/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_FPU_SCHED_H #define _ASM_X86_FPU_SCHED_H #include <linux/sched.h> #include <asm/cpufeature.h> #include <asm/fpu/types.h> #include <asm/trace/fpu.h> extern void save_fpregs_to_fpstate(struct fpu *fpu); extern void fpu__drop(struct fpu *fpu); extern int fpu_clone(struct task_struct *dst, unsigned long clone_flags, bool minimal, unsigned long shstk_addr); extern void fpu_flush_thread(void); /* * FPU state switching for scheduling. * * This is a two-stage process: * * - switch_fpu_prepare() saves the old state. * This is done within the context of the old process. * * - switch_fpu_finish() sets TIF_NEED_FPU_LOAD; the floating point state * will get loaded on return to userspace, or when the kernel needs it. * * If TIF_NEED_FPU_LOAD is cleared then the CPU's FPU registers * are saved in the current thread's FPU register state. * * If TIF_NEED_FPU_LOAD is set then CPU's FPU registers may not * hold current()'s FPU registers. It is required to load the * registers before returning to userland or using the content * otherwise. * * The FPU context is only stored/restored for a user task and * PF_KTHREAD is used to distinguish between kernel and user threads. */ static inline void switch_fpu_prepare(struct fpu *old_fpu, int cpu) { if (cpu_feature_enabled(X86_FEATURE_FPU) && !(current->flags & (PF_KTHREAD | PF_USER_WORKER))) { save_fpregs_to_fpstate(old_fpu); /* * The save operation preserved register state, so the * fpu_fpregs_owner_ctx is still @old_fpu. Store the * current CPU number in @old_fpu, so the next return * to user space can avoid the FPU register restore * when is returns on the same CPU and still owns the * context. */ old_fpu->last_cpu = cpu; trace_x86_fpu_regs_deactivated(old_fpu); } } /* * Delay loading of the complete FPU state until the return to userland. * PKRU is handled separately. */ static inline void switch_fpu_finish(void) { if (cpu_feature_enabled(X86_FEATURE_FPU)) set_thread_flag(TIF_NEED_FPU_LOAD); } #endif /* _ASM_X86_FPU_SCHED_H */