// SPDX-License-Identifier: GPL-2.0-only
/*
 * C-Media CMI8788 driver - main driver module
 *
 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
 */

#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <sound/ac97_codec.h>
#include <sound/asoundef.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/mpu401.h>
#include <sound/pcm.h>
#include "oxygen.h"
#include "cm9780.h"

MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_DESCRIPTION("C-Media CMI8788 helper library");
MODULE_LICENSE("GPL v2");

#define DRIVER "oxygen"

static inline int oxygen_uart_input_ready(struct oxygen *chip)
{
	return !(oxygen_read8(chip, OXYGEN_MPU401 + 1) & MPU401_RX_EMPTY);
}

static void oxygen_read_uart(struct oxygen *chip)
{
	if (unlikely(!oxygen_uart_input_ready(chip))) {
		/* no data, but read it anyway to clear the interrupt */
		oxygen_read8(chip, OXYGEN_MPU401);
		return;
	}
	do {
		u8 data = oxygen_read8(chip, OXYGEN_MPU401);
		if (data == MPU401_ACK)
			continue;
		if (chip->uart_input_count >= ARRAY_SIZE(chip->uart_input))
			chip->uart_input_count = 0;
		chip->uart_input[chip->uart_input_count++] = data;
	} while (oxygen_uart_input_ready(chip));
	if (chip->model.uart_input)
		chip->model.uart_input(chip);
}

static irqreturn_t oxygen_interrupt(int dummy, void *dev_id)
{
	struct oxygen *chip = dev_id;
	unsigned int status, clear, elapsed_streams, i;

	status = oxygen_read16(chip, OXYGEN_INTERRUPT_STATUS);
	if (!status)
		return IRQ_NONE;

	spin_lock(&chip->reg_lock);

	clear = status & (OXYGEN_CHANNEL_A |
			  OXYGEN_CHANNEL_B |
			  OXYGEN_CHANNEL_C |
			  OXYGEN_CHANNEL_SPDIF |
			  OXYGEN_CHANNEL_MULTICH |
			  OXYGEN_CHANNEL_AC97 |
			  OXYGEN_INT_SPDIF_IN_DETECT |
			  OXYGEN_INT_GPIO |
			  OXYGEN_INT_AC97);
	if (clear) {
		if (clear & OXYGEN_INT_SPDIF_IN_DETECT)
			chip->interrupt_mask &= ~OXYGEN_INT_SPDIF_IN_DETECT;
		oxygen_write16(chip, OXYGEN_INTERRUPT_MASK,
			       chip->interrupt_mask & ~clear);
		oxygen_write16(chip, OXYGEN_INTERRUPT_MASK,
			       chip->interrupt_mask);
	}

	elapsed_streams = status & chip->pcm_running;

	spin_unlock(&chip->reg_lock);

	for (i = 0; i < PCM_COUNT; ++i)
		if ((elapsed_streams & (1 << i)) && chip->streams[i])
			snd_pcm_period_elapsed(chip->streams[i]);

	if (status & OXYGEN_INT_SPDIF_IN_DETECT) {
		spin_lock(&chip->reg_lock);
		i = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
		if (i & (OXYGEN_SPDIF_SENSE_INT | OXYGEN_SPDIF_LOCK_INT |
			 OXYGEN_SPDIF_RATE_INT)) {
			/* write the interrupt bit(s) to clear */
			oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, i);
			schedule_work(&chip->spdif_input_bits_work);
		}
		spin_unlock(&chip->reg_lock);
	}

	if (status & OXYGEN_INT_GPIO)
		schedule_work(&chip->gpio_work);

	if (status & OXYGEN_INT_MIDI) {
		if (chip->midi)
			snd_mpu401_uart_interrupt(0, chip->midi->private_data);
		else
			oxygen_read_uart(chip);
	}

	if (status & OXYGEN_INT_AC97)
		wake_up(&chip->ac97_waitqueue);

	return IRQ_HANDLED;
}

static void oxygen_spdif_input_bits_changed(struct work_struct *work)
{
	struct oxygen *chip = container_of(work, struct oxygen,
					   spdif_input_bits_work);
	u32 reg;

	/*
	 * This function gets called when there is new activity on the SPDIF
	 * input, or when we lose lock on the input signal, or when the rate
	 * changes.
	 */
	msleep(1);
	spin_lock_irq(&chip->reg_lock);
	reg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
	if ((reg & (OXYGEN_SPDIF_SENSE_STATUS |
		    OXYGEN_SPDIF_LOCK_STATUS))
	    == OXYGEN_SPDIF_SENSE_STATUS) {
		/*
		 * If we detect activity on the SPDIF input but cannot lock to
		 * a signal, the clock bit is likely to be wrong.
		 */
		reg ^= OXYGEN_SPDIF_IN_CLOCK_MASK;
		oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, reg);
		spin_unlock_irq(&chip->reg_lock);
		msleep(1);
		spin_lock_irq(&chip->reg_lock);
		reg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
		if ((reg & (OXYGEN_SPDIF_SENSE_STATUS |
			    OXYGEN_SPDIF_LOCK_STATUS))
		    == OXYGEN_SPDIF_SENSE_STATUS) {
			/* nothing detected with either clock; give up */
			if ((reg & OXYGEN_SPDIF_IN_CLOCK_MASK)
			    == OXYGEN_SPDIF_IN_CLOCK_192) {
				/*
				 * Reset clock to <= 96 kHz because this is
				 * more likely to be received next time.
				 */
				reg &= ~OXYGEN_SPDIF_IN_CLOCK_MASK;
				reg |= OXYGEN_SPDIF_IN_CLOCK_96;
				oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, reg);
			}
		}
	}
	spin_unlock_irq(&chip->reg_lock);

	if (chip->controls[CONTROL_SPDIF_INPUT_BITS]) {
		spin_lock_irq(&chip->reg_lock);
		chip->interrupt_mask |= OXYGEN_INT_SPDIF_IN_DETECT;
		oxygen_write16(chip, OXYGEN_INTERRUPT_MASK,
			       chip->interrupt_mask);
		spin_unlock_irq(&chip->reg_lock);

		/*
		 * We don't actually know that any channel status bits have
		 * changed, but let's send a notification just to be sure.
		 */
		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
			       &chip->controls[CONTROL_SPDIF_INPUT_BITS]->id);
	}
}

static void oxygen_gpio_changed(struct work_struct *work)
{
	struct oxygen *chip = container_of(work, struct oxygen, gpio_work);

	if (chip->model.gpio_changed)
		chip->model.gpio_changed(chip);
}

static void oxygen_proc_read(struct snd_info_entry *entry,
			     struct snd_info_buffer *buffer)
{
	struct oxygen *chip = entry->private_data;
	int i, j;

	switch (oxygen_read8(chip, OXYGEN_REVISION) & OXYGEN_PACKAGE_ID_MASK) {
	case OXYGEN_PACKAGE_ID_8786: i = '6'; break;
	case OXYGEN_PACKAGE_ID_8787: i = '7'; break;
	case OXYGEN_PACKAGE_ID_8788: i = '8'; break;
	default:                     i = '?'; break;
	}
	snd_iprintf(buffer, "CMI878%c:\n", i);
	for (i = 0; i < OXYGEN_IO_SIZE; i += 0x10) {
		snd_iprintf(buffer, "%02x:", i);
		for (j = 0; j < 0x10; ++j)
			snd_iprintf(buffer, " %02x", oxygen_read8(chip, i + j));
		snd_iprintf(buffer, "\n");
	}
	if (mutex_lock_interruptible(&chip->mutex) < 0)
		return;
	if (chip->has_ac97_0) {
		snd_iprintf(buffer, "\nAC97:\n");
		for (i = 0; i < 0x80; i += 0x10) {
			snd_iprintf(buffer, "%02x:", i);
			for (j = 0; j < 0x10; j += 2)
				snd_iprintf(buffer, " %04x",
					    oxygen_read_ac97(chip, 0, i + j));
			snd_iprintf(buffer, "\n");
		}
	}
	if (chip->has_ac97_1) {
		snd_iprintf(buffer, "\nAC97 2:\n");
		for (i = 0; i < 0x80; i += 0x10) {
			snd_iprintf(buffer, "%02x:", i);
			for (j = 0; j < 0x10; j += 2)
				snd_iprintf(buffer, " %04x",
					    oxygen_read_ac97(chip, 1, i + j));
			snd_iprintf(buffer, "\n");
		}
	}
	mutex_unlock(&chip->mutex);
	if (chip->model.dump_registers)
		chip->model.dump_registers(chip, buffer);
}

static void oxygen_proc_init(struct oxygen *chip)
{
	snd_card_ro_proc_new(chip->card, "oxygen", chip, oxygen_proc_read);
}

static const struct pci_device_id *
oxygen_search_pci_id(struct oxygen *chip, const struct pci_device_id ids[])
{
	u16 subdevice;

	/*
	 * Make sure the EEPROM pins are available, i.e., not used for SPI.
	 * (This function is called before we initialize or use SPI.)
	 */
	oxygen_clear_bits8(chip, OXYGEN_FUNCTION,
			   OXYGEN_FUNCTION_ENABLE_SPI_4_5);
	/*
	 * Read the subsystem device ID directly from the EEPROM, because the
	 * chip didn't if the first EEPROM word was overwritten.
	 */
	subdevice = oxygen_read_eeprom(chip, 2);
	/* use default ID if EEPROM is missing */
	if (subdevice == 0xffff && oxygen_read_eeprom(chip, 1) == 0xffff)
		subdevice = 0x8788;
	/*
	 * We use only the subsystem device ID for searching because it is
	 * unique even without the subsystem vendor ID, which may have been
	 * overwritten in the EEPROM.
	 */
	for (; ids->vendor; ++ids)
		if (ids->subdevice == subdevice &&
		    ids->driver_data != BROKEN_EEPROM_DRIVER_DATA)
			return ids;
	return NULL;
}

static void oxygen_restore_eeprom(struct oxygen *chip,
				  const struct pci_device_id *id)
{
	u16 eeprom_id;

	eeprom_id = oxygen_read_eeprom(chip, 0);
	if (eeprom_id != OXYGEN_EEPROM_ID &&
	    (eeprom_id != 0xffff || id->subdevice != 0x8788)) {
		/*
		 * This function gets called only when a known card model has
		 * been detected, i.e., we know there is a valid subsystem
		 * product ID at index 2 in the EEPROM.  Therefore, we have
		 * been able to deduce the correct subsystem vendor ID, and
		 * this is enough information to restore the original EEPROM
		 * contents.
		 */
		oxygen_write_eeprom(chip, 1, id->subvendor);
		oxygen_write_eeprom(chip, 0, OXYGEN_EEPROM_ID);

		oxygen_set_bits8(chip, OXYGEN_MISC,
				 OXYGEN_MISC_WRITE_PCI_SUBID);
		pci_write_config_word(chip->pci, PCI_SUBSYSTEM_VENDOR_ID,
				      id->subvendor);
		pci_write_config_word(chip->pci, PCI_SUBSYSTEM_ID,
				      id->subdevice);
		oxygen_clear_bits8(chip, OXYGEN_MISC,
				   OXYGEN_MISC_WRITE_PCI_SUBID);

		dev_info(chip->card->dev, "EEPROM ID restored\n");
	}
}

static void configure_pcie_bridge(struct pci_dev *pci)
{
	enum { PEX811X, PI7C9X110, XIO2001 };
	static const struct pci_device_id bridge_ids[] = {
		{ PCI_VDEVICE(PLX, 0x8111), .driver_data = PEX811X },
		{ PCI_VDEVICE(PLX, 0x8112), .driver_data = PEX811X },
		{ PCI_DEVICE(0x12d8, 0xe110), .driver_data = PI7C9X110 },
		{ PCI_VDEVICE(TI, 0x8240), .driver_data = XIO2001 },
		{ }
	};
	struct pci_dev *bridge;
	const struct pci_device_id *id;
	u32 tmp;

	if (!pci->bus || !pci->bus->self)
		return;
	bridge = pci->bus->self;

	id = pci_match_id(bridge_ids, bridge);
	if (!id)
		return;

	switch (id->driver_data) {
	case PEX811X:	/* PLX PEX8111/PEX8112 PCIe/PCI bridge */
		pci_read_config_dword(bridge, 0x48, &tmp);
		tmp |= 1;	/* enable blind prefetching */
		tmp |= 1 << 11;	/* enable beacon generation */
		pci_write_config_dword(bridge, 0x48, tmp);

		pci_write_config_dword(bridge, 0x84, 0x0c);
		pci_read_config_dword(bridge, 0x88, &tmp);
		tmp &= ~(7 << 27);
		tmp |= 2 << 27;	/* set prefetch size to 128 bytes */
		pci_write_config_dword(bridge, 0x88, tmp);
		break;

	case PI7C9X110:	/* Pericom PI7C9X110 PCIe/PCI bridge */
		pci_read_config_dword(bridge, 0x40, &tmp);
		tmp |= 1;	/* park the PCI arbiter to the sound chip */
		pci_write_config_dword(bridge, 0x40, tmp);
		break;

	case XIO2001: /* Texas Instruments XIO2001 PCIe/PCI bridge */
		pci_read_config_dword(bridge, 0xe8, &tmp);
		tmp &= ~0xf;	/* request length limit: 64 bytes */
		tmp &= ~(0xf << 8);
		tmp |= 1 << 8;	/* request count limit: one buffer */
		pci_write_config_dword(bridge, 0xe8, tmp);
		break;
	}
}

static void oxygen_init(struct oxygen *chip)
{
	unsigned int i;

	chip->dac_routing = 1;
	for (i = 0; i < 8; ++i)
		chip->dac_volume[i] = chip->model.dac_volume_min;
	chip->dac_mute = 1;
	chip->spdif_playback_enable = 0;
	chip->spdif_bits = OXYGEN_SPDIF_C | OXYGEN_SPDIF_ORIGINAL |
		(IEC958_AES1_CON_PCM_CODER << OXYGEN_SPDIF_CATEGORY_SHIFT);
	chip->spdif_pcm_bits = chip->spdif_bits;

	if (!(oxygen_read8(chip, OXYGEN_REVISION) & OXYGEN_REVISION_2))
		oxygen_set_bits8(chip, OXYGEN_MISC,
				 OXYGEN_MISC_PCI_MEM_W_1_CLOCK);

	i = oxygen_read16(chip, OXYGEN_AC97_CONTROL);
	chip->has_ac97_0 = (i & OXYGEN_AC97_CODEC_0) != 0;
	chip->has_ac97_1 = (i & OXYGEN_AC97_CODEC_1) != 0;

	oxygen_write8_masked(chip, OXYGEN_FUNCTION,
			     OXYGEN_FUNCTION_RESET_CODEC |
			     chip->model.function_flags,
			     OXYGEN_FUNCTION_RESET_CODEC |
			     OXYGEN_FUNCTION_2WIRE_SPI_MASK |
			     OXYGEN_FUNCTION_ENABLE_SPI_4_5);
	oxygen_write8(chip, OXYGEN_DMA_STATUS, 0);
	oxygen_write8(chip, OXYGEN_DMA_PAUSE, 0);
	oxygen_write8(chip, OXYGEN_PLAY_CHANNELS,
		      OXYGEN_PLAY_CHANNELS_2 |
		      OXYGEN_DMA_A_BURST_8 |
		      OXYGEN_DMA_MULTICH_BURST_8);
	oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, 0);
	oxygen_write8_masked(chip, OXYGEN_MISC,
			     chip->model.misc_flags,
			     OXYGEN_MISC_WRITE_PCI_SUBID |
			     OXYGEN_MISC_REC_C_FROM_SPDIF |
			     OXYGEN_MISC_REC_B_FROM_AC97 |
			     OXYGEN_MISC_REC_A_FROM_MULTICH |
			     OXYGEN_MISC_MIDI);
	oxygen_write8(chip, OXYGEN_REC_FORMAT,
		      (OXYGEN_FORMAT_16 << OXYGEN_REC_FORMAT_A_SHIFT) |
		      (OXYGEN_FORMAT_16 << OXYGEN_REC_FORMAT_B_SHIFT) |
		      (OXYGEN_FORMAT_16 << OXYGEN_REC_FORMAT_C_SHIFT));
	oxygen_write8(chip, OXYGEN_PLAY_FORMAT,
		      (OXYGEN_FORMAT_16 << OXYGEN_SPDIF_FORMAT_SHIFT) |
		      (OXYGEN_FORMAT_16 << OXYGEN_MULTICH_FORMAT_SHIFT));
	oxygen_write8(chip, OXYGEN_REC_CHANNELS, OXYGEN_REC_CHANNELS_2_2_2);
	oxygen_write16(chip, OXYGEN_I2S_MULTICH_FORMAT,
		       OXYGEN_RATE_48000 |
		       chip->model.dac_i2s_format |
		       OXYGEN_I2S_MCLK(chip->model.dac_mclks) |
		       OXYGEN_I2S_BITS_16 |
		       OXYGEN_I2S_MASTER |
		       OXYGEN_I2S_BCLK_64);
	if (chip->model.device_config & CAPTURE_0_FROM_I2S_1)
		oxygen_write16(chip, OXYGEN_I2S_A_FORMAT,
			       OXYGEN_RATE_48000 |
			       chip->model.adc_i2s_format |
			       OXYGEN_I2S_MCLK(chip->model.adc_mclks) |
			       OXYGEN_I2S_BITS_16 |
			       OXYGEN_I2S_MASTER |
			       OXYGEN_I2S_BCLK_64);
	else
		oxygen_write16(chip, OXYGEN_I2S_A_FORMAT,
			       OXYGEN_I2S_MASTER |
			       OXYGEN_I2S_MUTE_MCLK);
	if (chip->model.device_config & (CAPTURE_0_FROM_I2S_2 |
					 CAPTURE_2_FROM_I2S_2))
		oxygen_write16(chip, OXYGEN_I2S_B_FORMAT,
			       OXYGEN_RATE_48000 |
			       chip->model.adc_i2s_format |
			       OXYGEN_I2S_MCLK(chip->model.adc_mclks) |
			       OXYGEN_I2S_BITS_16 |
			       OXYGEN_I2S_MASTER |
			       OXYGEN_I2S_BCLK_64);
	else
		oxygen_write16(chip, OXYGEN_I2S_B_FORMAT,
			       OXYGEN_I2S_MASTER |
			       OXYGEN_I2S_MUTE_MCLK);
	if (chip->model.device_config & CAPTURE_3_FROM_I2S_3)
		oxygen_write16(chip, OXYGEN_I2S_C_FORMAT,
			       OXYGEN_RATE_48000 |
			       chip->model.adc_i2s_format |
			       OXYGEN_I2S_MCLK(chip->model.adc_mclks) |
			       OXYGEN_I2S_BITS_16 |
			       OXYGEN_I2S_MASTER |
			       OXYGEN_I2S_BCLK_64);
	else
		oxygen_write16(chip, OXYGEN_I2S_C_FORMAT,
			       OXYGEN_I2S_MASTER |
			       OXYGEN_I2S_MUTE_MCLK);
	oxygen_clear_bits32(chip, OXYGEN_SPDIF_CONTROL,
			    OXYGEN_SPDIF_OUT_ENABLE |
			    OXYGEN_SPDIF_LOOPBACK);
	if (chip->model.device_config & CAPTURE_1_FROM_SPDIF)
		oxygen_write32_masked(chip, OXYGEN_SPDIF_CONTROL,
				      OXYGEN_SPDIF_SENSE_MASK |
				      OXYGEN_SPDIF_LOCK_MASK |
				      OXYGEN_SPDIF_RATE_MASK |
				      OXYGEN_SPDIF_LOCK_PAR |
				      OXYGEN_SPDIF_IN_CLOCK_96,
				      OXYGEN_SPDIF_SENSE_MASK |
				      OXYGEN_SPDIF_LOCK_MASK |
				      OXYGEN_SPDIF_RATE_MASK |
				      OXYGEN_SPDIF_SENSE_PAR |
				      OXYGEN_SPDIF_LOCK_PAR |
				      OXYGEN_SPDIF_IN_CLOCK_MASK);
	else
		oxygen_clear_bits32(chip, OXYGEN_SPDIF_CONTROL,
				    OXYGEN_SPDIF_SENSE_MASK |
				    OXYGEN_SPDIF_LOCK_MASK |
				    OXYGEN_SPDIF_RATE_MASK);
	oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS, chip->spdif_bits);
	oxygen_write16(chip, OXYGEN_2WIRE_BUS_STATUS,
		       OXYGEN_2WIRE_LENGTH_8 |
		       OXYGEN_2WIRE_INTERRUPT_MASK |
		       OXYGEN_2WIRE_SPEED_STANDARD);
	oxygen_clear_bits8(chip, OXYGEN_MPU401_CONTROL, OXYGEN_MPU401_LOOPBACK);
	oxygen_write8(chip, OXYGEN_GPI_INTERRUPT_MASK, 0);
	oxygen_write16(chip, OXYGEN_GPIO_INTERRUPT_MASK, 0);
	oxygen_write16(chip, OXYGEN_PLAY_ROUTING,
		       OXYGEN_PLAY_MULTICH_I2S_DAC |
		       OXYGEN_PLAY_SPDIF_SPDIF |
		       (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
		       (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
		       (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
		       (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT));
	oxygen_write8(chip, OXYGEN_REC_ROUTING,
		      OXYGEN_REC_A_ROUTE_I2S_ADC_1 |
		      OXYGEN_REC_B_ROUTE_I2S_ADC_2 |
		      OXYGEN_REC_C_ROUTE_SPDIF);
	oxygen_write8(chip, OXYGEN_ADC_MONITOR, 0);
	oxygen_write8(chip, OXYGEN_A_MONITOR_ROUTING,
		      (0 << OXYGEN_A_MONITOR_ROUTE_0_SHIFT) |
		      (1 << OXYGEN_A_MONITOR_ROUTE_1_SHIFT) |
		      (2 << OXYGEN_A_MONITOR_ROUTE_2_SHIFT) |
		      (3 << OXYGEN_A_MONITOR_ROUTE_3_SHIFT));

	if (chip->has_ac97_0 | chip->has_ac97_1)
		oxygen_write8(chip, OXYGEN_AC97_INTERRUPT_MASK,
			      OXYGEN_AC97_INT_READ_DONE |
			      OXYGEN_AC97_INT_WRITE_DONE);
	else
		oxygen_write8(chip, OXYGEN_AC97_INTERRUPT_MASK, 0);
	oxygen_write32(chip, OXYGEN_AC97_OUT_CONFIG, 0);
	oxygen_write32(chip, OXYGEN_AC97_IN_CONFIG, 0);
	if (!(chip->has_ac97_0 | chip->has_ac97_1))
		oxygen_set_bits16(chip, OXYGEN_AC97_CONTROL,
				  OXYGEN_AC97_CLOCK_DISABLE);
	if (!chip->has_ac97_0) {
		oxygen_set_bits16(chip, OXYGEN_AC97_CONTROL,
				  OXYGEN_AC97_NO_CODEC_0);
	} else {
		oxygen_write_ac97(chip, 0, AC97_RESET, 0);
		msleep(1);
		oxygen_ac97_set_bits(chip, 0, CM9780_GPIO_SETUP,
				     CM9780_GPIO0IO | CM9780_GPIO1IO);
		oxygen_ac97_set_bits(chip, 0, CM9780_MIXER,
				     CM9780_BSTSEL | CM9780_STRO_MIC |
				     CM9780_MIX2FR | CM9780_PCBSW);
		oxygen_ac97_set_bits(chip, 0, CM9780_JACK,
				     CM9780_RSOE | CM9780_CBOE |
				     CM9780_SSOE | CM9780_FROE |
				     CM9780_MIC2MIC | CM9780_LI2LI);
		oxygen_write_ac97(chip, 0, AC97_MASTER, 0x0000);
		oxygen_write_ac97(chip, 0, AC97_PC_BEEP, 0x8000);
		oxygen_write_ac97(chip, 0, AC97_MIC, 0x8808);
		oxygen_write_ac97(chip, 0, AC97_LINE, 0x0808);
		oxygen_write_ac97(chip, 0, AC97_CD, 0x8808);
		oxygen_write_ac97(chip, 0, AC97_VIDEO, 0x8808);
		oxygen_write_ac97(chip, 0, AC97_AUX, 0x8808);
		oxygen_write_ac97(chip, 0, AC97_REC_GAIN, 0x8000);
		oxygen_write_ac97(chip, 0, AC97_CENTER_LFE_MASTER, 0x8080);
		oxygen_write_ac97(chip, 0, AC97_SURROUND_MASTER, 0x8080);
		oxygen_ac97_clear_bits(chip, 0, CM9780_GPIO_STATUS,
				       CM9780_GPO0);
		/* power down unused ADCs and DACs */
		oxygen_ac97_set_bits(chip, 0, AC97_POWERDOWN,
				     AC97_PD_PR0 | AC97_PD_PR1);
		oxygen_ac97_set_bits(chip, 0, AC97_EXTENDED_STATUS,
				     AC97_EA_PRI | AC97_EA_PRJ | AC97_EA_PRK);
	}
	if (chip->has_ac97_1) {
		oxygen_set_bits32(chip, OXYGEN_AC97_OUT_CONFIG,
				  OXYGEN_AC97_CODEC1_SLOT3 |
				  OXYGEN_AC97_CODEC1_SLOT4);
		oxygen_write_ac97(chip, 1, AC97_RESET, 0);
		msleep(1);
		oxygen_write_ac97(chip, 1, AC97_MASTER, 0x0000);
		oxygen_write_ac97(chip, 1, AC97_HEADPHONE, 0x8000);
		oxygen_write_ac97(chip, 1, AC97_PC_BEEP, 0x8000);
		oxygen_write_ac97(chip, 1, AC97_MIC, 0x8808);
		oxygen_write_ac97(chip, 1, AC97_LINE, 0x8808);
		oxygen_write_ac97(chip, 1, AC97_CD, 0x8808);
		oxygen_write_ac97(chip, 1, AC97_VIDEO, 0x8808);
		oxygen_write_ac97(chip, 1, AC97_AUX, 0x8808);
		oxygen_write_ac97(chip, 1, AC97_PCM, 0x0808);
		oxygen_write_ac97(chip, 1, AC97_REC_SEL, 0x0000);
		oxygen_write_ac97(chip, 1, AC97_REC_GAIN, 0x0000);
		oxygen_ac97_set_bits(chip, 1, 0x6a, 0x0040);
	}
}

static void oxygen_shutdown(struct oxygen *chip)
{
	spin_lock_irq(&chip->reg_lock);
	chip->interrupt_mask = 0;
	chip->pcm_running = 0;
	oxygen_write16(chip, OXYGEN_DMA_STATUS, 0);
	oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, 0);
	spin_unlock_irq(&chip->reg_lock);
}

static void oxygen_card_free(struct snd_card *card)
{
	struct oxygen *chip = card->private_data;

	oxygen_shutdown(chip);
	flush_work(&chip->spdif_input_bits_work);
	flush_work(&chip->gpio_work);
	chip->model.cleanup(chip);
	mutex_destroy(&chip->mutex);
}

static int __oxygen_pci_probe(struct pci_dev *pci, int index, char *id,
		     struct module *owner,
		     const struct pci_device_id *ids,
		     int (*get_model)(struct oxygen *chip,
				      const struct pci_device_id *id
				     )
		    )
{
	struct snd_card *card;
	struct oxygen *chip;
	const struct pci_device_id *pci_id;
	int err;

	err = snd_devm_card_new(&pci->dev, index, id, owner,
				sizeof(*chip), &card);
	if (err < 0)
		return err;

	chip = card->private_data;
	chip->card = card;
	chip->pci = pci;
	chip->irq = -1;
	spin_lock_init(&chip->reg_lock);
	mutex_init(&chip->mutex);
	INIT_WORK(&chip->spdif_input_bits_work,
		  oxygen_spdif_input_bits_changed);
	INIT_WORK(&chip->gpio_work, oxygen_gpio_changed);
	init_waitqueue_head(&chip->ac97_waitqueue);

	err = pcim_enable_device(pci);
	if (err < 0)
		return err;

	err = pci_request_regions(pci, DRIVER);
	if (err < 0) {
		dev_err(card->dev, "cannot reserve PCI resources\n");
		return err;
	}

	if (!(pci_resource_flags(pci, 0) & IORESOURCE_IO) ||
	    pci_resource_len(pci, 0) < OXYGEN_IO_SIZE) {
		dev_err(card->dev, "invalid PCI I/O range\n");
		return -ENXIO;
	}
	chip->addr = pci_resource_start(pci, 0);

	pci_id = oxygen_search_pci_id(chip, ids);
	if (!pci_id)
		return -ENODEV;

	oxygen_restore_eeprom(chip, pci_id);
	err = get_model(chip, pci_id);
	if (err < 0)
		return err;

	if (chip->model.model_data_size) {
		chip->model_data = devm_kzalloc(&pci->dev,
						chip->model.model_data_size,
						GFP_KERNEL);
		if (!chip->model_data)
			return -ENOMEM;
	}

	pci_set_master(pci);
	card->private_free = oxygen_card_free;

	configure_pcie_bridge(pci);
	oxygen_init(chip);
	chip->model.init(chip);

	err = devm_request_irq(&pci->dev, pci->irq, oxygen_interrupt,
			       IRQF_SHARED, KBUILD_MODNAME, chip);
	if (err < 0) {
		dev_err(card->dev, "cannot grab interrupt %d\n", pci->irq);
		return err;
	}
	chip->irq = pci->irq;
	card->sync_irq = chip->irq;

	strcpy(card->driver, chip->model.chip);
	strcpy(card->shortname, chip->model.shortname);
	sprintf(card->longname, "%s at %#lx, irq %i",
		chip->model.longname, chip->addr, chip->irq);
	strcpy(card->mixername, chip->model.chip);
	snd_component_add(card, chip->model.chip);

	err = oxygen_pcm_init(chip);
	if (err < 0)
		return err;

	err = oxygen_mixer_init(chip);
	if (err < 0)
		return err;

	if (chip->model.device_config & (MIDI_OUTPUT | MIDI_INPUT)) {
		unsigned int info_flags =
				MPU401_INFO_INTEGRATED | MPU401_INFO_IRQ_HOOK;
		if (chip->model.device_config & MIDI_OUTPUT)
			info_flags |= MPU401_INFO_OUTPUT;
		if (chip->model.device_config & MIDI_INPUT)
			info_flags |= MPU401_INFO_INPUT;
		err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
					  chip->addr + OXYGEN_MPU401,
					  info_flags, -1, &chip->midi);
		if (err < 0)
			return err;
	}

	oxygen_proc_init(chip);

	spin_lock_irq(&chip->reg_lock);
	if (chip->model.device_config & CAPTURE_1_FROM_SPDIF)
		chip->interrupt_mask |= OXYGEN_INT_SPDIF_IN_DETECT;
	if (chip->has_ac97_0 | chip->has_ac97_1)
		chip->interrupt_mask |= OXYGEN_INT_AC97;
	oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, chip->interrupt_mask);
	spin_unlock_irq(&chip->reg_lock);

	err = snd_card_register(card);
	if (err < 0)
		return err;

	pci_set_drvdata(pci, card);
	return 0;
}

int oxygen_pci_probe(struct pci_dev *pci, int index, char *id,
		     struct module *owner,
		     const struct pci_device_id *ids,
		     int (*get_model)(struct oxygen *chip,
				      const struct pci_device_id *id))
{
	return snd_card_free_on_error(&pci->dev,
				      __oxygen_pci_probe(pci, index, id, owner, ids, get_model));
}
EXPORT_SYMBOL(oxygen_pci_probe);

#ifdef CONFIG_PM_SLEEP
static int oxygen_pci_suspend(struct device *dev)
{
	struct snd_card *card = dev_get_drvdata(dev);
	struct oxygen *chip = card->private_data;
	unsigned int saved_interrupt_mask;

	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);

	if (chip->model.suspend)
		chip->model.suspend(chip);

	spin_lock_irq(&chip->reg_lock);
	saved_interrupt_mask = chip->interrupt_mask;
	chip->interrupt_mask = 0;
	oxygen_write16(chip, OXYGEN_DMA_STATUS, 0);
	oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, 0);
	spin_unlock_irq(&chip->reg_lock);

	flush_work(&chip->spdif_input_bits_work);
	flush_work(&chip->gpio_work);
	chip->interrupt_mask = saved_interrupt_mask;
	return 0;
}

static const u32 registers_to_restore[OXYGEN_IO_SIZE / 32] = {
	0xffffffff, 0x00ff077f, 0x00011d08, 0x007f00ff,
	0x00300000, 0x00000fe4, 0x0ff7001f, 0x00000000
};
static const u32 ac97_registers_to_restore[2][0x40 / 32] = {
	{ 0x18284fa2, 0x03060000 },
	{ 0x00007fa6, 0x00200000 }
};

static inline int is_bit_set(const u32 *bitmap, unsigned int bit)
{
	return bitmap[bit / 32] & (1 << (bit & 31));
}

static void oxygen_restore_ac97(struct oxygen *chip, unsigned int codec)
{
	unsigned int i;

	oxygen_write_ac97(chip, codec, AC97_RESET, 0);
	msleep(1);
	for (i = 1; i < 0x40; ++i)
		if (is_bit_set(ac97_registers_to_restore[codec], i))
			oxygen_write_ac97(chip, codec, i * 2,
					  chip->saved_ac97_registers[codec][i]);
}

static int oxygen_pci_resume(struct device *dev)
{
	struct snd_card *card = dev_get_drvdata(dev);
	struct oxygen *chip = card->private_data;
	unsigned int i;

	oxygen_write16(chip, OXYGEN_DMA_STATUS, 0);
	oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, 0);
	for (i = 0; i < OXYGEN_IO_SIZE; ++i)
		if (is_bit_set(registers_to_restore, i))
			oxygen_write8(chip, i, chip->saved_registers._8[i]);
	if (chip->has_ac97_0)
		oxygen_restore_ac97(chip, 0);
	if (chip->has_ac97_1)
		oxygen_restore_ac97(chip, 1);

	if (chip->model.resume)
		chip->model.resume(chip);

	oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, chip->interrupt_mask);

	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
	return 0;
}

SIMPLE_DEV_PM_OPS(oxygen_pci_pm, oxygen_pci_suspend, oxygen_pci_resume);
EXPORT_SYMBOL(oxygen_pci_pm);
#endif /* CONFIG_PM_SLEEP */

void oxygen_pci_shutdown(struct pci_dev *pci)
{
	struct snd_card *card = pci_get_drvdata(pci);
	struct oxygen *chip = card->private_data;

	oxygen_shutdown(chip);
	chip->model.cleanup(chip);
}
EXPORT_SYMBOL