#include "odm_precomp.h"
#define READ_AND_CONFIG_MP(ic, txt) (ODM_ReadAndConfig_MP_##ic##txt(pDM_Odm))
#define READ_AND_CONFIG READ_AND_CONFIG_MP
static u8 odm_query_rx_pwr_percentage(s8 ant_power)
{
if ((ant_power <= -100) || (ant_power >= 20))
return 0;
else if (ant_power >= 0)
return 100;
else
return 100 + ant_power;
}
s32 odm_signal_scale_mapping(struct dm_odm_t *dm_odm, s32 curr_sig)
{
s32 ret_sig = 0;
if (dm_odm->SupportInterface == ODM_ITRF_SDIO) {
if (curr_sig >= 51 && curr_sig <= 100)
ret_sig = 100;
else if (curr_sig >= 41 && curr_sig <= 50)
ret_sig = 80 + ((curr_sig - 40)*2);
else if (curr_sig >= 31 && curr_sig <= 40)
ret_sig = 66 + (curr_sig - 30);
else if (curr_sig >= 21 && curr_sig <= 30)
ret_sig = 54 + (curr_sig - 20);
else if (curr_sig >= 10 && curr_sig <= 20)
ret_sig = 42 + (((curr_sig - 10) * 2) / 3);
else if (curr_sig >= 5 && curr_sig <= 9)
ret_sig = 22 + (((curr_sig - 5) * 3) / 2);
else if (curr_sig >= 1 && curr_sig <= 4)
ret_sig = 6 + (((curr_sig - 1) * 3) / 2);
else
ret_sig = curr_sig;
}
return ret_sig;
}
static u8 odm_evm_db_to_percentage(s8 value)
{
s8 ret_val;
ret_val = value;
ret_val /= 2;
if (ret_val >= 0)
ret_val = 0;
if (ret_val <= -33)
ret_val = -33;
ret_val = 0 - ret_val;
ret_val *= 3;
if (ret_val == 99)
ret_val = 100;
return ret_val;
}
static s8 odm_cck_rssi(u8 lna_idx, u8 vga_idx)
{
s8 rx_pwr_all = 0x00;
switch (lna_idx) {
case 6:
rx_pwr_all = -34 - (2 * vga_idx);
break;
case 4:
rx_pwr_all = -14 - (2 * vga_idx);
break;
case 1:
rx_pwr_all = 6 - (2 * vga_idx);
break;
case 0:
rx_pwr_all = 16 - (2 * vga_idx);
break;
default:
break;
}
return rx_pwr_all;
}
static void odm_rx_phy_status_parsing(struct dm_odm_t *dm_odm,
struct odm_phy_info *phy_info,
u8 *phy_status,
struct odm_packet_info *pkt_info)
{
u8 i;
s8 rx_pwr[4], rx_pwr_all = 0;
u8 evm, pwdb_all = 0, pwdb_all_bt;
u8 rssi, total_rssi = 0;
bool is_cck_rate = false;
u8 rf_rx_num = 0;
u8 lna_idx, vga_idx;
struct phy_status_rpt_8192cd_t *phy_sta_rpt = (struct phy_status_rpt_8192cd_t *)phy_status;
is_cck_rate = pkt_info->data_rate <= DESC_RATE11M;
phy_info->rx_mimo_signal_quality[RF_PATH_A] = -1;
phy_info->rx_mimo_signal_quality[RF_PATH_B] = -1;
if (is_cck_rate) {
u8 cck_agc_rpt;
dm_odm->PhyDbgInfo.NumQryPhyStatusCCK++;
cck_agc_rpt = phy_sta_rpt->cck_agc_rpt_ofdm_cfosho_a;
lna_idx = ((cck_agc_rpt & 0xE0)>>5);
vga_idx = (cck_agc_rpt & 0x1F);
rx_pwr_all = odm_cck_rssi(lna_idx, vga_idx);
pwdb_all = odm_query_rx_pwr_percentage(rx_pwr_all);
if (pwdb_all > 100)
pwdb_all = 100;
phy_info->rx_pwd_ba11 = pwdb_all;
phy_info->bt_rx_rssi_percentage = pwdb_all;
phy_info->recv_signal_power = rx_pwr_all;
{
u8 sq, sq_rpt;
if (phy_info->rx_pwd_ba11 > 40 && !dm_odm->bInHctTest)
sq = 100;
else {
sq_rpt = phy_sta_rpt->cck_sig_qual_ofdm_pwdb_all;
if (sq_rpt > 64)
sq = 0;
else if (sq_rpt < 20)
sq = 100;
else
sq = ((64-sq_rpt) * 100) / 44;
}
phy_info->signal_quality = sq;
phy_info->rx_mimo_signal_quality[RF_PATH_A] = sq;
phy_info->rx_mimo_signal_quality[RF_PATH_B] = -1;
}
} else {
dm_odm->PhyDbgInfo.NumQryPhyStatusOFDM++;
for (i = RF_PATH_A; i < RF_PATH_MAX; i++) {
if (dm_odm->RFPathRxEnable & BIT(i))
rf_rx_num++;
rx_pwr[i] = ((phy_sta_rpt->path_agc[i].gain & 0x3F) * 2) - 110;
phy_info->rx_pwr[i] = rx_pwr[i];
rssi = odm_query_rx_pwr_percentage(rx_pwr[i]);
total_rssi += rssi;
phy_info->rx_mimo_signal_strength[i] = (u8)rssi;
phy_info->rx_snr[i] = dm_odm->PhyDbgInfo.RxSNRdB[i] = (s32)(phy_sta_rpt->path_rxsnr[i]/2);
}
rx_pwr_all = ((phy_sta_rpt->cck_sig_qual_ofdm_pwdb_all >> 1) & 0x7f) - 110;
pwdb_all_bt = pwdb_all = odm_query_rx_pwr_percentage(rx_pwr_all);
phy_info->rx_pwd_ba11 = pwdb_all;
phy_info->bt_rx_rssi_percentage = pwdb_all_bt;
phy_info->rx_power = rx_pwr_all;
phy_info->recv_signal_power = rx_pwr_all;
evm = odm_evm_db_to_percentage(phy_sta_rpt->stream_rxevm[0]);
phy_info->signal_quality = (u8)(evm & 0xff);
phy_info->rx_mimo_signal_quality[RF_PATH_A] = (u8)(evm & 0xff);
odm_parsing_cfo(dm_odm, pkt_info, phy_sta_rpt->path_cfotail);
}
if (is_cck_rate) {
phy_info->signal_strength = (u8)(odm_signal_scale_mapping(dm_odm, pwdb_all));
} else {
if (rf_rx_num != 0) {
phy_info->signal_strength = (u8)(odm_signal_scale_mapping(dm_odm, total_rssi /= rf_rx_num));
}
}
}
static void odm_Process_RSSIForDM(
struct dm_odm_t *pDM_Odm, struct odm_phy_info *pPhyInfo, struct odm_packet_info *pPktinfo
)
{
s32 UndecoratedSmoothedPWDB, UndecoratedSmoothedCCK, UndecoratedSmoothedOFDM, RSSI_Ave;
u8 isCCKrate = 0;
u8 RSSI_max, RSSI_min, i;
u32 OFDM_pkt = 0;
u32 Weighting = 0;
PSTA_INFO_T pEntry;
if (pPktinfo->station_id == 0xFF)
return;
pEntry = pDM_Odm->pODM_StaInfo[pPktinfo->station_id];
if (!IS_STA_VALID(pEntry))
return;
if ((!pPktinfo->bssid_match))
return;
if (pPktinfo->is_beacon)
pDM_Odm->PhyDbgInfo.NumQryBeaconPkt++;
isCCKrate = ((pPktinfo->data_rate <= DESC_RATE11M)) ? true : false;
pDM_Odm->RxRate = pPktinfo->data_rate;
if (pDM_Odm->SupportAbility & ODM_BB_ANT_DIV) {
}
UndecoratedSmoothedCCK = pEntry->rssi_stat.UndecoratedSmoothedCCK;
UndecoratedSmoothedOFDM = pEntry->rssi_stat.UndecoratedSmoothedOFDM;
UndecoratedSmoothedPWDB = pEntry->rssi_stat.UndecoratedSmoothedPWDB;
if (pPktinfo->to_self || pPktinfo->is_beacon) {
if (!isCCKrate) {
if (pPhyInfo->rx_mimo_signal_strength[RF_PATH_B] == 0) {
RSSI_Ave = pPhyInfo->rx_mimo_signal_strength[RF_PATH_A];
pDM_Odm->RSSI_A = pPhyInfo->rx_mimo_signal_strength[RF_PATH_A];
pDM_Odm->RSSI_B = 0;
} else {
pDM_Odm->RSSI_A = pPhyInfo->rx_mimo_signal_strength[RF_PATH_A];
pDM_Odm->RSSI_B = pPhyInfo->rx_mimo_signal_strength[RF_PATH_B];
if (
pPhyInfo->rx_mimo_signal_strength[RF_PATH_A] >
pPhyInfo->rx_mimo_signal_strength[RF_PATH_B]
) {
RSSI_max = pPhyInfo->rx_mimo_signal_strength[RF_PATH_A];
RSSI_min = pPhyInfo->rx_mimo_signal_strength[RF_PATH_B];
} else {
RSSI_max = pPhyInfo->rx_mimo_signal_strength[RF_PATH_B];
RSSI_min = pPhyInfo->rx_mimo_signal_strength[RF_PATH_A];
}
if ((RSSI_max-RSSI_min) < 3)
RSSI_Ave = RSSI_max;
else if ((RSSI_max-RSSI_min) < 6)
RSSI_Ave = RSSI_max - 1;
else if ((RSSI_max-RSSI_min) < 10)
RSSI_Ave = RSSI_max - 2;
else
RSSI_Ave = RSSI_max - 3;
}
if (UndecoratedSmoothedOFDM <= 0)
UndecoratedSmoothedOFDM = pPhyInfo->rx_pwd_ba11;
else {
if (pPhyInfo->rx_pwd_ba11 > (u32)UndecoratedSmoothedOFDM) {
UndecoratedSmoothedOFDM =
((UndecoratedSmoothedOFDM*(Rx_Smooth_Factor-1)) +
RSSI_Ave)/Rx_Smooth_Factor;
UndecoratedSmoothedOFDM = UndecoratedSmoothedOFDM + 1;
} else {
UndecoratedSmoothedOFDM =
((UndecoratedSmoothedOFDM*(Rx_Smooth_Factor-1)) +
RSSI_Ave)/Rx_Smooth_Factor;
}
}
pEntry->rssi_stat.PacketMap = (pEntry->rssi_stat.PacketMap<<1) | BIT0;
} else {
RSSI_Ave = pPhyInfo->rx_pwd_ba11;
pDM_Odm->RSSI_A = (u8) pPhyInfo->rx_pwd_ba11;
pDM_Odm->RSSI_B = 0;
if (UndecoratedSmoothedCCK <= 0)
UndecoratedSmoothedCCK = pPhyInfo->rx_pwd_ba11;
else {
if (pPhyInfo->rx_pwd_ba11 > (u32)UndecoratedSmoothedCCK) {
UndecoratedSmoothedCCK =
((UndecoratedSmoothedCCK*(Rx_Smooth_Factor-1)) +
pPhyInfo->rx_pwd_ba11)/Rx_Smooth_Factor;
UndecoratedSmoothedCCK = UndecoratedSmoothedCCK + 1;
} else {
UndecoratedSmoothedCCK =
((UndecoratedSmoothedCCK*(Rx_Smooth_Factor-1)) +
pPhyInfo->rx_pwd_ba11)/Rx_Smooth_Factor;
}
}
pEntry->rssi_stat.PacketMap = pEntry->rssi_stat.PacketMap<<1;
}
{
if (pEntry->rssi_stat.ValidBit >= 64)
pEntry->rssi_stat.ValidBit = 64;
else
pEntry->rssi_stat.ValidBit++;
for (i = 0; i < pEntry->rssi_stat.ValidBit; i++)
OFDM_pkt += (u8)(pEntry->rssi_stat.PacketMap>>i)&BIT0;
if (pEntry->rssi_stat.ValidBit == 64) {
Weighting = ((OFDM_pkt<<4) > 64)?64:(OFDM_pkt<<4);
UndecoratedSmoothedPWDB = (Weighting*UndecoratedSmoothedOFDM+(64-Weighting)*UndecoratedSmoothedCCK)>>6;
} else {
if (pEntry->rssi_stat.ValidBit != 0)
UndecoratedSmoothedPWDB = (OFDM_pkt*UndecoratedSmoothedOFDM+(pEntry->rssi_stat.ValidBit-OFDM_pkt)*UndecoratedSmoothedCCK)/pEntry->rssi_stat.ValidBit;
else
UndecoratedSmoothedPWDB = 0;
}
pEntry->rssi_stat.UndecoratedSmoothedCCK = UndecoratedSmoothedCCK;
pEntry->rssi_stat.UndecoratedSmoothedOFDM = UndecoratedSmoothedOFDM;
pEntry->rssi_stat.UndecoratedSmoothedPWDB = UndecoratedSmoothedPWDB;
}
}
}
void odm_phy_status_query(struct dm_odm_t *dm_odm, struct odm_phy_info *phy_info,
u8 *phy_status, struct odm_packet_info *pkt_info)
{
odm_rx_phy_status_parsing(dm_odm, phy_info, phy_status, pkt_info);
if (!dm_odm->RSSI_test)
odm_Process_RSSIForDM(dm_odm, phy_info, pkt_info);
}
enum hal_status ODM_ConfigRFWithHeaderFile(
struct dm_odm_t *pDM_Odm,
enum ODM_RF_Config_Type ConfigType,
enum rf_path eRFPath
)
{
if (ConfigType == CONFIG_RF_RADIO)
READ_AND_CONFIG(8723B, _RadioA);
else if (ConfigType == CONFIG_RF_TXPWR_LMT)
READ_AND_CONFIG(8723B, _TXPWR_LMT);
return HAL_STATUS_SUCCESS;
}
enum hal_status ODM_ConfigRFWithTxPwrTrackHeaderFile(struct dm_odm_t *pDM_Odm)
{
if (pDM_Odm->SupportInterface == ODM_ITRF_SDIO)
READ_AND_CONFIG(8723B, _TxPowerTrack_SDIO);
return HAL_STATUS_SUCCESS;
}
enum hal_status ODM_ConfigBBWithHeaderFile(
struct dm_odm_t *pDM_Odm, enum ODM_BB_Config_Type ConfigType
)
{
if (ConfigType == CONFIG_BB_PHY_REG)
READ_AND_CONFIG(8723B, _PHY_REG);
else if (ConfigType == CONFIG_BB_AGC_TAB)
READ_AND_CONFIG(8723B, _AGC_TAB);
else if (ConfigType == CONFIG_BB_PHY_REG_PG)
READ_AND_CONFIG(8723B, _PHY_REG_PG);
return HAL_STATUS_SUCCESS;
}