#include <linux/counter.h>
#include <linux/mfd/stm32-timers.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/types.h>
#define TIM_CCMR_CCXS (BIT(8) | BIT(0))
#define TIM_CCMR_MASK (TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
TIM_CCMR_IC1F | TIM_CCMR_IC2F)
#define TIM_CCER_MASK (TIM_CCER_CC1P | TIM_CCER_CC1NP | \
TIM_CCER_CC2P | TIM_CCER_CC2NP)
struct stm32_timer_regs {
u32 cr1;
u32 cnt;
u32 smcr;
u32 arr;
};
struct stm32_timer_cnt {
struct regmap *regmap;
struct clk *clk;
u32 max_arr;
bool enabled;
struct stm32_timer_regs bak;
};
static const enum counter_function stm32_count_functions[] = {
COUNTER_FUNCTION_INCREASE,
COUNTER_FUNCTION_QUADRATURE_X2_A,
COUNTER_FUNCTION_QUADRATURE_X2_B,
COUNTER_FUNCTION_QUADRATURE_X4,
};
static int stm32_count_read(struct counter_device *counter,
struct counter_count *count, u64 *val)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 cnt;
regmap_read(priv->regmap, TIM_CNT, &cnt);
*val = cnt;
return 0;
}
static int stm32_count_write(struct counter_device *counter,
struct counter_count *count, const u64 val)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 ceiling;
regmap_read(priv->regmap, TIM_ARR, &ceiling);
if (val > ceiling)
return -EINVAL;
return regmap_write(priv->regmap, TIM_CNT, val);
}
static int stm32_count_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 smcr;
regmap_read(priv->regmap, TIM_SMCR, &smcr);
switch (smcr & TIM_SMCR_SMS) {
case TIM_SMCR_SMS_SLAVE_MODE_DISABLED:
*function = COUNTER_FUNCTION_INCREASE;
return 0;
case TIM_SMCR_SMS_ENCODER_MODE_1:
*function = COUNTER_FUNCTION_QUADRATURE_X2_A;
return 0;
case TIM_SMCR_SMS_ENCODER_MODE_2:
*function = COUNTER_FUNCTION_QUADRATURE_X2_B;
return 0;
case TIM_SMCR_SMS_ENCODER_MODE_3:
*function = COUNTER_FUNCTION_QUADRATURE_X4;
return 0;
default:
return -EINVAL;
}
}
static int stm32_count_function_write(struct counter_device *counter,
struct counter_count *count,
enum counter_function function)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 cr1, sms;
switch (function) {
case COUNTER_FUNCTION_INCREASE:
sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED;
break;
case COUNTER_FUNCTION_QUADRATURE_X2_A:
sms = TIM_SMCR_SMS_ENCODER_MODE_1;
break;
case COUNTER_FUNCTION_QUADRATURE_X2_B:
sms = TIM_SMCR_SMS_ENCODER_MODE_2;
break;
case COUNTER_FUNCTION_QUADRATURE_X4:
sms = TIM_SMCR_SMS_ENCODER_MODE_3;
break;
default:
return -EINVAL;
}
regmap_read(priv->regmap, TIM_CR1, &cr1);
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
return 0;
}
static int stm32_count_direction_read(struct counter_device *counter,
struct counter_count *count,
enum counter_count_direction *direction)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 cr1;
regmap_read(priv->regmap, TIM_CR1, &cr1);
*direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD :
COUNTER_COUNT_DIRECTION_FORWARD;
return 0;
}
static int stm32_count_ceiling_read(struct counter_device *counter,
struct counter_count *count, u64 *ceiling)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 arr;
regmap_read(priv->regmap, TIM_ARR, &arr);
*ceiling = arr;
return 0;
}
static int stm32_count_ceiling_write(struct counter_device *counter,
struct counter_count *count, u64 ceiling)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
if (ceiling > priv->max_arr)
return -ERANGE;
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
regmap_write(priv->regmap, TIM_ARR, ceiling);
return 0;
}
static int stm32_count_enable_read(struct counter_device *counter,
struct counter_count *count, u8 *enable)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 cr1;
regmap_read(priv->regmap, TIM_CR1, &cr1);
*enable = cr1 & TIM_CR1_CEN;
return 0;
}
static int stm32_count_enable_write(struct counter_device *counter,
struct counter_count *count, u8 enable)
{
struct stm32_timer_cnt *const priv = counter_priv(counter);
u32 cr1;
if (enable) {
regmap_read(priv->regmap, TIM_CR1, &cr1);
if (!(cr1 & TIM_CR1_CEN))
clk_enable(priv->clk);
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
TIM_CR1_CEN);
} else {
regmap_read(priv->regmap, TIM_CR1, &cr1);
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
if (cr1 & TIM_CR1_CEN)
clk_disable(priv->clk);
}
priv->enabled = enable;
return 0;
}
static struct counter_comp stm32_count_ext[] = {
COUNTER_COMP_DIRECTION(stm32_count_direction_read),
COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write),
COUNTER_COMP_CEILING(stm32_count_ceiling_read,
stm32_count_ceiling_write),
};
static const enum counter_synapse_action stm32_synapse_actions[] = {
COUNTER_SYNAPSE_ACTION_NONE,
COUNTER_SYNAPSE_ACTION_BOTH_EDGES
};
static int stm32_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
enum counter_function function;
int err;
err = stm32_count_function_read(counter, count, &function);
if (err)
return err;
switch (function) {
case COUNTER_FUNCTION_INCREASE:
*action = COUNTER_SYNAPSE_ACTION_NONE;
return 0;
case COUNTER_FUNCTION_QUADRATURE_X2_A:
if (synapse->signal->id == count->synapses[0].signal->id)
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
else
*action = COUNTER_SYNAPSE_ACTION_NONE;
return 0;
case COUNTER_FUNCTION_QUADRATURE_X2_B:
if (synapse->signal->id == count->synapses[1].signal->id)
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
else
*action = COUNTER_SYNAPSE_ACTION_NONE;
return 0;
case COUNTER_FUNCTION_QUADRATURE_X4:
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
return 0;
default:
return -EINVAL;
}
}
static const struct counter_ops stm32_timer_cnt_ops = {
.count_read = stm32_count_read,
.count_write = stm32_count_write,
.function_read = stm32_count_function_read,
.function_write = stm32_count_function_write,
.action_read = stm32_action_read,
};
static struct counter_signal stm32_signals[] = {
{
.id = 0,
.name = "Channel 1 Quadrature A"
},
{
.id = 1,
.name = "Channel 1 Quadrature B"
}
};
static struct counter_synapse stm32_count_synapses[] = {
{
.actions_list = stm32_synapse_actions,
.num_actions = ARRAY_SIZE(stm32_synapse_actions),
.signal = &stm32_signals[0]
},
{
.actions_list = stm32_synapse_actions,
.num_actions = ARRAY_SIZE(stm32_synapse_actions),
.signal = &stm32_signals[1]
}
};
static struct counter_count stm32_counts = {
.id = 0,
.name = "Channel 1 Count",
.functions_list = stm32_count_functions,
.num_functions = ARRAY_SIZE(stm32_count_functions),
.synapses = stm32_count_synapses,
.num_synapses = ARRAY_SIZE(stm32_count_synapses),
.ext = stm32_count_ext,
.num_ext = ARRAY_SIZE(stm32_count_ext)
};
static int stm32_timer_cnt_probe(struct platform_device *pdev)
{
struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
struct device *dev = &pdev->dev;
struct stm32_timer_cnt *priv;
struct counter_device *counter;
int ret;
if (IS_ERR_OR_NULL(ddata))
return -EINVAL;
counter = devm_counter_alloc(dev, sizeof(*priv));
if (!counter)
return -ENOMEM;
priv = counter_priv(counter);
priv->regmap = ddata->regmap;
priv->clk = ddata->clk;
priv->max_arr = ddata->max_arr;
counter->name = dev_name(dev);
counter->parent = dev;
counter->ops = &stm32_timer_cnt_ops;
counter->counts = &stm32_counts;
counter->num_counts = 1;
counter->signals = stm32_signals;
counter->num_signals = ARRAY_SIZE(stm32_signals);
platform_set_drvdata(pdev, priv);
regmap_write(priv->regmap, TIM_TISEL, 0x0);
ret = devm_counter_add(dev, counter);
if (ret < 0)
dev_err_probe(dev, ret, "Failed to add counter\n");
return ret;
}
static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
{
struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
if (priv->enabled) {
regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
clk_disable(priv->clk);
}
return pinctrl_pm_select_sleep_state(dev);
}
static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
{
struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
int ret;
ret = pinctrl_pm_select_default_state(dev);
if (ret)
return ret;
if (priv->enabled) {
clk_enable(priv->clk);
regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
}
return 0;
}
static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
stm32_timer_cnt_resume);
static const struct of_device_id stm32_timer_cnt_of_match[] = {
{ .compatible = "st,stm32-timer-counter", },
{},
};
MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
static struct platform_driver stm32_timer_cnt_driver = {
.probe = stm32_timer_cnt_probe,
.driver = {
.name = "stm32-timer-counter",
.of_match_table = stm32_timer_cnt_of_match,
.pm = &stm32_timer_cnt_pm_ops,
},
};
module_platform_driver(stm32_timer_cnt_driver);
MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
MODULE_ALIAS("platform:stm32-timer-counter");
MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
MODULE_LICENSE("GPL v2");
MODULE_IMPORT_NS