/*
 * Copyright (c) Yann Collet, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */

 /*-*************************************
 *  Dependencies
 ***************************************/
#include "zstd_compress_sequences.h"

/*
 * -log2(x / 256) lookup table for x in [0, 256).
 * If x == 0: Return 0
 * Else: Return floor(-log2(x / 256) * 256)
 */
static unsigned const kInverseProbabilityLog256[256] = {
    0,    2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
    1130, 1100, 1073, 1047, 1024, 1001, 980,  960,  941,  923,  906,  889,
    874,  859,  844,  830,  817,  804,  791,  779,  768,  756,  745,  734,
    724,  714,  704,  694,  685,  676,  667,  658,  650,  642,  633,  626,
    618,  610,  603,  595,  588,  581,  574,  567,  561,  554,  548,  542,
    535,  529,  523,  517,  512,  506,  500,  495,  489,  484,  478,  473,
    468,  463,  458,  453,  448,  443,  438,  434,  429,  424,  420,  415,
    411,  407,  402,  398,  394,  390,  386,  382,  377,  373,  370,  366,
    362,  358,  354,  350,  347,  343,  339,  336,  332,  329,  325,  322,
    318,  315,  311,  308,  305,  302,  298,  295,  292,  289,  286,  282,
    279,  276,  273,  270,  267,  264,  261,  258,  256,  253,  250,  247,
    244,  241,  239,  236,  233,  230,  228,  225,  222,  220,  217,  215,
    212,  209,  207,  204,  202,  199,  197,  194,  192,  190,  187,  185,
    182,  180,  178,  175,  173,  171,  168,  166,  164,  162,  159,  157,
    155,  153,  151,  149,  146,  144,  142,  140,  138,  136,  134,  132,
    130,  128,  126,  123,  121,  119,  117,  115,  114,  112,  110,  108,
    106,  104,  102,  100,  98,   96,   94,   93,   91,   89,   87,   85,
    83,   82,   80,   78,   76,   74,   73,   71,   69,   67,   66,   64,
    62,   61,   59,   57,   55,   54,   52,   50,   49,   47,   46,   44,
    42,   41,   39,   37,   36,   34,   33,   31,   30,   28,   26,   25,
    23,   22,   20,   19,   17,   16,   14,   13,   11,   10,   8,    7,
    5,    4,    2,    1,
};

static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
  void const* ptr = ctable;
  U16 const* u16ptr = (U16 const*)ptr;
  U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
  return maxSymbolValue;
}

/*
 * Returns true if we should use ncount=-1 else we should
 * use ncount=1 for low probability symbols instead.
 */
static unsigned ZSTD_useLowProbCount(size_t const nbSeq)
{
    /* Heuristic: This should cover most blocks <= 16K and
     * start to fade out after 16K to about 32K depending on
     * comprssibility.
     */
    return nbSeq >= 2048;
}

/*
 * Returns the cost in bytes of encoding the normalized count header.
 * Returns an error if any of the helper functions return an error.
 */
static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
                              size_t const nbSeq, unsigned const FSELog)
{
    BYTE wksp[FSE_NCOUNTBOUND];
    S16 norm[MaxSeq + 1];
    const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
    FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max, ZSTD_useLowProbCount(nbSeq)), "");
    return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
}

/*
 * Returns the cost in bits of encoding the distribution described by count
 * using the entropy bound.
 */
static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
{
    unsigned cost = 0;
    unsigned s;

    assert(total > 0);
    for (s = 0; s <= max; ++s) {
        unsigned norm = (unsigned)((256 * count[s]) / total);
        if (count[s] != 0 && norm == 0)
            norm = 1;
        assert(count[s] < total);
        cost += count[s] * kInverseProbabilityLog256[norm];
    }
    return cost >> 8;
}

/*
 * Returns the cost in bits of encoding the distribution in count using ctable.
 * Returns an error if ctable cannot represent all the symbols in count.
 */
size_t ZSTD_fseBitCost(
    FSE_CTable const* ctable,
    unsigned const* count,
    unsigned const max)
{
    unsigned const kAccuracyLog = 8;
    size_t cost = 0;
    unsigned s;
    FSE_CState_t cstate;
    FSE_initCState(&cstate, ctable);
    if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
        DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
                    ZSTD_getFSEMaxSymbolValue(ctable), max);
        return ERROR(GENERIC);
    }
    for (s = 0; s <= max; ++s) {
        unsigned const tableLog = cstate.stateLog;
        unsigned const badCost = (tableLog + 1) << kAccuracyLog;
        unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
        if (count[s] == 0)
            continue;
        if (bitCost >= badCost) {
            DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
            return ERROR(GENERIC);
        }
        cost += (size_t)count[s] * bitCost;
    }
    return cost >> kAccuracyLog;
}

/*
 * Returns the cost in bits of encoding the distribution in count using the
 * table described by norm. The max symbol support by norm is assumed >= max.
 * norm must be valid for every symbol with non-zero probability in count.
 */
size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
                             unsigned const* count, unsigned const max)
{
    unsigned const shift = 8 - accuracyLog;
    size_t cost = 0;
    unsigned s;
    assert(accuracyLog <= 8);
    for (s = 0; s <= max; ++s) {
        unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
        unsigned const norm256 = normAcc << shift;
        assert(norm256 > 0);
        assert(norm256 < 256);
        cost += count[s] * kInverseProbabilityLog256[norm256];
    }
    return cost >> 8;
}

symbolEncodingType_e
ZSTD_selectEncodingType(
        FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
        size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
        FSE_CTable const* prevCTable,
        short const* defaultNorm, U32 defaultNormLog,
        ZSTD_defaultPolicy_e const isDefaultAllowed,
        ZSTD_strategy const strategy)
{
    ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
    if (mostFrequent == nbSeq) {
        *repeatMode = FSE_repeat_none;
        if (isDefaultAllowed && nbSeq <= 2) {
            /* Prefer set_basic over set_rle when there are 2 or less symbols,
             * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
             * If basic encoding isn't possible, always choose RLE.
             */
            DEBUGLOG(5, "Selected set_basic");
            return set_basic;
        }
        DEBUGLOG(5, "Selected set_rle");
        return set_rle;
    }
    if (strategy < ZSTD_lazy) {
        if (isDefaultAllowed) {
            size_t const staticFse_nbSeq_max = 1000;
            size_t const mult = 10 - strategy;
            size_t const baseLog = 3;
            size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog;  /* 28-36 for offset, 56-72 for lengths */
            assert(defaultNormLog >= 5 && defaultNormLog <= 6);  /* xx_DEFAULTNORMLOG */
            assert(mult <= 9 && mult >= 7);
            if ( (*repeatMode == FSE_repeat_valid)
              && (nbSeq < staticFse_nbSeq_max) ) {
                DEBUGLOG(5, "Selected set_repeat");
                return set_repeat;
            }
            if ( (nbSeq < dynamicFse_nbSeq_min)
              || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
                DEBUGLOG(5, "Selected set_basic");
                /* The format allows default tables to be repeated, but it isn't useful.
                 * When using simple heuristics to select encoding type, we don't want
                 * to confuse these tables with dictionaries. When running more careful
                 * analysis, we don't need to waste time checking both repeating tables
                 * and default tables.
                 */
                *repeatMode = FSE_repeat_none;
                return set_basic;
            }
        }
    } else {
        size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
        size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
        size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
        size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);

        if (isDefaultAllowed) {
            assert(!ZSTD_isError(basicCost));
            assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
        }
        assert(!ZSTD_isError(NCountCost));
        assert(compressedCost < ERROR(maxCode));
        DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
                    (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
        if (basicCost <= repeatCost && basicCost <= compressedCost) {
            DEBUGLOG(5, "Selected set_basic");
            assert(isDefaultAllowed);
            *repeatMode = FSE_repeat_none;
            return set_basic;
        }
        if (repeatCost <= compressedCost) {
            DEBUGLOG(5, "Selected set_repeat");
            assert(!ZSTD_isError(repeatCost));
            return set_repeat;
        }
        assert(compressedCost < basicCost && compressedCost < repeatCost);
    }
    DEBUGLOG(5, "Selected set_compressed");
    *repeatMode = FSE_repeat_check;
    return set_compressed;
}

typedef struct {
    S16 norm[MaxSeq + 1];
    U32 wksp[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(MaxSeq, MaxFSELog)];
} ZSTD_BuildCTableWksp;

size_t
ZSTD_buildCTable(void* dst, size_t dstCapacity,
                FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
                unsigned* count, U32 max,
                const BYTE* codeTable, size_t nbSeq,
                const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
                const FSE_CTable* prevCTable, size_t prevCTableSize,
                void* entropyWorkspace, size_t entropyWorkspaceSize)
{
    BYTE* op = (BYTE*)dst;
    const BYTE* const oend = op + dstCapacity;
    DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);

    switch (type) {
    case set_rle:
        FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
        RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
        *op = codeTable[0];
        return 1;
    case set_repeat:
        ZSTD_memcpy(nextCTable, prevCTable, prevCTableSize);
        return 0;
    case set_basic:
        FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), "");  /* note : could be pre-calculated */
        return 0;
    case set_compressed: {
        ZSTD_BuildCTableWksp* wksp = (ZSTD_BuildCTableWksp*)entropyWorkspace;
        size_t nbSeq_1 = nbSeq;
        const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
        if (count[codeTable[nbSeq-1]] > 1) {
            count[codeTable[nbSeq-1]]--;
            nbSeq_1--;
        }
        assert(nbSeq_1 > 1);
        assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp));
        (void)entropyWorkspaceSize;
        FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "FSE_normalizeCount failed");
        assert(oend >= op);
        {   size_t const NCountSize = FSE_writeNCount(op, (size_t)(oend - op), wksp->norm, max, tableLog);   /* overflow protected */
            FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
            FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), "FSE_buildCTable_wksp failed");
            return NCountSize;
        }
    }
    default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
    }
}

FORCE_INLINE_TEMPLATE size_t
ZSTD_encodeSequences_body(
            void* dst, size_t dstCapacity,
            FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
            FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
            FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
            seqDef const* sequences, size_t nbSeq, int longOffsets)
{
    BIT_CStream_t blockStream;
    FSE_CState_t  stateMatchLength;
    FSE_CState_t  stateOffsetBits;
    FSE_CState_t  stateLitLength;

    RETURN_ERROR_IF(
        ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
        dstSize_tooSmall, "not enough space remaining");
    DEBUGLOG(6, "available space for bitstream : %i  (dstCapacity=%u)",
                (int)(blockStream.endPtr - blockStream.startPtr),
                (unsigned)dstCapacity);

    /* first symbols */
    FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
    FSE_initCState2(&stateOffsetBits,  CTable_OffsetBits,  ofCodeTable[nbSeq-1]);
    FSE_initCState2(&stateLitLength,   CTable_LitLength,   llCodeTable[nbSeq-1]);
    BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
    if (MEM_32bits()) BIT_flushBits(&blockStream);
    BIT_addBits(&blockStream, sequences[nbSeq-1].mlBase, ML_bits[mlCodeTable[nbSeq-1]]);
    if (MEM_32bits()) BIT_flushBits(&blockStream);
    if (longOffsets) {
        U32 const ofBits = ofCodeTable[nbSeq-1];
        unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
        if (extraBits) {
            BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, extraBits);
            BIT_flushBits(&blockStream);
        }
        BIT_addBits(&blockStream, sequences[nbSeq-1].offBase >> extraBits,
                    ofBits - extraBits);
    } else {
        BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, ofCodeTable[nbSeq-1]);
    }
    BIT_flushBits(&blockStream);

    {   size_t n;
        for (n=nbSeq-2 ; n<nbSeq ; n--) {      /* intentional underflow */
            BYTE const llCode = llCodeTable[n];
            BYTE const ofCode = ofCodeTable[n];
            BYTE const mlCode = mlCodeTable[n];
            U32  const llBits = LL_bits[llCode];
            U32  const ofBits = ofCode;
            U32  const mlBits = ML_bits[mlCode];
            DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
                        (unsigned)sequences[n].litLength,
                        (unsigned)sequences[n].mlBase + MINMATCH,
                        (unsigned)sequences[n].offBase);
                                                                            /* 32b*/  /* 64b*/
                                                                            /* (7)*/  /* (7)*/
            FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode);       /* 15 */  /* 15 */
            FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode);      /* 24 */  /* 24 */
            if (MEM_32bits()) BIT_flushBits(&blockStream);                  /* (7)*/
            FSE_encodeSymbol(&blockStream, &stateLitLength, llCode);        /* 16 */  /* 33 */
            if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
                BIT_flushBits(&blockStream);                                /* (7)*/
            BIT_addBits(&blockStream, sequences[n].litLength, llBits);
            if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
            BIT_addBits(&blockStream, sequences[n].mlBase, mlBits);
            if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
            if (longOffsets) {
                unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
                if (extraBits) {
                    BIT_addBits(&blockStream, sequences[n].offBase, extraBits);
                    BIT_flushBits(&blockStream);                            /* (7)*/
                }
                BIT_addBits(&blockStream, sequences[n].offBase >> extraBits,
                            ofBits - extraBits);                            /* 31 */
            } else {
                BIT_addBits(&blockStream, sequences[n].offBase, ofBits);     /* 31 */
            }
            BIT_flushBits(&blockStream);                                    /* (7)*/
            DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
    }   }

    DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
    FSE_flushCState(&blockStream, &stateMatchLength);
    DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
    FSE_flushCState(&blockStream, &stateOffsetBits);
    DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
    FSE_flushCState(&blockStream, &stateLitLength);

    {   size_t const streamSize = BIT_closeCStream(&blockStream);
        RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
        return streamSize;
    }
}

static size_t
ZSTD_encodeSequences_default(
            void* dst, size_t dstCapacity,
            FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
            FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
            FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
            seqDef const* sequences, size_t nbSeq, int longOffsets)
{
    return ZSTD_encodeSequences_body(dst, dstCapacity,
                                    CTable_MatchLength, mlCodeTable,
                                    CTable_OffsetBits, ofCodeTable,
                                    CTable_LitLength, llCodeTable,
                                    sequences, nbSeq, longOffsets);
}


#if DYNAMIC_BMI2

static BMI2_TARGET_ATTRIBUTE size_t
ZSTD_encodeSequences_bmi2(
            void* dst, size_t dstCapacity,
            FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
            FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
            FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
            seqDef const* sequences, size_t nbSeq, int longOffsets)
{
    return ZSTD_encodeSequences_body(dst, dstCapacity,
                                    CTable_MatchLength, mlCodeTable,
                                    CTable_OffsetBits, ofCodeTable,
                                    CTable_LitLength, llCodeTable,
                                    sequences, nbSeq, longOffsets);
}

#endif

size_t ZSTD_encodeSequences(
            void* dst, size_t dstCapacity,
            FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
            FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
            FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
            seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
{
    DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
#if DYNAMIC_BMI2
    if (bmi2) {
        return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
                                         CTable_MatchLength, mlCodeTable,
                                         CTable_OffsetBits, ofCodeTable,
                                         CTable_LitLength, llCodeTable,
                                         sequences, nbSeq, longOffsets);
    }
#endif
    (void)bmi2;
    return ZSTD_encodeSequences_default(dst, dstCapacity,
                                        CTable_MatchLength, mlCodeTable,
                                        CTable_OffsetBits, ofCodeTable,
                                        CTable_LitLength, llCodeTable,
                                        sequences, nbSeq, longOffsets);
}