how to handle WMI_VDEV_SUBTYPE_P2P_DEVICE,
 * because we will send mgmt frames without CCK. This requirement
 * for P2P_FIND/GO_NEG should be handled by checking CCK flag
 * in the TX packet.
 */
static int ath10k_add_interface(struct ieee80211_hw *hw,
				struct ieee80211_vif *vif)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ath10k_peer *peer;
	enum wmi_sta_powersave_param param;
	int ret = 0;
	u32 value;
	int bit;
	int i;
	u32 vdev_param;

	vif->driver_flags |= IEEE80211_VIF_SUPPORTS_UAPSD;

	mutex_lock(&ar->conf_mutex);

	memset(arvif, 0, sizeof(*arvif));
	ath10k_mac_txq_init(vif->txq);

	arvif->ar = ar;
	arvif->vif = vif;

	INIT_LIST_HEAD(&arvif->list);
	INIT_WORK(&arvif->ap_csa_work, ath10k_mac_vif_ap_csa_work);
	INIT_DELAYED_WORK(&arvif->connection_loss_work,
			  ath10k_mac_vif_sta_connection_loss_work);

	for (i = 0; i < ARRAY_SIZE(arvif->bitrate_mask.control); i++) {
		arvif->bitrate_mask.control[i].legacy = 0xffffffff;
		memset(arvif->bitrate_mask.control[i].ht_mcs, 0xff,
		       sizeof(arvif->bitrate_mask.control[i].ht_mcs));
		memset(arvif->bitrate_mask.control[i].vht_mcs, 0xff,
		       sizeof(arvif->bitrate_mask.control[i].vht_mcs));
	}

	if (ar->num_peers >= ar->max_num_peers) {
		ath10k_warn(ar, "refusing vdev creation due to insufficient peer entry resources in firmware\n");
		ret = -ENOBUFS;
		goto err;
	}

	if (ar->free_vdev_map == 0) {
		ath10k_warn(ar, "Free vdev map is empty, no more interfaces allowed.\n");
		ret = -EBUSY;
		goto err;
	}
	bit = __ffs64(ar->free_vdev_map);

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac create vdev %i map %llx\n",
		   bit, ar->free_vdev_map);

	arvif->vdev_id = bit;
	arvif->vdev_subtype =
		ath10k_wmi_get_vdev_subtype(ar, WMI_VDEV_SUBTYPE_NONE);

	switch (vif->type) {
	case NL80211_IFTYPE_P2P_DEVICE:
		arvif->vdev_type = WMI_VDEV_TYPE_STA;
		arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype
					(ar, WMI_VDEV_SUBTYPE_P2P_DEVICE);
		break;
	case NL80211_IFTYPE_UNSPECIFIED:
	case NL80211_IFTYPE_STATION:
		arvif->vdev_type = WMI_VDEV_TYPE_STA;
		if (vif->p2p)
			arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype
					(ar, WMI_VDEV_SUBTYPE_P2P_CLIENT);
		break;
	case NL80211_IFTYPE_ADHOC:
		arvif->vdev_type = WMI_VDEV_TYPE_IBSS;
		break;
	case NL80211_IFTYPE_MESH_POINT:
		if (test_bit(WMI_SERVICE_MESH_11S, ar->wmi.svc_map)) {
			arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype
						(ar, WMI_VDEV_SUBTYPE_MESH_11S);
		} else if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
			ret = -EINVAL;
			ath10k_warn(ar, "must load driver with rawmode=1 to add mesh interfaces\n");
			goto err;
		}
		arvif->vdev_type = WMI_VDEV_TYPE_AP;
		break;
	case NL80211_IFTYPE_AP:
		arvif->vdev_type = WMI_VDEV_TYPE_AP;

		if (vif->p2p)
			arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype
						(ar, WMI_VDEV_SUBTYPE_P2P_GO);
		break;
	case NL80211_IFTYPE_MONITOR:
		arvif->vdev_type = WMI_VDEV_TYPE_MONITOR;
		break;
	default:
		WARN_ON(1);
		break;
	}

	/* Using vdev_id as queue number will make it very easy to do per-vif
	 * tx queue locking. This shouldn't wrap due to interface combinations
	 * but do a modulo for correctness sake and prevent using offchannel tx
	 * queues for regular vif tx.
	 */
	vif->cab_queue = arvif->vdev_id % (IEEE80211_MAX_QUEUES - 1);
	for (i = 0; i < ARRAY_SIZE(vif->hw_queue); i++)
		vif->hw_queue[i] = arvif->vdev_id % (IEEE80211_MAX_QUEUES - 1);

	/* Some firmware revisions don't wait for beacon tx completion before
	 * sending another SWBA event. This could lead to hardware using old
	 * (freed) beacon data in some cases, e.g. tx credit starvation
	 * combined with missed TBTT. This is very rare.
	 *
	 * On non-IOMMU-enabled hosts this could be a possible security issue
	 * because hw could beacon some random data on the air.  On
	 * IOMMU-enabled hosts DMAR faults would occur in most cases and target
	 * device would crash.
	 *
	 * Since there are no beacon tx completions (implicit nor explicit)
	 * propagated to host the only workaround for this is to allocate a
	 * DMA-coherent buffer for a lifetime of a vif and use it for all
	 * beacon tx commands. Worst case for this approach is some beacons may
	 * become corrupted, e.g. have garbled IEs or out-of-date TIM bitmap.
	 */
	if (vif->type == NL80211_IFTYPE_ADHOC ||
	    vif->type == NL80211_IFTYPE_MESH_POINT ||
	    vif->type == NL80211_IFTYPE_AP) {
		if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) {
			arvif->beacon_buf = kmalloc(IEEE80211_MAX_FRAME_LEN,
						    GFP_KERNEL);

			/* Using a kernel pointer in place of a dma_addr_t
			 * token can lead to undefined behavior if that
			 * makes it into cache management functions. Use a
			 * known-invalid address token instead, which
			 * avoids the warning and makes it easier to catch
			 * bugs if it does end up getting used.
			 */
			arvif->beacon_paddr = DMA_MAPPING_ERROR;
		} else {
			arvif->beacon_buf =
				dma_alloc_coherent(ar->dev,
						   IEEE80211_MAX_FRAME_LEN,
						   &arvif->beacon_paddr,
						   GFP_ATOMIC);
		}
		if (!arvif->beacon_buf) {
			ret = -ENOMEM;
			ath10k_warn(ar, "failed to allocate beacon buffer: %d\n",
				    ret);
			goto err;
		}
	}
	if (test_bit(ATH10K_FLAG_HW_CRYPTO_DISABLED, &ar->dev_flags))
		arvif->nohwcrypt = true;

	if (arvif->nohwcrypt &&
	    !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
		ret = -EINVAL;
		ath10k_warn(ar, "cryptmode module param needed for sw crypto\n");
		goto err;
	}

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev create %d (add interface) type %d subtype %d bcnmode %s\n",
		   arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype,
		   arvif->beacon_buf ? "single-buf" : "per-skb");

	ret = ath10k_wmi_vdev_create(ar, arvif->vdev_id, arvif->vdev_type,
				     arvif->vdev_subtype, vif->addr);
	if (ret) {
		ath10k_warn(ar, "failed to create WMI vdev %i: %d\n",
			    arvif->vdev_id, ret);
		goto err;
	}

	if (test_bit(WMI_SERVICE_VDEV_DISABLE_4_ADDR_SRC_LRN_SUPPORT,
		     ar->wmi.svc_map)) {
		vdev_param = ar->wmi.vdev_param->disable_4addr_src_lrn;
		ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
						WMI_VDEV_DISABLE_4_ADDR_SRC_LRN);
		if (ret && ret != -EOPNOTSUPP) {
			ath10k_warn(ar, "failed to disable 4addr src lrn vdev %i: %d\n",
				    arvif->vdev_id, ret);
		}
	}

	ar->free_vdev_map &= ~(1LL << arvif->vdev_id);
	spin_lock_bh(&ar->data_lock);
	list_add(&arvif->list, &ar->arvifs);
	spin_unlock_bh(&ar->data_lock);

	/* It makes no sense to have firmware do keepalives. mac80211 already
	 * takes care of this with idle connection polling.
	 */
	ret = ath10k_mac_vif_disable_keepalive(arvif);
	if (ret) {
		ath10k_warn(ar, "failed to disable keepalive on vdev %i: %d\n",
			    arvif->vdev_id, ret);
		goto err_vdev_delete;
	}

	arvif->def_wep_key_idx = -1;

	ath10k_update_vif_offload(hw, vif);

	/* Configuring number of spatial stream for monitor interface is causing
	 * target assert in qca9888 and qca6174.
	 */
	if (ar->cfg_tx_chainmask && (vif->type != NL80211_IFTYPE_MONITOR)) {
		u16 nss = get_nss_from_chainmask(ar->cfg_tx_chainmask);

		vdev_param = ar->wmi.vdev_param->nss;
		ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
						nss);
		if (ret) {
			ath10k_warn(ar, "failed to set vdev %i chainmask 0x%x, nss %i: %d\n",
				    arvif->vdev_id, ar->cfg_tx_chainmask, nss,
				    ret);
			goto err_vdev_delete;
		}
	}

	if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
	    arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
		ret = ath10k_peer_create(ar, vif, NULL, arvif->vdev_id,
					 vif->addr, WMI_PEER_TYPE_DEFAULT);
		if (ret) {
			ath10k_warn(ar, "failed to create vdev %i peer for AP/IBSS: %d\n",
				    arvif->vdev_id, ret);
			goto err_vdev_delete;
		}

		spin_lock_bh(&ar->data_lock);

		peer = ath10k_peer_find(ar, arvif->vdev_id, vif->addr);
		if (!peer) {
			ath10k_warn(ar, "failed to lookup peer %pM on vdev %i\n",
				    vif->addr, arvif->vdev_id);
			spin_unlock_bh(&ar->data_lock);
			ret = -ENOENT;
			goto err_peer_delete;
		}

		arvif->peer_id = find_first_bit(peer->peer_ids,
						ATH10K_MAX_NUM_PEER_IDS);

		spin_unlock_bh(&ar->data_lock);
	} else {
		arvif->peer_id = HTT_INVALID_PEERID;
	}

	if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
		ret = ath10k_mac_set_kickout(arvif);
		if (ret) {
			ath10k_warn(ar, "failed to set vdev %i kickout parameters: %d\n",
				    arvif->vdev_id, ret);
			goto err_peer_delete;
		}
	}

	if (arvif->vdev_type == WMI_VDEV_TYPE_STA) {
		param = WMI_STA_PS_PARAM_RX_WAKE_POLICY;
		value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
		ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
						  param, value);
		if (ret) {
			ath10k_warn(ar, "failed to set vdev %i RX wake policy: %d\n",
				    arvif->vdev_id, ret);
			goto err_peer_delete;
		}

		ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif);
		if (ret) {
			ath10k_warn(ar, "failed to recalc ps wake threshold on vdev %i: %d\n",
				    arvif->vdev_id, ret);
			goto err_peer_delete;
		}

		ret = ath10k_mac_vif_recalc_ps_poll_count(arvif);
		if (ret) {
			ath10k_warn(ar, "failed to recalc ps poll count on vdev %i: %d\n",
				    arvif->vdev_id, ret);
			goto err_peer_delete;
		}
	}

	ret = ath10k_mac_set_txbf_conf(arvif);
	if (ret) {
		ath10k_warn(ar, "failed to set txbf for vdev %d: %d\n",
			    arvif->vdev_id, ret);
		goto err_peer_delete;
	}

	ret = ath10k_mac_set_rts(arvif, ar->hw->wiphy->rts_threshold);
	if (ret) {
		ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n",
			    arvif->vdev_id, ret);
		goto err_peer_delete;
	}

	arvif->txpower = vif->bss_conf.txpower;
	ret = ath10k_mac_txpower_recalc(ar);
	if (ret) {
		ath10k_warn(ar, "failed to recalc tx power: %d\n", ret);
		goto err_peer_delete;
	}

	if (test_bit(WMI_SERVICE_RTT_RESPONDER_ROLE, ar->wmi.svc_map)) {
		vdev_param = ar->wmi.vdev_param->rtt_responder_role;
		ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
						arvif->ftm_responder);

		/* It is harmless to not set FTM role. Do not warn */
		if (ret && ret != -EOPNOTSUPP)
			ath10k_warn(ar, "failed to set vdev %i FTM Responder: %d\n",
				    arvif->vdev_id, ret);
	}

	if (vif->type == NL80211_IFTYPE_MONITOR) {
		ar->monitor_arvif = arvif;
		ret = ath10k_monitor_recalc(ar);
		if (ret) {
			ath10k_warn(ar, "failed to recalc monitor: %d\n", ret);
			goto err_peer_delete;
		}
	}

	spin_lock_bh(&ar->htt.tx_lock);
	if (!ar->tx_paused)
		ieee80211_wake_queue(ar->hw, arvif->vdev_id);
	spin_unlock_bh(&ar->htt.tx_lock);

	mutex_unlock(&ar->conf_mutex);
	return 0;

err_peer_delete:
	if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
	    arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
		ath10k_wmi_peer_delete(ar, arvif->vdev_id, vif->addr);
		ath10k_wait_for_peer_delete_done(ar, arvif->vdev_id,
						 vif->addr);
	}

err_vdev_delete:
	ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
	ar->free_vdev_map |= 1LL << arvif->vdev_id;
	spin_lock_bh(&ar->data_lock);
	list_del(&arvif->list);
	spin_unlock_bh(&ar->data_lock);

err:
	if (arvif->beacon_buf) {
		if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
			kfree(arvif->beacon_buf);
		else
			dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN,
					  arvif->beacon_buf,
					  arvif->beacon_paddr);
		arvif->beacon_buf = NULL;
	}

	mutex_unlock(&ar->conf_mutex);

	return ret;
}

static void ath10k_mac_vif_tx_unlock_all(struct ath10k_vif *arvif)
{
	int i;

	for (i = 0; i < BITS_PER_LONG; i++)
		ath10k_mac_vif_tx_unlock(arvif, i);
}

static void ath10k_remove_interface(struct ieee80211_hw *hw,
				    struct ieee80211_vif *vif)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ath10k_peer *peer;
	unsigned long time_left;
	int ret;
	int i;

	cancel_work_sync(&arvif->ap_csa_work);
	cancel_delayed_work_sync(&arvif->connection_loss_work);

	mutex_lock(&ar->conf_mutex);

	ret = ath10k_spectral_vif_stop(arvif);
	if (ret)
		ath10k_warn(ar, "failed to stop spectral for vdev %i: %d\n",
			    arvif->vdev_id, ret);

	ar->free_vdev_map |= 1LL << arvif->vdev_id;
	spin_lock_bh(&ar->data_lock);
	list_del(&arvif->list);
	spin_unlock_bh(&ar->data_lock);

	if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
	    arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
		ret = ath10k_wmi_peer_delete(arvif->ar, arvif->vdev_id,
					     vif->addr);
		if (ret)
			ath10k_warn(ar, "failed to submit AP/IBSS self-peer removal on vdev %i: %d\n",
				    arvif->vdev_id, ret);

		ath10k_wait_for_peer_delete_done(ar, arvif->vdev_id,
						 vif->addr);
		kfree(arvif->u.ap.noa_data);
	}

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i delete (remove interface)\n",
		   arvif->vdev_id);

	ret = ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
	if (ret)
		ath10k_warn(ar, "failed to delete WMI vdev %i: %d\n",
			    arvif->vdev_id, ret);

	if (test_bit(WMI_SERVICE_SYNC_DELETE_CMDS, ar->wmi.svc_map)) {
		time_left = wait_for_completion_timeout(&ar->vdev_delete_done,
							ATH10K_VDEV_DELETE_TIMEOUT_HZ);
		if (time_left == 0) {
			ath10k_warn(ar, "Timeout in receiving vdev delete response\n");
			goto out;
		}
	}

	/* Some firmware revisions don't notify host about self-peer removal
	 * until after associated vdev is deleted.
	 */
	if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
	    arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
		ret = ath10k_wait_for_peer_deleted(ar, arvif->vdev_id,
						   vif->addr);
		if (ret)
			ath10k_warn(ar, "failed to remove AP self-peer on vdev %i: %d\n",
				    arvif->vdev_id, ret);

		spin_lock_bh(&ar->data_lock);
		ar->num_peers--;
		spin_unlock_bh(&ar->data_lock);
	}

	spin_lock_bh(&ar->data_lock);
	for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++) {
		peer = ar->peer_map[i];
		if (!peer)
			continue;

		if (peer->vif == vif) {
			ath10k_warn(ar, "found vif peer %pM entry on vdev %i after it was supposedly removed\n",
				    vif->addr, arvif->vdev_id);
			peer->vif = NULL;
		}
	}

	/* Clean this up late, less opportunity for firmware to access
	 * DMA memory we have deleted.
	 */
	ath10k_mac_vif_beacon_cleanup(arvif);
	spin_unlock_bh(&ar->data_lock);

	ath10k_peer_cleanup(ar, arvif->vdev_id);
	ath10k_mac_txq_unref(ar, vif->txq);

	if (vif->type == NL80211_IFTYPE_MONITOR) {
		ar->monitor_arvif = NULL;
		ret = ath10k_monitor_recalc(ar);
		if (ret)
			ath10k_warn(ar, "failed to recalc monitor: %d\n", ret);
	}

	ret = ath10k_mac_txpower_recalc(ar);
	if (ret)
		ath10k_warn(ar, "failed to recalc tx power: %d\n", ret);

	spin_lock_bh(&ar->htt.tx_lock);
	ath10k_mac_vif_tx_unlock_all(arvif);
	spin_unlock_bh(&ar->htt.tx_lock);

	ath10k_mac_txq_unref(ar, vif->txq);

out:
	mutex_unlock(&ar->conf_mutex);
}

/*
 * FIXME: Has to be verified.
 */
#define SUPPORTED_FILTERS			\
	(FIF_ALLMULTI |				\
	FIF_CONTROL |				\
	FIF_PSPOLL |				\
	FIF_OTHER_BSS |				\
	FIF_BCN_PRBRESP_PROMISC |		\
	FIF_PROBE_REQ |				\
	FIF_FCSFAIL)

static void ath10k_configure_filter(struct ieee80211_hw *hw,
				    unsigned int changed_flags,
				    unsigned int *total_flags,
				    u64 multicast)
{
	struct ath10k *ar = hw->priv;
	int ret;

	mutex_lock(&ar->conf_mutex);

	*total_flags &= SUPPORTED_FILTERS;
	ar->filter_flags = *total_flags;

	ret = ath10k_monitor_recalc(ar);
	if (ret)
		ath10k_warn(ar, "failed to recalc monitor: %d\n", ret);

	mutex_unlock(&ar->conf_mutex);
}

static void ath10k_recalculate_mgmt_rate(struct ath10k *ar,
					 struct ieee80211_vif *vif,
					 struct cfg80211_chan_def *def)
{
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	const struct ieee80211_supported_band *sband;
	u8 basic_rate_idx;
	int hw_rate_code;
	u32 vdev_param;
	u16 bitrate;
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	sband = ar->hw->wiphy->bands[def->chan->band];
	basic_rate_idx = ffs(vif->bss_conf.basic_rates) - 1;
	bitrate = sband->bitrates[basic_rate_idx].bitrate;

	hw_rate_code = ath10k_mac_get_rate_hw_value(bitrate);
	if (hw_rate_code < 0) {
		ath10k_warn(ar, "bitrate not supported %d\n", bitrate);
		return;
	}

	vdev_param = ar->wmi.vdev_param->mgmt_rate;
	ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
					hw_rate_code);
	if (ret)
		ath10k_warn(ar, "failed to set mgmt tx rate %d\n", ret);
}

static void ath10k_bss_info_changed(struct ieee80211_hw *hw,
				    struct ieee80211_vif *vif,
				    struct ieee80211_bss_conf *info,
				    u64 changed)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct cfg80211_chan_def def;
	u32 vdev_param, pdev_param, slottime, preamble;
	u16 bitrate, hw_value;
	u8 rate, rateidx;
	int ret = 0, mcast_rate;
	enum nl80211_band band;

	mutex_lock(&ar->conf_mutex);

	if (changed & BSS_CHANGED_IBSS)
		ath10k_control_ibss(arvif, vif);

	if (changed & BSS_CHANGED_BEACON_INT) {
		arvif->beacon_interval = info->beacon_int;
		vdev_param = ar->wmi.vdev_param->beacon_interval;
		ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
						arvif->beacon_interval);
		ath10k_dbg(ar, ATH10K_DBG_MAC,
			   "mac vdev %d beacon_interval %d\n",
			   arvif->vdev_id, arvif->beacon_interval);

		if (ret)
			ath10k_warn(ar, "failed to set beacon interval for vdev %d: %i\n",
				    arvif->vdev_id, ret);
	}

	if (changed & BSS_CHANGED_BEACON) {
		ath10k_dbg(ar, ATH10K_DBG_MAC,
			   "vdev %d set beacon tx mode to staggered\n",
			   arvif->vdev_id);

		pdev_param = ar->wmi.pdev_param->beacon_tx_mode;
		ret = ath10k_wmi_pdev_set_param(ar, pdev_param,
						WMI_BEACON_STAGGERED_MODE);
		if (ret)
			ath10k_warn(ar, "failed to set beacon mode for vdev %d: %i\n",
				    arvif->vdev_id, ret);

		ret = ath10k_mac_setup_bcn_tmpl(arvif);
		if (ret)
			ath10k_warn(ar, "failed to update beacon template: %d\n",
				    ret);

		if (ieee80211_vif_is_mesh(vif)) {
			/* mesh doesn't use SSID but firmware needs it */
			strncpy(arvif->u.ap.ssid, "mesh",
				sizeof(arvif->u.ap.ssid));
			arvif->u.ap.ssid_len = 4;
		}
	}

	if (changed & BSS_CHANGED_AP_PROBE_RESP) {
		ret = ath10k_mac_setup_prb_tmpl(arvif);
		if (ret)
			ath10k_warn(ar, "failed to setup probe resp template on vdev %i: %d\n",
				    arvif->vdev_id, ret);
	}

	if (changed & (BSS_CHANGED_BEACON_INFO | BSS_CHANGED_BEACON)) {
		arvif->dtim_period = info->dtim_period;

		ath10k_dbg(ar, ATH10K_DBG_MAC,
			   "mac vdev %d dtim_period %d\n",
			   arvif->vdev_id, arvif->dtim_period);

		vdev_param = ar->wmi.vdev_param->dtim_period;
		ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
						arvif->dtim_period);
		if (ret)
			ath10k_warn(ar, "failed to set dtim period for vdev %d: %i\n",
				    arvif->vdev_id, ret);
	}

	if (changed & BSS_CHANGED_SSID &&
	    vif->type == NL80211_IFTYPE_AP) {
		arvif->u.ap.ssid_len = vif->cfg.ssid_len;
		if (vif->cfg.ssid_len)
			memcpy(arvif->u.ap.ssid, vif->cfg.ssid,
			       vif->cfg.ssid_len);
		arvif->u.ap.hidden_ssid = info->hidden_ssid;
	}

	if (changed & BSS_CHANGED_BSSID && !is_zero_ether_addr(info->bssid))
		ether_addr_copy(arvif->bssid, info->bssid);

	if (changed & BSS_CHANGED_FTM_RESPONDER &&
	    arvif->ftm_responder != info->ftm_responder &&
	    test_bit(WMI_SERVICE_RTT_RESPONDER_ROLE, ar->wmi.svc_map)) {
		arvif->ftm_responder = info->ftm_responder;

		vdev_param = ar->wmi.vdev_param->rtt_responder_role;
		ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
						arvif->ftm_responder);

		ath10k_dbg(ar, ATH10K_DBG_MAC,
			   "mac vdev %d ftm_responder %d:ret %d\n",
			   arvif->vdev_id, arvif->ftm_responder, ret);
	}

	if (changed & BSS_CHANGED_BEACON_ENABLED)
		ath10k_control_beaconing(arvif, info);

	if (changed & BSS_CHANGED_ERP_CTS_PROT) {
		arvif->use_cts_prot = info->use_cts_prot;

		ret = ath10k_recalc_rtscts_prot(arvif);
		if (ret)
			ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
				    arvif->vdev_id, ret);

		if (ath10k_mac_can_set_cts_prot(arvif)) {
			ret = ath10k_mac_set_cts_prot(arvif);
			if (ret)
				ath10k_warn(ar, "failed to set cts protection for vdev %d: %d\n",
					    arvif->vdev_id, ret);
		}
	}

	if (changed & BSS_CHANGED_ERP_SLOT) {
		if (info->use_short_slot)
			slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */

		else
			slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */

		ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d slot_time %d\n",
			   arvif->vdev_id, slottime);

		vdev_param = ar->wmi.vdev_param->slot_time;
		ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
						slottime);
		if (ret)
			ath10k_warn(ar, "failed to set erp slot for vdev %d: %i\n",
				    arvif->vdev_id, ret);
	}

	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
		if (info->use_short_preamble)
			preamble = WMI_VDEV_PREAMBLE_SHORT;
		else
			preamble = WMI_VDEV_PREAMBLE_LONG;

		ath10k_dbg(ar, ATH10K_DBG_MAC,
			   "mac vdev %d preamble %dn",
			   arvif->vdev_id, preamble);

		vdev_param = ar->wmi.vdev_param->preamble;
		ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
						preamble);
		if (ret)
			ath10k_warn(ar, "failed to set preamble for vdev %d: %i\n",
				    arvif->vdev_id, ret);
	}

	if (changed & BSS_CHANGED_ASSOC) {
		if (vif->cfg.assoc) {
			/* Workaround: Make sure monitor vdev is not running
			 * when associating to prevent some firmware revisions
			 * (e.g. 10.1 and 10.2) from crashing.
			 */
			if (ar->monitor_started)
				ath10k_monitor_stop(ar);
			ath10k_bss_assoc(hw, vif, info);
			ath10k_monitor_recalc(ar);
		} else {
			ath10k_bss_disassoc(hw, vif);
		}
	}

	if (changed & BSS_CHANGED_TXPOWER) {
		ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev_id %i txpower %d\n",
			   arvif->vdev_id, info->txpower);

		arvif->txpower = info->txpower;
		ret = ath10k_mac_txpower_recalc(ar);
		if (ret)
			ath10k_warn(ar, "failed to recalc tx power: %d\n", ret);
	}

	if (changed & BSS_CHANGED_PS) {
		arvif->ps = vif->cfg.ps;

		ret = ath10k_config_ps(ar);
		if (ret)
			ath10k_warn(ar, "failed to setup ps on vdev %i: %d\n",
				    arvif->vdev_id, ret);
	}

	if (changed & BSS_CHANGED_MCAST_RATE &&
	    !ath10k_mac_vif_chan(arvif->vif, &def)) {
		band = def.chan->band;
		mcast_rate = vif->bss_conf.mcast_rate[band];
		if (mcast_rate > 0)
			rateidx = mcast_rate - 1;
		else
			rateidx = ffs(vif->bss_conf.basic_rates) - 1;

		if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY)
			rateidx += ATH10K_MAC_FIRST_OFDM_RATE_IDX;

		bitrate = ath10k_wmi_legacy_rates[rateidx].bitrate;
		hw_value = ath10k_wmi_legacy_rates[rateidx].hw_value;
		if (ath10k_mac_bitrate_is_cck(bitrate))
			preamble = WMI_RATE_PREAMBLE_CCK;
		else
			preamble = WMI_RATE_PREAMBLE_OFDM;

		rate = ATH10K_HW_RATECODE(hw_value, 0, preamble);

		ath10k_dbg(ar, ATH10K_DBG_MAC,
			   "mac vdev %d mcast_rate %x\n",
			   arvif->vdev_id, rate);

		vdev_param = ar->wmi.vdev_param->mcast_data_rate;
		ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
						vdev_param, rate);
		if (ret)
			ath10k_warn(ar,
				    "failed to set mcast rate on vdev %i: %d\n",
				    arvif->vdev_id,  ret);

		vdev_param = ar->wmi.vdev_param->bcast_data_rate;
		ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
						vdev_param, rate);
		if (ret)
			ath10k_warn(ar,
				    "failed to set bcast rate on vdev %i: %d\n",
				    arvif->vdev_id,  ret);
	}

	if (changed & BSS_CHANGED_BASIC_RATES &&
	    !ath10k_mac_vif_chan(arvif->vif, &def))
		ath10k_recalculate_mgmt_rate(ar, vif, &def);

	mutex_unlock(&ar->conf_mutex);
}

static void ath10k_mac_op_set_coverage_class(struct ieee80211_hw *hw, s16 value)
{
	struct ath10k *ar = hw->priv;

	/* This function should never be called if setting the coverage class
	 * is not supported on this hardware.
	 */
	if (!ar->hw_params.hw_ops->set_coverage_class) {
		WARN_ON_ONCE(1);
		return;
	}
	ar->hw_params.hw_ops->set_coverage_class(ar, value);
}

struct ath10k_mac_tdls_iter_data {
	u32 num_tdls_stations;
	struct ieee80211_vif *curr_vif;
};

static void ath10k_mac_tdls_vif_stations_count_iter(void *data,
						    struct ieee80211_sta *sta)
{
	struct ath10k_mac_tdls_iter_data *iter_data = data;
	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
	struct ieee80211_vif *sta_vif = arsta->arvif->vif;

	if (sta->tdls && sta_vif == iter_data->curr_vif)
		iter_data->num_tdls_stations++;
}

static int ath10k_mac_tdls_vif_stations_count(struct ieee80211_hw *hw,
					      struct ieee80211_vif *vif)
{
	struct ath10k_mac_tdls_iter_data data = {};

	data.curr_vif = vif;

	ieee80211_iterate_stations_atomic(hw,
					  ath10k_mac_tdls_vif_stations_count_iter,
					  &data);
	return data.num_tdls_stations;
}

static int ath10k_hw_scan(struct ieee80211_hw *hw,
			  struct ieee80211_vif *vif,
			  struct ieee80211_scan_request *hw_req)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct cfg80211_scan_request *req = &hw_req->req;
	struct wmi_start_scan_arg arg;
	int ret = 0;
	int i;
	u32 scan_timeout;

	mutex_lock(&ar->conf_mutex);

	if (ath10k_mac_tdls_vif_stations_count(hw, vif) > 0) {
		ret = -EBUSY;
		goto exit;
	}

	spin_lock_bh(&ar->data_lock);
	switch (ar->scan.state) {
	case ATH10K_SCAN_IDLE:
		reinit_completion(&ar->scan.started);
		reinit_completion(&ar->scan.completed);
		ar->scan.state = ATH10K_SCAN_STARTING;
		ar->scan.is_roc = false;
		ar->scan.vdev_id = arvif->vdev_id;
		ret = 0;
		break;
	case ATH10K_SCAN_STARTING:
	case ATH10K_SCAN_RUNNING:
	case ATH10K_SCAN_ABORTING:
		ret = -EBUSY;
		break;
	}
	spin_unlock_bh(&ar->data_lock);

	if (ret)
		goto exit;

	memset(&arg, 0, sizeof(arg));
	ath10k_wmi_start_scan_init(ar, &arg);
	arg.vdev_id = arvif->vdev_id;
	arg.scan_id = ATH10K_SCAN_ID;

	if (req->ie_len) {
		arg.ie_len = req->ie_len;
		memcpy(arg.ie, req->ie, arg.ie_len);
	}

	if (req->n_ssids) {
		arg.n_ssids = req->n_ssids;
		for (i = 0; i < arg.n_ssids; i++) {
			arg.ssids[i].len  = req->ssids[i].ssid_len;
			arg.ssids[i].ssid = req->ssids[i].ssid;
		}
	} else {
		arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
	}

	if (req->flags & NL80211_SCAN_FLAG_RANDOM_ADDR) {
		arg.scan_ctrl_flags |=  WMI_SCAN_ADD_SPOOFED_MAC_IN_PROBE_REQ;
		ether_addr_copy(arg.mac_addr.addr, req->mac_addr);
		ether_addr_copy(arg.mac_mask.addr, req->mac_addr_mask);
	}

	if (req->n_channels) {
		arg.n_channels = req->n_channels;
		for (i = 0; i < arg.n_channels; i++)
			arg.channels[i] = req->channels[i]->center_freq;
	}

	/* if duration is set, default dwell times will be overwritten */
	if (req->duration) {
		arg.dwell_time_active = req->duration;
		arg.dwell_time_passive = req->duration;
		arg.burst_duration_ms = req->duration;

		scan_timeout = min_t(u32, arg.max_rest_time *
				(arg.n_channels - 1) + (req->duration +
				ATH10K_SCAN_CHANNEL_SWITCH_WMI_EVT_OVERHEAD) *
				arg.n_channels, arg.max_scan_time);
	} else {
		scan_timeout = arg.max_scan_time;
	}

	/* Add a 200ms margin to account for event/command processing */
	scan_timeout += 200;

	ret = ath10k_start_scan(ar, &arg);
	if (ret) {
		ath10k_warn(ar, "failed to start hw scan: %d\n", ret);
		spin_lock_bh(&ar->data_lock);
		ar->scan.state = ATH10K_SCAN_IDLE;
		spin_unlock_bh(&ar->data_lock);
	}

	ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout,
				     msecs_to_jiffies(scan_timeout));

exit:
	mutex_unlock(&ar->conf_mutex);
	return ret;
}

static void ath10k_cancel_hw_scan(struct ieee80211_hw *hw,
				  struct ieee80211_vif *vif)
{
	struct ath10k *ar = hw->priv;

	mutex_lock(&ar->conf_mutex);
	ath10k_scan_abort(ar);
	mutex_unlock(&ar->conf_mutex);

	cancel_delayed_work_sync(&ar->scan.timeout);
}

static void ath10k_set_key_h_def_keyidx(struct ath10k *ar,
					struct ath10k_vif *arvif,
					enum set_key_cmd cmd,
					struct ieee80211_key_conf *key)
{
	u32 vdev_param = arvif->ar->wmi.vdev_param->def_keyid;
	int ret;

	/* 10.1 firmware branch requires default key index to be set to group
	 * key index after installing it. Otherwise FW/HW Txes corrupted
	 * frames with multi-vif APs. This is not required for main firmware
	 * branch (e.g. 636).
	 *
	 * This is also needed for 636 fw for IBSS-RSN to work more reliably.
	 *
	 * FIXME: It remains unknown if this is required for multi-vif STA
	 * interfaces on 10.1.
	 */

	if (arvif->vdev_type != WMI_VDEV_TYPE_AP &&
	    arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
		return;

	if (key->cipher == WLAN_CIPHER_SUITE_WEP40)
		return;

	if (key->cipher == WLAN_CIPHER_SUITE_WEP104)
		return;

	if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
		return;

	if (cmd != SET_KEY)
		return;

	ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
					key->keyidx);
	if (ret)
		ath10k_warn(ar, "failed to set vdev %i group key as default key: %d\n",
			    arvif->vdev_id, ret);
}

static int ath10k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
			  struct ieee80211_vif *vif, struct ieee80211_sta *sta,
			  struct ieee80211_key_conf *key)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ath10k_sta *arsta;
	struct ath10k_peer *peer;
	const u8 *peer_addr;
	bool is_wep = key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
		      key->cipher == WLAN_CIPHER_SUITE_WEP104;
	int ret = 0;
	int ret2;
	u32 flags = 0;
	u32 flags2;

	/* this one needs to be done in software */
	if (key->cipher == WLAN_CIPHER_SUITE_AES_CMAC ||
	    key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_128 ||
	    key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_256 ||
	    key->cipher == WLAN_CIPHER_SUITE_BIP_CMAC_256)
		return 1;

	if (arvif->nohwcrypt)
		return 1;

	if (key->keyidx > WMI_MAX_KEY_INDEX)
		return -ENOSPC;

	mutex_lock(&ar->conf_mutex);

	if (sta) {
		arsta = (struct ath10k_sta *)sta->drv_priv;
		peer_addr = sta->addr;
		spin_lock_bh(&ar->data_lock);
		arsta->ucast_cipher = key->cipher;
		spin_unlock_bh(&ar->data_lock);
	} else if (arvif->vdev_type == WMI_VDEV_TYPE_STA) {
		peer_addr = vif->bss_conf.bssid;
	} else {
		peer_addr = vif->addr;
	}

	key->hw_key_idx = key->keyidx;

	if (is_wep) {
		if (cmd == SET_KEY)
			arvif->wep_keys[key->keyidx] = key;
		else
			arvif->wep_keys[key->keyidx] = NULL;
	}

	/* the peer should not disappear in mid-way (unless FW goes awry) since
	 * we already hold conf_mutex. we just make sure its there now.
	 */
	spin_lock_bh(&ar->data_lock);
	peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
	spin_unlock_bh(&ar->data_lock);

	if (!peer) {
		if (cmd == SET_KEY) {
			ath10k_warn(ar, "failed to install key for non-existent peer %pM\n",
				    peer_addr);
			ret = -EOPNOTSUPP;
			goto exit;
		} else {
			/* if the peer doesn't exist there is no key to disable anymore */
			goto exit;
		}
	}

	if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
		flags |= WMI_KEY_PAIRWISE;
	else
		flags |= WMI_KEY_GROUP;

	if (is_wep) {
		if (cmd == DISABLE_KEY)
			ath10k_clear_vdev_key(arvif, key);

		/* When WEP keys are uploaded it's possible that there are
		 * stations associated already (e.g. when merging) without any
		 * keys. Static WEP needs an explicit per-peer key upload.
		 */
		if (vif->type == NL80211_IFTYPE_ADHOC &&
		    cmd == SET_KEY)
			ath10k_mac_vif_update_wep_key(arvif, key);

		/* 802.1x never sets the def_wep_key_idx so each set_key()
		 * call changes default tx key.
		 *
		 * Static WEP sets def_wep_key_idx via .set_default_unicast_key
		 * after first set_key().
		 */
		if (cmd == SET_KEY && arvif->def_wep_key_idx == -1)
			flags |= WMI_KEY_TX_USAGE;
	}

	ret = ath10k_install_key(arvif, key, cmd, peer_addr, flags);
	if (ret) {
		WARN_ON(ret > 0);
		ath10k_warn(ar, "failed to install key for vdev %i peer %pM: %d\n",
			    arvif->vdev_id, peer_addr, ret);
		goto exit;
	}

	/* mac80211 sets static WEP keys as groupwise while firmware requires
	 * them to be installed twice as both pairwise and groupwise.
	 */
	if (is_wep && !sta && vif->type == NL80211_IFTYPE_STATION) {
		flags2 = flags;
		flags2 &= ~WMI_KEY_GROUP;
		flags2 |= WMI_KEY_PAIRWISE;

		ret = ath10k_install_key(arvif, key, cmd, peer_addr, flags2);
		if (ret) {
			WARN_ON(ret > 0);
			ath10k_warn(ar, "failed to install (ucast) key for vdev %i peer %pM: %d\n",
				    arvif->vdev_id, peer_addr, ret);
			ret2 = ath10k_install_key(arvif, key, DISABLE_KEY,
						  peer_addr, flags);
			if (ret2) {
				WARN_ON(ret2 > 0);
				ath10k_warn(ar, "failed to disable (mcast) key for vdev %i peer %pM: %d\n",
					    arvif->vdev_id, peer_addr, ret2);
			}
			goto exit;
		}
	}

	ath10k_set_key_h_def_keyidx(ar, arvif, cmd, key);

	spin_lock_bh(&ar->data_lock);
	peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
	if (peer && cmd == SET_KEY)
		peer->keys[key->keyidx] = key;
	else if (peer && cmd == DISABLE_KEY)
		peer->keys[key->keyidx] = NULL;
	else if (peer == NULL)
		/* impossible unless FW goes crazy */
		ath10k_warn(ar, "Peer %pM disappeared!\n", peer_addr);
	spin_unlock_bh(&ar->data_lock);

	if (sta && sta->tdls)
		ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
					  ar->wmi.peer_param->authorize, 1);
	else if (sta && cmd == SET_KEY && (key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
		ath10k_wmi_peer_set_param(ar, arvif->vdev_id, peer_addr,
					  ar->wmi.peer_param->authorize, 1);

exit:
	mutex_unlock(&ar->conf_mutex);
	return ret;
}

static void ath10k_set_default_unicast_key(struct ieee80211_hw *hw,
					   struct ieee80211_vif *vif,
					   int keyidx)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	int ret;

	mutex_lock(&arvif->ar->conf_mutex);

	if (arvif->ar->state != ATH10K_STATE_ON)
		goto unlock;

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d set keyidx %d\n",
		   arvif->vdev_id, keyidx);

	ret = ath10k_wmi_vdev_set_param(arvif->ar,
					arvif->vdev_id,
					arvif->ar->wmi.vdev_param->def_keyid,
					keyidx);

	if (ret) {
		ath10k_warn(ar, "failed to update wep key index for vdev %d: %d\n",
			    arvif->vdev_id,
			    ret);
		goto unlock;
	}

	arvif->def_wep_key_idx = keyidx;

unlock:
	mutex_unlock(&arvif->ar->conf_mutex);
}

static void ath10k_sta_rc_update_wk(struct work_struct *wk)
{
	struct ath10k *ar;
	struct ath10k_vif *arvif;
	struct ath10k_sta *arsta;
	struct ieee80211_sta *sta;
	struct cfg80211_chan_def def;
	enum nl80211_band band;
	const u8 *ht_mcs_mask;
	const u16 *vht_mcs_mask;
	u32 changed, bw, nss, smps;
	int err;

	arsta = container_of(wk, struct ath10k_sta, update_wk);
	sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv);
	arvif = arsta->arvif;
	ar = arvif->ar;

	if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def)))
		return;

	band = def.chan->band;
	ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
	vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;

	spin_lock_bh(&ar->data_lock);

	changed = arsta->changed;
	arsta->changed = 0;

	bw = arsta->bw;
	nss = arsta->nss;
	smps = arsta->smps;

	spin_unlock_bh(&ar->data_lock);

	mutex_lock(&ar->conf_mutex);

	nss = max_t(u32, 1, nss);
	nss = min(nss, max(ath10k_mac_max_ht_nss(ht_mcs_mask),
			   ath10k_mac_max_vht_nss(vht_mcs_mask)));

	if (changed & IEEE80211_RC_BW_CHANGED) {
		enum wmi_phy_mode mode;

		mode = chan_to_phymode(&def);
		ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM peer bw %d phymode %d\n",
			   sta->addr, bw, mode);

		err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
						ar->wmi.peer_param->phymode, mode);
		if (err) {
			ath10k_warn(ar, "failed to update STA %pM peer phymode %d: %d\n",
				    sta->addr, mode, err);
			goto exit;
		}

		err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
						ar->wmi.peer_param->chan_width, bw);
		if (err)
			ath10k_warn(ar, "failed to update STA %pM peer bw %d: %d\n",
				    sta->addr, bw, err);
	}

	if (changed & IEEE80211_RC_NSS_CHANGED) {
		ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM nss %d\n",
			   sta->addr, nss);

		err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
						ar->wmi.peer_param->nss, nss);
		if (err)
			ath10k_warn(ar, "failed to update STA %pM nss %d: %d\n",
				    sta->addr, nss, err);
	}

	if (changed & IEEE80211_RC_SMPS_CHANGED) {
		ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM smps %d\n",
			   sta->addr, smps);

		err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
						ar->wmi.peer_param->smps_state, smps);
		if (err)
			ath10k_warn(ar, "failed to update STA %pM smps %d: %d\n",
				    sta->addr, smps, err);
	}

	if (changed & IEEE80211_RC_SUPP_RATES_CHANGED) {
		ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM supp rates\n",
			   sta->addr);

		err = ath10k_station_assoc(ar, arvif->vif, sta, true);
		if (err)
			ath10k_warn(ar, "failed to reassociate station: %pM\n",
				    sta->addr);
	}

exit:
	mutex_unlock(&ar->conf_mutex);
}

static int ath10k_mac_inc_num_stations(struct ath10k_vif *arvif,
				       struct ieee80211_sta *sta)
{
	struct ath10k *ar = arvif->ar;

	lockdep_assert_held(&ar->conf_mutex);

	if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls)
		return 0;

	if (ar->num_stations >= ar->max_num_stations)
		return -ENOBUFS;

	ar->num_stations++;

	return 0;
}

static void ath10k_mac_dec_num_stations(struct ath10k_vif *arvif,
					struct ieee80211_sta *sta)
{
	struct ath10k *ar = arvif->ar;

	lockdep_assert_held(&ar->conf_mutex);

	if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls)
		return;

	ar->num_stations--;
}

static int ath10k_sta_set_txpwr(struct ieee80211_hw *hw,
				struct ieee80211_vif *vif,
				struct ieee80211_sta *sta)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	int ret = 0;
	s16 txpwr;

	if (sta->deflink.txpwr.type == NL80211_TX_POWER_AUTOMATIC) {
		txpwr = 0;
	} else {
		txpwr = sta->deflink.txpwr.power;
		if (!txpwr)
			return -EINVAL;
	}

	if (txpwr > ATH10K_TX_POWER_MAX_VAL || txpwr < ATH10K_TX_POWER_MIN_VAL)
		return -EINVAL;

	mutex_lock(&ar->conf_mutex);

	ret = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
					ar->wmi.peer_param->use_fixed_power, txpwr);
	if (ret) {
		ath10k_warn(ar, "failed to set tx power for station ret: %d\n",
			    ret);
		goto out;
	}

out:
	mutex_unlock(&ar->conf_mutex);
	return ret;
}

struct ath10k_mac_iter_tid_conf_data {
	struct ieee80211_vif *curr_vif;
	struct ath10k *ar;
	bool reset_config;
};

static bool
ath10k_mac_bitrate_mask_has_single_rate(struct ath10k *ar,
					enum nl80211_band band,
					const struct cfg80211_bitrate_mask *mask,
					int *vht_num_rates)
{
	int num_rates = 0;
	int i, tmp;

	num_rates += hweight32(mask->control[band].legacy);

	for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++)
		num_rates += hweight8(mask->control[band].ht_mcs[i]);

	*vht_num_rates = 0;
	for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) {
		tmp = hweight16(mask->control[band].vht_mcs[i]);
		num_rates += tmp;
		*vht_num_rates += tmp;
	}

	return num_rates == 1;
}

static int
ath10k_mac_bitrate_mask_get_single_rate(struct ath10k *ar,
					enum nl80211_band band,
					const struct cfg80211_bitrate_mask *mask,
					u8 *rate, u8 *nss, bool vht_only)
{
	int rate_idx;
	int i;
	u16 bitrate;
	u8 preamble;
	u8 hw_rate;

	if (vht_only)
		goto next;

	if (hweight32(mask->control[band].legacy) == 1) {
		rate_idx = ffs(mask->control[band].legacy) - 1;

		if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY)
			rate_idx += ATH10K_MAC_FIRST_OFDM_RATE_IDX;

		hw_rate = ath10k_wmi_legacy_rates[rate_idx].hw_value;
		bitrate = ath10k_wmi_legacy_rates[rate_idx].bitrate;

		if (ath10k_mac_bitrate_is_cck(bitrate))
			preamble = WMI_RATE_PREAMBLE_CCK;
		else
			preamble = WMI_RATE_PREAMBLE_OFDM;

		*nss = 1;
		*rate = preamble << 6 |
			(*nss - 1) << 4 |
			hw_rate << 0;

		return 0;
	}

	for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) {
		if (hweight8(mask->control[band].ht_mcs[i]) == 1) {
			*nss = i + 1;
			*rate = WMI_RATE_PREAMBLE_HT << 6 |
				(*nss - 1) << 4 |
				(ffs(mask->control[band].ht_mcs[i]) - 1);

			return 0;
		}
	}

next:
	for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) {
		if (hweight16(mask->control[band].vht_mcs[i]) == 1) {
			*nss = i + 1;
			*rate = WMI_RATE_PREAMBLE_VHT << 6 |
				(*nss - 1) << 4 |
				(ffs(mask->control[band].vht_mcs[i]) - 1);

			return 0;
		}
	}

	return -EINVAL;
}

static int ath10k_mac_validate_rate_mask(struct ath10k *ar,
					 struct ieee80211_sta *sta,
					 u32 rate_ctrl_flag, u8 nss)
{
	struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap;
	struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap;

	if (nss > sta->deflink.rx_nss) {
		ath10k_warn(ar, "Invalid nss field, configured %u limit %u\n",
			    nss, sta->deflink.rx_nss);
		return -EINVAL;
	}

	if (ATH10K_HW_PREAMBLE(rate_ctrl_flag) == WMI_RATE_PREAMBLE_VHT) {
		if (!vht_cap->vht_supported) {
			ath10k_warn(ar, "Invalid VHT rate for sta %pM\n",
				    sta->addr);
			return -EINVAL;
		}
	} else if (ATH10K_HW_PREAMBLE(rate_ctrl_flag) == WMI_RATE_PREAMBLE_HT) {
		if (!ht_cap->ht_supported || vht_cap->vht_supported) {
			ath10k_warn(ar, "Invalid HT rate for sta %pM\n",
				    sta->addr);
			return -EINVAL;
		}
	} else {
		if (ht_cap->ht_supported || vht_cap->vht_supported)
			return -EINVAL;
	}

	return 0;
}

static int
ath10k_mac_tid_bitrate_config(struct ath10k *ar,
			      struct ieee80211_vif *vif,
			      struct ieee80211_sta *sta,
			      u32 *rate_ctrl_flag, u8 *rate_ctrl,
			      enum nl80211_tx_rate_setting txrate_type,
			      const struct cfg80211_bitrate_mask *mask)
{
	struct cfg80211_chan_def def;
	enum nl80211_band band;
	u8 nss, rate;
	int vht_num_rates, ret;

	if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
		return -EINVAL;

	if (txrate_type == NL80211_TX_RATE_AUTOMATIC) {
		*rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_AUTO;
		*rate_ctrl_flag = 0;
		return 0;
	}

	band = def.chan->band;

	if (!ath10k_mac_bitrate_mask_has_single_rate(ar, band, mask,
						     &vht_num_rates)) {
		return -EINVAL;
	}

	ret = ath10k_mac_bitrate_mask_get_single_rate(ar, band, mask,
						      &rate, &nss, false);
	if (ret) {
		ath10k_warn(ar, "failed to get single rate: %d\n",
			    ret);
		return ret;
	}

	*rate_ctrl_flag = rate;

	if (sta && ath10k_mac_validate_rate_mask(ar, sta, *rate_ctrl_flag, nss))
		return -EINVAL;

	if (txrate_type == NL80211_TX_RATE_FIXED)
		*rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_FIXED_RATE;
	else if (txrate_type == NL80211_TX_RATE_LIMITED &&
		 (test_bit(WMI_SERVICE_EXT_PEER_TID_CONFIGS_SUPPORT,
			   ar->wmi.svc_map)))
		*rate_ctrl = WMI_PEER_TID_CONFIG_RATE_UPPER_CAP;
	else
		return -EOPNOTSUPP;

	return 0;
}

static int ath10k_mac_set_tid_config(struct ath10k *ar, struct ieee80211_sta *sta,
				     struct ieee80211_vif *vif, u32 changed,
				     struct wmi_per_peer_per_tid_cfg_arg *arg)
{
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ath10k_sta *arsta;
	int ret;

	if (sta) {
		if (!sta->wme)
			return -ENOTSUPP;

		arsta = (struct ath10k_sta *)sta->drv_priv;

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) {
			if ((arsta->retry_long[arg->tid] > 0 ||
			     arsta->rate_code[arg->tid] > 0 ||
			     arsta->ampdu[arg->tid] ==
					WMI_TID_CONFIG_AGGR_CONTROL_ENABLE) &&
			     arg->ack_policy == WMI_PEER_TID_CONFIG_NOACK) {
				changed &= ~BIT(NL80211_TID_CONFIG_ATTR_NOACK);
				arg->ack_policy = 0;
				arg->aggr_control = 0;
				arg->rate_ctrl = 0;
				arg->rcode_flags = 0;
			}
		}

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) {
			if (arsta->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK ||
			    arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) {
				arg->aggr_control = 0;
				changed &= ~BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG);
			}
		}

		if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) |
		    BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) {
			if (arsta->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK ||
			    arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) {
				arg->rate_ctrl = 0;
				arg->rcode_flags = 0;
			}
		}

		ether_addr_copy(arg->peer_macaddr.addr, sta->addr);

		ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, arg);
		if (ret)
			return ret;

		/* Store the configured parameters in success case */
		if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) {
			arsta->noack[arg->tid] = arg->ack_policy;
			arg->ack_policy = 0;
			arg->aggr_control = 0;
			arg->rate_ctrl = 0;
			arg->rcode_flags = 0;
		}

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG)) {
			arsta->retry_long[arg->tid] = arg->retry_count;
			arg->retry_count = 0;
		}

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) {
			arsta->ampdu[arg->tid] = arg->aggr_control;
			arg->aggr_control = 0;
		}

		if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) |
		    BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) {
			arsta->rate_ctrl[arg->tid] = arg->rate_ctrl;
			arg->rate_ctrl = 0;
			arg->rcode_flags = 0;
		}

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) {
			arsta->rtscts[arg->tid] = arg->rtscts_ctrl;
			arg->ext_tid_cfg_bitmap = 0;
		}
	} else {
		if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) {
			if ((arvif->retry_long[arg->tid] ||
			     arvif->rate_code[arg->tid] ||
			     arvif->ampdu[arg->tid] ==
					WMI_TID_CONFIG_AGGR_CONTROL_ENABLE) &&
			     arg->ack_policy == WMI_PEER_TID_CONFIG_NOACK) {
				changed &= ~BIT(NL80211_TID_CONFIG_ATTR_NOACK);
			} else {
				arvif->noack[arg->tid] = arg->ack_policy;
				arvif->ampdu[arg->tid] = arg->aggr_control;
				arvif->rate_ctrl[arg->tid] = arg->rate_ctrl;
			}
		}

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG)) {
			if (arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK)
				changed &= ~BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG);
			else
				arvif->retry_long[arg->tid] = arg->retry_count;
		}

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) {
			if (arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK)
				changed &= ~BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL);
			else
				arvif->ampdu[arg->tid] = arg->aggr_control;
		}

		if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) |
		    BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) {
			if (arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) {
				changed &= ~(BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) |
					     BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE));
			} else {
				arvif->rate_ctrl[arg->tid] = arg->rate_ctrl;
				arvif->rate_code[arg->tid] = arg->rcode_flags;
			}
		}

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) {
			arvif->rtscts[arg->tid] = arg->rtscts_ctrl;
			arg->ext_tid_cfg_bitmap = 0;
		}

		if (changed)
			arvif->tid_conf_changed[arg->tid] |= changed;
	}

	return 0;
}

static int
ath10k_mac_parse_tid_config(struct ath10k *ar,
			    struct ieee80211_sta *sta,
			    struct ieee80211_vif *vif,
			    struct cfg80211_tid_cfg *tid_conf,
			    struct wmi_per_peer_per_tid_cfg_arg *arg)
{
	u32 changed = tid_conf->mask;
	int ret = 0, i = 0;

	if (!changed)
		return -EINVAL;

	while (i < ATH10K_TID_MAX) {
		if (!(tid_conf->tids & BIT(i))) {
			i++;
			continue;
		}

		arg->tid = i;

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) {
			if (tid_conf->noack == NL80211_TID_CONFIG_ENABLE) {
				arg->ack_policy = WMI_PEER_TID_CONFIG_NOACK;
				arg->rate_ctrl =
				WMI_TID_CONFIG_RATE_CONTROL_DEFAULT_LOWEST_RATE;
				arg->aggr_control =
					WMI_TID_CONFIG_AGGR_CONTROL_DISABLE;
			} else {
				arg->ack_policy =
					WMI_PEER_TID_CONFIG_ACK;
				arg->rate_ctrl =
					WMI_TID_CONFIG_RATE_CONTROL_AUTO;
				arg->aggr_control =
					WMI_TID_CONFIG_AGGR_CONTROL_ENABLE;
			}
		}

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG))
			arg->retry_count = tid_conf->retry_long;

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) {
			if (tid_conf->noack == NL80211_TID_CONFIG_ENABLE)
				arg->aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_ENABLE;
			else
				arg->aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_DISABLE;
		}

		if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) |
		    BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) {
			ret = ath10k_mac_tid_bitrate_config(ar, vif, sta,
							    &arg->rcode_flags,
							    &arg->rate_ctrl,
							    tid_conf->txrate_type,
							&tid_conf->txrate_mask);
			if (ret) {
				ath10k_warn(ar, "failed to configure bitrate mask %d\n",
					    ret);
				arg->rcode_flags = 0;
				arg->rate_ctrl = 0;
			}
		}

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) {
			if (tid_conf->rtscts)
				arg->rtscts_ctrl = tid_conf->rtscts;

			arg->ext_tid_cfg_bitmap = WMI_EXT_TID_RTS_CTS_CONFIG;
		}

		ret = ath10k_mac_set_tid_config(ar, sta, vif, changed, arg);
		if (ret)
			return ret;
		i++;
	}

	return ret;
}

static int ath10k_mac_reset_tid_config(struct ath10k *ar,
				       struct ieee80211_sta *sta,
				       struct ath10k_vif *arvif,
				       u8 tids)
{
	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
	struct wmi_per_peer_per_tid_cfg_arg arg;
	int ret = 0, i = 0;

	arg.vdev_id = arvif->vdev_id;
	while (i < ATH10K_TID_MAX) {
		if (!(tids & BIT(i))) {
			i++;
			continue;
		}

		arg.tid = i;
		arg.ack_policy = WMI_PEER_TID_CONFIG_ACK;
		arg.retry_count = ATH10K_MAX_RETRY_COUNT;
		arg.rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_AUTO;
		arg.aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_ENABLE;
		arg.rtscts_ctrl = WMI_TID_CONFIG_RTSCTS_CONTROL_ENABLE;
		arg.ext_tid_cfg_bitmap = WMI_EXT_TID_RTS_CTS_CONFIG;

		ether_addr_copy(arg.peer_macaddr.addr, sta->addr);

		ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, &arg);
		if (ret)
			return ret;

		if (!arvif->tids_rst) {
			arsta->retry_long[i] = -1;
			arsta->noack[i] = -1;
			arsta->ampdu[i] = -1;
			arsta->rate_code[i] = -1;
			arsta->rate_ctrl[i] = 0;
			arsta->rtscts[i] = -1;
		} else {
			arvif->retry_long[i] = 0;
			arvif->noack[i] = 0;
			arvif->ampdu[i] = 0;
			arvif->rate_code[i] = 0;
			arvif->rate_ctrl[i] = 0;
			arvif->rtscts[i] = 0;
		}

		i++;
	}

	return ret;
}

static void ath10k_sta_tid_cfg_wk(struct work_struct *wk)
{
	struct wmi_per_peer_per_tid_cfg_arg arg = {};
	struct ieee80211_sta *sta;
	struct ath10k_sta *arsta;
	struct ath10k_vif *arvif;
	struct ath10k *ar;
	bool config_apply;
	int ret, i;
	u32 changed;
	u8 nss;

	arsta = container_of(wk, struct ath10k_sta, tid_config_wk);
	sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv);
	arvif = arsta->arvif;
	ar = arvif->ar;

	mutex_lock(&ar->conf_mutex);

	if (arvif->tids_rst) {
		ret = ath10k_mac_reset_tid_config(ar, sta, arvif,
						  arvif->tids_rst);
		goto exit;
	}

	ether_addr_copy(arg.peer_macaddr.addr, sta->addr);

	for (i = 0; i < ATH10K_TID_MAX; i++) {
		config_apply = false;
		changed = arvif->tid_conf_changed[i];

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) {
			if (arsta->noack[i] != -1) {
				arg.ack_policy  = 0;
			} else {
				config_apply = true;
				arg.ack_policy = arvif->noack[i];
				arg.aggr_control = arvif->ampdu[i];
				arg.rate_ctrl = arvif->rate_ctrl[i];
			}
		}

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG)) {
			if (arsta->retry_long[i] != -1 ||
			    arsta->noack[i] == WMI_PEER_TID_CONFIG_NOACK ||
			    arvif->noack[i] == WMI_PEER_TID_CONFIG_NOACK) {
				arg.retry_count = 0;
			} else {
				arg.retry_count = arvif->retry_long[i];
				config_apply = true;
			}
		}

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) {
			if (arsta->ampdu[i] != -1 ||
			    arsta->noack[i] == WMI_PEER_TID_CONFIG_NOACK ||
			    arvif->noack[i] == WMI_PEER_TID_CONFIG_NOACK) {
				arg.aggr_control = 0;
			} else {
				arg.aggr_control = arvif->ampdu[i];
				config_apply = true;
			}
		}

		if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) |
		    BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) {
			nss = ATH10K_HW_NSS(arvif->rate_code[i]);
			ret = ath10k_mac_validate_rate_mask(ar, sta,
							    arvif->rate_code[i],
							    nss);
			if (ret &&
			    arvif->rate_ctrl[i] > WMI_TID_CONFIG_RATE_CONTROL_AUTO) {
				arg.rate_ctrl = 0;
				arg.rcode_flags = 0;
			}

			if (arsta->rate_ctrl[i] >
			    WMI_TID_CONFIG_RATE_CONTROL_AUTO ||
			    arsta->noack[i] == WMI_PEER_TID_CONFIG_NOACK ||
			    arvif->noack[i] == WMI_PEER_TID_CONFIG_NOACK) {
				arg.rate_ctrl = 0;
				arg.rcode_flags = 0;
			} else {
				arg.rate_ctrl = arvif->rate_ctrl[i];
				arg.rcode_flags = arvif->rate_code[i];
				config_apply = true;
			}
		}

		if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) {
			if (arsta->rtscts[i]) {
				arg.rtscts_ctrl = 0;
				arg.ext_tid_cfg_bitmap = 0;
			} else {
				arg.rtscts_ctrl = arvif->rtscts[i] - 1;
				arg.ext_tid_cfg_bitmap =
					WMI_EXT_TID_RTS_CTS_CONFIG;
				config_apply = true;
			}
		}

		arg.tid = i;

		if (config_apply) {
			ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, &arg);
			if (ret)
				ath10k_warn(ar, "failed to set per tid config for sta %pM: %d\n",
					    sta->addr, ret);
		}

		arg.ack_policy  = 0;
		arg.retry_count  = 0;
		arg.aggr_control  = 0;
		arg.rate_ctrl = 0;
		arg.rcode_flags = 0;
	}

exit:
	mutex_unlock(&ar->conf_mutex);
}

static void ath10k_mac_vif_stations_tid_conf(void *data,
					     struct ieee80211_sta *sta)
{
	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
	struct ath10k_mac_iter_tid_conf_data *iter_data = data;
	struct ieee80211_vif *sta_vif = arsta->arvif->vif;

	if (sta_vif != iter_data->curr_vif || !sta->wme)
		return;

	ieee80211_queue_work(iter_data->ar->hw, &arsta->tid_config_wk);
}

static int ath10k_sta_state(struct ieee80211_hw *hw,
			    struct ieee80211_vif *vif,
			    struct ieee80211_sta *sta,
			    enum ieee80211_sta_state old_state,
			    enum ieee80211_sta_state new_state)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
	struct ath10k_peer *peer;
	int ret = 0;
	int i;

	if (old_state == IEEE80211_STA_NOTEXIST &&
	    new_state == IEEE80211_STA_NONE) {
		memset(arsta, 0, sizeof(*arsta));
		arsta->arvif = arvif;
		arsta->peer_ps_state = WMI_PEER_PS_STATE_DISABLED;
		INIT_WORK(&arsta->update_wk, ath10k_sta_rc_update_wk);
		INIT_WORK(&arsta->tid_config_wk, ath10k_sta_tid_cfg_wk);

		for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
			ath10k_mac_txq_init(sta->txq[i]);
	}

	/* cancel must be done outside the mutex to avoid deadlock */
	if ((old_state == IEEE80211_STA_NONE &&
	     new_state == IEEE80211_STA_NOTEXIST)) {
		cancel_work_sync(&arsta->update_wk);
		cancel_work_sync(&arsta->tid_config_wk);
	}

	mutex_lock(&ar->conf_mutex);

	if (old_state == IEEE80211_STA_NOTEXIST &&
	    new_state == IEEE80211_STA_NONE) {
		/*
		 * New station addition.
		 */
		enum wmi_peer_type peer_type = WMI_PEER_TYPE_DEFAULT;
		u32 num_tdls_stations;

		ath10k_dbg(ar, ATH10K_DBG_STA,
			   "mac vdev %d peer create %pM (new sta) sta %d / %d peer %d / %d\n",
			   arvif->vdev_id, sta->addr,
			   ar->num_stations + 1, ar->max_num_stations,
			   ar->num_peers + 1, ar->max_num_peers);

		num_tdls_stations = ath10k_mac_tdls_vif_stations_count(hw, vif);

		if (sta->tdls) {
			if (num_tdls_stations >= ar->max_num_tdls_vdevs) {
				ath10k_warn(ar, "vdev %i exceeded maximum number of tdls vdevs %i\n",
					    arvif->vdev_id,
					    ar->max_num_tdls_vdevs);
				ret = -ELNRNG;
				goto exit;
			}
			peer_type = WMI_PEER_TYPE_TDLS;
		}

		ret = ath10k_mac_inc_num_stations(arvif, sta);
		if (ret) {
			ath10k_warn(ar, "refusing to associate station: too many connected already (%d)\n",
				    ar->max_num_stations);
			goto exit;
		}

		if (ath10k_debug_is_extd_tx_stats_enabled(ar)) {
			arsta->tx_stats = kzalloc(sizeof(*arsta->tx_stats),
						  GFP_KERNEL);
			if (!arsta->tx_stats) {
				ath10k_mac_dec_num_stations(arvif, sta);
				ret = -ENOMEM;
				goto exit;
			}
		}

		ret = ath10k_peer_create(ar, vif, sta, arvif->vdev_id,
					 sta->addr, peer_type);
		if (ret) {
			ath10k_warn(ar, "failed to add peer %pM for vdev %d when adding a new sta: %i\n",
				    sta->addr, arvif->vdev_id, ret);
			ath10k_mac_dec_num_stations(arvif, sta);
			kfree(arsta->tx_stats);
			goto exit;
		}

		spin_lock_bh(&ar->data_lock);

		peer = ath10k_peer_find(ar, arvif->vdev_id, sta->addr);
		if (!peer) {
			ath10k_warn(ar, "failed to lookup peer %pM on vdev %i\n",
				    vif->addr, arvif->vdev_id);
			spin_unlock_bh(&ar->data_lock);
			ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
			ath10k_mac_dec_num_stations(arvif, sta);
			kfree(arsta->tx_stats);
			ret = -ENOENT;
			goto exit;
		}

		arsta->peer_id = find_first_bit(peer->peer_ids,
						ATH10K_MAX_NUM_PEER_IDS);

		spin_unlock_bh(&ar->data_lock);

		if (!sta->tdls)
			goto exit;

		ret = ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id,
						      WMI_TDLS_ENABLE_ACTIVE);
		if (ret) {
			ath10k_warn(ar, "failed to update fw tdls state on vdev %i: %i\n",
				    arvif->vdev_id, ret);
			ath10k_peer_delete(ar, arvif->vdev_id,
					   sta->addr);
			ath10k_mac_dec_num_stations(arvif, sta);
			kfree(arsta->tx_stats);
			goto exit;
		}

		ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id, sta,
						  WMI_TDLS_PEER_STATE_PEERING);
		if (ret) {
			ath10k_warn(ar,
				    "failed to update tdls peer %pM for vdev %d when adding a new sta: %i\n",
				    sta->addr, arvif->vdev_id, ret);
			ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
			ath10k_mac_dec_num_stations(arvif, sta);
			kfree(arsta->tx_stats);

			if (num_tdls_stations != 0)
				goto exit;
			ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id,
							WMI_TDLS_DISABLE);
		}
	} else if ((old_state == IEEE80211_STA_NONE &&
		    new_state == IEEE80211_STA_NOTEXIST)) {
		/*
		 * Existing station deletion.
		 */
		ath10k_dbg(ar, ATH10K_DBG_STA,
			   "mac vdev %d peer delete %pM sta %pK (sta gone)\n",
			   arvif->vdev_id, sta->addr, sta);

		if (sta->tdls) {
			ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id,
							  sta,
							  WMI_TDLS_PEER_STATE_TEARDOWN);
			if (ret)
				ath10k_warn(ar, "failed to update tdls peer state for %pM state %d: %i\n",
					    sta->addr,
					    WMI_TDLS_PEER_STATE_TEARDOWN, ret);
		}

		ret = ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
		if (ret)
			ath10k_warn(ar, "failed to delete peer %pM for vdev %d: %i\n",
				    sta->addr, arvif->vdev_id, ret);

		ath10k_mac_dec_num_stations(arvif, sta);

		spin_lock_bh(&ar->data_lock);
		for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++) {
			peer = ar->peer_map[i];
			if (!peer)
				continue;

			if (peer->sta == sta) {
				ath10k_warn(ar, "found sta peer %pM (ptr %pK id %d) entry on vdev %i after it was supposedly removed\n",
					    sta->addr, peer, i, arvif->vdev_id);
				peer->sta = NULL;

				/* Clean up the peer object as well since we
				 * must have failed to do this above.
				 */
				ath10k_peer_map_cleanup(ar, peer);
			}
		}
		spin_unlock_bh(&ar->data_lock);

		if (ath10k_debug_is_extd_tx_stats_enabled(ar)) {
			kfree(arsta->tx_stats);
			arsta->tx_stats = NULL;
		}

		for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
			ath10k_mac_txq_unref(ar, sta->txq[i]);

		if (!sta->tdls)
			goto exit;

		if (ath10k_mac_tdls_vif_stations_count(hw, vif))
			goto exit;

		/* This was the last tdls peer in current vif */
		ret = ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id,
						      WMI_TDLS_DISABLE);
		if (ret) {
			ath10k_warn(ar, "failed to update fw tdls state on vdev %i: %i\n",
				    arvif->vdev_id, ret);
		}
	} else if (old_state == IEEE80211_STA_AUTH &&
		   new_state == IEEE80211_STA_ASSOC &&
		   (vif->type == NL80211_IFTYPE_AP ||
		    vif->type == NL80211_IFTYPE_MESH_POINT ||
		    vif->type == NL80211_IFTYPE_ADHOC)) {
		/*
		 * New association.
		 */
		ath10k_dbg(ar, ATH10K_DBG_STA, "mac sta %pM associated\n",
			   sta->addr);

		ret = ath10k_station_assoc(ar, vif, sta, false);
		if (ret)
			ath10k_warn(ar, "failed to associate station %pM for vdev %i: %i\n",
				    sta->addr, arvif->vdev_id, ret);
	} else if (old_state == IEEE80211_STA_ASSOC &&
		   new_state == IEEE80211_STA_AUTHORIZED &&
		   sta->tdls) {
		/*
		 * Tdls station authorized.
		 */
		ath10k_dbg(ar, ATH10K_DBG_STA, "mac tdls sta %pM authorized\n",
			   sta->addr);

		ret = ath10k_station_assoc(ar, vif, sta, false);
		if (ret) {
			ath10k_warn(ar, "failed to associate tdls station %pM for vdev %i: %i\n",
				    sta->addr, arvif->vdev_id, ret);
			goto exit;
		}

		ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id, sta,
						  WMI_TDLS_PEER_STATE_CONNECTED);
		if (ret)
			ath10k_warn(ar, "failed to update tdls peer %pM for vdev %i: %i\n",
				    sta->addr, arvif->vdev_id, ret);
	} else if (old_state == IEEE80211_STA_ASSOC &&
		    new_state == IEEE80211_STA_AUTH &&
		    (vif->type == NL80211_IFTYPE_AP ||
		     vif->type == NL80211_IFTYPE_MESH_POINT ||
		     vif->type == NL80211_IFTYPE_ADHOC)) {
		/*
		 * Disassociation.
		 */
		ath10k_dbg(ar, ATH10K_DBG_STA, "mac sta %pM disassociated\n",
			   sta->addr);

		ret = ath10k_station_disassoc(ar, vif, sta);
		if (ret)
			ath10k_warn(ar, "failed to disassociate station: %pM vdev %i: %i\n",
				    sta->addr, arvif->vdev_id, ret);
	}
exit:
	mutex_unlock(&ar->conf_mutex);
	return ret;
}

static int ath10k_conf_tx_uapsd(struct ath10k *ar, struct ieee80211_vif *vif,
				u16 ac, bool enable)
{
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct wmi_sta_uapsd_auto_trig_arg arg = {};
	u32 prio = 0, acc = 0;
	u32 value = 0;
	int ret = 0;

	lockdep_assert_held(&ar->conf_mutex);

	if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
		return 0;

	switch (ac) {
	case IEEE80211_AC_VO:
		value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN |
			WMI_STA_PS_UAPSD_AC3_TRIGGER_EN;
		prio = 7;
		acc = 3;
		break;
	case IEEE80211_AC_VI:
		value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN |
			WMI_STA_PS_UAPSD_AC2_TRIGGER_EN;
		prio = 5;
		acc = 2;
		break;
	case IEEE80211_AC_BE:
		value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN |
			WMI_STA_PS_UAPSD_AC1_TRIGGER_EN;
		prio = 2;
		acc = 1;
		break;
	case IEEE80211_AC_BK:
		value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN |
			WMI_STA_PS_UAPSD_AC0_TRIGGER_EN;
		prio = 0;
		acc = 0;
		break;
	}

	if (enable)
		arvif->u.sta.uapsd |= value;
	else
		arvif->u.sta.uapsd &= ~value;

	ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
					  WMI_STA_PS_PARAM_UAPSD,
					  arvif->u.sta.uapsd);
	if (ret) {
		ath10k_warn(ar, "failed to set uapsd params: %d\n", ret);
		goto exit;
	}

	if (arvif->u.sta.uapsd)
		value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD;
	else
		value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;

	ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
					  WMI_STA_PS_PARAM_RX_WAKE_POLICY,
					  value);
	if (ret)
		ath10k_warn(ar, "failed to set rx wake param: %d\n", ret);

	ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif);
	if (ret) {
		ath10k_warn(ar, "failed to recalc ps wake threshold on vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	ret = ath10k_mac_vif_recalc_ps_poll_count(arvif);
	if (ret) {
		ath10k_warn(ar, "failed to recalc ps poll count on vdev %i: %d\n",
			    arvif->vdev_id, ret);
		return ret;
	}

	if (test_bit(WMI_SERVICE_STA_UAPSD_BASIC_AUTO_TRIG, ar->wmi.svc_map) ||
	    test_bit(WMI_SERVICE_STA_UAPSD_VAR_AUTO_TRIG, ar->wmi.svc_map)) {
		/* Only userspace can make an educated decision when to send
		 * trigger frame. The following effectively disables u-UAPSD
		 * autotrigger in firmware (which is enabled by default
		 * provided the autotrigger service is available).
		 */

		arg.wmm_ac = acc;
		arg.user_priority = prio;
		arg.service_interval = 0;
		arg.suspend_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC;
		arg.delay_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC;

		ret = ath10k_wmi_vdev_sta_uapsd(ar, arvif->vdev_id,
						arvif->bssid, &arg, 1);
		if (ret) {
			ath10k_warn(ar, "failed to set uapsd auto trigger %d\n",
				    ret);
			return ret;
		}
	}

exit:
	return ret;
}

static int ath10k_conf_tx(struct ieee80211_hw *hw,
			  struct ieee80211_vif *vif,
			  unsigned int link_id, u16 ac,
			  const struct ieee80211_tx_queue_params *params)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct wmi_wmm_params_arg *p = NULL;
	int ret;

	mutex_lock(&ar->conf_mutex);

	switch (ac) {
	case IEEE80211_AC_VO:
		p = &arvif->wmm_params.ac_vo;
		break;
	case IEEE80211_AC_VI:
		p = &arvif->wmm_params.ac_vi;
		break;
	case IEEE80211_AC_BE:
		p = &arvif->wmm_params.ac_be;
		break;
	case IEEE80211_AC_BK:
		p = &arvif->wmm_params.ac_bk;
		break;
	}

	if (WARN_ON(!p)) {
		ret = -EINVAL;
		goto exit;
	}

	p->cwmin = params->cw_min;
	p->cwmax = params->cw_max;
	p->aifs = params->aifs;

	/*
	 * The channel time duration programmed in the HW is in absolute
	 * microseconds, while mac80211 gives the txop in units of
	 * 32 microseconds.
	 */
	p->txop = params->txop * 32;

	if (ar->wmi.ops->gen_vdev_wmm_conf) {
		ret = ath10k_wmi_vdev_wmm_conf(ar, arvif->vdev_id,
					       &arvif->wmm_params);
		if (ret) {
			ath10k_warn(ar, "failed to set vdev wmm params on vdev %i: %d\n",
				    arvif->vdev_id, ret);
			goto exit;
		}
	} else {
		/* This won't work well with multi-interface cases but it's
		 * better than nothing.
		 */
		ret = ath10k_wmi_pdev_set_wmm_params(ar, &arvif->wmm_params);
		if (ret) {
			ath10k_warn(ar, "failed to set wmm params: %d\n", ret);
			goto exit;
		}
	}

	ret = ath10k_conf_tx_uapsd(ar, vif, ac, params->uapsd);
	if (ret)
		ath10k_warn(ar, "failed to set sta uapsd: %d\n", ret);

exit:
	mutex_unlock(&ar->conf_mutex);
	return ret;
}

static int ath10k_remain_on_channel(struct ieee80211_hw *hw,
				    struct ieee80211_vif *vif,
				    struct ieee80211_channel *chan,
				    int duration,
				    enum ieee80211_roc_type type)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct wmi_start_scan_arg arg;
	int ret = 0;
	u32 scan_time_msec;

	mutex_lock(&ar->conf_mutex);

	if (ath10k_mac_tdls_vif_stations_count(hw, vif) > 0) {
		ret = -EBUSY;
		goto exit;
	}

	spin_lock_bh(&ar->data_lock);
	switch (ar->scan.state) {
	case ATH10K_SCAN_IDLE:
		reinit_completion(&ar->scan.started);
		reinit_completion(&ar->scan.completed);
		reinit_completion(&ar->scan.on_channel);
		ar->scan.state = ATH10K_SCAN_STARTING;
		ar->scan.is_roc = true;
		ar->scan.vdev_id = arvif->vdev_id;
		ar->scan.roc_freq = chan->center_freq;
		ar->scan.roc_notify = true;
		ret = 0;
		break;
	case ATH10K_SCAN_STARTING:
	case ATH10K_SCAN_RUNNING:
	case ATH10K_SCAN_ABORTING:
		ret = -EBUSY;
		break;
	}
	spin_unlock_bh(&ar->data_lock);

	if (ret)
		goto exit;

	scan_time_msec = ar->hw->wiphy->max_remain_on_channel_duration * 2;

	memset(&arg, 0, sizeof(arg));
	ath10k_wmi_start_scan_init(ar, &arg);
	arg.vdev_id = arvif->vdev_id;
	arg.scan_id = ATH10K_SCAN_ID;
	arg.n_channels = 1;
	arg.channels[0] = chan->center_freq;
	arg.dwell_time_active = scan_time_msec;
	arg.dwell_time_passive = scan_time_msec;
	arg.max_scan_time = scan_time_msec;
	arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
	arg.scan_ctrl_flags |= WMI_SCAN_FILTER_PROBE_REQ;
	arg.burst_duration_ms = duration;

	ret = ath10k_start_scan(ar, &arg);
	if (ret) {
		ath10k_warn(ar, "failed to start roc scan: %d\n", ret);
		spin_lock_bh(&ar->data_lock);
		ar->scan.state = ATH10K_SCAN_IDLE;
		spin_unlock_bh(&ar->data_lock);
		goto exit;
	}

	ret = wait_for_completion_timeout(&ar->scan.on_channel, 3 * HZ);
	if (ret == 0) {
		ath10k_warn(ar, "failed to switch to channel for roc scan\n");

		ret = ath10k_scan_stop(ar);
		if (ret)
			ath10k_warn(ar, "failed to stop scan: %d\n", ret);

		ret = -ETIMEDOUT;
		goto exit;
	}

	ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout,
				     msecs_to_jiffies(duration));

	ret = 0;
exit:
	mutex_unlock(&ar->conf_mutex);
	return ret;
}

static int ath10k_cancel_remain_on_channel(struct ieee80211_hw *hw,
					   struct ieee80211_vif *vif)
{
	struct ath10k *ar = hw->priv;

	mutex_lock(&ar->conf_mutex);

	spin_lock_bh(&ar->data_lock);
	ar->scan.roc_notify = false;
	spin_unlock_bh(&ar->data_lock);

	ath10k_scan_abort(ar);

	mutex_unlock(&ar->conf_mutex);

	cancel_delayed_work_sync(&ar->scan.timeout);

	return 0;
}

/*
 * Both RTS and Fragmentation threshold are interface-specific
 * in ath10k, but device-specific in mac80211.
 */

static int ath10k_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif;
	int ret = 0;

	mutex_lock(&ar->conf_mutex);
	list_for_each_entry(arvif, &ar->arvifs, list) {
		ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d rts threshold %d\n",
			   arvif->vdev_id, value);

		ret = ath10k_mac_set_rts(arvif, value);
		if (ret) {
			ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n",
				    arvif->vdev_id, ret);
			break;
		}
	}
	mutex_unlock(&ar->conf_mutex);

	return ret;
}

static int ath10k_mac_op_set_frag_threshold(struct ieee80211_hw *hw, u32 value)
{
	/* Even though there's a WMI enum for fragmentation threshold no known
	 * firmware actually implements it. Moreover it is not possible to rely
	 * frame fragmentation to mac80211 because firmware clears the "more
	 * fragments" bit in frame control making it impossible for remote
	 * devices to reassemble frames.
	 *
	 * Hence implement a dummy callback just to say fragmentation isn't
	 * supported. This effectively prevents mac80211 from doing frame
	 * fragmentation in software.
	 */
	return -EOPNOTSUPP;
}

void ath10k_mac_wait_tx_complete(struct ath10k *ar)
{
	bool skip;
	long time_left;

	/* mac80211 doesn't care if we really xmit queued frames or not
	 * we'll collect those frames either way if we stop/delete vdevs
	 */

	if (ar->state == ATH10K_STATE_WEDGED)
		return;

	time_left = wait_event_timeout(ar->htt.empty_tx_wq, ({
			bool empty;

			spin_lock_bh(&ar->htt.tx_lock);
			empty = (ar->htt.num_pending_tx == 0);
			spin_unlock_bh(&ar->htt.tx_lock);

			skip = (ar->state == ATH10K_STATE_WEDGED) ||
			       test_bit(ATH10K_FLAG_CRASH_FLUSH,
					&ar->dev_flags);

			(empty || skip);
		}), ATH10K_FLUSH_TIMEOUT_HZ);

	if (time_left == 0 || skip)
		ath10k_warn(ar, "failed to flush transmit queue (skip %i ar-state %i): %ld\n",
			    skip, ar->state, time_left);
}

static void ath10k_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
			 u32 queues, bool drop)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif;
	u32 bitmap;

	if (drop) {
		if (vif && vif->type == NL80211_IFTYPE_STATION) {
			bitmap = ~(1 << WMI_MGMT_TID);
			list_for_each_entry(arvif, &ar->arvifs, list) {
				if (arvif->vdev_type == WMI_VDEV_TYPE_STA)
					ath10k_wmi_peer_flush(ar, arvif->vdev_id,
							      arvif->bssid, bitmap);
			}
			ath10k_htt_flush_tx(&ar->htt);
		}
		return;
	}

	mutex_lock(&ar->conf_mutex);
	ath10k_mac_wait_tx_complete(ar);
	mutex_unlock(&ar->conf_mutex);
}

/* TODO: Implement this function properly
 * For now it is needed to reply to Probe Requests in IBSS mode.
 * Probably we need this information from FW.
 */
static int ath10k_tx_last_beacon(struct ieee80211_hw *hw)
{
	return 1;
}

static void ath10k_reconfig_complete(struct ieee80211_hw *hw,
				     enum ieee80211_reconfig_type reconfig_type)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif;

	if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART)
		return;

	mutex_lock(&ar->conf_mutex);

	/* If device failed to restart it will be in a different state, e.g.
	 * ATH10K_STATE_WEDGED
	 */
	if (ar->state == ATH10K_STATE_RESTARTED) {
		ath10k_info(ar, "device successfully recovered\n");
		ar->state = ATH10K_STATE_ON;
		ieee80211_wake_queues(ar->hw);
		clear_bit(ATH10K_FLAG_RESTARTING, &ar->dev_flags);
		if (ar->hw_params.hw_restart_disconnect) {
			list_for_each_entry(arvif, &ar->arvifs, list) {
				if (arvif->is_up && arvif->vdev_type == WMI_VDEV_TYPE_STA)
					ieee80211_hw_restart_disconnect(arvif->vif);
				}
		}
	}

	mutex_unlock(&ar->conf_mutex);
}

static void
ath10k_mac_update_bss_chan_survey(struct ath10k *ar,
				  struct ieee80211_channel *channel)
{
	int ret;
	enum wmi_bss_survey_req_type type = WMI_BSS_SURVEY_REQ_TYPE_READ;

	lockdep_assert_held(&ar->conf_mutex);

	if (!test_bit(WMI_SERVICE_BSS_CHANNEL_INFO_64, ar->wmi.svc_map) ||
	    (ar->rx_channel != channel))
		return;

	if (ar->scan.state != ATH10K_SCAN_IDLE) {
		ath10k_dbg(ar, ATH10K_DBG_MAC, "ignoring bss chan info request while scanning..\n");
		return;
	}

	reinit_completion(&ar->bss_survey_done);

	ret = ath10k_wmi_pdev_bss_chan_info_request(ar, type);
	if (ret) {
		ath10k_warn(ar, "failed to send pdev bss chan info request\n");
		return;
	}

	ret = wait_for_completion_timeout(&ar->bss_survey_done, 3 * HZ);
	if (!ret) {
		ath10k_warn(ar, "bss channel survey timed out\n");
		return;
	}
}

static int ath10k_get_survey(struct ieee80211_hw *hw, int idx,
			     struct survey_info *survey)
{
	struct ath10k *ar = hw->priv;
	struct ieee80211_supported_band *sband;
	struct survey_info *ar_survey = &ar->survey[idx];
	int ret = 0;

	mutex_lock(&ar->conf_mutex);

	sband = hw->wiphy->bands[NL80211_BAND_2GHZ];
	if (sband && idx >= sband->n_channels) {
		idx -= sband->n_channels;
		sband = NULL;
	}

	if (!sband)
		sband = hw->wiphy->bands[NL80211_BAND_5GHZ];

	if (!sband || idx >= sband->n_channels) {
		ret = -ENOENT;
		goto exit;
	}

	ath10k_mac_update_bss_chan_survey(ar, &sband->channels[idx]);

	spin_lock_bh(&ar->data_lock);
	memcpy(survey, ar_survey, sizeof(*survey));
	spin_unlock_bh(&ar->data_lock);

	survey->channel = &sband->channels[idx];

	if (ar->rx_channel == survey->channel)
		survey->filled |= SURVEY_INFO_IN_USE;

exit:
	mutex_unlock(&ar->conf_mutex);
	return ret;
}

static bool
ath10k_mac_bitrate_mask_get_single_nss(struct ath10k *ar,
				       enum nl80211_band band,
				       const struct cfg80211_bitrate_mask *mask,
				       int *nss)
{
	struct ieee80211_supported_band *sband = &ar->mac.sbands[band];
	u16 vht_mcs_map = le16_to_cpu(sband->vht_cap.vht_mcs.tx_mcs_map);
	u8 ht_nss_mask = 0;
	u8 vht_nss_mask = 0;
	int i;

	if (mask->control[band].legacy)
		return false;

	for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) {
		if (mask->control[band].ht_mcs[i] == 0)
			continue;
		else if (mask->control[band].ht_mcs[i] ==
			 sband->ht_cap.mcs.rx_mask[i])
			ht_nss_mask |= BIT(i);
		else
			return false;
	}

	for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) {
		if (mask->control[band].vht_mcs[i] == 0)
			continue;
		else if (mask->control[band].vht_mcs[i] ==
			 ath10k_mac_get_max_vht_mcs_map(vht_mcs_map, i))
			vht_nss_mask |= BIT(i);
		else
			return false;
	}

	if (ht_nss_mask != vht_nss_mask)
		return false;

	if (ht_nss_mask == 0)
		return false;

	if (BIT(fls(ht_nss_mask)) - 1 != ht_nss_mask)
		return false;

	*nss = fls(ht_nss_mask);

	return true;
}

static int ath10k_mac_set_fixed_rate_params(struct ath10k_vif *arvif,
					    u8 rate, u8 nss, u8 sgi, u8 ldpc)
{
	struct ath10k *ar = arvif->ar;
	u32 vdev_param;
	int ret;

	lockdep_assert_held(&ar->conf_mutex);

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac set fixed rate params vdev %i rate 0x%02x nss %u sgi %u\n",
		   arvif->vdev_id, rate, nss, sgi);

	vdev_param = ar->wmi.vdev_param->fixed_rate;
	ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, rate);
	if (ret) {
		ath10k_warn(ar, "failed to set fixed rate param 0x%02x: %d\n",
			    rate, ret);
		return ret;
	}

	vdev_param = ar->wmi.vdev_param->nss;
	ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, nss);
	if (ret) {
		ath10k_warn(ar, "failed to set nss param %d: %d\n", nss, ret);
		return ret;
	}

	vdev_param = ar->wmi.vdev_param->sgi;
	ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, sgi);
	if (ret) {
		ath10k_warn(ar, "failed to set sgi param %d: %d\n", sgi, ret);
		return ret;
	}

	vdev_param = ar->wmi.vdev_param->ldpc;
	ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, ldpc);
	if (ret) {
		ath10k_warn(ar, "failed to set ldpc param %d: %d\n", ldpc, ret);
		return ret;
	}

	return 0;
}

static bool
ath10k_mac_can_set_bitrate_mask(struct ath10k *ar,
				enum nl80211_band band,
				const struct cfg80211_bitrate_mask *mask,
				bool allow_pfr)
{
	int i;
	u16 vht_mcs;

	/* Due to firmware limitation in WMI_PEER_ASSOC_CMDID it is impossible
	 * to express all VHT MCS rate masks. Effectively only the following
	 * ranges can be used: none, 0-7, 0-8 and 0-9.
	 */
	for (i = 0; i < NL80211_VHT_NSS_MAX; i++) {
		vht_mcs = mask->control[band].vht_mcs[i];

		switch (vht_mcs) {
		case 0:
		case BIT(8) - 1:
		case BIT(9) - 1:
		case BIT(10) - 1:
			break;
		default:
			if (!allow_pfr)
				ath10k_warn(ar, "refusing bitrate mask with missing 0-7 VHT MCS rates\n");
			return false;
		}
	}

	return true;
}

static bool ath10k_mac_set_vht_bitrate_mask_fixup(struct ath10k *ar,
						  struct ath10k_vif *arvif,
						  struct ieee80211_sta *sta)
{
	int err;
	u8 rate = arvif->vht_pfr;

	/* skip non vht and multiple rate peers */
	if (!sta->deflink.vht_cap.vht_supported || arvif->vht_num_rates != 1)
		return false;

	err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
					WMI_PEER_PARAM_FIXED_RATE, rate);
	if (err)
		ath10k_warn(ar, "failed to enable STA %pM peer fixed rate: %d\n",
			    sta->addr, err);

	return true;
}

static void ath10k_mac_set_bitrate_mask_iter(void *data,
					     struct ieee80211_sta *sta)
{
	struct ath10k_vif *arvif = data;
	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
	struct ath10k *ar = arvif->ar;

	if (arsta->arvif != arvif)
		return;

	if (ath10k_mac_set_vht_bitrate_mask_fixup(ar, arvif, sta))
		return;

	spin_lock_bh(&ar->data_lock);
	arsta->changed |= IEEE80211_RC_SUPP_RATES_CHANGED;
	spin_unlock_bh(&ar->data_lock);

	ieee80211_queue_work(ar->hw, &arsta->update_wk);
}

static void ath10k_mac_clr_bitrate_mask_iter(void *data,
					     struct ieee80211_sta *sta)
{
	struct ath10k_vif *arvif = data;
	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
	struct ath10k *ar = arvif->ar;
	int err;

	/* clear vht peers only */
	if (arsta->arvif != arvif || !sta->deflink.vht_cap.vht_supported)
		return;

	err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
					WMI_PEER_PARAM_FIXED_RATE,
					WMI_FIXED_RATE_NONE);
	if (err)
		ath10k_warn(ar, "failed to clear STA %pM peer fixed rate: %d\n",
			    sta->addr, err);
}

static int ath10k_mac_op_set_bitrate_mask(struct ieee80211_hw *hw,
					  struct ieee80211_vif *vif,
					  const struct cfg80211_bitrate_mask *mask)
{
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct cfg80211_chan_def def;
	struct ath10k *ar = arvif->ar;
	enum nl80211_band band;
	const u8 *ht_mcs_mask;
	const u16 *vht_mcs_mask;
	u8 rate;
	u8 nss;
	u8 sgi;
	u8 ldpc;
	int single_nss;
	int ret;
	int vht_num_rates, allow_pfr;
	u8 vht_pfr;
	bool update_bitrate_mask = true;

	if (ath10k_mac_vif_chan(vif, &def))
		return -EPERM;

	band = def.chan->band;
	ht_mcs_mask = mask->control[band].ht_mcs;
	vht_mcs_mask = mask->control[band].vht_mcs;
	ldpc = !!(ar->ht_cap_info & WMI_HT_CAP_LDPC);

	sgi = mask->control[band].gi;
	if (sgi == NL80211_TXRATE_FORCE_LGI)
		return -EINVAL;

	allow_pfr = test_bit(ATH10K_FW_FEATURE_PEER_FIXED_RATE,
			     ar->normal_mode_fw.fw_file.fw_features);
	if (allow_pfr) {
		mutex_lock(&ar->conf_mutex);
		ieee80211_iterate_stations_atomic(ar->hw,
						  ath10k_mac_clr_bitrate_mask_iter,
						  arvif);
		mutex_unlock(&ar->conf_mutex);
	}

	if (ath10k_mac_bitrate_mask_has_single_rate(ar, band, mask,
						    &vht_num_rates)) {
		ret = ath10k_mac_bitrate_mask_get_single_rate(ar, band, mask,
							      &rate, &nss,
							      false);
		if (ret) {
			ath10k_warn(ar, "failed to get single rate for vdev %i: %d\n",
				    arvif->vdev_id, ret);
			return ret;
		}
	} else if (ath10k_mac_bitrate_mask_get_single_nss(ar, band, mask,
							  &single_nss)) {
		rate = WMI_FIXED_RATE_NONE;
		nss = single_nss;
	} else {
		rate = WMI_FIXED_RATE_NONE;
		nss = min(ar->num_rf_chains,
			  max(ath10k_mac_max_ht_nss(ht_mcs_mask),
			      ath10k_mac_max_vht_nss(vht_mcs_mask)));

		if (!ath10k_mac_can_set_bitrate_mask(ar, band, mask,
						     allow_pfr)) {
			u8 vht_nss;

			if (!allow_pfr || vht_num_rates != 1)
				return -EINVAL;

			/* Reach here, firmware supports peer fixed rate and has
			 * single vht rate, and don't update vif birate_mask, as
			 * the rate only for specific peer.
			 */
			ath10k_mac_bitrate_mask_get_single_rate(ar, band, mask,
								&vht_pfr,
								&vht_nss,
								true);
			update_bitrate_mask = false;
		} else {
			vht_pfr = 0;
		}

		mutex_lock(&ar->conf_mutex);

		if (update_bitrate_mask)
			arvif->bitrate_mask = *mask;
		arvif->vht_num_rates = vht_num_rates;
		arvif->vht_pfr = vht_pfr;
		ieee80211_iterate_stations_atomic(ar->hw,
						  ath10k_mac_set_bitrate_mask_iter,
						  arvif);

		mutex_unlock(&ar->conf_mutex);
	}

	mutex_lock(&ar->conf_mutex);

	ret = ath10k_mac_set_fixed_rate_params(arvif, rate, nss, sgi, ldpc);
	if (ret) {
		ath10k_warn(ar, "failed to set fixed rate params on vdev %i: %d\n",
			    arvif->vdev_id, ret);
		goto exit;
	}

exit:
	mutex_unlock(&ar->conf_mutex);

	return ret;
}

static void ath10k_sta_rc_update(struct ieee80211_hw *hw,
				 struct ieee80211_vif *vif,
				 struct ieee80211_sta *sta,
				 u32 changed)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ath10k_peer *peer;
	u32 bw, smps;

	spin_lock_bh(&ar->data_lock);

	peer = ath10k_peer_find(ar, arvif->vdev_id, sta->addr);
	if (!peer) {
		spin_unlock_bh(&ar->data_lock);
		ath10k_warn(ar, "mac sta rc update failed to find peer %pM on vdev %i\n",
			    sta->addr, arvif->vdev_id);
		return;
	}

	ath10k_dbg(ar, ATH10K_DBG_STA,
		   "mac sta rc update for %pM changed %08x bw %d nss %d smps %d\n",
		   sta->addr, changed, sta->deflink.bandwidth,
		   sta->deflink.rx_nss,
		   sta->deflink.smps_mode);

	if (changed & IEEE80211_RC_BW_CHANGED) {
		bw = WMI_PEER_CHWIDTH_20MHZ;

		switch (sta->deflink.bandwidth) {
		case IEEE80211_STA_RX_BW_20:
			bw = WMI_PEER_CHWIDTH_20MHZ;
			break;
		case IEEE80211_STA_RX_BW_40:
			bw = WMI_PEER_CHWIDTH_40MHZ;
			break;
		case IEEE80211_STA_RX_BW_80:
			bw = WMI_PEER_CHWIDTH_80MHZ;
			break;
		case IEEE80211_STA_RX_BW_160:
			bw = WMI_PEER_CHWIDTH_160MHZ;
			break;
		default:
			ath10k_warn(ar, "Invalid bandwidth %d in rc update for %pM\n",
				    sta->deflink.bandwidth, sta->addr);
			bw = WMI_PEER_CHWIDTH_20MHZ;
			break;
		}

		arsta->bw = bw;
	}

	if (changed & IEEE80211_RC_NSS_CHANGED)
		arsta->nss = sta->deflink.rx_nss;

	if (changed & IEEE80211_RC_SMPS_CHANGED) {
		smps = WMI_PEER_SMPS_PS_NONE;

		switch (sta->deflink.smps_mode) {
		case IEEE80211_SMPS_AUTOMATIC:
		case IEEE80211_SMPS_OFF:
			smps = WMI_PEER_SMPS_PS_NONE;
			break;
		case IEEE80211_SMPS_STATIC:
			smps = WMI_PEER_SMPS_STATIC;
			break;
		case IEEE80211_SMPS_DYNAMIC:
			smps = WMI_PEER_SMPS_DYNAMIC;
			break;
		case IEEE80211_SMPS_NUM_MODES:
			ath10k_warn(ar, "Invalid smps %d in sta rc update for %pM\n",
				    sta->deflink.smps_mode, sta->addr);
			smps = WMI_PEER_SMPS_PS_NONE;
			break;
		}

		arsta->smps = smps;
	}

	arsta->changed |= changed;

	spin_unlock_bh(&ar->data_lock);

	ieee80211_queue_work(hw, &arsta->update_wk);
}

static void ath10k_offset_tsf(struct ieee80211_hw *hw,
			      struct ieee80211_vif *vif, s64 tsf_offset)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	u32 offset, vdev_param;
	int ret;

	if (tsf_offset < 0) {
		vdev_param = ar->wmi.vdev_param->dec_tsf;
		offset = -tsf_offset;
	} else {
		vdev_param = ar->wmi.vdev_param->inc_tsf;
		offset = tsf_offset;
	}

	ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
					vdev_param, offset);

	if (ret && ret != -EOPNOTSUPP)
		ath10k_warn(ar, "failed to set tsf offset %d cmd %d: %d\n",
			    offset, vdev_param, ret);
}

static int ath10k_ampdu_action(struct ieee80211_hw *hw,
			       struct ieee80211_vif *vif,
			       struct ieee80211_ampdu_params *params)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ieee80211_sta *sta = params->sta;
	enum ieee80211_ampdu_mlme_action action = params->action;
	u16 tid = params->tid;

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ampdu vdev_id %i sta %pM tid %u action %d\n",
		   arvif->vdev_id, sta->addr, tid, action);

	switch (action) {
	case IEEE80211_AMPDU_RX_START:
	case IEEE80211_AMPDU_RX_STOP:
		/* HTT AddBa/DelBa events trigger mac80211 Rx BA session
		 * creation/removal. Do we need to verify this?
		 */
		return 0;
	case IEEE80211_AMPDU_TX_START:
	case IEEE80211_AMPDU_TX_STOP_CONT:
	case IEEE80211_AMPDU_TX_STOP_FLUSH:
	case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
	case IEEE80211_AMPDU_TX_OPERATIONAL:
		/* Firmware offloads Tx aggregation entirely so deny mac80211
		 * Tx aggregation requests.
		 */
		return -EOPNOTSUPP;
	}

	return -EINVAL;
}

static void
ath10k_mac_update_rx_channel(struct ath10k *ar,
			     struct ieee80211_chanctx_conf *ctx,
			     struct ieee80211_vif_chanctx_switch *vifs,
			     int n_vifs)
{
	struct cfg80211_chan_def *def = NULL;

	/* Both locks are required because ar->rx_channel is modified. This
	 * allows readers to hold either lock.
	 */
	lockdep_assert_held(&ar->conf_mutex);
	lockdep_assert_held(&ar->data_lock);

	WARN_ON(ctx && vifs);
	WARN_ON(vifs && !n_vifs);

	/* FIXME: Sort of an optimization and a workaround. Peers and vifs are
	 * on a linked list now. Doing a lookup peer -> vif -> chanctx for each
	 * ppdu on Rx may reduce performance on low-end systems. It should be
	 * possible to make tables/hashmaps to speed the lookup up (be vary of
	 * cpu data cache lines though regarding sizes) but to keep the initial
	 * implementation simple and less intrusive fallback to the slow lookup
	 * only for multi-channel cases. Single-channel cases will remain to
	 * use the old channel derival and thus performance should not be
	 * affected much.
	 */
	rcu_read_lock();
	if (!ctx && ath10k_mac_num_chanctxs(ar) == 1) {
		ieee80211_iter_chan_contexts_atomic(ar->hw,
						    ath10k_mac_get_any_chandef_iter,
						    &def);

		if (vifs)
			def = &vifs[0].new_ctx->def;

		ar->rx_channel = def->chan;
	} else if ((ctx && ath10k_mac_num_chanctxs(ar) == 0) ||
		   (ctx && (ar->state == ATH10K_STATE_RESTARTED))) {
		/* During driver restart due to firmware assert, since mac80211
		 * already has valid channel context for given radio, channel
		 * context iteration return num_chanctx > 0. So fix rx_channel
		 * when restart is in progress.
		 */
		ar->rx_channel = ctx->def.chan;
	} else {
		ar->rx_channel = NULL;
	}
	rcu_read_unlock();
}

static void
ath10k_mac_update_vif_chan(struct ath10k *ar,
			   struct ieee80211_vif_chanctx_switch *vifs,
			   int n_vifs)
{
	struct ath10k_vif *arvif;
	int ret;
	int i;

	lockdep_assert_held(&ar->conf_mutex);

	/* First stop monitor interface. Some FW versions crash if there's a
	 * lone monitor interface.
	 */
	if (ar->monitor_started)
		ath10k_monitor_stop(ar);

	for (i = 0; i < n_vifs; i++) {
		arvif = (void *)vifs[i].vif->drv_priv;

		ath10k_dbg(ar, ATH10K_DBG_MAC,
			   "mac chanctx switch vdev_id %i freq %u->%u width %d->%d\n",
			   arvif->vdev_id,
			   vifs[i].old_ctx->def.chan->center_freq,
			   vifs[i].new_ctx->def.chan->center_freq,
			   vifs[i].old_ctx->def.width,
			   vifs[i].new_ctx->def.width);

		if (WARN_ON(!arvif->is_started))
			continue;

		if (WARN_ON(!arvif->is_up))
			continue;

		ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
		if (ret) {
			ath10k_warn(ar, "failed to down vdev %d: %d\n",
				    arvif->vdev_id, ret);
			continue;
		}
	}

	/* All relevant vdevs are downed and associated channel resources
	 * should be available for the channel switch now.
	 */

	spin_lock_bh(&ar->data_lock);
	ath10k_mac_update_rx_channel(ar, NULL, vifs, n_vifs);
	spin_unlock_bh(&ar->data_lock);

	for (i = 0; i < n_vifs; i++) {
		arvif = (void *)vifs[i].vif->drv_priv;

		if (WARN_ON(!arvif->is_started))
			continue;

		if (WARN_ON(!arvif->is_up))
			continue;

		ret = ath10k_mac_setup_bcn_tmpl(arvif);
		if (ret)
			ath10k_warn(ar, "failed to update bcn tmpl during csa: %d\n",
				    ret);

		ret = ath10k_mac_setup_prb_tmpl(arvif);
		if (ret)
			ath10k_warn(ar, "failed to update prb tmpl during csa: %d\n",
				    ret);

		ret = ath10k_vdev_restart(arvif, &vifs[i].new_ctx->def);
		if (ret) {
			ath10k_warn(ar, "failed to restart vdev %d: %d\n",
				    arvif->vdev_id, ret);
			continue;
		}

		ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
					 arvif->bssid);
		if (ret) {
			ath10k_warn(ar, "failed to bring vdev up %d: %d\n",
				    arvif->vdev_id, ret);
			continue;
		}
	}

	ath10k_monitor_recalc(ar);
}

static int
ath10k_mac_op_add_chanctx(struct ieee80211_hw *hw,
			  struct ieee80211_chanctx_conf *ctx)
{
	struct ath10k *ar = hw->priv;

	ath10k_dbg(ar, ATH10K_DBG_MAC,
		   "mac chanctx add freq %u width %d ptr %pK\n",
		   ctx->def.chan->center_freq, ctx->def.width, ctx);

	mutex_lock(&ar->conf_mutex);

	spin_lock_bh(&ar->data_lock);
	ath10k_mac_update_rx_channel(ar, ctx, NULL, 0);
	spin_unlock_bh(&ar->data_lock);

	ath10k_recalc_radar_detection(ar);
	ath10k_monitor_recalc(ar);

	mutex_unlock(&ar->conf_mutex);

	return 0;
}

static void
ath10k_mac_op_remove_chanctx(struct ieee80211_hw *hw,
			     struct ieee80211_chanctx_conf *ctx)
{
	struct ath10k *ar = hw->priv;

	ath10k_dbg(ar, ATH10K_DBG_MAC,
		   "mac chanctx remove freq %u width %d ptr %pK\n",
		   ctx->def.chan->center_freq, ctx->def.width, ctx);

	mutex_lock(&ar->conf_mutex);

	spin_lock_bh(&ar->data_lock);
	ath10k_mac_update_rx_channel(ar, NULL, NULL, 0);
	spin_unlock_bh(&ar->data_lock);

	ath10k_recalc_radar_detection(ar);
	ath10k_monitor_recalc(ar);

	mutex_unlock(&ar->conf_mutex);
}

struct ath10k_mac_change_chanctx_arg {
	struct ieee80211_chanctx_conf *ctx;
	struct ieee80211_vif_chanctx_switch *vifs;
	int n_vifs;
	int next_vif;
};

static void
ath10k_mac_change_chanctx_cnt_iter(void *data, u8 *mac,
				   struct ieee80211_vif *vif)
{
	struct ath10k_mac_change_chanctx_arg *arg = data;

	if (rcu_access_pointer(vif->bss_conf.chanctx_conf) != arg->ctx)
		return;

	arg->n_vifs++;
}

static void
ath10k_mac_change_chanctx_fill_iter(void *data, u8 *mac,
				    struct ieee80211_vif *vif)
{
	struct ath10k_mac_change_chanctx_arg *arg = data;
	struct ieee80211_chanctx_conf *ctx;

	ctx = rcu_access_pointer(vif->bss_conf.chanctx_conf);
	if (ctx != arg->ctx)
		return;

	if (WARN_ON(arg->next_vif == arg->n_vifs))
		return;

	arg->vifs[arg->next_vif].vif = vif;
	arg->vifs[arg->next_vif].old_ctx = ctx;
	arg->vifs[arg->next_vif].new_ctx = ctx;
	arg->next_vif++;
}

static void
ath10k_mac_op_change_chanctx(struct ieee80211_hw *hw,
			     struct ieee80211_chanctx_conf *ctx,
			     u32 changed)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_mac_change_chanctx_arg arg = { .ctx = ctx };

	mutex_lock(&ar->conf_mutex);

	ath10k_dbg(ar, ATH10K_DBG_MAC,
		   "mac chanctx change freq %u width %d ptr %pK changed %x\n",
		   ctx->def.chan->center_freq, ctx->def.width, ctx, changed);

	/* This shouldn't really happen because channel switching should use
	 * switch_vif_chanctx().
	 */
	if (WARN_ON(changed & IEEE80211_CHANCTX_CHANGE_CHANNEL))
		goto unlock;

	if (changed & IEEE80211_CHANCTX_CHANGE_WIDTH) {
		ieee80211_iterate_active_interfaces_atomic(
					hw,
					ATH10K_ITER_NORMAL_FLAGS,
					ath10k_mac_change_chanctx_cnt_iter,
					&arg);
		if (arg.n_vifs == 0)
			goto radar;

		arg.vifs = kcalloc(arg.n_vifs, sizeof(arg.vifs[0]),
				   GFP_KERNEL);
		if (!arg.vifs)
			goto radar;

		ieee80211_iterate_active_interfaces_atomic(
					hw,
					ATH10K_ITER_NORMAL_FLAGS,
					ath10k_mac_change_chanctx_fill_iter,
					&arg);
		ath10k_mac_update_vif_chan(ar, arg.vifs, arg.n_vifs);
		kfree(arg.vifs);
	}

radar:
	ath10k_recalc_radar_detection(ar);

	/* FIXME: How to configure Rx chains properly? */

	/* No other actions are actually necessary. Firmware maintains channel
	 * definitions per vdev internally and there's no host-side channel
	 * context abstraction to configure, e.g. channel width.
	 */

unlock:
	mutex_unlock(&ar->conf_mutex);
}

static int
ath10k_mac_op_assign_vif_chanctx(struct ieee80211_hw *hw,
				 struct ieee80211_vif *vif,
				 struct ieee80211_bss_conf *link_conf,
				 struct ieee80211_chanctx_conf *ctx)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	int ret;

	mutex_lock(&ar->conf_mutex);

	ath10k_dbg(ar, ATH10K_DBG_MAC,
		   "mac chanctx assign ptr %pK vdev_id %i\n",
		   ctx, arvif->vdev_id);

	if (WARN_ON(arvif->is_started)) {
		mutex_unlock(&ar->conf_mutex);
		return -EBUSY;
	}

	ret = ath10k_vdev_start(arvif, &ctx->def);
	if (ret) {
		ath10k_warn(ar, "failed to start vdev %i addr %pM on freq %d: %d\n",
			    arvif->vdev_id, vif->addr,
			    ctx->def.chan->center_freq, ret);
		goto err;
	}

	arvif->is_started = true;

	ret = ath10k_mac_vif_setup_ps(arvif);
	if (ret) {
		ath10k_warn(ar, "failed to update vdev %i ps: %d\n",
			    arvif->vdev_id, ret);
		goto err_stop;
	}

	if (vif->type == NL80211_IFTYPE_MONITOR) {
		ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, 0, vif->addr);
		if (ret) {
			ath10k_warn(ar, "failed to up monitor vdev %i: %d\n",
				    arvif->vdev_id, ret);
			goto err_stop;
		}

		arvif->is_up = true;
	}

	if (ath10k_mac_can_set_cts_prot(arvif)) {
		ret = ath10k_mac_set_cts_prot(arvif);
		if (ret)
			ath10k_warn(ar, "failed to set cts protection for vdev %d: %d\n",
				    arvif->vdev_id, ret);
	}

	if (ath10k_peer_stats_enabled(ar) &&
	    ar->hw_params.tx_stats_over_pktlog) {
		ar->pktlog_filter |= ATH10K_PKTLOG_PEER_STATS;
		ret = ath10k_wmi_pdev_pktlog_enable(ar,
						    ar->pktlog_filter);
		if (ret) {
			ath10k_warn(ar, "failed to enable pktlog %d\n", ret);
			goto err_stop;
		}
	}

	mutex_unlock(&ar->conf_mutex);
	return 0;

err_stop:
	ath10k_vdev_stop(arvif);
	arvif->is_started = false;
	ath10k_mac_vif_setup_ps(arvif);

err:
	mutex_unlock(&ar->conf_mutex);
	return ret;
}

static void
ath10k_mac_op_unassign_vif_chanctx(struct ieee80211_hw *hw,
				   struct ieee80211_vif *vif,
				   struct ieee80211_bss_conf *link_conf,
				   struct ieee80211_chanctx_conf *ctx)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	int ret;

	mutex_lock(&ar->conf_mutex);

	ath10k_dbg(ar, ATH10K_DBG_MAC,
		   "mac chanctx unassign ptr %pK vdev_id %i\n",
		   ctx, arvif->vdev_id);

	WARN_ON(!arvif->is_started);

	if (vif->type == NL80211_IFTYPE_MONITOR) {
		WARN_ON(!arvif->is_up);

		ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
		if (ret)
			ath10k_warn(ar, "failed to down monitor vdev %i: %d\n",
				    arvif->vdev_id, ret);

		arvif->is_up = false;
	}

	ret = ath10k_vdev_stop(arvif);
	if (ret)
		ath10k_warn(ar, "failed to stop vdev %i: %d\n",
			    arvif->vdev_id, ret);

	arvif->is_started = false;

	mutex_unlock(&ar->conf_mutex);
}

static int
ath10k_mac_op_switch_vif_chanctx(struct ieee80211_hw *hw,
				 struct ieee80211_vif_chanctx_switch *vifs,
				 int n_vifs,
				 enum ieee80211_chanctx_switch_mode mode)
{
	struct ath10k *ar = hw->priv;

	mutex_lock(&ar->conf_mutex);

	ath10k_dbg(ar, ATH10K_DBG_MAC,
		   "mac chanctx switch n_vifs %d mode %d\n",
		   n_vifs, mode);
	ath10k_mac_update_vif_chan(ar, vifs, n_vifs);

	mutex_unlock(&ar->conf_mutex);
	return 0;
}

static void ath10k_mac_op_sta_pre_rcu_remove(struct ieee80211_hw *hw,
					     struct ieee80211_vif *vif,
					     struct ieee80211_sta *sta)
{
	struct ath10k *ar;
	struct ath10k_peer *peer;

	ar = hw->priv;

	list_for_each_entry(peer, &ar->peers, list)
		if (peer->sta == sta)
			peer->removed = true;
}

/* HT MCS parameters with Nss = 1 */
static const struct ath10k_index_ht_data_rate_type supported_ht_mcs_rate_nss1[] = {
	/* MCS  L20   L40   S20  S40 */
	{0,  { 65,  135,  72,  150} },
	{1,  { 130, 270,  144, 300} },
	{2,  { 195, 405,  217, 450} },
	{3,  { 260, 540,  289, 600} },
	{4,  { 390, 810,  433, 900} },
	{5,  { 520, 1080, 578, 1200} },
	{6,  { 585, 1215, 650, 1350} },
	{7,  { 650, 1350, 722, 1500} }
};

/* HT MCS parameters with Nss = 2 */
static const struct ath10k_index_ht_data_rate_type supported_ht_mcs_rate_nss2[] = {
	/* MCS  L20    L40   S20   S40 */
	{0,  {130,  270,  144,  300} },
	{1,  {260,  540,  289,  600} },
	{2,  {390,  810,  433,  900} },
	{3,  {520,  1080, 578,  1200} },
	{4,  {780,  1620, 867,  1800} },
	{5,  {1040, 2160, 1156, 2400} },
	{6,  {1170, 2430, 1300, 2700} },
	{7,  {1300, 2700, 1444, 3000} }
};

/* MCS parameters with Nss = 1 */
static const struct ath10k_index_vht_data_rate_type supported_vht_mcs_rate_nss1[] = {
	/* MCS  L80    S80     L40   S40    L20   S20 */
	{0,  {293,  325},  {135,  150},  {65,   72} },
	{1,  {585,  650},  {270,  300},  {130,  144} },
	{2,  {878,  975},  {405,  450},  {195,  217} },
	{3,  {1170, 1300}, {540,  600},  {260,  289} },
	{4,  {1755, 1950}, {810,  900},  {390,  433} },
	{5,  {2340, 2600}, {1080, 1200}, {520,  578} },
	{6,  {2633, 2925}, {1215, 1350}, {585,  650} },
	{7,  {2925, 3250}, {1350, 1500}, {650,  722} },
	{8,  {3510, 3900}, {1620, 1800}, {780,  867} },
	{9,  {3900, 4333}, {1800, 2000}, {780,  867} }
};

/*MCS parameters with Nss = 2 */
static const struct ath10k_index_vht_data_rate_type supported_vht_mcs_rate_nss2[] = {
	/* MCS  L80    S80     L40   S40    L20   S20 */
	{0,  {585,  650},  {270,  300},  {130,  144} },
	{1,  {1170, 1300}, {540,  600},  {260,  289} },
	{2,  {1755, 1950}, {810,  900},  {390,  433} },
	{3,  {2340, 2600}, {1080, 1200}, {520,  578} },
	{4,  {3510, 3900}, {1620, 1800}, {780,  867} },
	{5,  {4680, 5200}, {2160, 2400}, {1040, 1156} },
	{6,  {5265, 5850}, {2430, 2700}, {1170, 1300} },
	{7,  {5850, 6500}, {2700, 3000}, {1300, 1444} },
	{8,  {7020, 7800}, {3240, 3600}, {1560, 1733} },
	{9,  {7800, 8667}, {3600, 4000}, {1560, 1733} }
};

static void ath10k_mac_get_rate_flags_ht(struct ath10k *ar, u32 rate, u8 nss, u8 mcs,
					 u8 *flags, u8 *bw)
{
	struct ath10k_index_ht_data_rate_type *mcs_rate;
	u8 index;
	size_t len_nss1 = ARRAY_SIZE(supported_ht_mcs_rate_nss1);
	size_t len_nss2 = ARRAY_SIZE(supported_ht_mcs_rate_nss2);

	if (mcs >= (len_nss1 + len_nss2)) {
		ath10k_warn(ar, "not supported mcs %d in current rate table", mcs);
		return;
	}

	mcs_rate = (struct ath10k_index_ht_data_rate_type *)
		   ((nss == 1) ? &supported_ht_mcs_rate_nss1 :
		   &supported_ht_mcs_rate_nss2);

	if (mcs >= len_nss1)
		index = mcs - len_nss1;
	else
		index = mcs;

	if (rate == mcs_rate[index].supported_rate[0]) {
		*bw = RATE_INFO_BW_20;
	} else if (rate == mcs_rate[index].supported_rate[1]) {
		*bw |= RATE_INFO_BW_40;
	} else if (rate == mcs_rate[index].supported_rate[2]) {
		*bw |= RATE_INFO_BW_20;
		*flags |= RATE_INFO_FLAGS_SHORT_GI;
	} else if (rate == mcs_rate[index].supported_rate[3]) {
		*bw |= RATE_INFO_BW_40;
		*flags |= RATE_INFO_FLAGS_SHORT_GI;
	} else {
		ath10k_warn(ar, "invalid ht params rate %d 100kbps nss %d mcs %d",
			    rate, nss, mcs);
	}
}

static void ath10k_mac_get_rate_flags_vht(struct ath10k *ar, u32 rate, u8 nss, u8 mcs,
					  u8 *flags, u8 *bw)
{
	struct ath10k_index_vht_data_rate_type *mcs_rate;

	mcs_rate = (struct ath10k_index_vht_data_rate_type *)
		   ((nss == 1) ? &supported_vht_mcs_rate_nss1 :
		   &supported_vht_mcs_rate_nss2);

	if (rate == mcs_rate[mcs].supported_VHT80_rate[0]) {
		*bw = RATE_INFO_BW_80;
	} else if (rate == mcs_rate[mcs].supported_VHT80_rate[1]) {
		*bw = RATE_INFO_BW_80;
		*flags |= RATE_INFO_FLAGS_SHORT_GI;
	} else if (rate == mcs_rate[mcs].supported_VHT40_rate[0]) {
		*bw = RATE_INFO_BW_40;
	} else if (rate == mcs_rate[mcs].supported_VHT40_rate[1]) {
		*bw = RATE_INFO_BW_40;
		*flags |= RATE_INFO_FLAGS_SHORT_GI;
	} else if (rate == mcs_rate[mcs].supported_VHT20_rate[0]) {
		*bw = RATE_INFO_BW_20;
	} else if (rate == mcs_rate[mcs].supported_VHT20_rate[1]) {
		*bw = RATE_INFO_BW_20;
		*flags |= RATE_INFO_FLAGS_SHORT_GI;
	} else {
		ath10k_warn(ar, "invalid vht params rate %d 100kbps nss %d mcs %d",
			    rate, nss, mcs);
	}
}

static void ath10k_mac_get_rate_flags(struct ath10k *ar, u32 rate,
				      enum ath10k_phy_mode mode, u8 nss, u8 mcs,
				      u8 *flags, u8 *bw)
{
	if (mode == ATH10K_PHY_MODE_HT) {
		*flags = RATE_INFO_FLAGS_MCS;
		ath10k_mac_get_rate_flags_ht(ar, rate, nss, mcs, flags, bw);
	} else if (mode == ATH10K_PHY_MODE_VHT) {
		*flags = RATE_INFO_FLAGS_VHT_MCS;
		ath10k_mac_get_rate_flags_vht(ar, rate, nss, mcs, flags, bw);
	}
}

static void ath10k_mac_parse_bitrate(struct ath10k *ar, u32 rate_code,
				     u32 bitrate_kbps, struct rate_info *rate)
{
	enum ath10k_phy_mode mode = ATH10K_PHY_MODE_LEGACY;
	enum wmi_rate_preamble preamble = WMI_TLV_GET_HW_RC_PREAM_V1(rate_code);
	u8 nss = WMI_TLV_GET_HW_RC_NSS_V1(rate_code) + 1;
	u8 mcs = WMI_TLV_GET_HW_RC_RATE_V1(rate_code);
	u8 flags = 0, bw = 0;

	ath10k_dbg(ar, ATH10K_DBG_MAC, "mac parse rate code 0x%x bitrate %d kbps\n",
		   rate_code, bitrate_kbps);

	if (preamble == WMI_RATE_PREAMBLE_HT)
		mode = ATH10K_PHY_MODE_HT;
	else if (preamble == WMI_RATE_PREAMBLE_VHT)
		mode = ATH10K_PHY_MODE_VHT;

	ath10k_mac_get_rate_flags(ar, bitrate_kbps / 100, mode, nss, mcs, &flags, &bw);

	ath10k_dbg(ar, ATH10K_DBG_MAC,
		   "mac parse bitrate preamble %d mode %d nss %d mcs %d flags %x bw %d\n",
		   preamble, mode, nss, mcs, flags, bw);

	rate->flags = flags;
	rate->bw = bw;
	rate->legacy = bitrate_kbps / 100;
	rate->nss = nss;
	rate->mcs = mcs;
}

static void ath10k_mac_sta_get_peer_stats_info(struct ath10k *ar,
					       struct ieee80211_sta *sta,
					       struct station_info *sinfo)
{
	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
	struct ath10k_peer *peer;
	unsigned long time_left;
	int ret;

	if (!(ar->hw_params.supports_peer_stats_info &&
	      arsta->arvif->vdev_type == WMI_VDEV_TYPE_STA))
		return;

	spin_lock_bh(&ar->data_lock);
	peer = ath10k_peer_find(ar, arsta->arvif->vdev_id, sta->addr);
	spin_unlock_bh(&ar->data_lock);
	if (!peer)
		return;

	reinit_completion(&ar->peer_stats_info_complete);

	ret = ath10k_wmi_request_peer_stats_info(ar,
						 arsta->arvif->vdev_id,
						 WMI_REQUEST_ONE_PEER_STATS_INFO,
						 arsta->arvif->bssid,
						 0);
	if (ret && ret != -EOPNOTSUPP) {
		ath10k_warn(ar, "could not request peer stats info: %d\n", ret);
		return;
	}

	time_left = wait_for_completion_timeout(&ar->peer_stats_info_complete, 3 * HZ);
	if (time_left == 0) {
		ath10k_warn(ar, "timed out waiting peer stats info\n");
		return;
	}

	if (arsta->rx_rate_code != 0 && arsta->rx_bitrate_kbps != 0) {
		ath10k_mac_parse_bitrate(ar, arsta->rx_rate_code,
					 arsta->rx_bitrate_kbps,
					 &sinfo->rxrate);

		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
		arsta->rx_rate_code = 0;
		arsta->rx_bitrate_kbps = 0;
	}

	if (arsta->tx_rate_code != 0 && arsta->tx_bitrate_kbps != 0) {
		ath10k_mac_parse_bitrate(ar, arsta->tx_rate_code,
					 arsta->tx_bitrate_kbps,
					 &sinfo->txrate);

		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
		arsta->tx_rate_code = 0;
		arsta->tx_bitrate_kbps = 0;
	}
}

static void ath10k_sta_statistics(struct ieee80211_hw *hw,
				  struct ieee80211_vif *vif,
				  struct ieee80211_sta *sta,
				  struct station_info *sinfo)
{
	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
	struct ath10k *ar = arsta->arvif->ar;

	if (!ath10k_peer_stats_enabled(ar))
		return;

	mutex_lock(&ar->conf_mutex);
	ath10k_debug_fw_stats_request(ar);
	mutex_unlock(&ar->conf_mutex);

	sinfo->rx_duration = arsta->rx_duration;
	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);

	if (arsta->txrate.legacy || arsta->txrate.nss) {
		if (arsta->txrate.legacy) {
			sinfo->txrate.legacy = arsta->txrate.legacy;
		} else {
			sinfo->txrate.mcs = arsta->txrate.mcs;
			sinfo->txrate.nss = arsta->txrate.nss;
			sinfo->txrate.bw = arsta->txrate.bw;
		}
		sinfo->txrate.flags = arsta->txrate.flags;
		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
	}

	if (ar->htt.disable_tx_comp) {
		sinfo->tx_failed = arsta->tx_failed;
		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
	}

	sinfo->tx_retries = arsta->tx_retries;
	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);

	ath10k_mac_sta_get_peer_stats_info(ar, sta, sinfo);
}

static int ath10k_mac_op_set_tid_config(struct ieee80211_hw *hw,
					struct ieee80211_vif *vif,
					struct ieee80211_sta *sta,
					struct cfg80211_tid_config *tid_config)
{
	struct ath10k *ar = hw->priv;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ath10k_mac_iter_tid_conf_data data = {};
	struct wmi_per_peer_per_tid_cfg_arg arg = {};
	int ret, i;

	mutex_lock(&ar->conf_mutex);
	arg.vdev_id = arvif->vdev_id;

	arvif->tids_rst = 0;
	memset(arvif->tid_conf_changed, 0, sizeof(arvif->tid_conf_changed));

	for (i = 0; i < tid_config->n_tid_conf; i++) {
		ret = ath10k_mac_parse_tid_config(ar, sta, vif,
						  &tid_config->tid_conf[i],
						  &arg);
		if (ret)
			goto exit;
	}

	ret = 0;

	if (sta)
		goto exit;

	arvif->tids_rst = 0;
	data.curr_vif = vif;
	data.ar = ar;

	ieee80211_iterate_stations_atomic(hw, ath10k_mac_vif_stations_tid_conf,
					  &data);

exit:
	mutex_unlock(&ar->conf_mutex);
	return ret;
}

static int ath10k_mac_op_reset_tid_config(struct ieee80211_hw *hw,
					  struct ieee80211_vif *vif,
					  struct ieee80211_sta *sta,
					  u8 tids)
{
	struct ath10k_vif *arvif = (void *)vif->drv_priv;
	struct ath10k_mac_iter_tid_conf_data data = {};
	struct ath10k *ar = hw->priv;
	int ret = 0;

	mutex_lock(&ar->conf_mutex);

	if (sta) {
		arvif->tids_rst = 0;
		ret = ath10k_mac_reset_tid_config(ar, sta, arvif, tids);
		goto exit;
	}

	arvif->tids_rst = tids;
	data.curr_vif = vif;
	data.ar = ar;
	ieee80211_iterate_stations_atomic(hw, ath10k_mac_vif_stations_tid_conf,
					  &data);

exit:
	mutex_unlock(&ar->conf_mutex);
	return ret;
}

static const struct ieee80211_ops ath10k_ops = {
	.tx				= ath10k_mac_op_tx,
	.wake_tx_queue			= ath10k_mac_op_wake_tx_queue,
	.start				= ath10k_start,
	.stop				= ath10k_stop,
	.config				= ath10k_config,
	.add_interface			= ath10k_add_interface,
	.update_vif_offload		= ath10k_update_vif_offload,
	.remove_interface		= ath10k_remove_interface,
	.configure_filter		= ath10k_configure_filter,
	.bss_info_changed		= ath10k_bss_info_changed,
	.set_coverage_class		= ath10k_mac_op_set_coverage_class,
	.hw_scan			= ath10k_hw_scan,
	.cancel_hw_scan			= ath10k_cancel_hw_scan,
	.set_key			= ath10k_set_key,
	.set_default_unicast_key        = ath10k_set_default_unicast_key,
	.sta_state			= ath10k_sta_state,
	.sta_set_txpwr			= ath10k_sta_set_txpwr,
	.conf_tx			= ath10k_conf_tx,
	.remain_on_channel		= ath10k_remain_on_channel,
	.cancel_remain_on_channel	= ath10k_cancel_remain_on_channel,
	.set_rts_threshold		= ath10k_set_rts_threshold,
	.set_frag_threshold		= ath10k_mac_op_set_frag_threshold,
	.flush				= ath10k_flush,
	.tx_last_beacon			= ath10k_tx_last_beacon,
	.set_antenna			= ath10k_set_antenna,
	.get_antenna			= ath10k_get_antenna,
	.reconfig_complete		= ath10k_reconfig_complete,
	.get_survey			= ath10k_get_survey,
	.set_bitrate_mask		= ath10k_mac_op_set_bitrate_mask,
	.sta_rc_update			= ath10k_sta_rc_update,
	.offset_tsf			= ath10k_offset_tsf,
	.ampdu_action			= ath10k_ampdu_action,
	.get_et_sset_count		= ath10k_debug_get_et_sset_count,
	.get_et_stats			= ath10k_debug_get_et_stats,
	.get_et_strings			= ath10k_debug_get_et_strings,
	.add_chanctx			= ath10k_mac_op_add_chanctx,
	.remove_chanctx			= ath10k_mac_op_remove_chanctx,
	.change_chanctx			= ath10k_mac_op_change_chanctx,
	.assign_vif_chanctx		= ath10k_mac_op_assign_vif_chanctx,
	.unassign_vif_chanctx		= ath10k_mac_op_unassign_vif_chanctx,
	.switch_vif_chanctx		= ath10k_mac_op_switch_vif_chanctx,
	.sta_pre_rcu_remove		= ath10k_mac_op_sta_pre_rcu_remove,
	.sta_statistics			= ath10k_sta_statistics,
	.set_tid_config			= ath10k_mac_op_set_tid_config,
	.reset_tid_config		= ath10k_mac_op_reset_tid_config,

	CFG80211_TESTMODE_CMD(ath10k_tm_cmd)

#ifdef CONFIG_PM
	.suspend			= ath10k_wow_op_suspend,
	.resume				= ath10k_wow_op_resume,
	.set_wakeup			= ath10k_wow_op_set_wakeup,
#endif
#ifdef CONFIG_MAC80211_DEBUGFS
	.sta_add_debugfs		= ath10k_sta_add_debugfs,
#endif
	.set_sar_specs			= ath10k_mac_set_sar_specs,
};

#define CHAN2G(_channel, _freq, _flags) { \
	.band			= NL80211_BAND_2GHZ, \
	.hw_value		= (_channel), \
	.center_freq		= (_freq), \
	.flags			= (_flags), \
	.max_antenna_gain	= 0, \
	.max_power		= 30, \
}

#define CHAN5G(_channel, _freq, _flags) { \
	.band			= NL80211_BAND_5GHZ, \
	.hw_value		= (_channel), \
	.center_freq		= (_freq), \
	.flags			= (_flags), \
	.max_antenna_gain	= 0, \
	.max_power		= 30, \
}

static const struct ieee80211_channel ath10k_2ghz_channels[] = {
	CHAN2G(1, 2412, 0),
	CHAN2G(2, 2417, 0),
	CHAN2G(3, 2422, 0),
	CHAN2G(4, 2427, 0),
	CHAN2G(5, 2432, 0),
	CHAN2G(6, 2437, 0),
	CHAN2G(7, 2442, 0),
	CHAN2G(8, 2447, 0),
	CHAN2G(9, 2452, 0),
	CHAN2G(10, 2457, 0),
	CHAN2G(11, 2462, 0),
	CHAN2G(12, 2467, 0),
	CHAN2G(13, 2472, 0),
	CHAN2G(14, 2484, 0),
};

static const struct ieee80211_channel ath10k_5ghz_channels[] = {
	CHAN5G(36, 5180, 0),
	CHAN5G(40, 5200, 0),
	CHAN5G(44, 5220, 0),
	CHAN5G(48, 5240, 0),
	CHAN5G(52, 5260, 0),
	CHAN5G(56, 5280, 0),
	CHAN5G(60, 5300, 0),
	CHAN5G(64, 5320, 0),
	CHAN5G(100, 5500, 0),
	CHAN5G(104, 5520, 0),
	CHAN5G(108, 5540, 0),
	CHAN5G(112, 5560, 0),
	CHAN5G(116, 5580, 0),
	CHAN5G(120, 5600, 0),
	CHAN5G(124, 5620, 0),
	CHAN5G(128, 5640, 0),
	CHAN5G(132, 5660, 0),
	CHAN5G(136, 5680, 0),
	CHAN5G(140, 5700, 0),
	CHAN5G(144, 5720, 0),
	CHAN5G(149, 5745, 0),
	CHAN5G(153, 5765, 0),
	CHAN5G(157, 5785, 0),
	CHAN5G(161, 5805, 0),
	CHAN5G(165, 5825, 0),
	CHAN5G(169, 5845, 0),
	CHAN5G(173, 5865, 0),
	/* If you add more, you may need to change ATH10K_MAX_5G_CHAN */
	/* And you will definitely need to change ATH10K_NUM_CHANS in core.h */
};

struct ath10k *ath10k_mac_create(size_t priv_size)
{
	struct ieee80211_hw *hw;
	struct ieee80211_ops *ops;
	struct ath10k *ar;

	ops = kmemdup(&ath10k_ops, sizeof(ath10k_ops), GFP_KERNEL);
	if (!ops)
		return NULL;

	hw = ieee80211_alloc_hw(sizeof(struct ath10k) + priv_size, ops);
	if (!hw) {
		kfree(ops);
		return NULL;
	}

	ar = hw->priv;
	ar->hw = hw;
	ar->ops = ops;

	return ar;
}

void ath10k_mac_destroy(struct ath10k *ar)
{
	struct ieee80211_ops *ops = ar->ops;

	ieee80211_free_hw(ar->hw);
	kfree(ops);
}

static const struct ieee80211_iface_limit ath10k_if_limits[] = {
	{
		.max	= 8,
		.types	= BIT(NL80211_IFTYPE_STATION)
			| BIT(NL80211_IFTYPE_P2P_CLIENT)
	},
	{
		.max	= 3,
		.types	= BIT(NL80211_IFTYPE_P2P_GO)
	},
	{
		.max	= 1,
		.types	= BIT(NL80211_IFTYPE_P2P_DEVICE)
	},
	{
		.max	= 7,
		.types	= BIT(NL80211_IFTYPE_AP)
#ifdef CONFIG_MAC80211_MESH
			| BIT(NL80211_IFTYPE_MESH_POINT)
#endif
	},
};

static const struct ieee80211_iface_limit ath10k_10x_if_limits[] = {
	{
		.max	= 8,
		.types	= BIT(NL80211_IFTYPE_AP)
#ifdef CONFIG_MAC80211_MESH
			| BIT(NL80211_IFTYPE_MESH_POINT)
#endif
	},
	{
		.max	= 1,
		.types	= BIT(NL80211_IFTYPE_STATION)
	},
};

static const struct ieee80211_iface_combination ath10k_if_comb[] = {
	{
		.limits = ath10k_if_limits,
		.n_limits = ARRAY_SIZE(ath10k_if_limits),
		.max_interfaces = 8,
		.num_different_channels = 1,
		.beacon_int_infra_match = true,
	},
};

static const struct ieee80211_iface_combination ath10k_10x_if_comb[] = {
	{
		.limits = ath10k_10x_if_limits,
		.n_limits = ARRAY_SIZE(ath10k_10x_if_limits),
		.max_interfaces = 8,
		.num_different_channels = 1,
		.beacon_int_infra_match = true,
		.beacon_int_min_gcd = 1,
#ifdef CONFIG_ATH10K_DFS_CERTIFIED
		.radar_detect_widths =	BIT(NL80211_CHAN_WIDTH_20_NOHT) |
					BIT(NL80211_CHAN_WIDTH_20) |
					BIT(NL80211_CHAN_WIDTH_40) |
					BIT(NL80211_CHAN_WIDTH_80),
#endif
	},
};

static const struct ieee80211_iface_limit ath10k_tlv_if_limit[] = {
	{
		.max = 2,
		.types = BIT(NL80211_IFTYPE_STATION),
	},
	{
		.max = 2,
		.types = BIT(NL80211_IFTYPE_AP) |
#ifdef CONFIG_MAC80211_MESH
			 BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
			 BIT(NL80211_IFTYPE_P2P_CLIENT) |
			 BIT(NL80211_IFTYPE_P2P_GO),
	},
	{
		.max = 1,
		.types = BIT(NL80211_IFTYPE_P2P_DEVICE),
	},
};

static const struct ieee80211_iface_limit ath10k_tlv_qcs_if_limit[] = {
	{
		.max = 2,
		.types = BIT(NL80211_IFTYPE_STATION),
	},
	{
		.max = 2,
		.types = BIT(NL80211_IFTYPE_P2P_CLIENT),
	},
	{
		.max = 1,
		.types = BIT(NL80211_IFTYPE_AP) |
#ifdef CONFIG_MAC80211_MESH
			 BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
			 BIT(NL80211_IFTYPE_P2P_GO),
	},
	{
		.max = 1,
		.types = BIT(NL80211_IFTYPE_P2P_DEVICE),
	},
};

static const struct ieee80211_iface_limit ath10k_tlv_if_limit_ibss[] = {
	{
		.max = 1,
		.types = BIT(NL80211_IFTYPE_STATION),
	},
	{
		.max = 1,
		.types = BIT(NL80211_IFTYPE_ADHOC),
	},
};

/* FIXME: This is not thoroughly tested. These combinations may over- or
 * underestimate hw/fw capabilities.
 */
static struct ieee80211_iface_combination ath10k_tlv_if_comb[] = {
	{
		.limits = ath10k_tlv_if_limit,
		.num_different_channels = 1,
		.max_interfaces = 4,
		.n_limits = ARRAY_SIZE(ath10k_tlv_if_limit),
	},
	{
		.limits = ath10k_tlv_if_limit_ibss,
		.num_different_channels = 1,
		.max_interfaces = 2,
		.n_limits = ARRAY_SIZE(ath10k_tlv_if_limit_ibss),
	},
};

static struct ieee80211_iface_combination ath10k_tlv_qcs_if_comb[] = {
	{
		.limits = ath10k_tlv_if_limit,
		.num_different_channels = 1,
		.max_interfaces = 4,
		.n_limits = ARRAY_SIZE(ath10k_tlv_if_limit),
	},
	{
		.limits = ath10k_tlv_qcs_if_limit,
		.num_different_channels = 2,
		.max_interfaces = 4,
		.n_limits = ARRAY_SIZE(ath10k_tlv_qcs_if_limit),
	},
	{
		.limits = ath10k_tlv_if_limit_ibss,
		.num_different_channels = 1,
		.max_interfaces = 2,
		.n_limits = ARRAY_SIZE(ath10k_tlv_if_limit_ibss),
	},
};

static const struct ieee80211_iface_limit ath10k_10_4_if_limits[] = {
	{
		.max = 1,
		.types = BIT(NL80211_IFTYPE_STATION),
	},
	{
		.max	= 16,
		.types	= BIT(NL80211_IFTYPE_AP)
#ifdef CONFIG_MAC80211_MESH
			| BIT(NL80211_IFTYPE_MESH_POINT)
#endif
	},
};

static const struct ieee80211_iface_combination ath10k_10_4_if_comb[] = {
	{
		.limits = ath10k_10_4_if_limits,
		.n_limits = ARRAY_SIZE(ath10k_10_4_if_limits),
		.max_interfaces = 16,
		.num_different_channels = 1,
		.beacon_int_infra_match = true,
		.beacon_int_min_gcd = 1,
#ifdef CONFIG_ATH10K_DFS_CERTIFIED
		.radar_detect_widths =	BIT(NL80211_CHAN_WIDTH_20_NOHT) |
					BIT(NL80211_CHAN_WIDTH_20) |
					BIT(NL80211_CHAN_WIDTH_40) |
					BIT(NL80211_CHAN_WIDTH_80) |
					BIT(NL80211_CHAN_WIDTH_80P80) |
					BIT(NL80211_CHAN_WIDTH_160),
#endif
	},
};

static const struct
ieee80211_iface_combination ath10k_10_4_bcn_int_if_comb[] = {
	{
		.limits = ath10k_10_4_if_limits,
		.n_limits = ARRAY_SIZE(ath10k_10_4_if_limits),
		.max_interfaces = 16,
		.num_different_channels = 1,
		.beacon_int_infra_match = true,
		.beacon_int_min_gcd = 100,
#ifdef CONFIG_ATH10K_DFS_CERTIFIED
		.radar_detect_widths =  BIT(NL80211_CHAN_WIDTH_20_NOHT) |
					BIT(NL80211_CHAN_WIDTH_20) |
					BIT(NL80211_CHAN_WIDTH_40) |
					BIT(NL80211_CHAN_WIDTH_80) |
					BIT(NL80211_CHAN_WIDTH_80P80) |
					BIT(NL80211_CHAN_WIDTH_160),
#endif
	},
};

static void ath10k_get_arvif_iter(void *data, u8 *mac,
				  struct ieee80211_vif *vif)
{
	struct ath10k_vif_iter *arvif_iter = data;
	struct ath10k_vif *arvif = (void *)vif->drv_priv;

	if (arvif->vdev_id == arvif_iter->vdev_id)
		arvif_iter->arvif = arvif;
}

struct ath10k_vif *ath10k_get_arvif(struct ath10k *ar, u32 vdev_id)
{
	struct ath10k_vif_iter arvif_iter;

	memset(&arvif_iter, 0, sizeof(struct ath10k_vif_iter));
	arvif_iter.vdev_id = vdev_id;

	ieee80211_iterate_active_interfaces_atomic(ar->hw,
						   ATH10K_ITER_RESUME_FLAGS,
						   ath10k_get_arvif_iter,
						   &arvif_iter);
	if (!arvif_iter.arvif) {
		ath10k_warn(ar, "No VIF found for vdev %d\n", vdev_id);
		return NULL;
	}

	return arvif_iter.arvif;
}

#define WRD_METHOD "WRDD"
#define WRDD_WIFI  (0x07)

static u32 ath10k_mac_wrdd_get_mcc(struct ath10k *ar, union acpi_object *wrdd)
{
	union acpi_object *mcc_pkg;
	union acpi_object *domain_type;
	union acpi_object *mcc_value;
	u32 i;

	if (wrdd->type != ACPI_TYPE_PACKAGE ||
	    wrdd->package.count < 2 ||
	    wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
	    wrdd->package.elements[0].integer.value != 0) {
		ath10k_warn(ar, "ignoring malformed/unsupported wrdd structure\n");
		return 0;
	}

	for (i = 1; i < wrdd->package.count; ++i) {
		mcc_pkg = &wrdd->package.elements[i];

		if (mcc_pkg->type != ACPI_TYPE_PACKAGE)
			continue;
		if (mcc_pkg->package.count < 2)
			continue;
		if (mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
		    mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER)
			continue;

		domain_type = &mcc_pkg->package.elements[0];
		if (domain_type->integer.value != WRDD_WIFI)
			continue;

		mcc_value = &mcc_pkg->package.elements[1];
		return mcc_value->integer.value;
	}
	return 0;
}

static int ath10k_mac_get_wrdd_regulatory(struct ath10k *ar, u16 *rd)
{
	acpi_handle root_handle;
	acpi_handle handle;
	struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
	acpi_status status;
	u32 alpha2_code;
	char alpha2[3];

	root_handle = ACPI_HANDLE(ar->dev);
	if (!root_handle)
		return -EOPNOTSUPP;

	status = acpi_get_handle(root_handle, (acpi_string)WRD_METHOD, &handle);
	if (ACPI_FAILURE(status)) {
		ath10k_dbg(ar, ATH10K_DBG_BOOT,
			   "failed to get wrd method %d\n", status);
		return -EIO;
	}

	status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
	if (ACPI_FAILURE(status)) {
		ath10k_dbg(ar, ATH10K_DBG_BOOT,
			   "failed to call wrdc %d\n", status);
		return -EIO;
	}

	alpha2_code = ath10k_mac_wrdd_get_mcc(ar, wrdd.pointer);
	kfree(wrdd.pointer);
	if (!alpha2_code)
		return -EIO;

	alpha2[0] = (alpha2_code >> 8) & 0xff;
	alpha2[1] = (alpha2_code >> 0) & 0xff;
	alpha2[2] = '\0';

	ath10k_dbg(ar, ATH10K_DBG_BOOT,
		   "regulatory hint from WRDD (alpha2-code): %s\n", alpha2);

	*rd = ath_regd_find_country_by_name(alpha2);
	if (*rd == 0xffff)
		return -EIO;

	*rd |= COUNTRY_ERD_FLAG;
	return 0;
}

static int ath10k_mac_init_rd(struct ath10k *ar)
{
	int ret;
	u16 rd;

	ret = ath10k_mac_get_wrdd_regulatory(ar, &rd);
	if (ret) {
		ath10k_dbg(ar, ATH10K_DBG_BOOT,
			   "fallback to eeprom programmed regulatory settings\n");
		rd = ar->hw_eeprom_rd;
	}

	ar->ath_common.regulatory.current_rd = rd;
	return 0;
}

int ath10k_mac_register(struct ath10k *ar)
{
	static const u32 cipher_suites[] = {
		WLAN_CIPHER_SUITE_WEP40,
		WLAN_CIPHER_SUITE_WEP104,
		WLAN_CIPHER_SUITE_TKIP,
		WLAN_CIPHER_SUITE_CCMP,

		/* Do not add hardware supported ciphers before this line.
		 * Allow software encryption for all chips. Don't forget to
		 * update n_cipher_suites below.
		 */
		WLAN_CIPHER_SUITE_AES_CMAC,
		WLAN_CIPHER_SUITE_BIP_CMAC_256,
		WLAN_CIPHER_SUITE_BIP_GMAC_128,
		WLAN_CIPHER_SUITE_BIP_GMAC_256,

		/* Only QCA99x0 and QCA4019 variants support GCMP-128, GCMP-256
		 * and CCMP-256 in hardware.
		 */
		WLAN_CIPHER_SUITE_GCMP,
		WLAN_CIPHER_SUITE_GCMP_256,
		WLAN_CIPHER_SUITE_CCMP_256,
	};
	struct ieee80211_supported_band *band;
	void *channels;
	int ret;

	if (!is_valid_ether_addr(ar->mac_addr)) {
		ath10k_warn(ar, "invalid MAC address; choosing random\n");
		eth_random_addr(ar->mac_addr);
	}
	SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr);

	SET_IEEE80211_DEV(ar->hw, ar->dev);

	BUILD_BUG_ON((ARRAY_SIZE(ath10k_2ghz_channels) +
		      ARRAY_SIZE(ath10k_5ghz_channels)) !=
		     ATH10K_NUM_CHANS);

	if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) {
		channels = kmemdup(ath10k_2ghz_channels,
				   sizeof(ath10k_2ghz_channels),
				   GFP_KERNEL);
		if (!channels) {
			ret = -ENOMEM;
			goto err_free;
		}

		band = &ar->mac.sbands[NL80211_BAND_2GHZ];
		band->n_channels = ARRAY_SIZE(ath10k_2ghz_channels);
		band->channels = channels;

		if (ar->hw_params.cck_rate_map_rev2) {
			band->n_bitrates = ath10k_g_rates_rev2_size;
			band->bitrates = ath10k_g_rates_rev2;
		} else {
			band->n_bitrates = ath10k_g_rates_size;
			band->bitrates = ath10k_g_rates;
		}

		ar->hw->wiphy->bands[NL80211_BAND_2GHZ] = band;
	}

	if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) {
		channels = kmemdup(ath10k_5ghz_channels,
				   sizeof(ath10k_5ghz_channels),
				   GFP_KERNEL);
		if (!channels) {
			ret = -ENOMEM;
			goto err_free;
		}

		band = &ar->mac.sbands[NL80211_BAND_5GHZ];
		band->n_channels = ARRAY_SIZE(ath10k_5ghz_channels);
		band->channels = channels;
		band->n_bitrates = ath10k_a_rates_size;
		band->bitrates = ath10k_a_rates;
		ar->hw->wiphy->bands[NL80211_BAND_5GHZ] = band;
	}

	wiphy_read_of_freq_limits(ar->hw->wiphy);
	ath10k_mac_setup_ht_vht_cap(ar);

	ar->hw->wiphy->interface_modes =
		BIT(NL80211_IFTYPE_STATION) |
		BIT(NL80211_IFTYPE_AP) |
		BIT(NL80211_IFTYPE_MESH_POINT);

	ar->hw->wiphy->available_antennas_rx = ar->cfg_rx_chainmask;
	ar->hw->wiphy->available_antennas_tx = ar->cfg_tx_chainmask;

	if (!test_bit(ATH10K_FW_FEATURE_NO_P2P, ar->normal_mode_fw.fw_file.fw_features))
		ar->hw->wiphy->interface_modes |=
			BIT(NL80211_IFTYPE_P2P_DEVICE) |
			BIT(NL80211_IFTYPE_P2P_CLIENT) |
			BIT(NL80211_IFTYPE_P2P_GO);

	ieee80211_hw_set(ar->hw, SIGNAL_DBM);

	if (!test_bit(ATH10K_FW_FEATURE_NO_PS,
		      ar->running_fw->fw_file.fw_features)) {
		ieee80211_hw_set(ar->hw, SUPPORTS_PS);
		ieee80211_hw_set(ar->hw, SUPPORTS_DYNAMIC_PS);
	}

	ieee80211_hw_set(ar->hw, MFP_CAPABLE);
	ieee80211_hw_set(ar->hw, REPORTS_TX_ACK_STATUS);
	ieee80211_hw_set(ar->hw, HAS_RATE_CONTROL);
	ieee80211_hw_set(ar->hw, AP_LINK_PS);
	ieee80211_hw_set(ar->hw, SPECTRUM_MGMT);
	ieee80211_hw_set(ar->hw, SUPPORT_FAST_XMIT);
	ieee80211_hw_set(ar->hw, CONNECTION_MONITOR);
	ieee80211_hw_set(ar->hw, SUPPORTS_PER_STA_GTK);
	ieee80211_hw_set(ar->hw, WANT_MONITOR_VIF);
	ieee80211_hw_set(ar->hw, CHANCTX_STA_CSA);
	ieee80211_hw_set(ar->hw, QUEUE_CONTROL);
	ieee80211_hw_set(ar->hw, SUPPORTS_TX_FRAG);
	ieee80211_hw_set(ar->hw, REPORTS_LOW_ACK);

	if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags))
		ieee80211_hw_set(ar->hw, SW_CRYPTO_CONTROL);

	ar->hw->wiphy->features |= NL80211_FEATURE_STATIC_SMPS;
	ar->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;

	if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS)
		ar->hw->wiphy->features |= NL80211_FEATURE_DYNAMIC_SMPS;

	if (ar->ht_cap_info & WMI_HT_CAP_ENABLED) {
		ieee80211_hw_set(ar->hw, AMPDU_AGGREGATION);
		ieee80211_hw_set(ar->hw, TX_AMPDU_SETUP_IN_HW);
	}

	ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID;
	ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN;

	if (test_bit(WMI_SERVICE_NLO, ar->wmi.svc_map)) {
		ar->hw->wiphy->max_sched_scan_ssids = WMI_PNO_MAX_SUPP_NETWORKS;
		ar->hw->wiphy->max_match_sets = WMI_PNO_MAX_SUPP_NETWORKS;
		ar->hw->wiphy->max_sched_scan_ie_len = WMI_PNO_MAX_IE_LENGTH;
		ar->hw->wiphy->max_sched_scan_plans = WMI_PNO_MAX_SCHED_SCAN_PLANS;
		ar->hw->wiphy->max_sched_scan_plan_interval =
			WMI_PNO_MAX_SCHED_SCAN_PLAN_INT;
		ar->hw->wiphy->max_sched_scan_plan_iterations =
			WMI_PNO_MAX_SCHED_SCAN_PLAN_ITRNS;
		ar->hw->wiphy->features |= NL80211_FEATURE_ND_RANDOM_MAC_ADDR;
	}

	ar->hw->vif_data_size = sizeof(struct ath10k_vif);
	ar->hw->sta_data_size = sizeof(struct ath10k_sta);
	ar->hw->txq_data_size = sizeof(struct ath10k_txq);

	ar->hw->max_listen_interval = ATH10K_MAX_HW_LISTEN_INTERVAL;

	if (test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) {
		ar->hw->wiphy->flags |= WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD;

		/* Firmware delivers WPS/P2P Probe Requests frames to driver so
		 * that userspace (e.g. wpa_supplicant/hostapd) can generate
		 * correct Probe Responses. This is more of a hack advert..
		 */
		ar->hw->wiphy->probe_resp_offload |=
			NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS |
			NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS2 |
			NL80211_PROBE_RESP_OFFLOAD_SUPPORT_P2P;
	}

	if (test_bit(WMI_SERVICE_TDLS, ar->wmi.svc_map) ||
	    test_bit(WMI_SERVICE_TDLS_EXPLICIT_MODE_ONLY, ar->wmi.svc_map)) {
		ar->hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS;
		if (test_bit(WMI_SERVICE_TDLS_WIDER_BANDWIDTH, ar->wmi.svc_map))
			ieee80211_hw_set(ar->hw, TDLS_WIDER_BW);
	}

	if (test_bit(WMI_SERVICE_TDLS_UAPSD_BUFFER_STA, ar->wmi.svc_map))
		ieee80211_hw_set(ar->hw, SUPPORTS_TDLS_BUFFER_STA);

	if (ath10k_frame_mode == ATH10K_HW_TXRX_ETHERNET) {
		if (ar->wmi.vdev_param->tx_encap_type !=
		    WMI_VDEV_PARAM_UNSUPPORTED)
			ieee80211_hw_set(ar->hw, SUPPORTS_TX_ENCAP_OFFLOAD);
	}

	ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
	ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
	ar->hw->wiphy->max_remain_on_channel_duration = 5000;

	ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD;
	ar->hw->wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE |
				   NL80211_FEATURE_AP_SCAN;

	ar->hw->wiphy->max_ap_assoc_sta = ar->max_num_stations;

	ret = ath10k_wow_init(ar);
	if (ret) {
		ath10k_warn(ar, "failed to init wow: %d\n", ret);
		goto err_free;
	}

	wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
	wiphy_ext_feature_set(ar->hw->wiphy,
			      NL80211_EXT_FEATURE_SET_SCAN_DWELL);
	wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_AQL);

	if (test_bit(WMI_SERVICE_TX_DATA_ACK_RSSI, ar->wmi.svc_map) ||
	    test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS, ar->wmi.svc_map))
		wiphy_ext_feature_set(ar->hw->wiphy,
				      NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT);

	if (ath10k_peer_stats_enabled(ar) ||
	    test_bit(WMI_SERVICE_REPORT_AIRTIME, ar->wmi.svc_map))
		wiphy_ext_feature_set(ar->hw->wiphy,
				      NL80211_EXT_FEATURE_AIRTIME_FAIRNESS);

	if (test_bit(WMI_SERVICE_RTT_RESPONDER_ROLE, ar->wmi.svc_map))
		wiphy_ext_feature_set(ar->hw->wiphy,
				      NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER);

	if (test_bit(WMI_SERVICE_TX_PWR_PER_PEER, ar->wmi.svc_map))
		wiphy_ext_feature_set(ar->hw->wiphy,
				      NL80211_EXT_FEATURE_STA_TX_PWR);

	if (test_bit(WMI_SERVICE_PEER_TID_CONFIGS_SUPPORT, ar->wmi.svc_map)) {
		ar->hw->wiphy->tid_config_support.vif |=
				BIT(NL80211_TID_CONFIG_ATTR_NOACK) |
				BIT(NL80211_TID_CONFIG_ATTR_RETRY_SHORT) |
				BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG) |
				BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL) |
				BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) |
				BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE);

		if (test_bit(WMI_SERVICE_EXT_PEER_TID_CONFIGS_SUPPORT,
			     ar->wmi.svc_map)) {
			ar->hw->wiphy->tid_config_support.vif |=
				BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL);
		}

		ar->hw->wiphy->tid_config_support.peer =
				ar->hw->wiphy->tid_config_support.vif;
		ar->hw->wiphy->max_data_retry_count = ATH10K_MAX_RETRY_COUNT;
	} else {
		ar->ops->set_tid_config = NULL;
	}
	/*
	 * on LL hardware queues are managed entirely by the FW
	 * so we only advertise to mac we can do the queues thing
	 */
	ar->hw->queues = IEEE80211_MAX_QUEUES;

	/* vdev_ids are used as hw queue numbers. Make sure offchan tx queue is
	 * something that vdev_ids can't reach so that we don't stop the queue
	 * accidentally.
	 */
	ar->hw->offchannel_tx_hw_queue = IEEE80211_MAX_QUEUES - 1;

	switch (ar->running_fw->fw_file.wmi_op_version) {
	case ATH10K_FW_WMI_OP_VERSION_MAIN:
		ar->hw->wiphy->iface_combinations = ath10k_if_comb;
		ar->hw->wiphy->n_iface_combinations =
			ARRAY_SIZE(ath10k_if_comb);
		ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC);
		break;
	case ATH10K_FW_WMI_OP_VERSION_TLV:
		if (test_bit(WMI_SERVICE_ADAPTIVE_OCS, ar->wmi.svc_map)) {
			ar->hw->wiphy->iface_combinations =
				ath10k_tlv_qcs_if_comb;
			ar->hw->wiphy->n_iface_combinations =
				ARRAY_SIZE(ath10k_tlv_qcs_if_comb);
		} else {
			ar->hw->wiphy->iface_combinations = ath10k_tlv_if_comb;
			ar->hw->wiphy->n_iface_combinations =
				ARRAY_SIZE(ath10k_tlv_if_comb);
		}
		ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC);
		break;
	case ATH10K_FW_WMI_OP_VERSION_10_1:
	case ATH10K_FW_WMI_OP_VERSION_10_2:
	case ATH10K_FW_WMI_OP_VERSION_10_2_4:
		ar->hw->wiphy->iface_combinations = ath10k_10x_if_comb;
		ar->hw->wiphy->n_iface_combinations =
			ARRAY_SIZE(ath10k_10x_if_comb);
		break;
	case ATH10K_FW_WMI_OP_VERSION_10_4:
		ar->hw->wiphy->iface_combinations = ath10k_10_4_if_comb;
		ar->hw->wiphy->n_iface_combinations =
			ARRAY_SIZE(ath10k_10_4_if_comb);
		if (test_bit(WMI_SERVICE_VDEV_DIFFERENT_BEACON_INTERVAL_SUPPORT,
			     ar->wmi.svc_map)) {
			ar->hw->wiphy->iface_combinations =
				ath10k_10_4_bcn_int_if_comb;
			ar->hw->wiphy->n_iface_combinations =
				ARRAY_SIZE(ath10k_10_4_bcn_int_if_comb);
		}
		break;
	case ATH10K_FW_WMI_OP_VERSION_UNSET:
	case ATH10K_FW_WMI_OP_VERSION_MAX:
		WARN_ON(1);
		ret = -EINVAL;
		goto err_free;
	}

	if (ar->hw_params.dynamic_sar_support)
		ar->hw->wiphy->sar_capa = &ath10k_sar_capa;

	if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags))
		ar->hw->netdev_features = NETIF_F_HW_CSUM;

	if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED)) {
		/* Init ath dfs pattern detector */
		ar->ath_common.debug_mask = ATH_DBG_DFS;
		ar->dfs_detector = dfs_pattern_detector_init(&ar->ath_common,
							     NL80211_DFS_UNSET);

		if (!ar->dfs_detector)
			ath10k_warn(ar, "failed to initialise DFS pattern detector\n");
	}

	ret = ath10k_mac_init_rd(ar);
	if (ret) {
		ath10k_err(ar, "failed to derive regdom: %d\n", ret);
		goto err_dfs_detector_exit;
	}

	/* Disable set_coverage_class for chipsets that do not support it. */
	if (!ar->hw_params.hw_ops->set_coverage_class)
		ar->ops->set_coverage_class = NULL;

	ret = ath_regd_init(&ar->ath_common.regulatory, ar->hw->wiphy,
			    ath10k_reg_notifier);
	if (ret) {
		ath10k_err(ar, "failed to initialise regulatory: %i\n", ret);
		goto err_dfs_detector_exit;
	}

	if (test_bit(WMI_SERVICE_SPOOF_MAC_SUPPORT, ar->wmi.svc_map)) {
		ar->hw->wiphy->features |=
			NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
	}

	ar->hw->wiphy->cipher_suites = cipher_suites;

	/* QCA988x and QCA6174 family chips do not support CCMP-256, GCMP-128
	 * and GCMP-256 ciphers in hardware. Fetch number of ciphers supported
	 * from chip specific hw_param table.
	 */
	if (!ar->hw_params.n_cipher_suites ||
	    ar->hw_params.n_cipher_suites > ARRAY_SIZE(cipher_suites)) {
		ath10k_err(ar, "invalid hw_params.n_cipher_suites %d\n",
			   ar->hw_params.n_cipher_suites);
		ar->hw_params.n_cipher_suites = 8;
	}
	ar->hw->wiphy->n_cipher_suites = ar->hw_params.n_cipher_suites;

	wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);

	ar->hw->weight_multiplier = ATH10K_AIRTIME_WEIGHT_MULTIPLIER;

	ret = ieee80211_register_hw(ar->hw);
	if (ret) {
		ath10k_err(ar, "failed to register ieee80211: %d\n", ret);
		goto err_dfs_detector_exit;
	}

	if (test_bit(WMI_SERVICE_PER_PACKET_SW_ENCRYPT, ar->wmi.svc_map)) {
		ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_AP_VLAN);
		ar->hw->wiphy->software_iftypes |= BIT(NL80211_IFTYPE_AP_VLAN);
	}

	if (!ath_is_world_regd(&ar->ath_common.reg_world_copy) &&
	    !ath_is_world_regd(&ar->ath_common.regulatory)) {
		ret = regulatory_hint(ar->hw->wiphy,
				      ar->ath_common.regulatory.alpha2);
		if (ret)
			goto err_unregister;
	}

	return 0;

err_unregister:
	ieee80211_unregister_hw(ar->hw);

err_dfs_detector_exit:
	if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector)
		ar->dfs_detector->exit(ar->dfs_detector);

err_free:
	kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels);
	kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels);

	SET_IEEE80211_DEV(ar->hw, NULL);
	return ret;
}

void ath10k_mac_unregister(struct ath10k *ar)
{
	ieee80211_unregister_hw(ar->hw);

	if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector)
		ar->dfs_detector->exit(ar->dfs_detector);

	kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels);
	kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels);

	SET_IEEE80211_DEV(ar->hw, NULL);
}