#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define DRV_NAME "yellowfin"
#define DRV_VERSION "2.1"
#define DRV_RELDATE "Sep 11, 2006"
static int debug = 1;
static int max_interrupt_work = 20;
static int mtu;
#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
static int bogus_rx;
static int dma_ctrl = 0x004A0263;
static int fifo_cfg = 0x0020;
#elif defined(YF_NEW) /* A future perfect board :->. */
static int dma_ctrl = 0x00CAC277;
static int fifo_cfg = 0x0028;
#else
static const int dma_ctrl = 0x004A0263;
static const int fifo_cfg = 0x0020;
#endif
static int rx_copybreak;
#define MAX_UNITS 8 /* More are supported, limit only on options */
static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
static int gx_fix;
#define TX_RING_SIZE 16
#define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
#define RX_RING_SIZE 64
#define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
#define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
#define TX_TIMEOUT (2*HZ)
#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
#define yellowfin_debug debug
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/mii.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>
#include <linux/bitops.h>
#include <linux/uaccess.h>
#include <asm/processor.h> /* Processor type for cache alignment. */
#include <asm/unaligned.h>
#include <asm/io.h>
static const char version[] =
KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
" (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
MODULE_LICENSE("GPL");
module_param(max_interrupt_work, int, 0);
module_param(mtu, int, 0);
module_param(debug, int, 0);
module_param(rx_copybreak, int, 0);
module_param_array(options, int, NULL, 0);
module_param_array(full_duplex, int, NULL, 0);
module_param(gx_fix, int, 0);
MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
enum capability_flags {
HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
HasMACAddrBug=32,
DontUseEeprom=64,
};
enum {
YELLOWFIN_SIZE = 0x100,
};
struct pci_id_info {
const char *name;
struct match_info {
int pci, pci_mask, subsystem, subsystem_mask;
int revision, revision_mask;
} id;
int drv_flags;
};
static const struct pci_id_info pci_id_tbl[] = {
{"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
{"Symbios SYM83C885", { 0x07011000, 0xffffffff},
HasMII | DontUseEeprom },
{ }
};
static const struct pci_device_id yellowfin_pci_tbl[] = {
{ 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
{ }
};
MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
enum yellowfin_offsets {
TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
MII_Status=0xAE,
RxDepth=0xB8, FlowCtrl=0xBC,
AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
EEFeature=0xF5,
};
struct yellowfin_desc {
__le32 dbdma_cmd;
__le32 addr;
__le32 branch_addr;
__le32 result_status;
};
struct tx_status_words {
#ifdef __BIG_ENDIAN
u16 tx_errs;
u16 tx_cnt;
u16 paused;
u16 total_tx_cnt;
#else /* Little endian chips. */
u16 tx_cnt;
u16 tx_errs;
u16 total_tx_cnt;
u16 paused;
#endif /* __BIG_ENDIAN */
};
enum desc_cmd_bits {
CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
CMD_NOP=0x60000000, CMD_STOP=0x70000000,
BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
BRANCH_IFTRUE=0x040000,
};
enum desc_status_bits { RX_EOP=0x0040, };
enum intr_status_bits {
IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
IntrEarlyRx=0x100, IntrWakeup=0x200, };
#define PRIV_ALIGN 31 /* Required alignment mask */
#define MII_CNT 4
struct yellowfin_private {
struct yellowfin_desc *rx_ring;
struct yellowfin_desc *tx_ring;
struct sk_buff* rx_skbuff[RX_RING_SIZE];
struct sk_buff* tx_skbuff[TX_RING_SIZE];
dma_addr_t rx_ring_dma;
dma_addr_t tx_ring_dma;
struct tx_status_words *tx_status;
dma_addr_t tx_status_dma;
struct timer_list timer;
int chip_id, drv_flags;
struct pci_dev *pci_dev;
unsigned int cur_rx, dirty_rx;
unsigned int rx_buf_sz;
struct tx_status_words *tx_tail_desc;
unsigned int cur_tx, dirty_tx;
int tx_threshold;
unsigned int tx_full:1;
unsigned int full_duplex:1;
unsigned int duplex_lock:1;
unsigned int medialock:1;
unsigned int default_port:4;
int mii_cnt;
u16 advertising;
unsigned char phys[MII_CNT];
spinlock_t lock;
void __iomem *base;
};
static int read_eeprom(void __iomem *ioaddr, int location);
static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int yellowfin_open(struct net_device *dev);
static void yellowfin_timer(struct timer_list *t);
static void yellowfin_tx_timeout(struct net_device *dev, unsigned int txqueue);
static int yellowfin_init_ring(struct net_device *dev);
static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
struct net_device *dev);
static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
static int yellowfin_rx(struct net_device *dev);
static void yellowfin_error(struct net_device *dev, int intr_status);
static int yellowfin_close(struct net_device *dev);
static void set_rx_mode(struct net_device *dev);
static const struct ethtool_ops ethtool_ops;
static const struct net_device_ops netdev_ops = {
.ndo_open = yellowfin_open,
.ndo_stop = yellowfin_close,
.ndo_start_xmit = yellowfin_start_xmit,
.ndo_set_rx_mode = set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
.ndo_eth_ioctl = netdev_ioctl,
.ndo_tx_timeout = yellowfin_tx_timeout,
};
static int yellowfin_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev;
struct yellowfin_private *np;
int irq;
int chip_idx = ent->driver_data;
static int find_cnt;
void __iomem *ioaddr;
int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
int drv_flags = pci_id_tbl[chip_idx].drv_flags;
void *ring_space;
dma_addr_t ring_dma;
#ifdef USE_IO_OPS
int bar = 0;
#else
int bar = 1;
#endif
u8 addr[ETH_ALEN];
#ifndef MODULE
static int printed_version;
if (!printed_version++)
printk(version);
#endif
i = pci_enable_device(pdev);
if (i) return i;
dev = alloc_etherdev(sizeof(*np));
if (!dev)
return -ENOMEM;
SET_NETDEV_DEV(dev, &pdev->dev);
np = netdev_priv(dev);
if (pci_request_regions(pdev, DRV_NAME))
goto err_out_free_netdev;
pci_set_master (pdev);
ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
if (!ioaddr)
goto err_out_free_res;
irq = pdev->irq;
if (drv_flags & DontUseEeprom)
for (i = 0; i < 6; i++)
addr[i] = ioread8(ioaddr + StnAddr + i);
else {
int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
for (i = 0; i < 6; i++)
addr[i] = read_eeprom(ioaddr, ee_offset + i);
}
eth_hw_addr_set(dev, addr);
iowrite32(0x80000000, ioaddr + DMACtrl);
pci_set_drvdata(pdev, dev);
spin_lock_init(&np->lock);
np->pci_dev = pdev;
np->chip_id = chip_idx;
np->drv_flags = drv_flags;
np->base = ioaddr;
ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
GFP_KERNEL);
if (!ring_space)
goto err_out_cleardev;
np->tx_ring = ring_space;
np->tx_ring_dma = ring_dma;
ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
GFP_KERNEL);
if (!ring_space)
goto err_out_unmap_tx;
np->rx_ring = ring_space;
np->rx_ring_dma = ring_dma;
ring_space = dma_alloc_coherent(&pdev->dev, STATUS_TOTAL_SIZE,
&ring_dma, GFP_KERNEL);
if (!ring_space)
goto err_out_unmap_rx;
np->tx_status = ring_space;
np->tx_status_dma = ring_dma;
if (dev->mem_start)
option = dev->mem_start;
if (option > 0) {
if (option & 0x200)
np->full_duplex = 1;
np->default_port = option & 15;
if (np->default_port)
np->medialock = 1;
}
if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
np->full_duplex = 1;
if (np->full_duplex)
np->duplex_lock = 1;
dev->netdev_ops = &netdev_ops;
dev->ethtool_ops = ðtool_ops;
dev->watchdog_timeo = TX_TIMEOUT;
if (mtu)
dev->mtu = mtu;
i = register_netdev(dev);
if (i)
goto err_out_unmap_status;
netdev_info(dev, "%s type %8x at %p, %pM, IRQ %d\n",
pci_id_tbl[chip_idx].name,
ioread32(ioaddr + ChipRev), ioaddr,
dev->dev_addr, irq);
if (np->drv_flags & HasMII) {
int phy, phy_idx = 0;
for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
int mii_status = mdio_read(ioaddr, phy, 1);
if (mii_status != 0xffff && mii_status != 0x0000) {
np->phys[phy_idx++] = phy;
np->advertising = mdio_read(ioaddr, phy, 4);
netdev_info(dev, "MII PHY found at address %d, status 0x%04x advertising %04x\n",
phy, mii_status, np->advertising);
}
}
np->mii_cnt = phy_idx;
}
find_cnt++;
return 0;
err_out_unmap_status:
dma_free_coherent(&pdev->dev, STATUS_TOTAL_SIZE, np->tx_status,
np->tx_status_dma);
err_out_unmap_rx:
dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
np->rx_ring_dma);
err_out_unmap_tx:
dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
np->tx_ring_dma);
err_out_cleardev:
pci_iounmap(pdev, ioaddr);
err_out_free_res:
pci_release_regions(pdev);
err_out_free_netdev:
free_netdev (dev);
return -ENODEV;
}
static int read_eeprom(void __iomem *ioaddr, int location)
{
int bogus_cnt = 10000;
iowrite8(location, ioaddr + EEAddr);
iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
;
return ioread8(ioaddr + EERead);
}
static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
{
int i;
iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
iowrite16(1, ioaddr + MII_Cmd);
for (i = 10000; i >= 0; i--)
if ((ioread16(ioaddr + MII_Status) & 1) == 0)
break;
return ioread16(ioaddr + MII_Rd_Data);
}
static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
{
int i;
iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
iowrite16(value, ioaddr + MII_Wr_Data);
for (i = 10000; i >= 0; i--)
if ((ioread16(ioaddr + MII_Status) & 1) == 0)
break;
}
static int yellowfin_open(struct net_device *dev)
{
struct yellowfin_private *yp = netdev_priv(dev);
const int irq = yp->pci_dev->irq;
void __iomem *ioaddr = yp->base;
int i, rc;
iowrite32(0x80000000, ioaddr + DMACtrl);
rc = request_irq(irq, yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
if (rc)
return rc;
rc = yellowfin_init_ring(dev);
if (rc < 0)
goto err_free_irq;
iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
for (i = 0; i < 6; i++)
iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
iowrite32(0x00800080, ioaddr + TxIntrSel);
iowrite32(0x00800080, ioaddr + TxBranchSel);
iowrite32(0x00400040, ioaddr + TxWaitSel);
iowrite32(0x00400040, ioaddr + RxIntrSel);
iowrite32(0x00400040, ioaddr + RxBranchSel);
iowrite32(0x00400040, ioaddr + RxWaitSel);
iowrite32(dma_ctrl, ioaddr + DMACtrl);
iowrite16(fifo_cfg, ioaddr + FIFOcfg);
iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
yp->tx_threshold = 32;
iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
if (dev->if_port == 0)
dev->if_port = yp->default_port;
netif_start_queue(dev);
if (yp->drv_flags & IsGigabit) {
yp->full_duplex = 1;
iowrite16(0x01CF, ioaddr + Cnfg);
} else {
iowrite16(0x0018, ioaddr + FrameGap0);
iowrite16(0x1018, ioaddr + FrameGap1);
iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
}
set_rx_mode(dev);
iowrite16(0x81ff, ioaddr + IntrEnb);
iowrite16(0x0000, ioaddr + EventStatus);
iowrite32(0x80008000, ioaddr + RxCtrl);
iowrite32(0x80008000, ioaddr + TxCtrl);
if (yellowfin_debug > 2) {
netdev_printk(KERN_DEBUG, dev, "Done %s()\n", __func__);
}
timer_setup(&yp->timer, yellowfin_timer, 0);
yp->timer.expires = jiffies + 3*HZ;
add_timer(&yp->timer);
out:
return rc;
err_free_irq:
free_irq(irq, dev);
goto out;
}
static void yellowfin_timer(struct timer_list *t)
{
struct yellowfin_private *yp = from_timer(yp, t, timer);
struct net_device *dev = pci_get_drvdata(yp->pci_dev);
void __iomem *ioaddr = yp->base;
int next_tick = 60*HZ;
if (yellowfin_debug > 3) {
netdev_printk(KERN_DEBUG, dev, "Yellowfin timer tick, status %08x\n",
ioread16(ioaddr + IntrStatus));
}
if (yp->mii_cnt) {
int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
int negotiated = lpa & yp->advertising;
if (yellowfin_debug > 1)
netdev_printk(KERN_DEBUG, dev, "MII #%d status register is %04x, link partner capability %04x\n",
yp->phys[0], bmsr, lpa);
yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
if (bmsr & BMSR_LSTATUS)
next_tick = 60*HZ;
else
next_tick = 3*HZ;
}
yp->timer.expires = jiffies + next_tick;
add_timer(&yp->timer);
}
static void yellowfin_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
struct yellowfin_private *yp = netdev_priv(dev);
void __iomem *ioaddr = yp->base;
netdev_warn(dev, "Yellowfin transmit timed out at %d/%d Tx status %04x, Rx status %04x, resetting...\n",
yp->cur_tx, yp->dirty_tx,
ioread32(ioaddr + TxStatus),
ioread32(ioaddr + RxStatus));
if (yellowfin_debug) {
int i;
pr_warn(" Rx ring %p: ", yp->rx_ring);
for (i = 0; i < RX_RING_SIZE; i++)
pr_cont(" %08x", yp->rx_ring[i].result_status);
pr_cont("\n");
pr_warn(" Tx ring %p: ", yp->tx_ring);
for (i = 0; i < TX_RING_SIZE; i++)
pr_cont(" %04x /%08x",
yp->tx_status[i].tx_errs,
yp->tx_ring[i].result_status);
pr_cont("\n");
}
dev->if_port = 0;
iowrite32(0x10001000, yp->base + TxCtrl);
if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
netif_wake_queue (dev);
netif_trans_update(dev);
dev->stats.tx_errors++;
}
static int yellowfin_init_ring(struct net_device *dev)
{
struct yellowfin_private *yp = netdev_priv(dev);
int i, j;
yp->tx_full = 0;
yp->cur_rx = yp->cur_tx = 0;
yp->dirty_tx = 0;
yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
for (i = 0; i < RX_RING_SIZE; i++) {
yp->rx_ring[i].dbdma_cmd =
cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
}
for (i = 0; i < RX_RING_SIZE; i++) {
struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
yp->rx_skbuff[i] = skb;
if (skb == NULL)
break;
skb_reserve(skb, 2);
yp->rx_ring[i].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
skb->data,
yp->rx_buf_sz,
DMA_FROM_DEVICE));
}
if (i != RX_RING_SIZE) {
for (j = 0; j < i; j++)
dev_kfree_skb(yp->rx_skbuff[j]);
return -ENOMEM;
}
yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
#define NO_TXSTATS
#ifdef NO_TXSTATS
for (i = 0; i < TX_RING_SIZE; i++) {
yp->tx_skbuff[i] = NULL;
yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
}
yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
#else
{
for (i = 0; i < TX_RING_SIZE; i++) {
j = 2*i;
yp->tx_skbuff[i] = 0;
yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
(j+1)*sizeof(struct yellowfin_desc));
j++;
if (yp->flags & FullTxStatus) {
yp->tx_ring[j].dbdma_cmd =
cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
i*sizeof(struct tx_status_words));
} else {
yp->tx_ring[j].dbdma_cmd =
cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
yp->tx_ring[j].request_cnt = 2;
yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
i*sizeof(struct tx_status_words) +
&(yp->tx_status[0].tx_errs) -
&(yp->tx_status[0]));
}
yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
}
yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
}
#endif
yp->tx_tail_desc = &yp->tx_status[0];
return 0;
}
static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct yellowfin_private *yp = netdev_priv(dev);
unsigned entry;
int len = skb->len;
netif_stop_queue (dev);
entry = yp->cur_tx % TX_RING_SIZE;
if (gx_fix) {
int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
if (cacheline_end > 24 || cacheline_end == 0) {
len = skb->len + 32 - cacheline_end + 1;
if (skb_padto(skb, len)) {
yp->tx_skbuff[entry] = NULL;
netif_wake_queue(dev);
return NETDEV_TX_OK;
}
}
}
yp->tx_skbuff[entry] = skb;
#ifdef NO_TXSTATS
yp->tx_ring[entry].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
skb->data,
len, DMA_TO_DEVICE));
yp->tx_ring[entry].result_status = 0;
if (entry >= TX_RING_SIZE-1) {
yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
} else {
yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
yp->tx_ring[entry].dbdma_cmd =
cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
}
yp->cur_tx++;
#else
yp->tx_ring[entry<<1].request_cnt = len;
yp->tx_ring[entry<<1].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
skb->data,
len, DMA_TO_DEVICE));
yp->cur_tx++;
{
unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
}
yp->tx_ring[entry<<1].dbdma_cmd =
cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
CMD_TX_PKT | BRANCH_IFTRUE) | len);
#endif
iowrite32(0x10001000, yp->base + TxCtrl);
if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
netif_start_queue (dev);
else
yp->tx_full = 1;
if (yellowfin_debug > 4) {
netdev_printk(KERN_DEBUG, dev, "Yellowfin transmit frame #%d queued in slot %d\n",
yp->cur_tx, entry);
}
return NETDEV_TX_OK;
}
static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
{
struct net_device *dev = dev_instance;
struct yellowfin_private *yp;
void __iomem *ioaddr;
int boguscnt = max_interrupt_work;
unsigned int handled = 0;
yp = netdev_priv(dev);
ioaddr = yp->base;
spin_lock (&yp->lock);
do {
u16 intr_status = ioread16(ioaddr + IntrClear);
if (yellowfin_debug > 4)
netdev_printk(KERN_DEBUG, dev, "Yellowfin interrupt, status %04x\n",
intr_status);
if (intr_status == 0)
break;
handled = 1;
if (intr_status & (IntrRxDone | IntrEarlyRx)) {
yellowfin_rx(dev);
iowrite32(0x10001000, ioaddr + RxCtrl);
}
#ifdef NO_TXSTATS
for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
int entry = yp->dirty_tx % TX_RING_SIZE;
struct sk_buff *skb;
if (yp->tx_ring[entry].result_status == 0)
break;
skb = yp->tx_skbuff[entry];
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
dma_unmap_single(&yp->pci_dev->dev,
le32_to_cpu(yp->tx_ring[entry].addr),
skb->len, DMA_TO_DEVICE);
dev_consume_skb_irq(skb);
yp->tx_skbuff[entry] = NULL;
}
if (yp->tx_full &&
yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
yp->tx_full = 0;
netif_wake_queue(dev);
}
#else
if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
unsigned dirty_tx = yp->dirty_tx;
for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
dirty_tx++) {
int entry = dirty_tx % TX_RING_SIZE;
u16 tx_errs = yp->tx_status[entry].tx_errs;
struct sk_buff *skb;
#ifndef final_version
if (yellowfin_debug > 5)
netdev_printk(KERN_DEBUG, dev, "Tx queue %d check, Tx status %04x %04x %04x %04x\n",
entry,
yp->tx_status[entry].tx_cnt,
yp->tx_status[entry].tx_errs,
yp->tx_status[entry].total_tx_cnt,
yp->tx_status[entry].paused);
#endif
if (tx_errs == 0)
break;
skb = yp->tx_skbuff[entry];
if (tx_errs & 0xF810) {
#ifndef final_version
if (yellowfin_debug > 1)
netdev_printk(KERN_DEBUG, dev, "Transmit error, Tx status %04x\n",
tx_errs);
#endif
dev->stats.tx_errors++;
if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
} else {
#ifndef final_version
if (yellowfin_debug > 4)
netdev_printk(KERN_DEBUG, dev, "Normal transmit, Tx status %04x\n",
tx_errs);
#endif
dev->stats.tx_bytes += skb->len;
dev->stats.collisions += tx_errs & 15;
dev->stats.tx_packets++;
}
dma_unmap_single(&yp->pci_dev->dev,
yp->tx_ring[entry << 1].addr,
skb->len, DMA_TO_DEVICE);
dev_consume_skb_irq(skb);
yp->tx_skbuff[entry] = 0;
yp->tx_status[entry].tx_errs = 0;
}
#ifndef final_version
if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
netdev_err(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d\n",
dirty_tx, yp->cur_tx, yp->tx_full);
dirty_tx += TX_RING_SIZE;
}
#endif
if (yp->tx_full &&
yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
yp->tx_full = 0;
netif_wake_queue(dev);
}
yp->dirty_tx = dirty_tx;
yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
}
#endif
if (intr_status & 0x2ee)
yellowfin_error(dev, intr_status);
if (--boguscnt < 0) {
netdev_warn(dev, "Too much work at interrupt, status=%#04x\n",
intr_status);
break;
}
} while (1);
if (yellowfin_debug > 3)
netdev_printk(KERN_DEBUG, dev, "exiting interrupt, status=%#04x\n",
ioread16(ioaddr + IntrStatus));
spin_unlock (&yp->lock);
return IRQ_RETVAL(handled);
}
static int yellowfin_rx(struct net_device *dev)
{
struct yellowfin_private *yp = netdev_priv(dev);
int entry = yp->cur_rx % RX_RING_SIZE;
int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
if (yellowfin_debug > 4) {
printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %08x\n",
entry, yp->rx_ring[entry].result_status);
printk(KERN_DEBUG " #%d desc. %08x %08x %08x\n",
entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
yp->rx_ring[entry].result_status);
}
while (1) {
struct yellowfin_desc *desc = &yp->rx_ring[entry];
struct sk_buff *rx_skb = yp->rx_skbuff[entry];
s16 frame_status;
u16 desc_status;
int data_size, __maybe_unused yf_size;
u8 *buf_addr;
if(!desc->result_status)
break;
dma_sync_single_for_cpu(&yp->pci_dev->dev,
le32_to_cpu(desc->addr),
yp->rx_buf_sz, DMA_FROM_DEVICE);
desc_status = le32_to_cpu(desc->result_status) >> 16;
buf_addr = rx_skb->data;
data_size = (le32_to_cpu(desc->dbdma_cmd) -
le32_to_cpu(desc->result_status)) & 0xffff;
frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
if (yellowfin_debug > 4)
printk(KERN_DEBUG " %s() status was %04x\n",
__func__, frame_status);
if (--boguscnt < 0)
break;
yf_size = sizeof(struct yellowfin_desc);
if ( ! (desc_status & RX_EOP)) {
if (data_size != 0)
netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %04x, data_size %d!\n",
desc_status, data_size);
dev->stats.rx_length_errors++;
} else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
if (yellowfin_debug > 3)
printk(KERN_DEBUG " %s() Rx error was %04x\n",
__func__, frame_status);
dev->stats.rx_errors++;
if (frame_status & 0x0060) dev->stats.rx_length_errors++;
if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
if (frame_status < 0) dev->stats.rx_dropped++;
} else if ( !(yp->drv_flags & IsGigabit) &&
((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
u8 status1 = buf_addr[data_size-2];
u8 status2 = buf_addr[data_size-1];
dev->stats.rx_errors++;
if (status1 & 0xC0) dev->stats.rx_length_errors++;
if (status2 & 0x03) dev->stats.rx_frame_errors++;
if (status2 & 0x04) dev->stats.rx_crc_errors++;
if (status2 & 0x80) dev->stats.rx_dropped++;
#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
} else if ((yp->flags & HasMACAddrBug) &&
!ether_addr_equal(le32_to_cpu(yp->rx_ring_dma +
entry * yf_size),
dev->dev_addr) &&
!ether_addr_equal(le32_to_cpu(yp->rx_ring_dma +
entry * yf_size),
"\377\377\377\377\377\377")) {
if (bogus_rx++ == 0)
netdev_warn(dev, "Bad frame to %pM\n",
buf_addr);
#endif
} else {
struct sk_buff *skb;
int pkt_len = data_size -
(yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
#ifndef final_version
if (yellowfin_debug > 4)
printk(KERN_DEBUG " %s() normal Rx pkt length %d of %d, bogus_cnt %d\n",
__func__, pkt_len, data_size, boguscnt);
#endif
if (pkt_len > rx_copybreak) {
skb_put(skb = rx_skb, pkt_len);
dma_unmap_single(&yp->pci_dev->dev,
le32_to_cpu(yp->rx_ring[entry].addr),
yp->rx_buf_sz,
DMA_FROM_DEVICE);
yp->rx_skbuff[entry] = NULL;
} else {
skb = netdev_alloc_skb(dev, pkt_len + 2);
if (skb == NULL)
break;
skb_reserve(skb, 2);
skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
skb_put(skb, pkt_len);
dma_sync_single_for_device(&yp->pci_dev->dev,
le32_to_cpu(desc->addr),
yp->rx_buf_sz,
DMA_FROM_DEVICE);
}
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += pkt_len;
}
entry = (++yp->cur_rx) % RX_RING_SIZE;
}
for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
entry = yp->dirty_rx % RX_RING_SIZE;
if (yp->rx_skbuff[entry] == NULL) {
struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
if (skb == NULL)
break;
yp->rx_skbuff[entry] = skb;
skb_reserve(skb, 2);
yp->rx_ring[entry].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
skb->data,
yp->rx_buf_sz,
DMA_FROM_DEVICE));
}
yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
yp->rx_ring[entry].result_status = 0;
if (entry != 0)
yp->rx_ring[entry - 1].dbdma_cmd =
cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
else
yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
| yp->rx_buf_sz);
}
return 0;
}
static void yellowfin_error(struct net_device *dev, int intr_status)
{
netdev_err(dev, "Something Wicked happened! %04x\n", intr_status);
if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
dev->stats.tx_errors++;
if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
dev->stats.rx_errors++;
}
static int yellowfin_close(struct net_device *dev)
{
struct yellowfin_private *yp = netdev_priv(dev);
void __iomem *ioaddr = yp->base;
int i;
netif_stop_queue (dev);
if (yellowfin_debug > 1) {
netdev_printk(KERN_DEBUG, dev, "Shutting down ethercard, status was Tx %04x Rx %04x Int %02x\n",
ioread16(ioaddr + TxStatus),
ioread16(ioaddr + RxStatus),
ioread16(ioaddr + IntrStatus));
netdev_printk(KERN_DEBUG, dev, "Queue pointers were Tx %d / %d, Rx %d / %d\n",
yp->cur_tx, yp->dirty_tx,
yp->cur_rx, yp->dirty_rx);
}
iowrite16(0x0000, ioaddr + IntrEnb);
iowrite32(0x80000000, ioaddr + RxCtrl);
iowrite32(0x80000000, ioaddr + TxCtrl);
del_timer(&yp->timer);
#if defined(__i386__)
if (yellowfin_debug > 2) {
printk(KERN_DEBUG " Tx ring at %08llx:\n",
(unsigned long long)yp->tx_ring_dma);
for (i = 0; i < TX_RING_SIZE*2; i++)
printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x %08x\n",
ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
for (i = 0; i < TX_RING_SIZE; i++)
printk(KERN_DEBUG " #%d status %04x %04x %04x %04x\n",
i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
printk(KERN_DEBUG " Rx ring %08llx:\n",
(unsigned long long)yp->rx_ring_dma);
for (i = 0; i < RX_RING_SIZE; i++) {
printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x\n",
ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
yp->rx_ring[i].result_status);
if (yellowfin_debug > 6) {
if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
int j;
printk(KERN_DEBUG);
for (j = 0; j < 0x50; j++)
pr_cont(" %04x",
get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
pr_cont("\n");
}
}
}
}
#endif /* __i386__ debugging only */
free_irq(yp->pci_dev->irq, dev);
for (i = 0; i < RX_RING_SIZE; i++) {
yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0);
if (yp->rx_skbuff[i]) {
dev_kfree_skb(yp->rx_skbuff[i]);
}
yp->rx_skbuff[i] = NULL;
}
for (i = 0; i < TX_RING_SIZE; i++) {
dev_kfree_skb(yp->tx_skbuff[i]);
yp->tx_skbuff[i] = NULL;
}
#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
if (yellowfin_debug > 0) {
netdev_printk(KERN_DEBUG, dev, "Received %d frames that we should not have\n",
bogus_rx);
}
#endif
return 0;
}
static void set_rx_mode(struct net_device *dev)
{
struct yellowfin_private *yp = netdev_priv(dev);
void __iomem *ioaddr = yp->base;
u16 cfg_value = ioread16(ioaddr + Cnfg);
iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
if (dev->flags & IFF_PROMISC) {
iowrite16(0x000F, ioaddr + AddrMode);
} else if ((netdev_mc_count(dev) > 64) ||
(dev->flags & IFF_ALLMULTI)) {
iowrite16(0x000B, ioaddr + AddrMode);
} else if (!netdev_mc_empty(dev)) {
struct netdev_hw_addr *ha;
u16 hash_table[4];
int i;
memset(hash_table, 0, sizeof(hash_table));
netdev_for_each_mc_addr(ha, dev) {
unsigned int bit;
if (yp->drv_flags & HasMulticastBug) {
bit = (ether_crc_le(3, ha->addr) >> 3) & 0x3f;
hash_table[bit >> 4] |= (1 << bit);
bit = (ether_crc_le(4, ha->addr) >> 3) & 0x3f;
hash_table[bit >> 4] |= (1 << bit);
bit = (ether_crc_le(5, ha->addr) >> 3) & 0x3f;
hash_table[bit >> 4] |= (1 << bit);
}
bit = (ether_crc_le(6, ha->addr) >> 3) & 0x3f;
hash_table[bit >> 4] |= (1 << bit);
}
for (i = 0; i < 4; i++)
iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
iowrite16(0x0003, ioaddr + AddrMode);
} else {
iowrite16(0x0001, ioaddr + AddrMode);
}
iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
}
static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct yellowfin_private *np = netdev_priv(dev);
strscpy(info->driver, DRV_NAME, sizeof(info->driver));
strscpy(info->version, DRV_VERSION, sizeof(info->version));
strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
}
static const struct ethtool_ops ethtool_ops = {
.get_drvinfo = yellowfin_get_drvinfo
};
static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct yellowfin_private *np = netdev_priv(dev);
void __iomem *ioaddr = np->base;
struct mii_ioctl_data *data = if_mii(rq);
switch(cmd) {
case SIOCGMIIPHY:
data->phy_id = np->phys[0] & 0x1f;
fallthrough;
case SIOCGMIIREG:
data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
return 0;
case SIOCSMIIREG:
if (data->phy_id == np->phys[0]) {
u16 value = data->val_in;
switch (data->reg_num) {
case 0:
np->medialock = (value & 0x9000) ? 0 : 1;
if (np->medialock)
np->full_duplex = (value & 0x0100) ? 1 : 0;
break;
case 4: np->advertising = value; break;
}
}
mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
return 0;
default:
return -EOPNOTSUPP;
}
}
static void yellowfin_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct yellowfin_private *np;
BUG_ON(!dev);
np = netdev_priv(dev);
dma_free_coherent(&pdev->dev, STATUS_TOTAL_SIZE, np->tx_status,
np->tx_status_dma);
dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
np->rx_ring_dma);
dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
np->tx_ring_dma);
unregister_netdev (dev);
pci_iounmap(pdev, np->base);
pci_release_regions (pdev);
free_netdev (dev);
}
static struct pci_driver yellowfin_driver = {
.name = DRV_NAME,
.id_table = yellowfin_pci_tbl,
.probe = yellowfin_init_one,
.remove = yellowfin_remove_one,
};
static int __init yellowfin_init (void)
{
#ifdef MODULE
printk(version);
#endif
return pci_register_driver(&yellowfin_driver);
}
static void __exit yellowfin_cleanup (void)
{
pci_unregister_driver (&yellowfin_driver);
}
module_init(yellowfin_init);
module_exit