#include "radeon.h"
#include "radeon_asic.h"
#include "sumod.h"
#include "r600_dpm.h"
#include "cypress_dpm.h"
#include "sumo_dpm.h"
#include <linux/seq_file.h>
#define SUMO_MAX_DEEPSLEEP_DIVIDER_ID 5
#define SUMO_MINIMUM_ENGINE_CLOCK 800
#define BOOST_DPM_LEVEL 7
static const u32 sumo_utc[SUMO_PM_NUMBER_OF_TC] =
{
SUMO_UTC_DFLT_00,
SUMO_UTC_DFLT_01,
SUMO_UTC_DFLT_02,
SUMO_UTC_DFLT_03,
SUMO_UTC_DFLT_04,
SUMO_UTC_DFLT_05,
SUMO_UTC_DFLT_06,
SUMO_UTC_DFLT_07,
SUMO_UTC_DFLT_08,
SUMO_UTC_DFLT_09,
SUMO_UTC_DFLT_10,
SUMO_UTC_DFLT_11,
SUMO_UTC_DFLT_12,
SUMO_UTC_DFLT_13,
SUMO_UTC_DFLT_14,
};
static const u32 sumo_dtc[SUMO_PM_NUMBER_OF_TC] =
{
SUMO_DTC_DFLT_00,
SUMO_DTC_DFLT_01,
SUMO_DTC_DFLT_02,
SUMO_DTC_DFLT_03,
SUMO_DTC_DFLT_04,
SUMO_DTC_DFLT_05,
SUMO_DTC_DFLT_06,
SUMO_DTC_DFLT_07,
SUMO_DTC_DFLT_08,
SUMO_DTC_DFLT_09,
SUMO_DTC_DFLT_10,
SUMO_DTC_DFLT_11,
SUMO_DTC_DFLT_12,
SUMO_DTC_DFLT_13,
SUMO_DTC_DFLT_14,
};
static struct sumo_ps *sumo_get_ps(struct radeon_ps *rps)
{
struct sumo_ps *ps = rps->ps_priv;
return ps;
}
struct sumo_power_info *sumo_get_pi(struct radeon_device *rdev)
{
struct sumo_power_info *pi = rdev->pm.dpm.priv;
return pi;
}
static void sumo_gfx_clockgating_enable(struct radeon_device *rdev, bool enable)
{
if (enable)
WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN);
else {
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN);
WREG32_P(SCLK_PWRMGT_CNTL, GFX_CLK_FORCE_ON, ~GFX_CLK_FORCE_ON);
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~GFX_CLK_FORCE_ON);
RREG32(GB_ADDR_CONFIG);
}
}
#define CGCG_CGTT_LOCAL0_MASK 0xE5BFFFFF
#define CGCG_CGTT_LOCAL1_MASK 0xEFFF07FF
static void sumo_mg_clockgating_enable(struct radeon_device *rdev, bool enable)
{
u32 local0;
u32 local1;
local0 = RREG32(CG_CGTT_LOCAL_0);
local1 = RREG32(CG_CGTT_LOCAL_1);
if (enable) {
WREG32(CG_CGTT_LOCAL_0, (0 & CGCG_CGTT_LOCAL0_MASK) | (local0 & ~CGCG_CGTT_LOCAL0_MASK) );
WREG32(CG_CGTT_LOCAL_1, (0 & CGCG_CGTT_LOCAL1_MASK) | (local1 & ~CGCG_CGTT_LOCAL1_MASK) );
} else {
WREG32(CG_CGTT_LOCAL_0, (0xFFFFFFFF & CGCG_CGTT_LOCAL0_MASK) | (local0 & ~CGCG_CGTT_LOCAL0_MASK) );
WREG32(CG_CGTT_LOCAL_1, (0xFFFFCFFF & CGCG_CGTT_LOCAL1_MASK) | (local1 & ~CGCG_CGTT_LOCAL1_MASK) );
}
}
static void sumo_program_git(struct radeon_device *rdev)
{
u32 p, u;
u32 xclk = radeon_get_xclk(rdev);
r600_calculate_u_and_p(SUMO_GICST_DFLT,
xclk, 16, &p, &u);
WREG32_P(CG_GIT, CG_GICST(p), ~CG_GICST_MASK);
}
static void sumo_program_grsd(struct radeon_device *rdev)
{
u32 p, u;
u32 xclk = radeon_get_xclk(rdev);
u32 grs = 256 * 25 / 100;
r600_calculate_u_and_p(1, xclk, 14, &p, &u);
WREG32(CG_GCOOR, PHC(grs) | SDC(p) | SU(u));
}
void sumo_gfx_clockgating_initialize(struct radeon_device *rdev)
{
sumo_program_git(rdev);
sumo_program_grsd(rdev);
}
static void sumo_gfx_powergating_initialize(struct radeon_device *rdev)
{
u32 rcu_pwr_gating_cntl;
u32 p, u;
u32 p_c, p_p, d_p;
u32 r_t, i_t;
u32 xclk = radeon_get_xclk(rdev);
if (rdev->family == CHIP_PALM) {
p_c = 4;
d_p = 10;
r_t = 10;
i_t = 4;
p_p = 50 + 1000/200 + 6 * 32;
} else {
p_c = 16;
d_p = 50;
r_t = 50;
i_t = 50;
p_p = 113;
}
WREG32(CG_SCRATCH2, 0x01B60A17);
r600_calculate_u_and_p(SUMO_GFXPOWERGATINGT_DFLT,
xclk, 16, &p, &u);
WREG32_P(CG_PWR_GATING_CNTL, PGP(p) | PGU(u),
~(PGP_MASK | PGU_MASK));
r600_calculate_u_and_p(SUMO_VOLTAGEDROPT_DFLT,
xclk, 16, &p, &u);
WREG32_P(CG_CG_VOLTAGE_CNTL, PGP(p) | PGU(u),
~(PGP_MASK | PGU_MASK));
if (rdev->family == CHIP_PALM) {
WREG32_RCU(RCU_PWR_GATING_SEQ0, 0x10103210);
WREG32_RCU(RCU_PWR_GATING_SEQ1, 0x10101010);
} else {
WREG32_RCU(RCU_PWR_GATING_SEQ0, 0x76543210);
WREG32_RCU(RCU_PWR_GATING_SEQ1, 0xFEDCBA98);
}
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL);
rcu_pwr_gating_cntl &=
~(RSVD_MASK | PCV_MASK | PGS_MASK);
rcu_pwr_gating_cntl |= PCV(p_c) | PGS(1) | PWR_GATING_EN;
if (rdev->family == CHIP_PALM) {
rcu_pwr_gating_cntl &= ~PCP_MASK;
rcu_pwr_gating_cntl |= PCP(0x77);
}
WREG32_RCU(RCU_PWR_GATING_CNTL, rcu_pwr_gating_cntl);
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_2);
rcu_pwr_gating_cntl &= ~(MPPU_MASK | MPPD_MASK);
rcu_pwr_gating_cntl |= MPPU(p_p) | MPPD(50);
WREG32_RCU(RCU_PWR_GATING_CNTL_2, rcu_pwr_gating_cntl);
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_3);
rcu_pwr_gating_cntl &= ~(DPPU_MASK | DPPD_MASK);
rcu_pwr_gating_cntl |= DPPU(d_p) | DPPD(50);
WREG32_RCU(RCU_PWR_GATING_CNTL_3, rcu_pwr_gating_cntl);
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_4);
rcu_pwr_gating_cntl &= ~(RT_MASK | IT_MASK);
rcu_pwr_gating_cntl |= RT(r_t) | IT(i_t);
WREG32_RCU(RCU_PWR_GATING_CNTL_4, rcu_pwr_gating_cntl);
if (rdev->family == CHIP_PALM)
WREG32_RCU(RCU_PWR_GATING_CNTL_5, 0xA02);
sumo_smu_pg_init(rdev);
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL);
rcu_pwr_gating_cntl &=
~(RSVD_MASK | PCV_MASK | PGS_MASK);
rcu_pwr_gating_cntl |= PCV(p_c) | PGS(4) | PWR_GATING_EN;
if (rdev->family == CHIP_PALM) {
rcu_pwr_gating_cntl &= ~PCP_MASK;
rcu_pwr_gating_cntl |= PCP(0x77);
}
WREG32_RCU(RCU_PWR_GATING_CNTL, rcu_pwr_gating_cntl);
if (rdev->family == CHIP_PALM) {
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_2);
rcu_pwr_gating_cntl &= ~(MPPU_MASK | MPPD_MASK);
rcu_pwr_gating_cntl |= MPPU(113) | MPPD(50);
WREG32_RCU(RCU_PWR_GATING_CNTL_2, rcu_pwr_gating_cntl);
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_3);
rcu_pwr_gating_cntl &= ~(DPPU_MASK | DPPD_MASK);
rcu_pwr_gating_cntl |= DPPU(16) | DPPD(50);
WREG32_RCU(RCU_PWR_GATING_CNTL_3, rcu_pwr_gating_cntl);
}
sumo_smu_pg_init(rdev);
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL);
rcu_pwr_gating_cntl &=
~(RSVD_MASK | PCV_MASK | PGS_MASK);
rcu_pwr_gating_cntl |= PGS(5) | PWR_GATING_EN;
if (rdev->family == CHIP_PALM) {
rcu_pwr_gating_cntl |= PCV(4);
rcu_pwr_gating_cntl &= ~PCP_MASK;
rcu_pwr_gating_cntl |= PCP(0x77);
} else
rcu_pwr_gating_cntl |= PCV(11);
WREG32_RCU(RCU_PWR_GATING_CNTL, rcu_pwr_gating_cntl);
if (rdev->family == CHIP_PALM) {
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_2);
rcu_pwr_gating_cntl &= ~(MPPU_MASK | MPPD_MASK);
rcu_pwr_gating_cntl |= MPPU(113) | MPPD(50);
WREG32_RCU(RCU_PWR_GATING_CNTL_2, rcu_pwr_gating_cntl);
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_3);
rcu_pwr_gating_cntl &= ~(DPPU_MASK | DPPD_MASK);
rcu_pwr_gating_cntl |= DPPU(22) | DPPD(50);
WREG32_RCU(RCU_PWR_GATING_CNTL_3, rcu_pwr_gating_cntl);
}
sumo_smu_pg_init(rdev);
}
static void sumo_gfx_powergating_enable(struct radeon_device *rdev, bool enable)
{
if (enable)
WREG32_P(CG_PWR_GATING_CNTL, DYN_PWR_DOWN_EN, ~DYN_PWR_DOWN_EN);
else {
WREG32_P(CG_PWR_GATING_CNTL, 0, ~DYN_PWR_DOWN_EN);
RREG32(GB_ADDR_CONFIG);
}
}
static int sumo_enable_clock_power_gating(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
if (pi->enable_gfx_clock_gating)
sumo_gfx_clockgating_initialize(rdev);
if (pi->enable_gfx_power_gating)
sumo_gfx_powergating_initialize(rdev);
if (pi->enable_mg_clock_gating)
sumo_mg_clockgating_enable(rdev, true);
if (pi->enable_gfx_clock_gating)
sumo_gfx_clockgating_enable(rdev, true);
if (pi->enable_gfx_power_gating)
sumo_gfx_powergating_enable(rdev, true);
return 0;
}
static void sumo_disable_clock_power_gating(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
if (pi->enable_gfx_clock_gating)
sumo_gfx_clockgating_enable(rdev, false);
if (pi->enable_gfx_power_gating)
sumo_gfx_powergating_enable(rdev, false);
if (pi->enable_mg_clock_gating)
sumo_mg_clockgating_enable(rdev, false);
}
static void sumo_calculate_bsp(struct radeon_device *rdev,
u32 high_clk)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
u32 xclk = radeon_get_xclk(rdev);
pi->pasi = 65535 * 100 / high_clk;
pi->asi = 65535 * 100 / high_clk;
r600_calculate_u_and_p(pi->asi,
xclk, 16, &pi->bsp, &pi->bsu);
r600_calculate_u_and_p(pi->pasi,
xclk, 16, &pi->pbsp, &pi->pbsu);
pi->dsp = BSP(pi->bsp) | BSU(pi->bsu);
pi->psp = BSP(pi->pbsp) | BSU(pi->pbsu);
}
static void sumo_init_bsp(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
WREG32(CG_BSP_0, pi->psp);
}
static void sumo_program_bsp(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct sumo_ps *ps = sumo_get_ps(rps);
u32 i;
u32 highest_engine_clock = ps->levels[ps->num_levels - 1].sclk;
if (ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE)
highest_engine_clock = pi->boost_pl.sclk;
sumo_calculate_bsp(rdev, highest_engine_clock);
for (i = 0; i < ps->num_levels - 1; i++)
WREG32(CG_BSP_0 + (i * 4), pi->dsp);
WREG32(CG_BSP_0 + (i * 4), pi->psp);
if (ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE)
WREG32(CG_BSP_0 + (BOOST_DPM_LEVEL * 4), pi->psp);
}
static void sumo_write_at(struct radeon_device *rdev,
u32 index, u32 value)
{
if (index == 0)
WREG32(CG_AT_0, value);
else if (index == 1)
WREG32(CG_AT_1, value);
else if (index == 2)
WREG32(CG_AT_2, value);
else if (index == 3)
WREG32(CG_AT_3, value);
else if (index == 4)
WREG32(CG_AT_4, value);
else if (index == 5)
WREG32(CG_AT_5, value);
else if (index == 6)
WREG32(CG_AT_6, value);
else if (index == 7)
WREG32(CG_AT_7, value);
}
static void sumo_program_at(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct sumo_ps *ps = sumo_get_ps(rps);
u32 asi;
u32 i;
u32 m_a;
u32 a_t;
u32 r[SUMO_MAX_HARDWARE_POWERLEVELS];
u32 l[SUMO_MAX_HARDWARE_POWERLEVELS];
r[0] = SUMO_R_DFLT0;
r[1] = SUMO_R_DFLT1;
r[2] = SUMO_R_DFLT2;
r[3] = SUMO_R_DFLT3;
r[4] = SUMO_R_DFLT4;
l[0] = SUMO_L_DFLT0;
l[1] = SUMO_L_DFLT1;
l[2] = SUMO_L_DFLT2;
l[3] = SUMO_L_DFLT3;
l[4] = SUMO_L_DFLT4;
for (i = 0; i < ps->num_levels; i++) {
asi = (i == ps->num_levels - 1) ? pi->pasi : pi->asi;
m_a = asi * ps->levels[i].sclk / 100;
a_t = CG_R(m_a * r[i] / 100) | CG_L(m_a * l[i] / 100);
sumo_write_at(rdev, i, a_t);
}
if (ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE) {
asi = pi->pasi;
m_a = asi * pi->boost_pl.sclk / 100;
a_t = CG_R(m_a * r[ps->num_levels - 1] / 100) |
CG_L(m_a * l[ps->num_levels - 1] / 100);
sumo_write_at(rdev, BOOST_DPM_LEVEL, a_t);
}
}
static void sumo_program_tp(struct radeon_device *rdev)
{
int i;
enum r600_td td = R600_TD_DFLT;
for (i = 0; i < SUMO_PM_NUMBER_OF_TC; i++) {
WREG32_P(CG_FFCT_0 + (i * 4), UTC_0(sumo_utc[i]), ~UTC_0_MASK);
WREG32_P(CG_FFCT_0 + (i * 4), DTC_0(sumo_dtc[i]), ~DTC_0_MASK);
}
if (td == R600_TD_AUTO)
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_FORCE_TREND_SEL);
else
WREG32_P(SCLK_PWRMGT_CNTL, FIR_FORCE_TREND_SEL, ~FIR_FORCE_TREND_SEL);
if (td == R600_TD_UP)
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_TREND_MODE);
if (td == R600_TD_DOWN)
WREG32_P(SCLK_PWRMGT_CNTL, FIR_TREND_MODE, ~FIR_TREND_MODE);
}
void sumo_program_vc(struct radeon_device *rdev, u32 vrc)
{
WREG32(CG_FTV, vrc);
}
void sumo_clear_vc(struct radeon_device *rdev)
{
WREG32(CG_FTV, 0);
}
void sumo_program_sstp(struct radeon_device *rdev)
{
u32 p, u;
u32 xclk = radeon_get_xclk(rdev);
r600_calculate_u_and_p(SUMO_SST_DFLT,
xclk, 16, &p, &u);
WREG32(CG_SSP, SSTU(u) | SST(p));
}
static void sumo_set_divider_value(struct radeon_device *rdev,
u32 index, u32 divider)
{
u32 reg_index = index / 4;
u32 field_index = index % 4;
if (field_index == 0)
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
SCLK_FSTATE_0_DIV(divider), ~SCLK_FSTATE_0_DIV_MASK);
else if (field_index == 1)
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
SCLK_FSTATE_1_DIV(divider), ~SCLK_FSTATE_1_DIV_MASK);
else if (field_index == 2)
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
SCLK_FSTATE_2_DIV(divider), ~SCLK_FSTATE_2_DIV_MASK);
else if (field_index == 3)
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
SCLK_FSTATE_3_DIV(divider), ~SCLK_FSTATE_3_DIV_MASK);
}
static void sumo_set_ds_dividers(struct radeon_device *rdev,
u32 index, u32 divider)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
if (pi->enable_sclk_ds) {
u32 dpm_ctrl = RREG32(CG_SCLK_DPM_CTRL_6);
dpm_ctrl &= ~(0x7 << (index * 3));
dpm_ctrl |= (divider << (index * 3));
WREG32(CG_SCLK_DPM_CTRL_6, dpm_ctrl);
}
}
static void sumo_set_ss_dividers(struct radeon_device *rdev,
u32 index, u32 divider)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
if (pi->enable_sclk_ds) {
u32 dpm_ctrl = RREG32(CG_SCLK_DPM_CTRL_11);
dpm_ctrl &= ~(0x7 << (index * 3));
dpm_ctrl |= (divider << (index * 3));
WREG32(CG_SCLK_DPM_CTRL_11, dpm_ctrl);
}
}
static void sumo_set_vid(struct radeon_device *rdev, u32 index, u32 vid)
{
u32 voltage_cntl = RREG32(CG_DPM_VOLTAGE_CNTL);
voltage_cntl &= ~(DPM_STATE0_LEVEL_MASK << (index * 2));
voltage_cntl |= (vid << (DPM_STATE0_LEVEL_SHIFT + index * 2));
WREG32(CG_DPM_VOLTAGE_CNTL, voltage_cntl);
}
static void sumo_set_allos_gnb_slow(struct radeon_device *rdev, u32 index, u32 gnb_slow)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
u32 temp = gnb_slow;
u32 cg_sclk_dpm_ctrl_3;
if (pi->driver_nbps_policy_disable)
temp = 1;
cg_sclk_dpm_ctrl_3 = RREG32(CG_SCLK_DPM_CTRL_3);
cg_sclk_dpm_ctrl_3 &= ~(GNB_SLOW_FSTATE_0_MASK << index);
cg_sclk_dpm_ctrl_3 |= (temp << (GNB_SLOW_FSTATE_0_SHIFT + index));
WREG32(CG_SCLK_DPM_CTRL_3, cg_sclk_dpm_ctrl_3);
}
static void sumo_program_power_level(struct radeon_device *rdev,
struct sumo_pl *pl, u32 index)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
int ret;
struct atom_clock_dividers dividers;
u32 ds_en = RREG32(DEEP_SLEEP_CNTL) & ENABLE_DS;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
pl->sclk, false, ÷rs);
if (ret)
return;
sumo_set_divider_value(rdev, index, dividers.post_div);
sumo_set_vid(rdev, index, pl->vddc_index);
if (pl->ss_divider_index == 0 || pl->ds_divider_index == 0) {
if (ds_en)
WREG32_P(DEEP_SLEEP_CNTL, 0, ~ENABLE_DS);
} else {
sumo_set_ss_dividers(rdev, index, pl->ss_divider_index);
sumo_set_ds_dividers(rdev, index, pl->ds_divider_index);
if (!ds_en)
WREG32_P(DEEP_SLEEP_CNTL, ENABLE_DS, ~ENABLE_DS);
}
sumo_set_allos_gnb_slow(rdev, index, pl->allow_gnb_slow);
if (pi->enable_boost)
sumo_set_tdp_limit(rdev, index, pl->sclk_dpm_tdp_limit);
}
static void sumo_power_level_enable(struct radeon_device *rdev, u32 index, bool enable)
{
u32 reg_index = index / 4;
u32 field_index = index % 4;
if (field_index == 0)
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
enable ? SCLK_FSTATE_0_VLD : 0, ~SCLK_FSTATE_0_VLD);
else if (field_index == 1)
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
enable ? SCLK_FSTATE_1_VLD : 0, ~SCLK_FSTATE_1_VLD);
else if (field_index == 2)
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
enable ? SCLK_FSTATE_2_VLD : 0, ~SCLK_FSTATE_2_VLD);
else if (field_index == 3)
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
enable ? SCLK_FSTATE_3_VLD : 0, ~SCLK_FSTATE_3_VLD);
}
static bool sumo_dpm_enabled(struct radeon_device *rdev)
{
if (RREG32(CG_SCLK_DPM_CTRL_3) & DPM_SCLK_ENABLE)
return true;
else
return false;
}
static void sumo_start_dpm(struct radeon_device *rdev)
{
WREG32_P(CG_SCLK_DPM_CTRL_3, DPM_SCLK_ENABLE, ~DPM_SCLK_ENABLE);
}
static void sumo_stop_dpm(struct radeon_device *rdev)
{
WREG32_P(CG_SCLK_DPM_CTRL_3, 0, ~DPM_SCLK_ENABLE);
}
static void sumo_set_forced_mode(struct radeon_device *rdev, bool enable)
{
if (enable)
WREG32_P(CG_SCLK_DPM_CTRL_3, FORCE_SCLK_STATE_EN, ~FORCE_SCLK_STATE_EN);
else
WREG32_P(CG_SCLK_DPM_CTRL_3, 0, ~FORCE_SCLK_STATE_EN);
}
static void sumo_set_forced_mode_enabled(struct radeon_device *rdev)
{
int i;
sumo_set_forced_mode(rdev, true);
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32(CG_SCLK_STATUS) & SCLK_OVERCLK_DETECT)
break;
udelay(1);
}
}
static void sumo_wait_for_level_0(struct radeon_device *rdev)
{
int i;
for (i = 0; i < rdev->usec_timeout; i++) {
if ((RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) == 0)
break;
udelay(1);
}
for (i = 0; i < rdev->usec_timeout; i++) {
if ((RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_INDEX_MASK) == 0)
break;
udelay(1);
}
}
static void sumo_set_forced_mode_disabled(struct radeon_device *rdev)
{
sumo_set_forced_mode(rdev, false);
}
static void sumo_enable_power_level_0(struct radeon_device *rdev)
{
sumo_power_level_enable(rdev, 0, true);
}
static void sumo_patch_boost_state(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct sumo_ps *new_ps = sumo_get_ps(rps);
if (new_ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE) {
pi->boost_pl = new_ps->levels[new_ps->num_levels - 1];
pi->boost_pl.sclk = pi->sys_info.boost_sclk;
pi->boost_pl.vddc_index = pi->sys_info.boost_vid_2bit;
pi->boost_pl.sclk_dpm_tdp_limit = pi->sys_info.sclk_dpm_tdp_limit_boost;
}
}
static void sumo_pre_notify_alt_vddnb_change(struct radeon_device *rdev,
struct radeon_ps *new_rps,
struct radeon_ps *old_rps)
{
struct sumo_ps *new_ps = sumo_get_ps(new_rps);
struct sumo_ps *old_ps = sumo_get_ps(old_rps);
u32 nbps1_old = 0;
u32 nbps1_new = 0;
if (old_ps != NULL)
nbps1_old = (old_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE) ? 1 : 0;
nbps1_new = (new_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE) ? 1 : 0;
if (nbps1_old == 1 && nbps1_new == 0)
sumo_smu_notify_alt_vddnb_change(rdev, 0, 0);
}
static void sumo_post_notify_alt_vddnb_change(struct radeon_device *rdev,
struct radeon_ps *new_rps,
struct radeon_ps *old_rps)
{
struct sumo_ps *new_ps = sumo_get_ps(new_rps);
struct sumo_ps *old_ps = sumo_get_ps(old_rps);
u32 nbps1_old = 0;
u32 nbps1_new = 0;
if (old_ps != NULL)
nbps1_old = (old_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE)? 1 : 0;
nbps1_new = (new_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE)? 1 : 0;
if (nbps1_old == 0 && nbps1_new == 1)
sumo_smu_notify_alt_vddnb_change(rdev, 1, 1);
}
static void sumo_enable_boost(struct radeon_device *rdev,
struct radeon_ps *rps,
bool enable)
{
struct sumo_ps *new_ps = sumo_get_ps(rps);
if (enable) {
if (new_ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE)
sumo_boost_state_enable(rdev, true);
} else
sumo_boost_state_enable(rdev, false);
}
static void sumo_set_forced_level(struct radeon_device *rdev, u32 index)
{
WREG32_P(CG_SCLK_DPM_CTRL_3, FORCE_SCLK_STATE(index), ~FORCE_SCLK_STATE_MASK);
}
static void sumo_set_forced_level_0(struct radeon_device *rdev)
{
sumo_set_forced_level(rdev, 0);
}
static void sumo_program_wl(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct sumo_ps *new_ps = sumo_get_ps(rps);
u32 dpm_ctrl4 = RREG32(CG_SCLK_DPM_CTRL_4);
dpm_ctrl4 &= 0xFFFFFF00;
dpm_ctrl4 |= (1 << (new_ps->num_levels - 1));
if (new_ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE)
dpm_ctrl4 |= (1 << BOOST_DPM_LEVEL);
WREG32(CG_SCLK_DPM_CTRL_4, dpm_ctrl4);
}
static void sumo_program_power_levels_0_to_n(struct radeon_device *rdev,
struct radeon_ps *new_rps,
struct radeon_ps *old_rps)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct sumo_ps *new_ps = sumo_get_ps(new_rps);
struct sumo_ps *old_ps = sumo_get_ps(old_rps);
u32 i;
u32 n_current_state_levels = (old_ps == NULL) ? 1 : old_ps->num_levels;
for (i = 0; i < new_ps->num_levels; i++) {
sumo_program_power_level(rdev, &new_ps->levels[i], i);
sumo_power_level_enable(rdev, i, true);
}
for (i = new_ps->num_levels; i < n_current_state_levels; i++)
sumo_power_level_enable(rdev, i, false);
if (new_ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE)
sumo_program_power_level(rdev, &pi->boost_pl, BOOST_DPM_LEVEL);
}
static void sumo_enable_acpi_pm(struct radeon_device *rdev)
{
WREG32_P(GENERAL_PWRMGT, STATIC_PM_EN, ~STATIC_PM_EN);
}
static void sumo_program_power_level_enter_state(struct radeon_device *rdev)
{
WREG32_P(CG_SCLK_DPM_CTRL_5, SCLK_FSTATE_BOOTUP(0), ~SCLK_FSTATE_BOOTUP_MASK);
}
static void sumo_program_acpi_power_level(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct atom_clock_dividers dividers;
int ret;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
pi->acpi_pl.sclk,
false, ÷rs);
if (ret)
return;
WREG32_P(CG_ACPI_CNTL, SCLK_ACPI_DIV(dividers.post_div), ~SCLK_ACPI_DIV_MASK);
WREG32_P(CG_ACPI_VOLTAGE_CNTL, 0, ~ACPI_VOLTAGE_EN);
}
static void sumo_program_bootup_state(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
u32 dpm_ctrl4 = RREG32(CG_SCLK_DPM_CTRL_4);
u32 i;
sumo_program_power_level(rdev, &pi->boot_pl, 0);
dpm_ctrl4 &= 0xFFFFFF00;
WREG32(CG_SCLK_DPM_CTRL_4, dpm_ctrl4);
for (i = 1; i < 8; i++)
sumo_power_level_enable(rdev, i, false);
}
static void sumo_setup_uvd_clocks(struct radeon_device *rdev,
struct radeon_ps *new_rps,
struct radeon_ps *old_rps)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
if (pi->enable_gfx_power_gating) {
sumo_gfx_powergating_enable(rdev, false);
}
radeon_set_uvd_clocks(rdev, new_rps->vclk, new_rps->dclk);
if (pi->enable_gfx_power_gating) {
if (!pi->disable_gfx_power_gating_in_uvd ||
!r600_is_uvd_state(new_rps->class, new_rps->class2))
sumo_gfx_powergating_enable(rdev, true);
}
}
static void sumo_set_uvd_clock_before_set_eng_clock(struct radeon_device *rdev,
struct radeon_ps *new_rps,
struct radeon_ps *old_rps)
{
struct sumo_ps *new_ps = sumo_get_ps(new_rps);
struct sumo_ps *current_ps = sumo_get_ps(old_rps);
if ((new_rps->vclk == old_rps->vclk) &&
(new_rps->dclk == old_rps->dclk))
return;
if (new_ps->levels[new_ps->num_levels - 1].sclk >=
current_ps->levels[current_ps->num_levels - 1].sclk)
return;
sumo_setup_uvd_clocks(rdev, new_rps, old_rps);
}
static void sumo_set_uvd_clock_after_set_eng_clock(struct radeon_device *rdev,
struct radeon_ps *new_rps,
struct radeon_ps *old_rps)
{
struct sumo_ps *new_ps = sumo_get_ps(new_rps);
struct sumo_ps *current_ps = sumo_get_ps(old_rps);
if ((new_rps->vclk == old_rps->vclk) &&
(new_rps->dclk == old_rps->dclk))
return;
if (new_ps->levels[new_ps->num_levels - 1].sclk <
current_ps->levels[current_ps->num_levels - 1].sclk)
return;
sumo_setup_uvd_clocks(rdev, new_rps, old_rps);
}
void sumo_take_smu_control(struct radeon_device *rdev, bool enable)
{
#if 0
u32 v = RREG32(DOUT_SCRATCH3);
if (enable)
v |= 0x4;
else
v &= 0xFFFFFFFB;
WREG32(DOUT_SCRATCH3, v);
#endif
}
static void sumo_enable_sclk_ds(struct radeon_device *rdev, bool enable)
{
if (enable) {
u32 deep_sleep_cntl = RREG32(DEEP_SLEEP_CNTL);
u32 deep_sleep_cntl2 = RREG32(DEEP_SLEEP_CNTL2);
u32 t = 1;
deep_sleep_cntl &= ~R_DIS;
deep_sleep_cntl &= ~HS_MASK;
deep_sleep_cntl |= HS(t > 4095 ? 4095 : t);
deep_sleep_cntl2 |= LB_UFP_EN;
deep_sleep_cntl2 &= INOUT_C_MASK;
deep_sleep_cntl2 |= INOUT_C(0xf);
WREG32(DEEP_SLEEP_CNTL2, deep_sleep_cntl2);
WREG32(DEEP_SLEEP_CNTL, deep_sleep_cntl);
} else
WREG32_P(DEEP_SLEEP_CNTL, 0, ~ENABLE_DS);
}
static void sumo_program_bootup_at(struct radeon_device *rdev)
{
WREG32_P(CG_AT_0, CG_R(0xffff), ~CG_R_MASK);
WREG32_P(CG_AT_0, CG_L(0), ~CG_L_MASK);
}
static void sumo_reset_am(struct radeon_device *rdev)
{
WREG32_P(SCLK_PWRMGT_CNTL, FIR_RESET, ~FIR_RESET);
}
static void sumo_start_am(struct radeon_device *rdev)
{
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_RESET);
}
static void sumo_program_ttp(struct radeon_device *rdev)
{
u32 xclk = radeon_get_xclk(rdev);
u32 p, u;
u32 cg_sclk_dpm_ctrl_5 = RREG32(CG_SCLK_DPM_CTRL_5);
r600_calculate_u_and_p(1000,
xclk, 16, &p, &u);
cg_sclk_dpm_ctrl_5 &= ~(TT_TP_MASK | TT_TU_MASK);
cg_sclk_dpm_ctrl_5 |= TT_TP(p) | TT_TU(u);
WREG32(CG_SCLK_DPM_CTRL_5, cg_sclk_dpm_ctrl_5);
}
static void sumo_program_ttt(struct radeon_device *rdev)
{
u32 cg_sclk_dpm_ctrl_3 = RREG32(CG_SCLK_DPM_CTRL_3);
struct sumo_power_info *pi = sumo_get_pi(rdev);
cg_sclk_dpm_ctrl_3 &= ~(GNB_TT_MASK | GNB_THERMTHRO_MASK);
cg_sclk_dpm_ctrl_3 |= GNB_TT(pi->thermal_auto_throttling + 49);
WREG32(CG_SCLK_DPM_CTRL_3, cg_sclk_dpm_ctrl_3);
}
static void sumo_enable_voltage_scaling(struct radeon_device *rdev, bool enable)
{
if (enable) {
WREG32_P(CG_DPM_VOLTAGE_CNTL, DPM_VOLTAGE_EN, ~DPM_VOLTAGE_EN);
WREG32_P(CG_CG_VOLTAGE_CNTL, 0, ~CG_VOLTAGE_EN);
} else {
WREG32_P(CG_CG_VOLTAGE_CNTL, CG_VOLTAGE_EN, ~CG_VOLTAGE_EN);
WREG32_P(CG_DPM_VOLTAGE_CNTL, 0, ~DPM_VOLTAGE_EN);
}
}
static void sumo_override_cnb_thermal_events(struct radeon_device *rdev)
{
WREG32_P(CG_SCLK_DPM_CTRL_3, CNB_THERMTHRO_MASK_SCLK,
~CNB_THERMTHRO_MASK_SCLK);
}
static void sumo_program_dc_hto(struct radeon_device *rdev)
{
u32 cg_sclk_dpm_ctrl_4 = RREG32(CG_SCLK_DPM_CTRL_4);
u32 p, u;
u32 xclk = radeon_get_xclk(rdev);
r600_calculate_u_and_p(100000,
xclk, 14, &p, &u);
cg_sclk_dpm_ctrl_4 &= ~(DC_HDC_MASK | DC_HU_MASK);
cg_sclk_dpm_ctrl_4 |= DC_HDC(p) | DC_HU(u);
WREG32(CG_SCLK_DPM_CTRL_4, cg_sclk_dpm_ctrl_4);
}
static void sumo_force_nbp_state(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct sumo_ps *new_ps = sumo_get_ps(rps);
if (!pi->driver_nbps_policy_disable) {
if (new_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE)
WREG32_P(CG_SCLK_DPM_CTRL_3, FORCE_NB_PSTATE_1, ~FORCE_NB_PSTATE_1);
else
WREG32_P(CG_SCLK_DPM_CTRL_3, 0, ~FORCE_NB_PSTATE_1);
}
}
u32 sumo_get_sleep_divider_from_id(u32 id)
{
return 1 << id;
}
u32 sumo_get_sleep_divider_id_from_clock(struct radeon_device *rdev,
u32 sclk,
u32 min_sclk_in_sr)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
u32 i;
u32 temp;
u32 min = (min_sclk_in_sr > SUMO_MINIMUM_ENGINE_CLOCK) ?
min_sclk_in_sr : SUMO_MINIMUM_ENGINE_CLOCK;
if (sclk < min)
return 0;
if (!pi->enable_sclk_ds)
return 0;
for (i = SUMO_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
temp = sclk / sumo_get_sleep_divider_from_id(i);
if (temp >= min || i == 0)
break;
}
return i;
}
static u32 sumo_get_valid_engine_clock(struct radeon_device *rdev,
u32 lower_limit)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
u32 i;
for (i = 0; i < pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries; i++) {
if (pi->sys_info.sclk_voltage_mapping_table.entries[i].sclk_frequency >= lower_limit)
return pi->sys_info.sclk_voltage_mapping_table.entries[i].sclk_frequency;
}
return pi->sys_info.sclk_voltage_mapping_table.entries[pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1].sclk_frequency;
}
static void sumo_patch_thermal_state(struct radeon_device *rdev,
struct sumo_ps *ps,
struct sumo_ps *current_ps)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
u32 sclk_in_sr = pi->sys_info.min_sclk;
u32 current_vddc;
u32 current_sclk;
u32 current_index = 0;
if (current_ps) {
current_vddc = current_ps->levels[current_index].vddc_index;
current_sclk = current_ps->levels[current_index].sclk;
} else {
current_vddc = pi->boot_pl.vddc_index;
current_sclk = pi->boot_pl.sclk;
}
ps->levels[0].vddc_index = current_vddc;
if (ps->levels[0].sclk > current_sclk)
ps->levels[0].sclk = current_sclk;
ps->levels[0].ss_divider_index =
sumo_get_sleep_divider_id_from_clock(rdev, ps->levels[0].sclk, sclk_in_sr);
ps->levels[0].ds_divider_index =
sumo_get_sleep_divider_id_from_clock(rdev, ps->levels[0].sclk, SUMO_MINIMUM_ENGINE_CLOCK);
if (ps->levels[0].ds_divider_index > ps->levels[0].ss_divider_index + 1)
ps->levels[0].ds_divider_index = ps->levels[0].ss_divider_index + 1;
if (ps->levels[0].ss_divider_index == ps->levels[0].ds_divider_index) {
if (ps->levels[0].ss_divider_index > 1)
ps->levels[0].ss_divider_index = ps->levels[0].ss_divider_index - 1;
}
if (ps->levels[0].ss_divider_index == 0)
ps->levels[0].ds_divider_index = 0;
if (ps->levels[0].ds_divider_index == 0)
ps->levels[0].ss_divider_index = 0;
}
static void sumo_apply_state_adjust_rules(struct radeon_device *rdev,
struct radeon_ps *new_rps,
struct radeon_ps *old_rps)
{
struct sumo_ps *ps = sumo_get_ps(new_rps);
struct sumo_ps *current_ps = sumo_get_ps(old_rps);
struct sumo_power_info *pi = sumo_get_pi(rdev);
u32 min_voltage = 0;
u32 min_sclk = pi->sys_info.min_sclk;
u32 sclk_in_sr = pi->sys_info.min_sclk;
u32 i;
if (new_rps->class & ATOM_PPLIB_CLASSIFICATION_THERMAL)
return sumo_patch_thermal_state(rdev, ps, current_ps);
if (pi->enable_boost) {
if (new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE)
ps->flags |= SUMO_POWERSTATE_FLAGS_BOOST_STATE;
}
if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_BATTERY) ||
(new_rps->class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) ||
(new_rps->class & ATOM_PPLIB_CLASSIFICATION_HDSTATE))
ps->flags |= SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE;
for (i = 0; i < ps->num_levels; i++) {
if (ps->levels[i].vddc_index < min_voltage)
ps->levels[i].vddc_index = min_voltage;
if (ps->levels[i].sclk < min_sclk)
ps->levels[i].sclk =
sumo_get_valid_engine_clock(rdev, min_sclk);
ps->levels[i].ss_divider_index =
sumo_get_sleep_divider_id_from_clock(rdev, ps->levels[i].sclk, sclk_in_sr);
ps->levels[i].ds_divider_index =
sumo_get_sleep_divider_id_from_clock(rdev, ps->levels[i].sclk, SUMO_MINIMUM_ENGINE_CLOCK);
if (ps->levels[i].ds_divider_index > ps->levels[i].ss_divider_index + 1)
ps->levels[i].ds_divider_index = ps->levels[i].ss_divider_index + 1;
if (ps->levels[i].ss_divider_index == ps->levels[i].ds_divider_index) {
if (ps->levels[i].ss_divider_index > 1)
ps->levels[i].ss_divider_index = ps->levels[i].ss_divider_index - 1;
}
if (ps->levels[i].ss_divider_index == 0)
ps->levels[i].ds_divider_index = 0;
if (ps->levels[i].ds_divider_index == 0)
ps->levels[i].ss_divider_index = 0;
if (ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE)
ps->levels[i].allow_gnb_slow = 1;
else if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) ||
(new_rps->class2 & ATOM_PPLIB_CLASSIFICATION2_MVC))
ps->levels[i].allow_gnb_slow = 0;
else if (i == ps->num_levels - 1)
ps->levels[i].allow_gnb_slow = 0;
else
ps->levels[i].allow_gnb_slow = 1;
}
}
static void sumo_cleanup_asic(struct radeon_device *rdev)
{
sumo_take_smu_control(rdev, false);
}
static int sumo_set_thermal_temperature_range(struct radeon_device *rdev,
int min_temp, int max_temp)
{
int low_temp = 0 * 1000;
int high_temp = 255 * 1000;
if (low_temp < min_temp)
low_temp = min_temp;
if (high_temp > max_temp)
high_temp = max_temp;
if (high_temp < low_temp) {
DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
return -EINVAL;
}
WREG32_P(CG_THERMAL_INT, DIG_THERM_INTH(49 + (high_temp / 1000)), ~DIG_THERM_INTH_MASK);
WREG32_P(CG_THERMAL_INT, DIG_THERM_INTL(49 + (low_temp / 1000)), ~DIG_THERM_INTL_MASK);
rdev->pm.dpm.thermal.min_temp = low_temp;
rdev->pm.dpm.thermal.max_temp = high_temp;
return 0;
}
static void sumo_update_current_ps(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct sumo_ps *new_ps = sumo_get_ps(rps);
struct sumo_power_info *pi = sumo_get_pi(rdev);
pi->current_rps = *rps;
pi->current_ps = *new_ps;
pi->current_rps.ps_priv = &pi->current_ps;
}
static void sumo_update_requested_ps(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct sumo_ps *new_ps = sumo_get_ps(rps);
struct sumo_power_info *pi = sumo_get_pi(rdev);
pi->requested_rps = *rps;
pi->requested_ps = *new_ps;
pi->requested_rps.ps_priv = &pi->requested_ps;
}
int sumo_dpm_enable(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
if (sumo_dpm_enabled(rdev))
return -EINVAL;
sumo_program_bootup_state(rdev);
sumo_init_bsp(rdev);
sumo_reset_am(rdev);
sumo_program_tp(rdev);
sumo_program_bootup_at(rdev);
sumo_start_am(rdev);
if (pi->enable_auto_thermal_throttling) {
sumo_program_ttp(rdev);
sumo_program_ttt(rdev);
}
sumo_program_dc_hto(rdev);
sumo_program_power_level_enter_state(rdev);
sumo_enable_voltage_scaling(rdev, true);
sumo_program_sstp(rdev);
sumo_program_vc(rdev, SUMO_VRC_DFLT);
sumo_override_cnb_thermal_events(rdev);
sumo_start_dpm(rdev);
sumo_wait_for_level_0(rdev);
if (pi->enable_sclk_ds)
sumo_enable_sclk_ds(rdev, true);
if (pi->enable_boost)
sumo_enable_boost_timer(rdev);
sumo_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
return 0;
}
int sumo_dpm_late_enable(struct radeon_device *rdev)
{
int ret;
ret = sumo_enable_clock_power_gating(rdev);
if (ret)
return ret;
if (rdev->irq.installed &&
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
ret = sumo_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
if (ret)
return ret;
rdev->irq.dpm_thermal = true;
radeon_irq_set(rdev);
}
return 0;
}
void sumo_dpm_disable(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
if (!sumo_dpm_enabled(rdev))
return;
sumo_disable_clock_power_gating(rdev);
if (pi->enable_sclk_ds)
sumo_enable_sclk_ds(rdev, false);
sumo_clear_vc(rdev);
sumo_wait_for_level_0(rdev);
sumo_stop_dpm(rdev);
sumo_enable_voltage_scaling(rdev, false);
if (rdev->irq.installed &&
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
rdev->irq.dpm_thermal = false;
radeon_irq_set(rdev);
}
sumo_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
}
int sumo_dpm_pre_set_power_state(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps;
struct radeon_ps *new_ps = &requested_ps;
sumo_update_requested_ps(rdev, new_ps);
if (pi->enable_dynamic_patch_ps)
sumo_apply_state_adjust_rules(rdev,
&pi->requested_rps,
&pi->current_rps);
return 0;
}
int sumo_dpm_set_power_state(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct radeon_ps *new_ps = &pi->requested_rps;
struct radeon_ps *old_ps = &pi->current_rps;
if (pi->enable_dpm)
sumo_set_uvd_clock_before_set_eng_clock(rdev, new_ps, old_ps);
if (pi->enable_boost) {
sumo_enable_boost(rdev, new_ps, false);
sumo_patch_boost_state(rdev, new_ps);
}
if (pi->enable_dpm) {
sumo_pre_notify_alt_vddnb_change(rdev, new_ps, old_ps);
sumo_enable_power_level_0(rdev);
sumo_set_forced_level_0(rdev);
sumo_set_forced_mode_enabled(rdev);
sumo_wait_for_level_0(rdev);
sumo_program_power_levels_0_to_n(rdev, new_ps, old_ps);
sumo_program_wl(rdev, new_ps);
sumo_program_bsp(rdev, new_ps);
sumo_program_at(rdev, new_ps);
sumo_force_nbp_state(rdev, new_ps);
sumo_set_forced_mode_disabled(rdev);
sumo_set_forced_mode_enabled(rdev);
sumo_set_forced_mode_disabled(rdev);
sumo_post_notify_alt_vddnb_change(rdev, new_ps, old_ps);
}
if (pi->enable_boost)
sumo_enable_boost(rdev, new_ps, true);
if (pi->enable_dpm)
sumo_set_uvd_clock_after_set_eng_clock(rdev, new_ps, old_ps);
return 0;
}
void sumo_dpm_post_set_power_state(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct radeon_ps *new_ps = &pi->requested_rps;
sumo_update_current_ps(rdev, new_ps);
}
#if 0
void sumo_dpm_reset_asic(struct radeon_device *rdev)
{
sumo_program_bootup_state(rdev);
sumo_enable_power_level_0(rdev);
sumo_set_forced_level_0(rdev);
sumo_set_forced_mode_enabled(rdev);
sumo_wait_for_level_0(rdev);
sumo_set_forced_mode_disabled(rdev);
sumo_set_forced_mode_enabled(rdev);
sumo_set_forced_mode_disabled(rdev);
}
#endif
void sumo_dpm_setup_asic(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
sumo_initialize_m3_arb(rdev);
pi->fw_version = sumo_get_running_fw_version(rdev);
DRM_INFO("Found smc ucode version: 0x%08x\n", pi->fw_version);
sumo_program_acpi_power_level(rdev);
sumo_enable_acpi_pm(rdev);
sumo_take_smu_control(rdev, true);
}
void sumo_dpm_display_configuration_changed(struct radeon_device *rdev)
{
}
union power_info {
struct _ATOM_POWERPLAY_INFO info;
struct _ATOM_POWERPLAY_INFO_V2 info_2;
struct _ATOM_POWERPLAY_INFO_V3 info_3;
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
};
union pplib_clock_info {
struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
};
union pplib_power_state {
struct _ATOM_PPLIB_STATE v1;
struct _ATOM_PPLIB_STATE_V2 v2;
};
static void sumo_patch_boot_state(struct radeon_device *rdev,
struct sumo_ps *ps)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
ps->num_levels = 1;
ps->flags = 0;
ps->levels[0] = pi->boot_pl;
}
static void sumo_parse_pplib_non_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps,
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
u8 table_rev)
{
struct sumo_ps *ps = sumo_get_ps(rps);
rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
rps->class = le16_to_cpu(non_clock_info->usClassification);
rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
} else {
rps->vclk = 0;
rps->dclk = 0;
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
rdev->pm.dpm.boot_ps = rps;
sumo_patch_boot_state(rdev, ps);
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
rdev->pm.dpm.uvd_ps = rps;
}
static void sumo_parse_pplib_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps, int index,
union pplib_clock_info *clock_info)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct sumo_ps *ps = sumo_get_ps(rps);
struct sumo_pl *pl = &ps->levels[index];
u32 sclk;
sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
sclk |= clock_info->sumo.ucEngineClockHigh << 16;
pl->sclk = sclk;
pl->vddc_index = clock_info->sumo.vddcIndex;
pl->sclk_dpm_tdp_limit = clock_info->sumo.tdpLimit;
ps->num_levels = index + 1;
if (pi->enable_sclk_ds) {
pl->ds_divider_index = 5;
pl->ss_divider_index = 4;
}
}
static int sumo_parse_power_table(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
union pplib_power_state *power_state;
int i, j, k, non_clock_array_index, clock_array_index;
union pplib_clock_info *clock_info;
struct _StateArray *state_array;
struct _ClockInfoArray *clock_info_array;
struct _NonClockInfoArray *non_clock_info_array;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
u8 *power_state_offset;
struct sumo_ps *ps;
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
state_array = (struct _StateArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usStateArrayOffset));
clock_info_array = (struct _ClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
non_clock_info_array = (struct _NonClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
rdev->pm.dpm.ps = kcalloc(state_array->ucNumEntries,
sizeof(struct radeon_ps),
GFP_KERNEL);
if (!rdev->pm.dpm.ps)
return -ENOMEM;
power_state_offset = (u8 *)state_array->states;
for (i = 0; i < state_array->ucNumEntries; i++) {
u8 *idx;
power_state = (union pplib_power_state *)power_state_offset;
non_clock_array_index = power_state->v2.nonClockInfoIndex;
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
&non_clock_info_array->nonClockInfo[non_clock_array_index];
if (!rdev->pm.power_state[i].clock_info)
return -EINVAL;
ps = kzalloc(sizeof(struct sumo_ps), GFP_KERNEL);
if (ps == NULL) {
kfree(rdev->pm.dpm.ps);
return -ENOMEM;
}
rdev->pm.dpm.ps[i].ps_priv = ps;
k = 0;
idx = (u8 *)&power_state->v2.clockInfoIndex[0];
for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
clock_array_index = idx[j];
if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
break;
clock_info = (union pplib_clock_info *)
((u8 *)&clock_info_array->clockInfo[0] +
(clock_array_index * clock_info_array->ucEntrySize));
sumo_parse_pplib_clock_info(rdev,
&rdev->pm.dpm.ps[i], k,
clock_info);
k++;
}
sumo_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
non_clock_info,
non_clock_info_array->ucEntrySize);
power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
}
rdev->pm.dpm.num_ps = state_array->ucNumEntries;
return 0;
}
u32 sumo_convert_vid2_to_vid7(struct radeon_device *rdev,
struct sumo_vid_mapping_table *vid_mapping_table,
u32 vid_2bit)
{
u32 i;
for (i = 0; i < vid_mapping_table->num_entries; i++) {
if (vid_mapping_table->entries[i].vid_2bit == vid_2bit)
return vid_mapping_table->entries[i].vid_7bit;
}
return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_7bit;
}
#if 0
u32 sumo_convert_vid7_to_vid2(struct radeon_device *rdev,
struct sumo_vid_mapping_table *vid_mapping_table,
u32 vid_7bit)
{
u32 i;
for (i = 0; i < vid_mapping_table->num_entries; i++) {
if (vid_mapping_table->entries[i].vid_7bit == vid_7bit)
return vid_mapping_table->entries[i].vid_2bit;
}
return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_2bit;
}
#endif
static u16 sumo_convert_voltage_index_to_value(struct radeon_device *rdev,
u32 vid_2bit)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
u32 vid_7bit = sumo_convert_vid2_to_vid7(rdev, &pi->sys_info.vid_mapping_table, vid_2bit);
if (vid_7bit > 0x7C)
return 0;
return (15500 - vid_7bit * 125 + 5) / 10;
}
static void sumo_construct_display_voltage_mapping_table(struct radeon_device *rdev,
struct sumo_disp_clock_voltage_mapping_table *disp_clk_voltage_mapping_table,
ATOM_CLK_VOLT_CAPABILITY *table)
{
u32 i;
for (i = 0; i < SUMO_MAX_NUMBER_VOLTAGES; i++) {
if (table[i].ulMaximumSupportedCLK == 0)
break;
disp_clk_voltage_mapping_table->display_clock_frequency[i] =
table[i].ulMaximumSupportedCLK;
}
disp_clk_voltage_mapping_table->num_max_voltage_levels = i;
if (disp_clk_voltage_mapping_table->num_max_voltage_levels == 0) {
disp_clk_voltage_mapping_table->display_clock_frequency[0] = 80000;
disp_clk_voltage_mapping_table->num_max_voltage_levels = 1;
}
}
void sumo_construct_sclk_voltage_mapping_table(struct radeon_device *rdev,
struct sumo_sclk_voltage_mapping_table *sclk_voltage_mapping_table,
ATOM_AVAILABLE_SCLK_LIST *table)
{
u32 i;
u32 n = 0;
u32 prev_sclk = 0;
for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) {
if (table[i].ulSupportedSCLK > prev_sclk) {
sclk_voltage_mapping_table->entries[n].sclk_frequency =
table[i].ulSupportedSCLK;
sclk_voltage_mapping_table->entries[n].vid_2bit =
table[i].usVoltageIndex;
prev_sclk = table[i].ulSupportedSCLK;
n++;
}
}
sclk_voltage_mapping_table->num_max_dpm_entries = n;
}
void sumo_construct_vid_mapping_table(struct radeon_device *rdev,
struct sumo_vid_mapping_table *vid_mapping_table,
ATOM_AVAILABLE_SCLK_LIST *table)
{
u32 i, j;
for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) {
if (table[i].ulSupportedSCLK != 0) {
vid_mapping_table->entries[table[i].usVoltageIndex].vid_7bit =
table[i].usVoltageID;
vid_mapping_table->entries[table[i].usVoltageIndex].vid_2bit =
table[i].usVoltageIndex;
}
}
for (i = 0; i < SUMO_MAX_NUMBER_VOLTAGES; i++) {
if (vid_mapping_table->entries[i].vid_7bit == 0) {
for (j = i + 1; j < SUMO_MAX_NUMBER_VOLTAGES; j++) {
if (vid_mapping_table->entries[j].vid_7bit != 0) {
vid_mapping_table->entries[i] =
vid_mapping_table->entries[j];
vid_mapping_table->entries[j].vid_7bit = 0;
break;
}
}
if (j == SUMO_MAX_NUMBER_VOLTAGES)
break;
}
}
vid_mapping_table->num_entries = i;
}
union igp_info {
struct _ATOM_INTEGRATED_SYSTEM_INFO info;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
};
static int sumo_parse_sys_info_table(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
union igp_info *igp_info;
u8 frev, crev;
u16 data_offset;
int i;
if (atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
igp_info = (union igp_info *)(mode_info->atom_context->bios +
data_offset);
if (crev != 6) {
DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
return -EINVAL;
}
pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_6.ulBootUpEngineClock);
pi->sys_info.min_sclk = le32_to_cpu(igp_info->info_6.ulMinEngineClock);
pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_6.ulBootUpUMAClock);
pi->sys_info.bootup_nb_voltage_index =
le16_to_cpu(igp_info->info_6.usBootUpNBVoltage);
if (igp_info->info_6.ucHtcTmpLmt == 0)
pi->sys_info.htc_tmp_lmt = 203;
else
pi->sys_info.htc_tmp_lmt = igp_info->info_6.ucHtcTmpLmt;
if (igp_info->info_6.ucHtcHystLmt == 0)
pi->sys_info.htc_hyst_lmt = 5;
else
pi->sys_info.htc_hyst_lmt = igp_info->info_6.ucHtcHystLmt;
if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
}
for (i = 0; i < NUMBER_OF_M3ARB_PARAM_SETS; i++) {
pi->sys_info.csr_m3_arb_cntl_default[i] =
le32_to_cpu(igp_info->info_6.ulCSR_M3_ARB_CNTL_DEFAULT[i]);
pi->sys_info.csr_m3_arb_cntl_uvd[i] =
le32_to_cpu(igp_info->info_6.ulCSR_M3_ARB_CNTL_UVD[i]);
pi->sys_info.csr_m3_arb_cntl_fs3d[i] =
le32_to_cpu(igp_info->info_6.ulCSR_M3_ARB_CNTL_FS3D[i]);
}
pi->sys_info.sclk_dpm_boost_margin =
le32_to_cpu(igp_info->info_6.SclkDpmBoostMargin);
pi->sys_info.sclk_dpm_throttle_margin =
le32_to_cpu(igp_info->info_6.SclkDpmThrottleMargin);
pi->sys_info.sclk_dpm_tdp_limit_pg =
le16_to_cpu(igp_info->info_6.SclkDpmTdpLimitPG);
pi->sys_info.gnb_tdp_limit = le16_to_cpu(igp_info->info_6.GnbTdpLimit);
pi->sys_info.sclk_dpm_tdp_limit_boost =
le16_to_cpu(igp_info->info_6.SclkDpmTdpLimitBoost);
pi->sys_info.boost_sclk = le32_to_cpu(igp_info->info_6.ulBoostEngineCLock);
pi->sys_info.boost_vid_2bit = igp_info->info_6.ulBoostVid_2bit;
if (igp_info->info_6.EnableBoost)
pi->sys_info.enable_boost = true;
else
pi->sys_info.enable_boost = false;
sumo_construct_display_voltage_mapping_table(rdev,
&pi->sys_info.disp_clk_voltage_mapping_table,
igp_info->info_6.sDISPCLK_Voltage);
sumo_construct_sclk_voltage_mapping_table(rdev,
&pi->sys_info.sclk_voltage_mapping_table,
igp_info->info_6.sAvail_SCLK);
sumo_construct_vid_mapping_table(rdev, &pi->sys_info.vid_mapping_table,
igp_info->info_6.sAvail_SCLK);
}
return 0;
}
static void sumo_construct_boot_and_acpi_state(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
pi->boot_pl.ds_divider_index = 0;
pi->boot_pl.ss_divider_index = 0;
pi->boot_pl.allow_gnb_slow = 1;
pi->acpi_pl = pi->boot_pl;
pi->current_ps.num_levels = 1;
pi->current_ps.levels[0] = pi->boot_pl;
}
int sumo_dpm_init(struct radeon_device *rdev)
{
struct sumo_power_info *pi;
u32 hw_rev = (RREG32(HW_REV) & ATI_REV_ID_MASK) >> ATI_REV_ID_SHIFT;
int ret;
pi = kzalloc(sizeof(struct sumo_power_info), GFP_KERNEL);
if (pi == NULL)
return -ENOMEM;
rdev->pm.dpm.priv = pi;
pi->driver_nbps_policy_disable = false;
if ((rdev->family == CHIP_PALM) && (hw_rev < 3))
pi->disable_gfx_power_gating_in_uvd = true;
else
pi->disable_gfx_power_gating_in_uvd = false;
pi->enable_alt_vddnb = true;
pi->enable_sclk_ds = true;
pi->enable_dynamic_m3_arbiter = false;
pi->enable_dynamic_patch_ps = true;
if (rdev->family == CHIP_PALM)
pi->enable_gfx_power_gating = false;
else
pi->enable_gfx_power_gating = true;
pi->enable_gfx_clock_gating = true;
pi->enable_mg_clock_gating = true;
pi->enable_auto_thermal_throttling = true;
ret = sumo_parse_sys_info_table(rdev);
if (ret)
return ret;
sumo_construct_boot_and_acpi_state(rdev);
ret = r600_get_platform_caps(rdev);
if (ret)
return ret;
ret = sumo_parse_power_table(rdev);
if (ret)
return ret;
pi->pasi = CYPRESS_HASI_DFLT;
pi->asi = RV770_ASI_DFLT;
pi->thermal_auto_throttling = pi->sys_info.htc_tmp_lmt;
pi->enable_boost = pi->sys_info.enable_boost;
pi->enable_dpm = true;
return 0;
}
void sumo_dpm_print_power_state(struct radeon_device *rdev,
struct radeon_ps *rps)
{
int i;
struct sumo_ps *ps = sumo_get_ps(rps);
r600_dpm_print_class_info(rps->class, rps->class2);
r600_dpm_print_cap_info(rps->caps);
printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
for (i = 0; i < ps->num_levels; i++) {
struct sumo_pl *pl = &ps->levels[i];
printk("\t\tpower level %d sclk: %u vddc: %u\n",
i, pl->sclk,
sumo_convert_voltage_index_to_value(rdev, pl->vddc_index));
}
r600_dpm_print_ps_status(rdev, rps);
}
void sumo_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
struct seq_file *m)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct radeon_ps *rps = &pi->current_rps;
struct sumo_ps *ps = sumo_get_ps(rps);
struct sumo_pl *pl;
u32 current_index =
(RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_INDEX_MASK) >>
CURR_INDEX_SHIFT;
if (current_index == BOOST_DPM_LEVEL) {
pl = &pi->boost_pl;
seq_printf(m, "uvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
seq_printf(m, "power level %d sclk: %u vddc: %u\n",
current_index, pl->sclk,
sumo_convert_voltage_index_to_value(rdev, pl->vddc_index));
} else if (current_index >= ps->num_levels) {
seq_printf(m, "invalid dpm profile %d\n", current_index);
} else {
pl = &ps->levels[current_index];
seq_printf(m, "uvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
seq_printf(m, "power level %d sclk: %u vddc: %u\n",
current_index, pl->sclk,
sumo_convert_voltage_index_to_value(rdev, pl->vddc_index));
}
}
u32 sumo_dpm_get_current_sclk(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct radeon_ps *rps = &pi->current_rps;
struct sumo_ps *ps = sumo_get_ps(rps);
struct sumo_pl *pl;
u32 current_index =
(RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_INDEX_MASK) >>
CURR_INDEX_SHIFT;
if (current_index == BOOST_DPM_LEVEL) {
pl = &pi->boost_pl;
return pl->sclk;
} else if (current_index >= ps->num_levels) {
return 0;
} else {
pl = &ps->levels[current_index];
return pl->sclk;
}
}
u32 sumo_dpm_get_current_mclk(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
return pi->sys_info.bootup_uma_clk;
}
u16 sumo_dpm_get_current_vddc(struct radeon_device *rdev)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct radeon_ps *rps = &pi->current_rps;
struct sumo_ps *ps = sumo_get_ps(rps);
struct sumo_pl *pl;
u32 current_index =
(RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_INDEX_MASK) >>
CURR_INDEX_SHIFT;
if (current_index == BOOST_DPM_LEVEL) {
pl = &pi->boost_pl;
} else if (current_index >= ps->num_levels) {
return 0;
} else {
pl = &ps->levels[current_index];
}
return sumo_convert_voltage_index_to_value(rdev, pl->vddc_index);
}
void sumo_dpm_fini(struct radeon_device *rdev)
{
int i;
sumo_cleanup_asic(rdev);
for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
kfree(rdev->pm.dpm.ps[i].ps_priv);
}
kfree(rdev->pm.dpm.ps);
kfree(rdev->pm.dpm.priv);
}
u32 sumo_dpm_get_sclk(struct radeon_device *rdev, bool low)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct sumo_ps *requested_state = sumo_get_ps(&pi->requested_rps);
if (low)
return requested_state->levels[0].sclk;
else
return requested_state->levels[requested_state->num_levels - 1].sclk;
}
u32 sumo_dpm_get_mclk(struct radeon_device *rdev, bool low)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
return pi->sys_info.bootup_uma_clk;
}
int sumo_dpm_force_performance_level(struct radeon_device *rdev,
enum radeon_dpm_forced_level level)
{
struct sumo_power_info *pi = sumo_get_pi(rdev);
struct radeon_ps *rps = &pi->current_rps;
struct sumo_ps *ps = sumo_get_ps(rps);
int i;
if (ps->num_levels <= 1)
return 0;
if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
if (pi->enable_boost)
sumo_enable_boost(rdev, rps, false);
sumo_power_level_enable(rdev, ps->num_levels - 1, true);
sumo_set_forced_level(rdev, ps->num_levels - 1);
sumo_set_forced_mode_enabled(rdev);
for (i = 0; i < ps->num_levels - 1; i++) {
sumo_power_level_enable(rdev, i, false);
}
sumo_set_forced_mode(rdev, false);
sumo_set_forced_mode_enabled(rdev);
sumo_set_forced_mode(rdev, false);
} else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
if (pi->enable_boost)
sumo_enable_boost(rdev, rps, false);
sumo_power_level_enable(rdev, 0, true);
sumo_set_forced_level(rdev, 0);
sumo_set_forced_mode_enabled(rdev);
for (i = 1; i < ps->num_levels; i++) {
sumo_power_level_enable(rdev, i, false);
}
sumo_set_forced_mode(rdev, false);
sumo_set_forced_mode_enabled(rdev);
sumo_set_forced_mode(rdev, false);
} else {
for (i = 0; i < ps->num_levels; i++) {
sumo_power_level_enable(rdev, i, true);
}
if (pi->enable_boost)
sumo_enable_boost(rdev, rps, true);
}
rdev->pm.dpm.forced_level = level;
return 0;
}