#include <linux/init.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/ctype.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/dma/imx-dma.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
#include <sound/dmaengine_pcm.h>
#include "fsl_ssi.h"
#include "imx-pcm.h"
#define RX 0
#define TX 1
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS \
(SNDRV_PCM_FMTBIT_S8 | \
SNDRV_PCM_FMTBIT_S16_BE | \
SNDRV_PCM_FMTBIT_S18_3BE | \
SNDRV_PCM_FMTBIT_S20_3BE | \
SNDRV_PCM_FMTBIT_S24_3BE | \
SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS \
(SNDRV_PCM_FMTBIT_S8 | \
SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_S18_3LE | \
SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S24_3LE | \
SNDRV_PCM_FMTBIT_S24_LE)
#endif
#define FSLSSI_AC97_DAIFMT \
(SND_SOC_DAIFMT_AC97 | \
SND_SOC_DAIFMT_BC_FP | \
SND_SOC_DAIFMT_NB_NF)
#define FSLSSI_SIER_DBG_RX_FLAGS \
(SSI_SIER_RFF0_EN | \
SSI_SIER_RLS_EN | \
SSI_SIER_RFS_EN | \
SSI_SIER_ROE0_EN | \
SSI_SIER_RFRC_EN)
#define FSLSSI_SIER_DBG_TX_FLAGS \
(SSI_SIER_TFE0_EN | \
SSI_SIER_TLS_EN | \
SSI_SIER_TFS_EN | \
SSI_SIER_TUE0_EN | \
SSI_SIER_TFRC_EN)
enum fsl_ssi_type {
FSL_SSI_MCP8610,
FSL_SSI_MX21,
FSL_SSI_MX35,
FSL_SSI_MX51,
};
struct fsl_ssi_regvals {
u32 sier;
u32 srcr;
u32 stcr;
u32 scr;
};
static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_SSI_SACCEN:
case REG_SSI_SACCDIS:
return false;
default:
return true;
}
}
static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_SSI_STX0:
case REG_SSI_STX1:
case REG_SSI_SRX0:
case REG_SSI_SRX1:
case REG_SSI_SISR:
case REG_SSI_SFCSR:
case REG_SSI_SACNT:
case REG_SSI_SACADD:
case REG_SSI_SACDAT:
case REG_SSI_SATAG:
case REG_SSI_SACCST:
case REG_SSI_SOR:
return true;
default:
return false;
}
}
static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_SSI_SRX0:
case REG_SSI_SRX1:
case REG_SSI_SISR:
case REG_SSI_SACADD:
case REG_SSI_SACDAT:
case REG_SSI_SATAG:
return true;
default:
return false;
}
}
static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_SSI_SRX0:
case REG_SSI_SRX1:
case REG_SSI_SACCST:
return false;
default:
return true;
}
}
static const struct regmap_config fsl_ssi_regconfig = {
.max_register = REG_SSI_SACCDIS,
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.val_format_endian = REGMAP_ENDIAN_NATIVE,
.num_reg_defaults_raw = REG_SSI_SACCDIS / sizeof(uint32_t) + 1,
.readable_reg = fsl_ssi_readable_reg,
.volatile_reg = fsl_ssi_volatile_reg,
.precious_reg = fsl_ssi_precious_reg,
.writeable_reg = fsl_ssi_writeable_reg,
.cache_type = REGCACHE_FLAT,
};
struct fsl_ssi_soc_data {
bool imx;
bool imx21regs;
bool offline_config;
u32 sisr_write_mask;
};
struct fsl_ssi {
struct regmap *regs;
int irq;
struct snd_soc_dai_driver cpu_dai_drv;
unsigned int dai_fmt;
u8 streams;
u8 i2s_net;
bool synchronous;
bool use_dma;
bool use_dual_fifo;
bool use_dyna_fifo;
bool has_ipg_clk_name;
unsigned int fifo_depth;
unsigned int slot_width;
unsigned int slots;
struct fsl_ssi_regvals regvals[2];
struct clk *clk;
struct clk *baudclk;
unsigned int baudclk_streams;
u32 regcache_sfcsr;
u32 regcache_sacnt;
struct snd_dmaengine_dai_dma_data dma_params_tx;
struct snd_dmaengine_dai_dma_data dma_params_rx;
dma_addr_t ssi_phys;
struct imx_pcm_fiq_params fiq_params;
struct platform_device *card_pdev;
char card_name[32];
u32 card_idx;
struct fsl_ssi_dbg dbg_stats;
const struct fsl_ssi_soc_data *soc;
struct device *dev;
u32 fifo_watermark;
u32 dma_maxburst;
struct mutex ac97_reg_lock;
struct sdma_peripheral_config audio_config[2];
};
static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
.imx = false,
.offline_config = true,
.sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
SSI_SISR_ROE0 | SSI_SISR_ROE1 |
SSI_SISR_TUE0 | SSI_SISR_TUE1,
};
static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
.imx = true,
.imx21regs = true,
.offline_config = true,
.sisr_write_mask = 0,
};
static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
.imx = true,
.offline_config = true,
.sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
SSI_SISR_ROE0 | SSI_SISR_ROE1 |
SSI_SISR_TUE0 | SSI_SISR_TUE1,
};
static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
.imx = true,
.offline_config = false,
.sisr_write_mask = SSI_SISR_ROE0 | SSI_SISR_ROE1 |
SSI_SISR_TUE0 | SSI_SISR_TUE1,
};
static const struct of_device_id fsl_ssi_ids[] = {
{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
static bool fsl_ssi_is_ac97(struct fsl_ssi *ssi)
{
return (ssi->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
SND_SOC_DAIFMT_AC97;
}
static bool fsl_ssi_is_i2s_clock_provider(struct fsl_ssi *ssi)
{
return (ssi->dai_fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) ==
SND_SOC_DAIFMT_BP_FP;
}
static bool fsl_ssi_is_i2s_bc_fp(struct fsl_ssi *ssi)
{
return (ssi->dai_fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) ==
SND_SOC_DAIFMT_BC_FP;
}
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
struct fsl_ssi *ssi = dev_id;
struct regmap *regs = ssi->regs;
u32 sisr, sisr2;
regmap_read(regs, REG_SSI_SISR, &sisr);
sisr2 = sisr & ssi->soc->sisr_write_mask;
if (sisr2)
regmap_write(regs, REG_SSI_SISR, sisr2);
fsl_ssi_dbg_isr(&ssi->dbg_stats, sisr);
return IRQ_HANDLED;
}
static void fsl_ssi_config_enable(struct fsl_ssi *ssi, bool tx)
{
struct fsl_ssi_regvals *vals = ssi->regvals;
int dir = tx ? TX : RX;
u32 sier, srcr, stcr;
regmap_update_bits(ssi->regs, REG_SSI_SOR,
SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
if (ssi->soc->offline_config && ssi->streams)
goto enable_scr;
if (ssi->soc->offline_config) {
srcr = vals[RX].srcr | vals[TX].srcr;
stcr = vals[RX].stcr | vals[TX].stcr;
sier = vals[RX].sier | vals[TX].sier;
} else {
srcr = vals[dir].srcr;
stcr = vals[dir].stcr;
sier = vals[dir].sier;
}
regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, srcr);
regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, stcr);
regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, sier);
enable_scr:
if (ssi->use_dma && tx) {
int try = 100;
u32 sfcsr;
regmap_update_bits(ssi->regs, REG_SSI_SCR,
SSI_SCR_SSIEN, SSI_SCR_SSIEN);
do {
regmap_read(ssi->regs, REG_SSI_SFCSR, &sfcsr);
if (SSI_SFCSR_TFCNT0(sfcsr))
break;
} while (--try);
if (!SSI_SFCSR_TFCNT0(sfcsr))
dev_warn(ssi->dev, "Timeout waiting TX FIFO filling\n");
}
regmap_update_bits(ssi->regs, REG_SSI_SCR,
vals[dir].scr, vals[dir].scr);
ssi->streams |= BIT(dir);
}
#define _ssi_xor_shared_bits(vals, avals, aactive) \
((vals) ^ ((avals) * (aactive)))
#define ssi_excl_shared_bits(vals, avals, aactive) \
((vals) & _ssi_xor_shared_bits(vals, avals, aactive))
static void fsl_ssi_config_disable(struct fsl_ssi *ssi, bool tx)
{
struct fsl_ssi_regvals *vals, *avals;
u32 sier, srcr, stcr, scr;
int adir = tx ? RX : TX;
int dir = tx ? TX : RX;
bool aactive;
aactive = ssi->streams & BIT(adir);
vals = &ssi->regvals[dir];
avals = &ssi->regvals[adir];
scr = ssi_excl_shared_bits(vals->scr, avals->scr, aactive);
regmap_update_bits(ssi->regs, REG_SSI_SCR, scr, 0);
ssi->streams &= ~BIT(dir);
if (ssi->soc->offline_config && aactive)
goto fifo_clear;
if (ssi->soc->offline_config) {
srcr = vals->srcr | avals->srcr;
stcr = vals->stcr | avals->stcr;
sier = vals->sier | avals->sier;
} else {
sier = ssi_excl_shared_bits(vals->sier, avals->sier, aactive);
srcr = ssi_excl_shared_bits(vals->srcr, avals->srcr, aactive);
stcr = ssi_excl_shared_bits(vals->stcr, avals->stcr, aactive);
}
regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, 0);
regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, 0);
regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, 0);
fifo_clear:
regmap_update_bits(ssi->regs, REG_SSI_SOR,
SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
}
static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi *ssi)
{
struct regmap *regs = ssi->regs;
if (!ssi->soc->imx21regs) {
regmap_write(regs, REG_SSI_SACCDIS, 0xff);
regmap_write(regs, REG_SSI_SACCEN, 0x300);
}
}
static void fsl_ssi_setup_regvals(struct fsl_ssi *ssi)
{
struct fsl_ssi_regvals *vals = ssi->regvals;
vals[RX].sier = SSI_SIER_RFF0_EN | FSLSSI_SIER_DBG_RX_FLAGS;
vals[RX].srcr = SSI_SRCR_RFEN0;
vals[RX].scr = SSI_SCR_SSIEN | SSI_SCR_RE;
vals[TX].sier = SSI_SIER_TFE0_EN | FSLSSI_SIER_DBG_TX_FLAGS;
vals[TX].stcr = SSI_STCR_TFEN0;
vals[TX].scr = SSI_SCR_SSIEN | SSI_SCR_TE;
if (fsl_ssi_is_ac97(ssi))
vals[RX].scr = vals[TX].scr = 0;
if (ssi->use_dual_fifo) {
vals[RX].srcr |= SSI_SRCR_RFEN1;
vals[TX].stcr |= SSI_STCR_TFEN1;
}
if (ssi->use_dma) {
vals[RX].sier |= SSI_SIER_RDMAE;
vals[TX].sier |= SSI_SIER_TDMAE;
} else {
vals[RX].sier |= SSI_SIER_RIE;
vals[TX].sier |= SSI_SIER_TIE;
}
}
static void fsl_ssi_setup_ac97(struct fsl_ssi *ssi)
{
struct regmap *regs = ssi->regs;
regmap_write(regs, REG_SSI_STCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
regmap_write(regs, REG_SSI_SRCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
regmap_write(regs, REG_SSI_SACNT, SSI_SACNT_AC97EN | SSI_SACNT_FV);
regmap_update_bits(regs, REG_SSI_SCR,
SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE,
SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE);
regmap_write(regs, REG_SSI_SOR, SSI_SOR_WAIT(3));
}
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
int ret;
ret = clk_prepare_enable(ssi->clk);
if (ret)
return ret;
if (ssi->use_dual_fifo || ssi->use_dyna_fifo)
snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
return 0;
}
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
clk_disable_unprepare(ssi->clk);
}
static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai,
struct snd_pcm_hw_params *hw_params)
{
bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
struct regmap *regs = ssi->regs;
u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
unsigned long clkrate, baudrate, tmprate;
unsigned int channels = params_channels(hw_params);
unsigned int slot_width = params_width(hw_params);
unsigned int slots = 2;
u64 sub, savesub = 100000;
unsigned int freq;
bool baudclk_is_used;
int ret;
if (ssi->slots)
slots = ssi->slots;
if (ssi->slot_width)
slot_width = ssi->slot_width;
if (channels == 2 &&
(ssi->i2s_net & SSI_SCR_I2S_MODE_MASK) == SSI_SCR_I2S_MODE_MASTER)
slot_width = 32;
freq = slots * slot_width * params_rate(hw_params);
if (IS_ERR(ssi->baudclk))
return -EINVAL;
if (freq * 5 > clk_get_rate(ssi->clk)) {
dev_err(dai->dev, "bitclk > ipgclk / 5\n");
return -EINVAL;
}
baudclk_is_used = ssi->baudclk_streams & ~(BIT(substream->stream));
psr = 0;
div2 = 0;
factor = (div2 + 1) * (7 * psr + 1) * 2;
for (i = 0; i < 255; i++) {
tmprate = freq * factor * (i + 1);
if (baudclk_is_used)
clkrate = clk_get_rate(ssi->baudclk);
else
clkrate = clk_round_rate(ssi->baudclk, tmprate);
clkrate /= factor;
afreq = clkrate / (i + 1);
if (freq == afreq)
sub = 0;
else if (freq / afreq == 1)
sub = freq - afreq;
else if (afreq / freq == 1)
sub = afreq - freq;
else
continue;
sub *= 100000;
do_div(sub, freq);
if (sub < savesub && !(i == 0)) {
baudrate = tmprate;
savesub = sub;
pm = i;
}
if (savesub == 0)
break;
}
if (pm == 999) {
dev_err(dai->dev, "failed to handle the required sysclk\n");
return -EINVAL;
}
stccr = SSI_SxCCR_PM(pm + 1);
mask = SSI_SxCCR_PM_MASK | SSI_SxCCR_DIV2 | SSI_SxCCR_PSR;
tx2 = tx || ssi->synchronous;
regmap_update_bits(regs, REG_SSI_SxCCR(tx2), mask, stccr);
if (!baudclk_is_used) {
ret = clk_set_rate(ssi->baudclk, baudrate);
if (ret) {
dev_err(dai->dev, "failed to set baudclk rate\n");
return -EINVAL;
}
}
return 0;
}
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params,
struct snd_soc_dai *dai)
{
bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
struct fsl_ssi_regvals *vals = ssi->regvals;
struct regmap *regs = ssi->regs;
unsigned int channels = params_channels(hw_params);
unsigned int sample_size = params_width(hw_params);
u32 wl = SSI_SxCCR_WL(sample_size);
int ret;
if (fsl_ssi_is_i2s_clock_provider(ssi)) {
ret = fsl_ssi_set_bclk(substream, dai, hw_params);
if (ret)
return ret;
if (!(ssi->baudclk_streams & BIT(substream->stream))) {
ret = clk_prepare_enable(ssi->baudclk);
if (ret)
return ret;
ssi->baudclk_streams |= BIT(substream->stream);
}
}
if (ssi->streams && ssi->synchronous)
return 0;
if (!fsl_ssi_is_ac97(ssi)) {
u8 i2s_net = ssi->i2s_net;
if (fsl_ssi_is_i2s_bc_fp(ssi) && sample_size == 16)
i2s_net = SSI_SCR_I2S_MODE_NORMAL | SSI_SCR_NET;
if (channels == 1)
i2s_net = SSI_SCR_I2S_MODE_NORMAL;
regmap_update_bits(regs, REG_SSI_SCR,
SSI_SCR_I2S_NET_MASK, i2s_net);
}
tx2 = tx || ssi->synchronous;
regmap_update_bits(regs, REG_SSI_SxCCR(tx2), SSI_SxCCR_WL_MASK, wl);
if (ssi->use_dyna_fifo) {
if (channels == 1) {
ssi->audio_config[0].n_fifos_dst = 1;
ssi->audio_config[1].n_fifos_src = 1;
vals[RX].srcr &= ~SSI_SRCR_RFEN1;
vals[TX].stcr &= ~SSI_STCR_TFEN1;
vals[RX].scr &= ~SSI_SCR_TCH_EN;
vals[TX].scr &= ~SSI_SCR_TCH_EN;
} else {
ssi->audio_config[0].n_fifos_dst = 2;
ssi->audio_config[1].n_fifos_src = 2;
vals[RX].srcr |= SSI_SRCR_RFEN1;
vals[TX].stcr |= SSI_STCR_TFEN1;
vals[RX].scr |= SSI_SCR_TCH_EN;
vals[TX].scr |= SSI_SCR_TCH_EN;
}
ssi->dma_params_tx.peripheral_config = &ssi->audio_config[0];
ssi->dma_params_tx.peripheral_size = sizeof(ssi->audio_config[0]);
ssi->dma_params_rx.peripheral_config = &ssi->audio_config[1];
ssi->dma_params_rx.peripheral_size = sizeof(ssi->audio_config[1]);
}
return 0;
}
static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
if (fsl_ssi_is_i2s_clock_provider(ssi) &&
ssi->baudclk_streams & BIT(substream->stream)) {
clk_disable_unprepare(ssi->baudclk);
ssi->baudclk_streams &= ~BIT(substream->stream);
}
return 0;
}
static int _fsl_ssi_set_dai_fmt(struct fsl_ssi *ssi, unsigned int fmt)
{
u32 strcr = 0, scr = 0, stcr, srcr, mask;
unsigned int slots;
ssi->dai_fmt = fmt;
scr |= SSI_SCR_SYNC_TX_FS;
strcr |= SSI_STCR_TXBIT0;
ssi->i2s_net = SSI_SCR_NET;
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_BP_FP:
if (IS_ERR(ssi->baudclk)) {
dev_err(ssi->dev,
"missing baudclk for master mode\n");
return -EINVAL;
}
fallthrough;
case SND_SOC_DAIFMT_BC_FP:
ssi->i2s_net |= SSI_SCR_I2S_MODE_MASTER;
break;
case SND_SOC_DAIFMT_BC_FC:
ssi->i2s_net |= SSI_SCR_I2S_MODE_SLAVE;
break;
default:
return -EINVAL;
}
slots = ssi->slots ? : 2;
regmap_update_bits(ssi->regs, REG_SSI_STCCR,
SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
regmap_update_bits(ssi->regs, REG_SSI_SRCCR,
SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
strcr |= SSI_STCR_TFSI | SSI_STCR_TSCKP | SSI_STCR_TEFS;
break;
case SND_SOC_DAIFMT_LEFT_J:
strcr |= SSI_STCR_TSCKP;
break;
case SND_SOC_DAIFMT_DSP_A:
strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP | SSI_STCR_TEFS;
break;
case SND_SOC_DAIFMT_DSP_B:
strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP;
break;
case SND_SOC_DAIFMT_AC97:
strcr |= SSI_STCR_TEFS;
break;
default:
return -EINVAL;
}
scr |= ssi->i2s_net;
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
strcr ^= SSI_STCR_TSCKP;
break;
case SND_SOC_DAIFMT_NB_IF:
strcr ^= SSI_STCR_TFSI;
break;
case SND_SOC_DAIFMT_IB_IF:
strcr ^= SSI_STCR_TSCKP;
strcr ^= SSI_STCR_TFSI;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_BP_FP:
strcr |= SSI_STCR_TFDIR | SSI_STCR_TXDIR;
scr |= SSI_SCR_SYS_CLK_EN;
break;
case SND_SOC_DAIFMT_BC_FC:
break;
case SND_SOC_DAIFMT_BC_FP:
strcr |= SSI_STCR_TFDIR;
break;
default:
return -EINVAL;
}
stcr = strcr;
srcr = strcr;
if (ssi->synchronous || fsl_ssi_is_ac97(ssi)) {
srcr &= ~SSI_SRCR_RXDIR;
scr |= SSI_SCR_SYN;
}
mask = SSI_STCR_TFDIR | SSI_STCR_TXDIR | SSI_STCR_TSCKP |
SSI_STCR_TFSL | SSI_STCR_TFSI | SSI_STCR_TEFS | SSI_STCR_TXBIT0;
regmap_update_bits(ssi->regs, REG_SSI_STCR, mask, stcr);
regmap_update_bits(ssi->regs, REG_SSI_SRCR, mask, srcr);
mask = SSI_SCR_SYNC_TX_FS | SSI_SCR_I2S_MODE_MASK |
SSI_SCR_SYS_CLK_EN | SSI_SCR_SYN;
regmap_update_bits(ssi->regs, REG_SSI_SCR, mask, scr);
return 0;
}
static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
if (fsl_ssi_is_ac97(ssi))
return 0;
return _fsl_ssi_set_dai_fmt(ssi, fmt);
}
static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
u32 rx_mask, int slots, int slot_width)
{
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
struct regmap *regs = ssi->regs;
u32 val;
if (slot_width & 1 || slot_width < 8 || slot_width > 24) {
dev_err(dai->dev, "invalid slot width: %d\n", slot_width);
return -EINVAL;
}
if (ssi->i2s_net && slots < 2) {
dev_err(dai->dev, "slot number should be >= 2 in I2S or NET\n");
return -EINVAL;
}
regmap_update_bits(regs, REG_SSI_STCCR,
SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
regmap_update_bits(regs, REG_SSI_SRCCR,
SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
regmap_read(regs, REG_SSI_SCR, &val);
regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, SSI_SCR_SSIEN);
regmap_write(regs, REG_SSI_STMSK, ~tx_mask);
regmap_write(regs, REG_SSI_SRMSK, ~rx_mask);
regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, val);
ssi->slot_width = slot_width;
ssi->slots = slots;
return 0;
}
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
if (tx && fsl_ssi_is_ac97(ssi))
fsl_ssi_tx_ac97_saccst_setup(ssi);
fsl_ssi_config_enable(ssi, tx);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
fsl_ssi_config_disable(ssi, tx);
break;
default:
return -EINVAL;
}
return 0;
}
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
{
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
if (ssi->soc->imx && ssi->use_dma)
snd_soc_dai_init_dma_data(dai, &ssi->dma_params_tx,
&ssi->dma_params_rx);
return 0;
}
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
.probe = fsl_ssi_dai_probe,
.startup = fsl_ssi_startup,
.shutdown = fsl_ssi_shutdown,
.hw_params = fsl_ssi_hw_params,
.hw_free = fsl_ssi_hw_free,
.set_fmt = fsl_ssi_set_dai_fmt,
.set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
.trigger = fsl_ssi_trigger,
};
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
.playback = {
.stream_name = "CPU-Playback",
.channels_min = 1,
.channels_max = 32,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
.formats = FSLSSI_I2S_FORMATS,
},
.capture = {
.stream_name = "CPU-Capture",
.channels_min = 1,
.channels_max = 32,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
.formats = FSLSSI_I2S_FORMATS,
},
.ops = &fsl_ssi_dai_ops,
};
static const struct snd_soc_component_driver fsl_ssi_component = {
.name = "fsl-ssi",
.legacy_dai_naming = 1,
};
static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
.symmetric_channels = 1,
.playback = {
.stream_name = "CPU AC97 Playback",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_48000,
.formats = SNDRV_PCM_FMTBIT_S16 | SNDRV_PCM_FMTBIT_S20,
},
.capture = {
.stream_name = "CPU AC97 Capture",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S20,
},
.ops = &fsl_ssi_dai_ops,
};
static struct fsl_ssi *fsl_ac97_data;
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
unsigned short val)
{
struct regmap *regs = fsl_ac97_data->regs;
unsigned int lreg;
unsigned int lval;
int ret;
if (reg > 0x7f)
return;
mutex_lock(&fsl_ac97_data->ac97_reg_lock);
ret = clk_prepare_enable(fsl_ac97_data->clk);
if (ret) {
pr_err("ac97 write clk_prepare_enable failed: %d\n",
ret);
goto ret_unlock;
}
lreg = reg << 12;
regmap_write(regs, REG_SSI_SACADD, lreg);
lval = val << 4;
regmap_write(regs, REG_SSI_SACDAT, lval);
regmap_update_bits(regs, REG_SSI_SACNT,
SSI_SACNT_RDWR_MASK, SSI_SACNT_WR);
udelay(100);
clk_disable_unprepare(fsl_ac97_data->clk);
ret_unlock:
mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
}
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
unsigned short reg)
{
struct regmap *regs = fsl_ac97_data->regs;
unsigned short val = 0;
u32 reg_val;
unsigned int lreg;
int ret;
mutex_lock(&fsl_ac97_data->ac97_reg_lock);
ret = clk_prepare_enable(fsl_ac97_data->clk);
if (ret) {
pr_err("ac97 read clk_prepare_enable failed: %d\n", ret);
goto ret_unlock;
}
lreg = (reg & 0x7f) << 12;
regmap_write(regs, REG_SSI_SACADD, lreg);
regmap_update_bits(regs, REG_SSI_SACNT,
SSI_SACNT_RDWR_MASK, SSI_SACNT_RD);
udelay(100);
regmap_read(regs, REG_SSI_SACDAT, ®_val);
val = (reg_val >> 4) & 0xffff;
clk_disable_unprepare(fsl_ac97_data->clk);
ret_unlock:
mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
return val;
}
static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
.read = fsl_ssi_ac97_read,
.write = fsl_ssi_ac97_write,
};
static int fsl_ssi_hw_init(struct fsl_ssi *ssi)
{
u32 wm = ssi->fifo_watermark;
fsl_ssi_setup_regvals(ssi);
regmap_write(ssi->regs, REG_SSI_SFCSR,
SSI_SFCSR_TFWM0(wm) | SSI_SFCSR_RFWM0(wm) |
SSI_SFCSR_TFWM1(wm) | SSI_SFCSR_RFWM1(wm));
if (ssi->use_dual_fifo)
regmap_update_bits(ssi->regs, REG_SSI_SCR,
SSI_SCR_TCH_EN, SSI_SCR_TCH_EN);
if (fsl_ssi_is_ac97(ssi)) {
_fsl_ssi_set_dai_fmt(ssi, ssi->dai_fmt);
fsl_ssi_setup_ac97(ssi);
}
return 0;
}
static void fsl_ssi_hw_clean(struct fsl_ssi *ssi)
{
if (fsl_ssi_is_ac97(ssi)) {
regmap_update_bits(ssi->regs, REG_SSI_SCR,
SSI_SCR_TE | SSI_SCR_RE, 0);
regmap_write(ssi->regs, REG_SSI_SACNT, 0);
regmap_write(ssi->regs, REG_SSI_SOR, 0);
regmap_update_bits(ssi->regs, REG_SSI_SCR, SSI_SCR_SSIEN, 0);
}
}
static void make_lowercase(char *s)
{
if (!s)
return;
for (; *s; s++)
*s = tolower(*s);
}
static int fsl_ssi_imx_probe(struct platform_device *pdev,
struct fsl_ssi *ssi, void __iomem *iomem)
{
struct device *dev = &pdev->dev;
int ret;
if (ssi->has_ipg_clk_name)
ssi->clk = devm_clk_get(dev, "ipg");
else
ssi->clk = devm_clk_get(dev, NULL);
if (IS_ERR(ssi->clk)) {
ret = PTR_ERR(ssi->clk);
dev_err(dev, "failed to get clock: %d\n", ret);
return ret;
}
if (!ssi->has_ipg_clk_name) {
ret = clk_prepare_enable(ssi->clk);
if (ret) {
dev_err(dev, "clk_prepare_enable failed: %d\n", ret);
return ret;
}
}
ssi->baudclk = devm_clk_get(dev, "baud");
if (IS_ERR(ssi->baudclk))
dev_dbg(dev, "failed to get baud clock: %ld\n",
PTR_ERR(ssi->baudclk));
ssi->dma_params_tx.maxburst = ssi->dma_maxburst;
ssi->dma_params_rx.maxburst = ssi->dma_maxburst;
ssi->dma_params_tx.addr = ssi->ssi_phys + REG_SSI_STX0;
ssi->dma_params_rx.addr = ssi->ssi_phys + REG_SSI_SRX0;
if (ssi->use_dual_fifo || ssi->use_dyna_fifo) {
ssi->dma_params_tx.maxburst &= ~0x1;
ssi->dma_params_rx.maxburst &= ~0x1;
}
if (!ssi->use_dma) {
ssi->fiq_params.irq = ssi->irq;
ssi->fiq_params.base = iomem;
ssi->fiq_params.dma_params_rx = &ssi->dma_params_rx;
ssi->fiq_params.dma_params_tx = &ssi->dma_params_tx;
ret = imx_pcm_fiq_init(pdev, &ssi->fiq_params);
if (ret)
goto error_pcm;
} else {
ret = imx_pcm_dma_init(pdev);
if (ret)
goto error_pcm;
}
return 0;
error_pcm:
if (!ssi->has_ipg_clk_name)
clk_disable_unprepare(ssi->clk);
return ret;
}
static void fsl_ssi_imx_clean(struct platform_device *pdev, struct fsl_ssi *ssi)
{
if (!ssi->use_dma)
imx_pcm_fiq_exit(pdev);
if (!ssi->has_ipg_clk_name)
clk_disable_unprepare(ssi->clk);
}
static int fsl_ssi_probe_from_dt(struct fsl_ssi *ssi)
{
struct device *dev = ssi->dev;
struct device_node *np = dev->of_node;
const char *p, *sprop;
const __be32 *iprop;
u32 dmas[4];
int ret;
ret = of_property_match_string(np, "clock-names", "ipg");
ssi->has_ipg_clk_name = ret >= 0;
sprop = of_get_property(np, "fsl,mode", NULL);
if (sprop && !strcmp(sprop, "ac97-slave")) {
ssi->dai_fmt = FSLSSI_AC97_DAIFMT;
ret = of_property_read_u32(np, "cell-index", &ssi->card_idx);
if (ret) {
dev_err(dev, "failed to get SSI index property\n");
return -EINVAL;
}
strcpy(ssi->card_name, "ac97-codec");
} else if (!of_property_read_bool(np, "fsl,ssi-asynchronous")) {
ssi->synchronous = true;
}
ssi->use_dma = !of_property_read_bool(np, "fsl,fiq-stream-filter");
iprop = of_get_property(np, "fsl,fifo-depth", NULL);
if (iprop)
ssi->fifo_depth = be32_to_cpup(iprop);
else
ssi->fifo_depth = 8;
ret = of_property_read_u32_array(np, "dmas", dmas, 4);
if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL)
ssi->use_dual_fifo = true;
if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
ssi->use_dyna_fifo = true;
if (!ssi->card_name[0] && of_get_property(np, "codec-handle", NULL)) {
struct device_node *root = of_find_node_by_path("/");
sprop = of_get_property(root, "compatible", NULL);
of_node_put(root);
p = strrchr(sprop, ',');
if (p)
sprop = p + 1;
snprintf(ssi->card_name, sizeof(ssi->card_name),
"snd-soc-%s", sprop);
make_lowercase(ssi->card_name);
ssi->card_idx = 0;
}
return 0;
}
static int fsl_ssi_probe(struct platform_device *pdev)
{
struct regmap_config regconfig = fsl_ssi_regconfig;
struct device *dev = &pdev->dev;
struct fsl_ssi *ssi;
struct resource *res;
void __iomem *iomem;
int ret = 0;
ssi = devm_kzalloc(dev, sizeof(*ssi), GFP_KERNEL);
if (!ssi)
return -ENOMEM;
ssi->dev = dev;
ssi->soc = of_device_get_match_data(&pdev->dev);
ret = fsl_ssi_probe_from_dt(ssi);
if (ret)
return ret;
if (fsl_ssi_is_ac97(ssi)) {
memcpy(&ssi->cpu_dai_drv, &fsl_ssi_ac97_dai,
sizeof(fsl_ssi_ac97_dai));
fsl_ac97_data = ssi;
} else {
memcpy(&ssi->cpu_dai_drv, &fsl_ssi_dai_template,
sizeof(fsl_ssi_dai_template));
}
ssi->cpu_dai_drv.name = dev_name(dev);
iomem = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(iomem))
return PTR_ERR(iomem);
ssi->ssi_phys = res->start;
if (ssi->soc->imx21regs) {
regconfig.max_register = REG_SSI_SRMSK;
regconfig.num_reg_defaults_raw =
REG_SSI_SRMSK / sizeof(uint32_t) + 1;
}
if (ssi->has_ipg_clk_name)
ssi->regs = devm_regmap_init_mmio_clk(dev, "ipg", iomem,
®config);
else
ssi->regs = devm_regmap_init_mmio(dev, iomem, ®config);
if (IS_ERR(ssi->regs)) {
dev_err(dev, "failed to init register map\n");
return PTR_ERR(ssi->regs);
}
ssi->irq = platform_get_irq(pdev, 0);
if (ssi->irq < 0)
return ssi->irq;
if (ssi->synchronous && !fsl_ssi_is_ac97(ssi)) {
ssi->cpu_dai_drv.symmetric_rate = 1;
ssi->cpu_dai_drv.symmetric_channels = 1;
ssi->cpu_dai_drv.symmetric_sample_bits = 1;
}
switch (ssi->fifo_depth) {
case 15:
ssi->fifo_watermark = 8;
ssi->dma_maxburst = 8;
break;
case 8:
default:
ssi->fifo_watermark = ssi->fifo_depth - 2;
ssi->dma_maxburst = ssi->fifo_depth - 2;
break;
}
dev_set_drvdata(dev, ssi);
if (ssi->soc->imx) {
ret = fsl_ssi_imx_probe(pdev, ssi, iomem);
if (ret)
return ret;
}
if (fsl_ssi_is_ac97(ssi)) {
mutex_init(&ssi->ac97_reg_lock);
ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
if (ret) {
dev_err(dev, "failed to set AC'97 ops\n");
goto error_ac97_ops;
}
}
ret = devm_snd_soc_register_component(dev, &fsl_ssi_component,
&ssi->cpu_dai_drv, 1);
if (ret) {
dev_err(dev, "failed to register DAI: %d\n", ret);
goto error_asoc_register;
}
if (ssi->use_dma) {
ret = devm_request_irq(dev, ssi->irq, fsl_ssi_isr, 0,
dev_name(dev), ssi);
if (ret < 0) {
dev_err(dev, "failed to claim irq %u\n", ssi->irq);
goto error_asoc_register;
}
}
fsl_ssi_debugfs_create(&ssi->dbg_stats, dev);
fsl_ssi_hw_init(ssi);
if (ssi->card_name[0]) {
struct device *parent = dev;
if (fsl_ssi_is_ac97(ssi))
parent = NULL;
ssi->card_pdev = platform_device_register_data(parent,
ssi->card_name, ssi->card_idx, NULL, 0);
if (IS_ERR(ssi->card_pdev)) {
ret = PTR_ERR(ssi->card_pdev);
dev_err(dev, "failed to register %s: %d\n",
ssi->card_name, ret);
goto error_sound_card;
}
}
return 0;
error_sound_card:
fsl_ssi_debugfs_remove(&ssi->dbg_stats);
error_asoc_register:
if (fsl_ssi_is_ac97(ssi))
snd_soc_set_ac97_ops(NULL);
error_ac97_ops:
if (fsl_ssi_is_ac97(ssi))
mutex_destroy(&ssi->ac97_reg_lock);
if (ssi->soc->imx)
fsl_ssi_imx_clean(pdev, ssi);
return ret;
}
static void fsl_ssi_remove(struct platform_device *pdev)
{
struct fsl_ssi *ssi = dev_get_drvdata(&pdev->dev);
fsl_ssi_debugfs_remove(&ssi->dbg_stats);
if (ssi->card_pdev)
platform_device_unregister(ssi->card_pdev);
fsl_ssi_hw_clean(ssi);
if (ssi->soc->imx)
fsl_ssi_imx_clean(pdev, ssi);
if (fsl_ssi_is_ac97(ssi)) {
snd_soc_set_ac97_ops(NULL);
mutex_destroy(&ssi->ac97_reg_lock);
}
}
#ifdef CONFIG_PM_SLEEP
static int fsl_ssi_suspend(struct device *dev)
{
struct fsl_ssi *ssi = dev_get_drvdata(dev);
struct regmap *regs = ssi->regs;
regmap_read(regs, REG_SSI_SFCSR, &ssi->regcache_sfcsr);
regmap_read(regs, REG_SSI_SACNT, &ssi->regcache_sacnt);
regcache_cache_only(regs, true);
regcache_mark_dirty(regs);
return 0;
}
static int fsl_ssi_resume(struct device *dev)
{
struct fsl_ssi *ssi = dev_get_drvdata(dev);
struct regmap *regs = ssi->regs;
regcache_cache_only(regs, false);
regmap_update_bits(regs, REG_SSI_SFCSR,
SSI_SFCSR_RFWM1_MASK | SSI_SFCSR_TFWM1_MASK |
SSI_SFCSR_RFWM0_MASK | SSI_SFCSR_TFWM0_MASK,
ssi->regcache_sfcsr);
regmap_write(regs, REG_SSI_SACNT, ssi->regcache_sacnt);
return regcache_sync(regs);
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops fsl_ssi_pm = {
SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
};
static struct platform_driver fsl_ssi_driver = {
.driver = {
.name = "fsl-ssi-dai",
.of_match_table = fsl_ssi_ids,
.pm = &fsl_ssi_pm,
},
.probe = fsl_ssi_probe,
.remove_new = fsl_ssi_remove,
};
module_platform_driver(fsl_ssi_driver);
MODULE_ALIAS("platform:fsl-ssi-dai");
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
MODULE_LICENSE("GPL v2"