#include <linux/crash_dump.h>
#include <linux/cpuhotplug.h>
#include <linux/cpumask.h>
#include <linux/proc_fs.h>
#include <linux/memory.h>
#include <linux/export.h>
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/efi.h>
#include <asm/e820/api.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/bios.h>
#include <asm/uv/uv.h>
#include <asm/apic.h>
#include "local.h"
static enum uv_system_type uv_system_type;
static int uv_hubbed_system;
static int uv_hubless_system;
static u64 gru_start_paddr, gru_end_paddr;
static union uvh_apicid uvh_apicid;
static int uv_node_id;
static u8 uv_archtype[UV_AT_SIZE + 1];
static u8 oem_id[ACPI_OEM_ID_SIZE + 1];
static u8 oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
static struct {
unsigned int apicid_shift;
unsigned int apicid_mask;
unsigned int socketid_shift;
unsigned int pnode_mask;
unsigned int nasid_shift;
unsigned int gpa_shift;
unsigned int gnode_shift;
unsigned int m_skt;
unsigned int n_skt;
} uv_cpuid;
static int uv_min_hub_revision_id;
static struct apic apic_x2apic_uv_x;
static struct uv_hub_info_s uv_hub_info_node0;
static int disable_uv_undefined_panic = 1;
unsigned long uv_undefined(char *str)
{
if (likely(!disable_uv_undefined_panic))
panic("UV: error: undefined MMR: %s\n", str);
else
pr_crit("UV: error: undefined MMR: %s\n", str);
return ~0ul;
}
EXPORT_SYMBOL(uv_undefined);
static unsigned long __init uv_early_read_mmr(unsigned long addr)
{
unsigned long val, *mmr;
mmr = early_ioremap(UV_LOCAL_MMR_BASE | addr, sizeof(*mmr));
val = *mmr;
early_iounmap(mmr, sizeof(*mmr));
return val;
}
static inline bool is_GRU_range(u64 start, u64 end)
{
if (!gru_start_paddr)
return false;
return start >= gru_start_paddr && end <= gru_end_paddr;
}
static bool uv_is_untracked_pat_range(u64 start, u64 end)
{
return is_ISA_range(start, end) || is_GRU_range(start, end);
}
static void __init early_get_pnodeid(void)
{
int pnode;
uv_cpuid.m_skt = 0;
if (UVH_RH10_GAM_ADDR_MAP_CONFIG) {
union uvh_rh10_gam_addr_map_config_u m_n_config;
m_n_config.v = uv_early_read_mmr(UVH_RH10_GAM_ADDR_MAP_CONFIG);
uv_cpuid.n_skt = m_n_config.s.n_skt;
uv_cpuid.nasid_shift = 0;
} else if (UVH_RH_GAM_ADDR_MAP_CONFIG) {
union uvh_rh_gam_addr_map_config_u m_n_config;
m_n_config.v = uv_early_read_mmr(UVH_RH_GAM_ADDR_MAP_CONFIG);
uv_cpuid.n_skt = m_n_config.s.n_skt;
if (is_uv(UV3))
uv_cpuid.m_skt = m_n_config.s3.m_skt;
if (is_uv(UV2))
uv_cpuid.m_skt = m_n_config.s2.m_skt;
uv_cpuid.nasid_shift = 1;
} else {
unsigned long GAM_ADDR_MAP_CONFIG = 0;
WARN(GAM_ADDR_MAP_CONFIG == 0,
"UV: WARN: GAM_ADDR_MAP_CONFIG is not available\n");
uv_cpuid.n_skt = 0;
uv_cpuid.nasid_shift = 0;
}
if (is_uv(UV4|UVY))
uv_cpuid.gnode_shift = 2;
uv_cpuid.pnode_mask = (1 << uv_cpuid.n_skt) - 1;
pnode = (uv_node_id >> uv_cpuid.nasid_shift) & uv_cpuid.pnode_mask;
uv_cpuid.gpa_shift = 46;
pr_info("UV: n_skt:%d pnmsk:%x pn:%x\n",
uv_cpuid.n_skt, uv_cpuid.pnode_mask, pnode);
}
static int __init early_set_hub_type(void)
{
union uvh_node_id_u node_id;
node_id.v = uv_early_read_mmr(UVH_NODE_ID);
uv_node_id = node_id.sx.node_id;
switch (node_id.s.part_number) {
case UV5_HUB_PART_NUMBER:
uv_min_hub_revision_id = node_id.s.revision
+ UV5_HUB_REVISION_BASE;
uv_hub_type_set(UV5);
break;
case UV4_HUB_PART_NUMBER:
uv_min_hub_revision_id = node_id.s.revision
+ UV4_HUB_REVISION_BASE - 1;
uv_hub_type_set(UV4);
if (uv_min_hub_revision_id == UV4A_HUB_REVISION_BASE)
uv_hub_type_set(UV4|UV4A);
break;
case UV3_HUB_PART_NUMBER:
case UV3_HUB_PART_NUMBER_X:
uv_min_hub_revision_id = node_id.s.revision
+ UV3_HUB_REVISION_BASE;
uv_hub_type_set(UV3);
break;
case UV2_HUB_PART_NUMBER:
case UV2_HUB_PART_NUMBER_X:
uv_min_hub_revision_id = node_id.s.revision
+ UV2_HUB_REVISION_BASE - 1;
uv_hub_type_set(UV2);
break;
default:
return 0;
}
pr_info("UV: part#:%x rev:%d rev_id:%d UVtype:0x%x\n",
node_id.s.part_number, node_id.s.revision,
uv_min_hub_revision_id, is_uv(~0));
return 1;
}
static void __init uv_tsc_check_sync(void)
{
u64 mmr;
int sync_state;
int mmr_shift;
char *state;
if (!is_uv(UV2|UV3|UV4)) {
mark_tsc_async_resets("UV5+");
return;
}
mmr = uv_early_read_mmr(UVH_TSC_SYNC_MMR);
mmr_shift =
is_uv2_hub() ? UVH_TSC_SYNC_SHIFT_UV2K : UVH_TSC_SYNC_SHIFT;
sync_state = (mmr >> mmr_shift) & UVH_TSC_SYNC_MASK;
switch (sync_state) {
case UVH_TSC_SYNC_VALID:
state = "in sync";
mark_tsc_async_resets("UV BIOS");
break;
case UVH_TSC_SYNC_UNKNOWN:
state = "unknown";
break;
default:
state = "unstable";
mark_tsc_unstable("UV BIOS");
break;
}
pr_info("UV: TSC sync state from BIOS:0%d(%s)\n", sync_state, state);
}
#define uvxy_field(sname, field, undef) ( \
is_uv(UV4A) ? sname.s4a.field : \
is_uv(UV4) ? sname.s4.field : \
is_uv(UV3) ? sname.s3.field : \
undef)
#define SMT_LEVEL 0 /* Leaf 0xb SMT level */
#define INVALID_TYPE 0 /* Leaf 0xb sub-leaf types */
#define SMT_TYPE 1
#define CORE_TYPE 2
#define LEAFB_SUBTYPE(ecx) (((ecx) >> 8) & 0xff)
#define BITS_SHIFT_NEXT_LEVEL(eax) ((eax) & 0x1f)
static void set_x2apic_bits(void)
{
unsigned int eax, ebx, ecx, edx, sub_index;
unsigned int sid_shift;
cpuid(0, &eax, &ebx, &ecx, &edx);
if (eax < 0xb) {
pr_info("UV: CPU does not have CPUID.11\n");
return;
}
cpuid_count(0xb, SMT_LEVEL, &eax, &ebx, &ecx, &edx);
if (ebx == 0 || (LEAFB_SUBTYPE(ecx) != SMT_TYPE)) {
pr_info("UV: CPUID.11 not implemented\n");
return;
}
sid_shift = BITS_SHIFT_NEXT_LEVEL(eax);
sub_index = 1;
do {
cpuid_count(0xb, sub_index, &eax, &ebx, &ecx, &edx);
if (LEAFB_SUBTYPE(ecx) == CORE_TYPE) {
sid_shift = BITS_SHIFT_NEXT_LEVEL(eax);
break;
}
sub_index++;
} while (LEAFB_SUBTYPE(ecx) != INVALID_TYPE);
uv_cpuid.apicid_shift = 0;
uv_cpuid.apicid_mask = (~(-1 << sid_shift));
uv_cpuid.socketid_shift = sid_shift;
}
static void __init early_get_apic_socketid_shift(void)
{
if (is_uv2_hub() || is_uv3_hub())
uvh_apicid.v = uv_early_read_mmr(UVH_APICID);
set_x2apic_bits();
pr_info("UV: apicid_shift:%d apicid_mask:0x%x\n", uv_cpuid.apicid_shift, uv_cpuid.apicid_mask);
pr_info("UV: socketid_shift:%d pnode_mask:0x%x\n", uv_cpuid.socketid_shift, uv_cpuid.pnode_mask);
}
static void __init uv_stringify(int len, char *to, char *from)
{
strscpy(to, from, len);
(void)strim(to);
}
static unsigned long __init early_find_archtype(struct uv_systab *st)
{
int i;
for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) {
unsigned long ptr = st->entry[i].offset;
if (!ptr)
continue;
ptr += (unsigned long)st;
if (st->entry[i].type == UV_SYSTAB_TYPE_ARCH_TYPE)
return ptr;
}
return 0;
}
static int __init decode_arch_type(unsigned long ptr)
{
struct uv_arch_type_entry *uv_ate = (struct uv_arch_type_entry *)ptr;
int n = strlen(uv_ate->archtype);
if (n > 0 && n < sizeof(uv_ate->archtype)) {
pr_info("UV: UVarchtype received from BIOS\n");
uv_stringify(sizeof(uv_archtype), uv_archtype, uv_ate->archtype);
return 1;
}
return 0;
}
static int __init early_get_arch_type(void)
{
unsigned long uvst_physaddr, uvst_size, ptr;
struct uv_systab *st;
u32 rev;
int ret;
uvst_physaddr = get_uv_systab_phys(0);
if (!uvst_physaddr)
return 0;
st = early_memremap_ro(uvst_physaddr, sizeof(struct uv_systab));
if (!st) {
pr_err("UV: Cannot access UVsystab, remap failed\n");
return 0;
}
rev = st->revision;
if (rev < UV_SYSTAB_VERSION_UV5) {
early_memunmap(st, sizeof(struct uv_systab));
return 0;
}
uvst_size = st->size;
early_memunmap(st, sizeof(struct uv_systab));
st = early_memremap_ro(uvst_physaddr, uvst_size);
if (!st) {
pr_err("UV: Cannot access UVarchtype, remap failed\n");
return 0;
}
ptr = early_find_archtype(st);
if (!ptr) {
early_memunmap(st, uvst_size);
return 0;
}
ret = decode_arch_type(ptr);
early_memunmap(st, uvst_size);
return ret;
}
static void __init early_set_apic_mode(void)
{
if (x2apic_enabled())
uv_system_type = UV_X2APIC;
else
uv_system_type = UV_LEGACY_APIC;
}
static int __init uv_set_system_type(char *_oem_id, char *_oem_table_id)
{
uv_stringify(sizeof(oem_id), oem_id, _oem_id);
if (!early_get_arch_type())
uv_stringify(sizeof(uv_archtype), uv_archtype, oem_id);
if (strncmp(uv_archtype, "SGI", 3) != 0) {
if (strncmp(uv_archtype, "NSGI", 4) != 0)
return 0;
uv_hubless_system = 0x01;
if (strncmp(uv_archtype, "NSGI5", 5) == 0)
uv_hubless_system |= 0x20;
else if (strncmp(uv_archtype, "NSGI4", 5) == 0)
uv_hubless_system |= 0x10;
else
uv_hubless_system |= 0x8;
uv_stringify(sizeof(oem_table_id), oem_table_id, _oem_table_id);
pr_info("UV: OEM IDs %s/%s, SystemType %d, HUBLESS ID %x\n",
oem_id, oem_table_id, uv_system_type, uv_hubless_system);
return 0;
}
if (numa_off) {
pr_err("UV: NUMA is off, disabling UV support\n");
return 0;
}
uv_hub_info->hub_revision =
!strncmp(uv_archtype, "SGI5", 4) ? UV5_HUB_REVISION_BASE :
!strncmp(uv_archtype, "SGI4", 4) ? UV4_HUB_REVISION_BASE :
!strncmp(uv_archtype, "SGI3", 4) ? UV3_HUB_REVISION_BASE :
!strcmp(uv_archtype, "SGI2") ? UV2_HUB_REVISION_BASE : 0;
switch (uv_hub_info->hub_revision) {
case UV5_HUB_REVISION_BASE:
uv_hubbed_system = 0x21;
uv_hub_type_set(UV5);
break;
case UV4_HUB_REVISION_BASE:
uv_hubbed_system = 0x11;
uv_hub_type_set(UV4);
break;
case UV3_HUB_REVISION_BASE:
uv_hubbed_system = 0x9;
uv_hub_type_set(UV3);
break;
case UV2_HUB_REVISION_BASE:
uv_hubbed_system = 0x5;
uv_hub_type_set(UV2);
break;
default:
return 0;
}
early_set_hub_type();
early_set_apic_mode();
early_get_pnodeid();
early_get_apic_socketid_shift();
x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range;
x86_platform.nmi_init = uv_nmi_init;
uv_tsc_check_sync();
return 1;
}
static int __init uv_acpi_madt_oem_check(char *_oem_id, char *_oem_table_id)
{
uv_cpu_info->p_uv_hub_info = &uv_hub_info_node0;
if (uv_set_system_type(_oem_id, _oem_table_id) == 0)
return 0;
uv_stringify(sizeof(oem_table_id), oem_table_id, _oem_table_id);
pr_info("UV: OEM IDs %s/%s, System/UVType %d/0x%x, HUB RevID %d\n",
oem_id, oem_table_id, uv_system_type, is_uv(UV_ANY),
uv_min_hub_revision_id);
return 0;
}
enum uv_system_type get_uv_system_type(void)
{
return uv_system_type;
}
int uv_get_hubless_system(void)
{
return uv_hubless_system;
}
EXPORT_SYMBOL_GPL(uv_get_hubless_system);
ssize_t uv_get_archtype(char *buf, int len)
{
return scnprintf(buf, len, "%s/%s", uv_archtype, oem_table_id);
}
EXPORT_SYMBOL_GPL(uv_get_archtype);
int is_uv_system(void)
{
return uv_system_type != UV_NONE;
}
EXPORT_SYMBOL_GPL(is_uv_system);
int is_uv_hubbed(int uvtype)
{
return (uv_hubbed_system & uvtype);
}
EXPORT_SYMBOL_GPL(is_uv_hubbed);
static int is_uv_hubless(int uvtype)
{
return (uv_hubless_system & uvtype);
}
void **__uv_hub_info_list;
EXPORT_SYMBOL_GPL(__uv_hub_info_list);
DEFINE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
EXPORT_PER_CPU_SYMBOL_GPL(__uv_cpu_info);
short uv_possible_blades;
EXPORT_SYMBOL_GPL(uv_possible_blades);
unsigned long sn_rtc_cycles_per_second;
EXPORT_SYMBOL(sn_rtc_cycles_per_second);
static __initdata unsigned short _min_socket, _max_socket;
static __initdata unsigned short _min_pnode, _max_pnode, _gr_table_len;
static __initdata struct uv_gam_range_entry *uv_gre_table;
static __initdata struct uv_gam_parameters *uv_gp_table;
static __initdata unsigned short *_socket_to_node;
static __initdata unsigned short *_socket_to_pnode;
static __initdata unsigned short *_pnode_to_socket;
static __initdata unsigned short *_node_to_socket;
static __initdata struct uv_gam_range_s *_gr_table;
#define SOCK_EMPTY ((unsigned short)~0)
static unsigned long mem_block_size __initdata = (2UL << 30);
static int __init parse_mem_block_size(char *ptr)
{
unsigned long size = memparse(ptr, NULL);
mem_block_size = size;
return 0;
}
early_param("uv_memblksize", parse_mem_block_size);
static __init int adj_blksize(u32 lgre)
{
unsigned long base = (unsigned long)lgre << UV_GAM_RANGE_SHFT;
unsigned long size;
for (size = mem_block_size; size > MIN_MEMORY_BLOCK_SIZE; size >>= 1)
if (IS_ALIGNED(base, size))
break;
if (size >= mem_block_size)
return 0;
mem_block_size = size;
return 1;
}
static __init void set_block_size(void)
{
unsigned int order = ffs(mem_block_size);
if (order) {
set_memory_block_size_order(order - 1);
pr_info("UV: mem_block_size set to 0x%lx\n", mem_block_size);
} else {
pr_err("UV: mem_block_size error with 0x%lx\n", mem_block_size);
set_memory_block_size_order(31);
}
}
static __init void build_uv_gr_table(void)
{
struct uv_gam_range_entry *gre = uv_gre_table;
struct uv_gam_range_s *grt;
unsigned long last_limit = 0, ram_limit = 0;
int bytes, i, sid, lsid = -1, indx = 0, lindx = -1;
if (!gre)
return;
bytes = _gr_table_len * sizeof(struct uv_gam_range_s);
grt = kzalloc(bytes, GFP_KERNEL);
if (WARN_ON_ONCE(!grt))
return;
_gr_table = grt;
for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
if (gre->type == UV_GAM_RANGE_TYPE_HOLE) {
if (!ram_limit) {
ram_limit = last_limit;
last_limit = gre->limit;
lsid++;
continue;
}
last_limit = gre->limit;
pr_info("UV: extra hole in GAM RE table @%d\n", (int)(gre - uv_gre_table));
continue;
}
if (_max_socket < gre->sockid) {
pr_err("UV: GAM table sockid(%d) too large(>%d) @%d\n", gre->sockid, _max_socket, (int)(gre - uv_gre_table));
continue;
}
sid = gre->sockid - _min_socket;
if (lsid < sid) {
grt = &_gr_table[indx];
grt->base = lindx;
grt->nasid = gre->nasid;
grt->limit = last_limit = gre->limit;
lsid = sid;
lindx = indx++;
continue;
}
if (lsid == sid && !ram_limit) {
if (grt->limit == last_limit) {
grt->limit = last_limit = gre->limit;
continue;
}
}
if (!ram_limit) {
grt++;
grt->base = lindx;
grt->nasid = gre->nasid;
grt->limit = last_limit = gre->limit;
continue;
}
grt++;
grt->base = grt - _gr_table;
grt->nasid = gre->nasid;
grt->limit = last_limit = gre->limit;
lsid++;
}
grt++;
i = grt - _gr_table;
if (i < _gr_table_len) {
void *ret;
bytes = i * sizeof(struct uv_gam_range_s);
ret = krealloc(_gr_table, bytes, GFP_KERNEL);
if (ret) {
_gr_table = ret;
_gr_table_len = i;
}
}
for (i = 0, grt = _gr_table; i < _gr_table_len; i++, grt++) {
unsigned long start, end;
int gb = grt->base;
start = gb < 0 ? 0 : (unsigned long)_gr_table[gb].limit << UV_GAM_RANGE_SHFT;
end = (unsigned long)grt->limit << UV_GAM_RANGE_SHFT;
pr_info("UV: GAM Range %2d %04x 0x%013lx-0x%013lx (%d)\n", i, grt->nasid, start, end, gb);
}
}
static int uv_wakeup_secondary(int phys_apicid, unsigned long start_rip)
{
unsigned long val;
int pnode;
pnode = uv_apicid_to_pnode(phys_apicid);
val = (1UL << UVH_IPI_INT_SEND_SHFT) |
(phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
APIC_DM_INIT;
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
val = (1UL << UVH_IPI_INT_SEND_SHFT) |
(phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
APIC_DM_STARTUP;
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
return 0;
}
static void uv_send_IPI_one(int cpu, int vector)
{
unsigned long apicid = per_cpu(x86_cpu_to_apicid, cpu);
int pnode = uv_apicid_to_pnode(apicid);
unsigned long dmode, val;
if (vector == NMI_VECTOR)
dmode = APIC_DELIVERY_MODE_NMI;
else
dmode = APIC_DELIVERY_MODE_FIXED;
val = (1UL << UVH_IPI_INT_SEND_SHFT) |
(apicid << UVH_IPI_INT_APIC_ID_SHFT) |
(dmode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
(vector << UVH_IPI_INT_VECTOR_SHFT);
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
}
static void uv_send_IPI_mask(const struct cpumask *mask, int vector)
{
unsigned int cpu;
for_each_cpu(cpu, mask)
uv_send_IPI_one(cpu, vector);
}
static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector)
{
unsigned int this_cpu = smp_processor_id();
unsigned int cpu;
for_each_cpu(cpu, mask) {
if (cpu != this_cpu)
uv_send_IPI_one(cpu, vector);
}
}
static void uv_send_IPI_allbutself(int vector)
{
unsigned int this_cpu = smp_processor_id();
unsigned int cpu;
for_each_online_cpu(cpu) {
if (cpu != this_cpu)
uv_send_IPI_one(cpu, vector);
}
}
static void uv_send_IPI_all(int vector)
{
uv_send_IPI_mask(cpu_online_mask, vector);
}
static u32 set_apic_id(unsigned int id)
{
return id;
}
static unsigned int uv_read_apic_id(void)
{
return x2apic_get_apic_id(apic_read(APIC_ID));
}
static int uv_phys_pkg_id(int initial_apicid, int index_msb)
{
return uv_read_apic_id() >> index_msb;
}
static int uv_probe(void)
{
return apic == &apic_x2apic_uv_x;
}
static struct apic apic_x2apic_uv_x __ro_after_init = {
.name = "UV large system",
.probe = uv_probe,
.acpi_madt_oem_check = uv_acpi_madt_oem_check,
.delivery_mode = APIC_DELIVERY_MODE_FIXED,
.dest_mode_logical = false,
.disable_esr = 0,
.cpu_present_to_apicid = default_cpu_present_to_apicid,
.phys_pkg_id = uv_phys_pkg_id,
.max_apic_id = UINT_MAX,
.get_apic_id = x2apic_get_apic_id,
.set_apic_id = set_apic_id,
.calc_dest_apicid = apic_default_calc_apicid,
.send_IPI = uv_send_IPI_one,
.send_IPI_mask = uv_send_IPI_mask,
.send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself,
.send_IPI_allbutself = uv_send_IPI_allbutself,
.send_IPI_all = uv_send_IPI_all,
.send_IPI_self = x2apic_send_IPI_self,
.wakeup_secondary_cpu = uv_wakeup_secondary,
.read = native_apic_msr_read,
.write = native_apic_msr_write,
.eoi = native_apic_msr_eoi,
.icr_read = native_x2apic_icr_read,
.icr_write = native_x2apic_icr_write,
};
#define UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH 3
#define DEST_SHIFT UVXH_RH_GAM_ALIAS_0_REDIRECT_CONFIG_DEST_BASE_SHFT
static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
{
union uvh_rh_gam_alias_2_overlay_config_u alias;
union uvh_rh_gam_alias_2_redirect_config_u redirect;
unsigned long m_redirect;
unsigned long m_overlay;
int i;
for (i = 0; i < UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH; i++) {
switch (i) {
case 0:
m_redirect = UVH_RH_GAM_ALIAS_0_REDIRECT_CONFIG;
m_overlay = UVH_RH_GAM_ALIAS_0_OVERLAY_CONFIG;
break;
case 1:
m_redirect = UVH_RH_GAM_ALIAS_1_REDIRECT_CONFIG;
m_overlay = UVH_RH_GAM_ALIAS_1_OVERLAY_CONFIG;
break;
case 2:
m_redirect = UVH_RH_GAM_ALIAS_2_REDIRECT_CONFIG;
m_overlay = UVH_RH_GAM_ALIAS_2_OVERLAY_CONFIG;
break;
}
alias.v = uv_read_local_mmr(m_overlay);
if (alias.s.enable && alias.s.base == 0) {
*size = (1UL << alias.s.m_alias);
redirect.v = uv_read_local_mmr(m_redirect);
*base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
return;
}
}
*base = *size = 0;
}
enum map_type {map_wb, map_uc};
static const char * const mt[] = { "WB", "UC" };
static __init void map_high(char *id, unsigned long base, int pshift, int bshift, int max_pnode, enum map_type map_type)
{
unsigned long bytes, paddr;
paddr = base << pshift;
bytes = (1UL << bshift) * (max_pnode + 1);
if (!paddr) {
pr_info("UV: Map %s_HI base address NULL\n", id);
return;
}
if (map_type == map_uc)
init_extra_mapping_uc(paddr, bytes);
else
init_extra_mapping_wb(paddr, bytes);
pr_info("UV: Map %s_HI 0x%lx - 0x%lx %s (%d segments)\n",
id, paddr, paddr + bytes, mt[map_type], max_pnode + 1);
}
static __init void map_gru_high(int max_pnode)
{
union uvh_rh_gam_gru_overlay_config_u gru;
unsigned long mask, base;
int shift;
if (UVH_RH_GAM_GRU_OVERLAY_CONFIG) {
gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG);
shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_BASE_SHFT;
mask = UVH_RH_GAM_GRU_OVERLAY_CONFIG_BASE_MASK;
} else if (UVH_RH10_GAM_GRU_OVERLAY_CONFIG) {
gru.v = uv_read_local_mmr(UVH_RH10_GAM_GRU_OVERLAY_CONFIG);
shift = UVH_RH10_GAM_GRU_OVERLAY_CONFIG_BASE_SHFT;
mask = UVH_RH10_GAM_GRU_OVERLAY_CONFIG_BASE_MASK;
} else {
pr_err("UV: GRU unavailable (no MMR)\n");
return;
}
if (!gru.s.enable) {
pr_info("UV: GRU disabled (by BIOS)\n");
return;
}
base = (gru.v & mask) >> shift;
map_high("GRU", base, shift, shift, max_pnode, map_wb);
gru_start_paddr = ((u64)base << shift);
gru_end_paddr = gru_start_paddr + (1UL << shift) * (max_pnode + 1);
}
static __init void map_mmr_high(int max_pnode)
{
unsigned long base;
int shift;
bool enable;
if (UVH_RH10_GAM_MMR_OVERLAY_CONFIG) {
union uvh_rh10_gam_mmr_overlay_config_u mmr;
mmr.v = uv_read_local_mmr(UVH_RH10_GAM_MMR_OVERLAY_CONFIG);
enable = mmr.s.enable;
base = mmr.s.base;
shift = UVH_RH10_GAM_MMR_OVERLAY_CONFIG_BASE_SHFT;
} else if (UVH_RH_GAM_MMR_OVERLAY_CONFIG) {
union uvh_rh_gam_mmr_overlay_config_u mmr;
mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG);
enable = mmr.s.enable;
base = mmr.s.base;
shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_BASE_SHFT;
} else {
pr_err("UV:%s:RH_GAM_MMR_OVERLAY_CONFIG MMR undefined?\n",
__func__);
return;
}
if (enable)
map_high("MMR", base, shift, shift, max_pnode, map_uc);
else
pr_info("UV: MMR disabled\n");
}
enum mmioh_arch {
UV2_MMIOH = -1,
UVY_MMIOH0, UVY_MMIOH1,
UVX_MMIOH0, UVX_MMIOH1,
};
static void __init calc_mmioh_map(enum mmioh_arch index,
int min_pnode, int max_pnode,
int shift, unsigned long base, int m_io, int n_io)
{
unsigned long mmr, nasid_mask;
int nasid, min_nasid, max_nasid, lnasid, mapped;
int i, fi, li, n, max_io;
char id[8];
if (index == UV2_MMIOH) {
strscpy(id, "MMIOH", sizeof(id));
max_io = max_pnode;
mapped = 0;
goto map_exit;
}
switch (index) {
case UVY_MMIOH0:
mmr = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG0;
nasid_mask = UVYH_RH10_GAM_MMIOH_REDIRECT_CONFIG0_NASID_MASK;
n = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG0_DEPTH;
min_nasid = min_pnode;
max_nasid = max_pnode;
mapped = 1;
break;
case UVY_MMIOH1:
mmr = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG1;
nasid_mask = UVYH_RH10_GAM_MMIOH_REDIRECT_CONFIG1_NASID_MASK;
n = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG1_DEPTH;
min_nasid = min_pnode;
max_nasid = max_pnode;
mapped = 1;
break;
case UVX_MMIOH0:
mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0;
nasid_mask = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_NASID_MASK;
n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_DEPTH;
min_nasid = min_pnode * 2;
max_nasid = max_pnode * 2;
mapped = 1;
break;
case UVX_MMIOH1:
mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1;
nasid_mask = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_NASID_MASK;
n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_DEPTH;
min_nasid = min_pnode * 2;
max_nasid = max_pnode * 2;
mapped = 1;
break;
default:
pr_err("UV:%s:Invalid mapping type:%d\n", __func__, index);
return;
}
snprintf(id, sizeof(id), "MMIOH%d", index%2);
max_io = lnasid = fi = li = -1;
for (i = 0; i < n; i++) {
unsigned long m_redirect = mmr + i * 8;
unsigned long redirect = uv_read_local_mmr(m_redirect);
nasid = redirect & nasid_mask;
if (i == 0)
pr_info("UV: %s redirect base 0x%lx(@0x%lx) 0x%04x\n",
id, redirect, m_redirect, nasid);
if (nasid < min_nasid || max_nasid < nasid) {
pr_debug("UV:%s:Invalid NASID(%x):%x (range:%x..%x)\n",
__func__, index, nasid, min_nasid, max_nasid);
nasid = -1;
}
if (nasid == lnasid) {
li = i;
if (i != n-1)
continue;
}
if (lnasid != -1 || (i == n-1 && nasid != -1)) {
unsigned long addr1, addr2;
int f, l;
if (lnasid == -1) {
f = l = i;
lnasid = nasid;
} else {
f = fi;
l = li;
}
addr1 = (base << shift) + f * (1ULL << m_io);
addr2 = (base << shift) + (l + 1) * (1ULL << m_io);
pr_info("UV: %s[%03d..%03d] NASID 0x%04x ADDR 0x%016lx - 0x%016lx\n",
id, fi, li, lnasid, addr1, addr2);
if (max_io < l)
max_io = l;
}
fi = li = i;
lnasid = nasid;
}
map_exit:
pr_info("UV: %s base:0x%lx shift:%d m_io:%d max_io:%d max_pnode:0x%x\n",
id, base, shift, m_io, max_io, max_pnode);
if (max_io >= 0 && !mapped)
map_high(id, base, shift, m_io, max_io, map_uc);
}
static __init void map_mmioh_high(int min_pnode, int max_pnode)
{
if (UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0) {
union uvh_rh10_gam_mmioh_overlay_config0_u mmioh0;
union uvh_rh10_gam_mmioh_overlay_config1_u mmioh1;
mmioh0.v = uv_read_local_mmr(UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0);
if (unlikely(mmioh0.s.enable == 0))
pr_info("UV: MMIOH0 disabled\n");
else
calc_mmioh_map(UVY_MMIOH0, min_pnode, max_pnode,
UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0_BASE_SHFT,
mmioh0.s.base, mmioh0.s.m_io, mmioh0.s.n_io);
mmioh1.v = uv_read_local_mmr(UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1);
if (unlikely(mmioh1.s.enable == 0))
pr_info("UV: MMIOH1 disabled\n");
else
calc_mmioh_map(UVY_MMIOH1, min_pnode, max_pnode,
UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1_BASE_SHFT,
mmioh1.s.base, mmioh1.s.m_io, mmioh1.s.n_io);
return;
}
if (UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0) {
union uvh_rh_gam_mmioh_overlay_config0_u mmioh0;
union uvh_rh_gam_mmioh_overlay_config1_u mmioh1;
mmioh0.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0);
if (unlikely(mmioh0.s.enable == 0))
pr_info("UV: MMIOH0 disabled\n");
else {
unsigned long base = uvxy_field(mmioh0, base, 0);
int m_io = uvxy_field(mmioh0, m_io, 0);
int n_io = uvxy_field(mmioh0, n_io, 0);
calc_mmioh_map(UVX_MMIOH0, min_pnode, max_pnode,
UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_BASE_SHFT,
base, m_io, n_io);
}
mmioh1.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1);
if (unlikely(mmioh1.s.enable == 0))
pr_info("UV: MMIOH1 disabled\n");
else {
unsigned long base = uvxy_field(mmioh1, base, 0);
int m_io = uvxy_field(mmioh1, m_io, 0);
int n_io = uvxy_field(mmioh1, n_io, 0);
calc_mmioh_map(UVX_MMIOH1, min_pnode, max_pnode,
UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1_BASE_SHFT,
base, m_io, n_io);
}
return;
}
if (UVH_RH_GAM_MMIOH_OVERLAY_CONFIG) {
union uvh_rh_gam_mmioh_overlay_config_u mmioh;
mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG);
if (unlikely(mmioh.s2.enable == 0))
pr_info("UV: MMIOH disabled\n");
else
calc_mmioh_map(UV2_MMIOH, min_pnode, max_pnode,
UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_BASE_SHFT,
mmioh.s2.base, mmioh.s2.m_io, mmioh.s2.n_io);
return;
}
}
static __init void map_low_mmrs(void)
{
if (UV_GLOBAL_MMR32_BASE)
init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
if (UV_LOCAL_MMR_BASE)
init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
}
static __init void uv_rtc_init(void)
{
long status;
u64 ticks_per_sec;
status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec);
if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) {
pr_warn("UV: unable to determine platform RTC clock frequency, guessing.\n");
sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
} else {
sn_rtc_cycles_per_second = ticks_per_sec;
}
}
static int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags)
{
int domain, bus, rc;
if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
return 0;
if ((command_bits & PCI_COMMAND_IO) == 0)
return 0;
domain = pci_domain_nr(pdev->bus);
bus = pdev->bus->number;
rc = uv_bios_set_legacy_vga_target(decode, domain, bus);
return rc;
}
void uv_cpu_init(void)
{
if (smp_processor_id() == 0)
return;
uv_hub_info->nr_online_cpus++;
}
struct mn {
unsigned char m_val;
unsigned char n_val;
unsigned char m_shift;
unsigned char n_lshift;
};
static void get_mn(struct mn *mnp)
{
memset(mnp, 0, sizeof(*mnp));
mnp->n_val = uv_cpuid.n_skt;
if (is_uv(UV4|UVY)) {
mnp->m_val = 0;
mnp->n_lshift = 0;
} else if (is_uv3_hub()) {
union uvyh_gr0_gam_gr_config_u m_gr_config;
mnp->m_val = uv_cpuid.m_skt;
m_gr_config.v = uv_read_local_mmr(UVH_GR0_GAM_GR_CONFIG);
mnp->n_lshift = m_gr_config.s3.m_skt;
} else if (is_uv2_hub()) {
mnp->m_val = uv_cpuid.m_skt;
mnp->n_lshift = mnp->m_val == 40 ? 40 : 39;
}
mnp->m_shift = mnp->m_val ? 64 - mnp->m_val : 0;
}
static void __init uv_init_hub_info(struct uv_hub_info_s *hi)
{
struct mn mn;
get_mn(&mn);
hi->gpa_mask = mn.m_val ?
(1UL << (mn.m_val + mn.n_val)) - 1 :
(1UL << uv_cpuid.gpa_shift) - 1;
hi->m_val = mn.m_val;
hi->n_val = mn.n_val;
hi->m_shift = mn.m_shift;
hi->n_lshift = mn.n_lshift ? mn.n_lshift : 0;
hi->hub_revision = uv_hub_info->hub_revision;
hi->hub_type = uv_hub_info->hub_type;
hi->pnode_mask = uv_cpuid.pnode_mask;
hi->nasid_shift = uv_cpuid.nasid_shift;
hi->min_pnode = _min_pnode;
hi->min_socket = _min_socket;
hi->node_to_socket = _node_to_socket;
hi->pnode_to_socket = _pnode_to_socket;
hi->socket_to_node = _socket_to_node;
hi->socket_to_pnode = _socket_to_pnode;
hi->gr_table_len = _gr_table_len;
hi->gr_table = _gr_table;
uv_cpuid.gnode_shift = max_t(unsigned int, uv_cpuid.gnode_shift, mn.n_val);
hi->gnode_extra = (uv_node_id & ~((1 << uv_cpuid.gnode_shift) - 1)) >> 1;
if (mn.m_val)
hi->gnode_upper = (u64)hi->gnode_extra << mn.m_val;
if (uv_gp_table) {
hi->global_mmr_base = uv_gp_table->mmr_base;
hi->global_mmr_shift = uv_gp_table->mmr_shift;
hi->global_gru_base = uv_gp_table->gru_base;
hi->global_gru_shift = uv_gp_table->gru_shift;
hi->gpa_shift = uv_gp_table->gpa_shift;
hi->gpa_mask = (1UL << hi->gpa_shift) - 1;
} else {
hi->global_mmr_base =
uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG) &
~UV_MMR_ENABLE;
hi->global_mmr_shift = _UV_GLOBAL_MMR64_PNODE_SHIFT;
}
get_lowmem_redirect(&hi->lowmem_remap_base, &hi->lowmem_remap_top);
hi->apic_pnode_shift = uv_cpuid.socketid_shift;
pr_info("UV: N:%d M:%d m_shift:%d n_lshift:%d\n", hi->n_val, hi->m_val, hi->m_shift, hi->n_lshift);
pr_info("UV: gpa_mask/shift:0x%lx/%d pnode_mask:0x%x apic_pns:%d\n", hi->gpa_mask, hi->gpa_shift, hi->pnode_mask, hi->apic_pnode_shift);
pr_info("UV: mmr_base/shift:0x%lx/%ld\n", hi->global_mmr_base, hi->global_mmr_shift);
if (hi->global_gru_base)
pr_info("UV: gru_base/shift:0x%lx/%ld\n",
hi->global_gru_base, hi->global_gru_shift);
pr_info("UV: gnode_upper:0x%lx gnode_extra:0x%x\n", hi->gnode_upper, hi->gnode_extra);
}
static void __init decode_gam_params(unsigned long ptr)
{
uv_gp_table = (struct uv_gam_parameters *)ptr;
pr_info("UV: GAM Params...\n");
pr_info("UV: mmr_base/shift:0x%llx/%d gru_base/shift:0x%llx/%d gpa_shift:%d\n",
uv_gp_table->mmr_base, uv_gp_table->mmr_shift,
uv_gp_table->gru_base, uv_gp_table->gru_shift,
uv_gp_table->gpa_shift);
}
static void __init decode_gam_rng_tbl(unsigned long ptr)
{
struct uv_gam_range_entry *gre = (struct uv_gam_range_entry *)ptr;
unsigned long lgre = 0, gend = 0;
int index = 0;
int sock_min = INT_MAX, pnode_min = INT_MAX;
int sock_max = -1, pnode_max = -1;
uv_gre_table = gre;
for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
unsigned long size = ((unsigned long)(gre->limit - lgre)
<< UV_GAM_RANGE_SHFT);
int order = 0;
char suffix[] = " KMGTPE";
int flag = ' ';
while (size > 9999 && order < sizeof(suffix)) {
size /= 1024;
order++;
}
if (gre->type == 1 || gre->type == 2)
if (adj_blksize(lgre))
flag = '*';
if (!index) {
pr_info("UV: GAM Range Table...\n");
pr_info("UV: # %20s %14s %6s %4s %5s %3s %2s\n", "Range", "", "Size", "Type", "NASID", "SID", "PN");
}
pr_info("UV: %2d: 0x%014lx-0x%014lx%c %5lu%c %3d %04x %02x %02x\n",
index++,
(unsigned long)lgre << UV_GAM_RANGE_SHFT,
(unsigned long)gre->limit << UV_GAM_RANGE_SHFT,
flag, size, suffix[order],
gre->type, gre->nasid, gre->sockid, gre->pnode);
if (gre->type == UV_GAM_RANGE_TYPE_HOLE)
gend = (unsigned long)gre->limit << UV_GAM_RANGE_SHFT;
lgre = gre->limit;
if (sock_min > gre->sockid)
sock_min = gre->sockid;
if (sock_max < gre->sockid)
sock_max = gre->sockid;
if (pnode_min > gre->pnode)
pnode_min = gre->pnode;
if (pnode_max < gre->pnode)
pnode_max = gre->pnode;
}
_min_socket = sock_min;
_max_socket = sock_max;
_min_pnode = pnode_min;
_max_pnode = pnode_max;
_gr_table_len = index;
pr_info("UV: GRT: %d entries, sockets(min:%x,max:%x), pnodes(min:%x,max:%x), gap_end(%d)\n",
index, _min_socket, _max_socket, _min_pnode, _max_pnode, fls64(gend));
}
static int __init decode_uv_systab(void)
{
struct uv_systab *st;
int i;
st = uv_systab;
if (st && st->revision == UV_SYSTAB_VERSION_1)
return 0;
if ((!st) || (st->revision < UV_SYSTAB_VERSION_UV4_LATEST)) {
int rev = st ? st->revision : 0;
pr_err("UV: BIOS UVsystab mismatch, (%x < %x)\n",
rev, UV_SYSTAB_VERSION_UV4_LATEST);
pr_err("UV: Does not support UV, switch to non-UV x86_64\n");
uv_system_type = UV_NONE;
return -EINVAL;
}
for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) {
unsigned long ptr = st->entry[i].offset;
if (!ptr)
continue;
ptr += (unsigned long)st;
switch (st->entry[i].type) {
case UV_SYSTAB_TYPE_GAM_PARAMS:
decode_gam_params(ptr);
break;
case UV_SYSTAB_TYPE_GAM_RNG_TBL:
decode_gam_rng_tbl(ptr);
break;
case UV_SYSTAB_TYPE_ARCH_TYPE:
break;
default:
pr_err("UV:%s:Unrecognized UV_SYSTAB_TYPE:%d, skipped\n",
__func__, st->entry[i].type);
break;
}
}
return 0;
}
static inline void blade_update_min_max(unsigned long bits, int base, int mask, int *min, int *max)
{
int first, last;
if (!bits)
return;
first = (base + __ffs(bits)) & mask;
last = (base + __fls(bits)) & mask;
if (*min > first)
*min = first;
if (*max < last)
*max = last;
}
static __init void boot_init_possible_blades(struct uv_hub_info_s *hub_info)
{
unsigned long np;
int i, uv_pb = 0;
int sock_min = INT_MAX, sock_max = -1, s_mask;
s_mask = (1 << uv_cpuid.n_skt) - 1;
if (UVH_NODE_PRESENT_TABLE) {
pr_info("UV: NODE_PRESENT_DEPTH = %d\n",
UVH_NODE_PRESENT_TABLE_DEPTH);
for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
np = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
pr_info("UV: NODE_PRESENT(%d) = 0x%016lx\n", i, np);
blade_update_min_max(np, i * 64, s_mask, &sock_min, &sock_max);
}
}
if (UVH_NODE_PRESENT_0) {
np = uv_read_local_mmr(UVH_NODE_PRESENT_0);
pr_info("UV: NODE_PRESENT_0 = 0x%016lx\n", np);
blade_update_min_max(np, 0, s_mask, &sock_min, &sock_max);
}
if (UVH_NODE_PRESENT_1) {
np = uv_read_local_mmr(UVH_NODE_PRESENT_1);
pr_info("UV: NODE_PRESENT_1 = 0x%016lx\n", np);
blade_update_min_max(np, 64, s_mask, &sock_min, &sock_max);
}
if (sock_max >= sock_min) {
_min_socket = sock_min;
_max_socket = sock_max;
uv_pb = sock_max - sock_min + 1;
}
if (uv_possible_blades != uv_pb)
uv_possible_blades = uv_pb;
pr_info("UV: number nodes/possible blades %d (%d - %d)\n",
uv_pb, sock_min, sock_max);
}
static int __init alloc_conv_table(int num_elem, unsigned short **table)
{
int i;
size_t bytes;
bytes = num_elem * sizeof(*table[0]);
*table = kmalloc(bytes, GFP_KERNEL);
if (WARN_ON_ONCE(!*table))
return -ENOMEM;
for (i = 0; i < num_elem; i++)
((unsigned short *)*table)[i] = SOCK_EMPTY;
return 0;
}
#define FREE_1_TO_1_TABLE(tbl, min, max, max2) free_1_to_1_table(&tbl, #tbl, min, max, max2)
static void __init free_1_to_1_table(unsigned short **tp, char *tname, int min, int max, int max2)
{
int i;
unsigned short *table = *tp;
if (table == NULL)
return;
if (max != max2)
return;
for (i = 0; i < max; i++) {
if (i != table[i])
return;
}
kfree(table);
*tp = NULL;
pr_info("UV: %s is 1:1, conversion table removed\n", tname);
}
static void __init build_socket_tables(void)
{
struct uv_gam_range_entry *gre = uv_gre_table;
int nums, numn, nump;
int i, lnid, apicid;
int minsock = _min_socket;
int maxsock = _max_socket;
int minpnode = _min_pnode;
int maxpnode = _max_pnode;
if (!gre) {
if (is_uv2_hub() || is_uv3_hub()) {
pr_info("UV: No UVsystab socket table, ignoring\n");
return;
}
pr_err("UV: Error: UVsystab address translations not available!\n");
WARN_ON_ONCE(!gre);
return;
}
numn = num_possible_nodes();
nump = maxpnode - minpnode + 1;
nums = maxsock - minsock + 1;
if ((alloc_conv_table(nump, &_pnode_to_socket) < 0)
|| (alloc_conv_table(nums, &_socket_to_pnode) < 0)
|| (alloc_conv_table(numn, &_node_to_socket) < 0)
|| (alloc_conv_table(nums, &_socket_to_node) < 0)) {
kfree(_pnode_to_socket);
kfree(_socket_to_pnode);
kfree(_node_to_socket);
return;
}
for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
if (gre->type == UV_GAM_RANGE_TYPE_HOLE)
continue;
i = gre->sockid - minsock;
if (_socket_to_pnode[i] == SOCK_EMPTY)
_socket_to_pnode[i] = gre->pnode;
i = gre->pnode - minpnode;
if (_pnode_to_socket[i] == SOCK_EMPTY)
_pnode_to_socket[i] = gre->sockid;
pr_info("UV: sid:%02x type:%d nasid:%04x pn:%02x pn2s:%2x\n",
gre->sockid, gre->type, gre->nasid,
_socket_to_pnode[gre->sockid - minsock],
_pnode_to_socket[gre->pnode - minpnode]);
}
lnid = NUMA_NO_NODE;
for (apicid = 0; apicid < ARRAY_SIZE(__apicid_to_node); apicid++) {
int nid = __apicid_to_node[apicid];
int sockid;
if ((nid == NUMA_NO_NODE) || (lnid == nid))
continue;
lnid = nid;
sockid = apicid >> uv_cpuid.socketid_shift;
if (_socket_to_node[sockid - minsock] == SOCK_EMPTY)
_socket_to_node[sockid - minsock] = nid;
if (_node_to_socket[nid] == SOCK_EMPTY)
_node_to_socket[nid] = sockid;
pr_info("UV: sid:%02x: apicid:%04x socket:%02d node:%03x s2n:%03x\n",
sockid,
apicid,
_node_to_socket[nid],
nid,
_socket_to_node[sockid - minsock]);
}
FREE_1_TO_1_TABLE(_socket_to_node, _min_socket, nums, numn);
FREE_1_TO_1_TABLE(_node_to_socket, _min_socket, nums, numn);
FREE_1_TO_1_TABLE(_socket_to_pnode, _min_pnode, nums, nump);
FREE_1_TO_1_TABLE(_pnode_to_socket, _min_pnode, nums, nump);
}
static void check_efi_reboot(void)
{
if (!efi_enabled(EFI_BOOT))
reboot_type = BOOT_ACPI;
}
static int __maybe_unused proc_hubbed_show(struct seq_file *file, void *data)
{
pr_notice_once("%s: using deprecated /proc/sgi_uv/hubbed, use /sys/firmware/sgi_uv/hub_type\n",
current->comm);
seq_printf(file, "0x%x\n", uv_hubbed_system);
return 0;
}
static int __maybe_unused proc_hubless_show(struct seq_file *file, void *data)
{
pr_notice_once("%s: using deprecated /proc/sgi_uv/hubless, use /sys/firmware/sgi_uv/hubless\n",
current->comm);
seq_printf(file, "0x%x\n", uv_hubless_system);
return 0;
}
static int __maybe_unused proc_archtype_show(struct seq_file *file, void *data)
{
pr_notice_once("%s: using deprecated /proc/sgi_uv/archtype, use /sys/firmware/sgi_uv/archtype\n",
current->comm);
seq_printf(file, "%s/%s\n", uv_archtype, oem_table_id);
return 0;
}
static __init void uv_setup_proc_files(int hubless)
{
struct proc_dir_entry *pde;
pde = proc_mkdir(UV_PROC_NODE, NULL);
proc_create_single("archtype", 0, pde, proc_archtype_show);
if (hubless)
proc_create_single("hubless", 0, pde, proc_hubless_show);
else
proc_create_single("hubbed", 0, pde, proc_hubbed_show);
}
static __init int uv_system_init_hubless(void)
{
int rc;
uv_nmi_setup_hubless();
rc = uv_bios_init();
if (rc < 0)
return rc;
rc = decode_uv_systab();
if (rc < 0)
return rc;
set_block_size();
if (rc >= 0)
uv_setup_proc_files(1);
check_efi_reboot();
return rc;
}
static void __init uv_system_init_hub(void)
{
struct uv_hub_info_s hub_info = {0};
int bytes, cpu, nodeid, bid;
unsigned short min_pnode = USHRT_MAX, max_pnode = 0;
char *hub = is_uv5_hub() ? "UV500" :
is_uv4_hub() ? "UV400" :
is_uv3_hub() ? "UV300" :
is_uv2_hub() ? "UV2000/3000" : NULL;
struct uv_hub_info_s **uv_hub_info_list_blade;
if (!hub) {
pr_err("UV: Unknown/unsupported UV hub\n");
return;
}
pr_info("UV: Found %s hub\n", hub);
map_low_mmrs();
uv_bios_init();
if (decode_uv_systab() < 0) {
pr_err("UV: Mangled UVsystab format\n");
return;
}
build_socket_tables();
build_uv_gr_table();
set_block_size();
uv_init_hub_info(&hub_info);
if (is_uv(UV2|UV3) && !uv_gre_table)
boot_init_possible_blades(&hub_info);
else
uv_possible_blades = (_max_socket - _min_socket) + 1;
pr_info("UV: Found %d hubs, %d nodes, %d CPUs\n", uv_num_possible_blades(), num_possible_nodes(), num_possible_cpus());
uv_bios_get_sn_info(0, &uv_type, &sn_partition_id, &sn_coherency_id, &sn_region_size, &system_serial_number);
hub_info.coherency_domain_number = sn_coherency_id;
uv_rtc_init();
bytes = sizeof(void *) * uv_num_possible_blades();
uv_hub_info_list_blade = kzalloc(bytes, GFP_KERNEL);
if (WARN_ON_ONCE(!uv_hub_info_list_blade))
return;
bytes = sizeof(struct uv_hub_info_s);
for_each_possible_blade(bid) {
struct uv_hub_info_s *new_hub;
new_hub = (bid == 0) ? &uv_hub_info_node0
: kzalloc_node(bytes, GFP_KERNEL, uv_blade_to_node(bid));
if (WARN_ON_ONCE(!new_hub)) {
while (--bid > 0)
kfree(uv_hub_info_list_blade[bid]);
kfree(uv_hub_info_list_blade);
return;
}
uv_hub_info_list_blade[bid] = new_hub;
*new_hub = hub_info;
if (uv_gre_table)
new_hub->pnode = uv_blade_to_pnode(bid);
else
new_hub->pnode = 0xffff;
new_hub->numa_blade_id = bid;
new_hub->memory_nid = NUMA_NO_NODE;
new_hub->nr_possible_cpus = 0;
new_hub->nr_online_cpus = 0;
}
bytes = sizeof(void *) * num_possible_nodes();
__uv_hub_info_list = kzalloc(bytes, GFP_KERNEL);
if (WARN_ON_ONCE(!__uv_hub_info_list)) {
for_each_possible_blade(bid)
if (bid != 0)
kfree(uv_hub_info_list_blade[bid]);
kfree(uv_hub_info_list_blade);
return;
}
for_each_node(nodeid)
__uv_hub_info_list[nodeid] = uv_hub_info_list_blade[uv_node_to_blade_id(nodeid)];
for_each_possible_cpu(cpu) {
int apicid = per_cpu(x86_cpu_to_apicid, cpu);
unsigned short bid;
unsigned short pnode;
pnode = uv_apicid_to_pnode(apicid);
bid = uv_pnode_to_socket(pnode) - _min_socket;
uv_cpu_info_per(cpu)->p_uv_hub_info = uv_hub_info_list_blade[bid];
uv_cpu_info_per(cpu)->blade_cpu_id = uv_cpu_hub_info(cpu)->nr_possible_cpus++;
if (uv_cpu_hub_info(cpu)->memory_nid == NUMA_NO_NODE)
uv_cpu_hub_info(cpu)->memory_nid = cpu_to_node(cpu);
if (uv_cpu_hub_info(cpu)->pnode == 0xffff)
uv_cpu_hub_info(cpu)->pnode = pnode;
}
for_each_possible_blade(bid) {
unsigned short pnode = uv_hub_info_list_blade[bid]->pnode;
if (pnode == 0xffff)
continue;
min_pnode = min(pnode, min_pnode);
max_pnode = max(pnode, max_pnode);
pr_info("UV: HUB:%2d pn:%02x nrcpus:%d\n",
bid,
uv_hub_info_list_blade[bid]->pnode,
uv_hub_info_list_blade[bid]->nr_possible_cpus);
}
pr_info("UV: min_pnode:%02x max_pnode:%02x\n", min_pnode, max_pnode);
map_gru_high(max_pnode);
map_mmr_high(max_pnode);
map_mmioh_high(min_pnode, max_pnode);
kfree(uv_hub_info_list_blade);
uv_hub_info_list_blade = NULL;
uv_nmi_setup();
uv_cpu_init();
uv_setup_proc_files(0);
pci_register_set_vga_state(uv_set_vga_state);
check_efi_reboot();
}
void __init uv_system_init(void)
{
if (likely(!is_uv_system() && !is_uv_hubless(1)))
return;
if (is_uv_system())
uv_system_init_hub();
else
uv_system_init_hubless();
}
apic_driver