#include <media/v4l2-mem2mem.h>
#include <media/videobuf2-dma-contig.h>
#include "dos_regs.h"
#include "hevc_regs.h"
#include "codec_vp9.h"
#include "vdec_helpers.h"
#include "codec_hevc_common.h"
#define VP9_DEC_STATUS_REG HEVC_ASSIST_SCRATCH_0
#define VP9_10B_DECODE_SLICE 5
#define VP9_HEAD_PARSER_DONE 0xf0
#define VP9_RPM_BUFFER HEVC_ASSIST_SCRATCH_1
#define VP9_SHORT_TERM_RPS HEVC_ASSIST_SCRATCH_2
#define VP9_ADAPT_PROB_REG HEVC_ASSIST_SCRATCH_3
#define VP9_MMU_MAP_BUFFER HEVC_ASSIST_SCRATCH_4
#define VP9_PPS_BUFFER HEVC_ASSIST_SCRATCH_5
#define VP9_SAO_UP HEVC_ASSIST_SCRATCH_6
#define VP9_STREAM_SWAP_BUFFER HEVC_ASSIST_SCRATCH_7
#define VP9_STREAM_SWAP_BUFFER2 HEVC_ASSIST_SCRATCH_8
#define VP9_PROB_SWAP_BUFFER HEVC_ASSIST_SCRATCH_9
#define VP9_COUNT_SWAP_BUFFER HEVC_ASSIST_SCRATCH_A
#define VP9_SEG_MAP_BUFFER HEVC_ASSIST_SCRATCH_B
#define VP9_SCALELUT HEVC_ASSIST_SCRATCH_D
#define VP9_WAIT_FLAG HEVC_ASSIST_SCRATCH_E
#define LMEM_DUMP_ADR HEVC_ASSIST_SCRATCH_F
#define NAL_SEARCH_CTL HEVC_ASSIST_SCRATCH_I
#define VP9_DECODE_MODE HEVC_ASSIST_SCRATCH_J
#define DECODE_MODE_SINGLE 0
#define DECODE_STOP_POS HEVC_ASSIST_SCRATCH_K
#define HEVC_DECODE_COUNT HEVC_ASSIST_SCRATCH_M
#define HEVC_DECODE_SIZE HEVC_ASSIST_SCRATCH_N
#define LCU_SIZE 64
#define MAX_REF_PIC_NUM 24
#define REFS_PER_FRAME 3
#define REF_FRAMES 8
#define MV_MEM_UNIT 0x240
#define ADAPT_PROB_SIZE 0xf80
enum FRAME_TYPE {
KEY_FRAME = 0,
INTER_FRAME = 1,
FRAME_TYPES,
};
#define MPRED_MV_BUF_SIZE 0x120000
#define IPP_SIZE 0x4000
#define SAO_ABV_SIZE 0x30000
#define SAO_VB_SIZE 0x30000
#define SH_TM_RPS_SIZE 0x800
#define VPS_SIZE 0x800
#define SPS_SIZE 0x800
#define PPS_SIZE 0x2000
#define SAO_UP_SIZE 0x2800
#define SWAP_BUF_SIZE 0x800
#define SWAP_BUF2_SIZE 0x800
#define SCALELUT_SIZE 0x8000
#define DBLK_PARA_SIZE 0x80000
#define DBLK_DATA_SIZE 0x80000
#define SEG_MAP_SIZE 0xd800
#define PROB_SIZE 0x5000
#define COUNT_SIZE 0x3000
#define MMU_VBH_SIZE 0x5000
#define MPRED_ABV_SIZE 0x10000
#define MPRED_MV_SIZE (MPRED_MV_BUF_SIZE * MAX_REF_PIC_NUM)
#define RPM_BUF_SIZE 0x100
#define LMEM_SIZE 0x800
#define IPP_OFFSET 0x00
#define SAO_ABV_OFFSET (IPP_OFFSET + IPP_SIZE)
#define SAO_VB_OFFSET (SAO_ABV_OFFSET + SAO_ABV_SIZE)
#define SH_TM_RPS_OFFSET (SAO_VB_OFFSET + SAO_VB_SIZE)
#define VPS_OFFSET (SH_TM_RPS_OFFSET + SH_TM_RPS_SIZE)
#define SPS_OFFSET (VPS_OFFSET + VPS_SIZE)
#define PPS_OFFSET (SPS_OFFSET + SPS_SIZE)
#define SAO_UP_OFFSET (PPS_OFFSET + PPS_SIZE)
#define SWAP_BUF_OFFSET (SAO_UP_OFFSET + SAO_UP_SIZE)
#define SWAP_BUF2_OFFSET (SWAP_BUF_OFFSET + SWAP_BUF_SIZE)
#define SCALELUT_OFFSET (SWAP_BUF2_OFFSET + SWAP_BUF2_SIZE)
#define DBLK_PARA_OFFSET (SCALELUT_OFFSET + SCALELUT_SIZE)
#define DBLK_DATA_OFFSET (DBLK_PARA_OFFSET + DBLK_PARA_SIZE)
#define SEG_MAP_OFFSET (DBLK_DATA_OFFSET + DBLK_DATA_SIZE)
#define PROB_OFFSET (SEG_MAP_OFFSET + SEG_MAP_SIZE)
#define COUNT_OFFSET (PROB_OFFSET + PROB_SIZE)
#define MMU_VBH_OFFSET (COUNT_OFFSET + COUNT_SIZE)
#define MPRED_ABV_OFFSET (MMU_VBH_OFFSET + MMU_VBH_SIZE)
#define MPRED_MV_OFFSET (MPRED_ABV_OFFSET + MPRED_ABV_SIZE)
#define RPM_OFFSET (MPRED_MV_OFFSET + MPRED_MV_SIZE)
#define LMEM_OFFSET (RPM_OFFSET + RPM_BUF_SIZE)
#define SIZE_WORKSPACE ALIGN(LMEM_OFFSET + LMEM_SIZE, 64 * SZ_1K)
#define NONE -1
#define INTRA_FRAME 0
#define LAST_FRAME 1
#define GOLDEN_FRAME 2
#define ALTREF_FRAME 3
#define MAX_REF_FRAMES 4
#define MAX_LOOP_FILTER 63
#define MAX_REF_LF_DELTAS 4
#define MAX_MODE_LF_DELTAS 2
#define SEGMENT_DELTADATA 0
#define SEGMENT_ABSDATA 1
#define MAX_SEGMENTS 8
#define VP9_PARTITION_START 0
#define VP9_PARTITION_SIZE_STEP (3 * 4)
#define VP9_PARTITION_ONE_SIZE (4 * VP9_PARTITION_SIZE_STEP)
#define VP9_PARTITION_KEY_START 0
#define VP9_PARTITION_P_START VP9_PARTITION_ONE_SIZE
#define VP9_PARTITION_SIZE (2 * VP9_PARTITION_ONE_SIZE)
#define VP9_SKIP_START (VP9_PARTITION_START + VP9_PARTITION_SIZE)
#define VP9_SKIP_SIZE 4 /* only use 3*/
#define VP9_TX_MODE_START (VP9_SKIP_START + VP9_SKIP_SIZE)
#define VP9_TX_MODE_8_0_OFFSET 0
#define VP9_TX_MODE_8_1_OFFSET 1
#define VP9_TX_MODE_16_0_OFFSET 2
#define VP9_TX_MODE_16_1_OFFSET 4
#define VP9_TX_MODE_32_0_OFFSET 6
#define VP9_TX_MODE_32_1_OFFSET 9
#define VP9_TX_MODE_SIZE 12
#define VP9_COEF_START (VP9_TX_MODE_START + VP9_TX_MODE_SIZE)
#define VP9_COEF_BAND_0_OFFSET 0
#define VP9_COEF_BAND_1_OFFSET (VP9_COEF_BAND_0_OFFSET + 3 * 3 + 1)
#define VP9_COEF_BAND_2_OFFSET (VP9_COEF_BAND_1_OFFSET + 6 * 3)
#define VP9_COEF_BAND_3_OFFSET (VP9_COEF_BAND_2_OFFSET + 6 * 3)
#define VP9_COEF_BAND_4_OFFSET (VP9_COEF_BAND_3_OFFSET + 6 * 3)
#define VP9_COEF_BAND_5_OFFSET (VP9_COEF_BAND_4_OFFSET + 6 * 3)
#define VP9_COEF_SIZE_ONE_SET 100 /* ((3 + 5 * 6) * 3 + 1 padding)*/
#define VP9_COEF_4X4_START (VP9_COEF_START + 0 * VP9_COEF_SIZE_ONE_SET)
#define VP9_COEF_8X8_START (VP9_COEF_START + 4 * VP9_COEF_SIZE_ONE_SET)
#define VP9_COEF_16X16_START (VP9_COEF_START + 8 * VP9_COEF_SIZE_ONE_SET)
#define VP9_COEF_32X32_START (VP9_COEF_START + 12 * VP9_COEF_SIZE_ONE_SET)
#define VP9_COEF_SIZE_PLANE (2 * VP9_COEF_SIZE_ONE_SET)
#define VP9_COEF_SIZE (4 * 2 * 2 * VP9_COEF_SIZE_ONE_SET)
#define VP9_INTER_MODE_START (VP9_COEF_START + VP9_COEF_SIZE)
#define VP9_INTER_MODE_SIZE 24 /* only use 21 (# * 7)*/
#define VP9_INTERP_START (VP9_INTER_MODE_START + VP9_INTER_MODE_SIZE)
#define VP9_INTERP_SIZE 8
#define VP9_INTRA_INTER_START (VP9_INTERP_START + VP9_INTERP_SIZE)
#define VP9_INTRA_INTER_SIZE 4
#define VP9_INTERP_INTRA_INTER_START VP9_INTERP_START
#define VP9_INTERP_INTRA_INTER_SIZE (VP9_INTERP_SIZE + VP9_INTRA_INTER_SIZE)
#define VP9_COMP_INTER_START \
(VP9_INTERP_INTRA_INTER_START + VP9_INTERP_INTRA_INTER_SIZE)
#define VP9_COMP_INTER_SIZE 5
#define VP9_COMP_REF_START (VP9_COMP_INTER_START + VP9_COMP_INTER_SIZE)
#define VP9_COMP_REF_SIZE 5
#define VP9_SINGLE_REF_START (VP9_COMP_REF_START + VP9_COMP_REF_SIZE)
#define VP9_SINGLE_REF_SIZE 10
#define VP9_REF_MODE_START VP9_COMP_INTER_START
#define VP9_REF_MODE_SIZE \
(VP9_COMP_INTER_SIZE + VP9_COMP_REF_SIZE + VP9_SINGLE_REF_SIZE)
#define VP9_IF_Y_MODE_START (VP9_REF_MODE_START + VP9_REF_MODE_SIZE)
#define VP9_IF_Y_MODE_SIZE 36
#define VP9_IF_UV_MODE_START (VP9_IF_Y_MODE_START + VP9_IF_Y_MODE_SIZE)
#define VP9_IF_UV_MODE_SIZE 92 /* only use 90*/
#define VP9_MV_JOINTS_START (VP9_IF_UV_MODE_START + VP9_IF_UV_MODE_SIZE)
#define VP9_MV_JOINTS_SIZE 3
#define VP9_MV_SIGN_0_START (VP9_MV_JOINTS_START + VP9_MV_JOINTS_SIZE)
#define VP9_MV_SIGN_0_SIZE 1
#define VP9_MV_CLASSES_0_START (VP9_MV_SIGN_0_START + VP9_MV_SIGN_0_SIZE)
#define VP9_MV_CLASSES_0_SIZE 10
#define VP9_MV_CLASS0_0_START \
(VP9_MV_CLASSES_0_START + VP9_MV_CLASSES_0_SIZE)
#define VP9_MV_CLASS0_0_SIZE 1
#define VP9_MV_BITS_0_START (VP9_MV_CLASS0_0_START + VP9_MV_CLASS0_0_SIZE)
#define VP9_MV_BITS_0_SIZE 10
#define VP9_MV_SIGN_1_START (VP9_MV_BITS_0_START + VP9_MV_BITS_0_SIZE)
#define VP9_MV_SIGN_1_SIZE 1
#define VP9_MV_CLASSES_1_START \
(VP9_MV_SIGN_1_START + VP9_MV_SIGN_1_SIZE)
#define VP9_MV_CLASSES_1_SIZE 10
#define VP9_MV_CLASS0_1_START \
(VP9_MV_CLASSES_1_START + VP9_MV_CLASSES_1_SIZE)
#define VP9_MV_CLASS0_1_SIZE 1
#define VP9_MV_BITS_1_START \
(VP9_MV_CLASS0_1_START + VP9_MV_CLASS0_1_SIZE)
#define VP9_MV_BITS_1_SIZE 10
#define VP9_MV_CLASS0_FP_0_START \
(VP9_MV_BITS_1_START + VP9_MV_BITS_1_SIZE)
#define VP9_MV_CLASS0_FP_0_SIZE 9
#define VP9_MV_CLASS0_FP_1_START \
(VP9_MV_CLASS0_FP_0_START + VP9_MV_CLASS0_FP_0_SIZE)
#define VP9_MV_CLASS0_FP_1_SIZE 9
#define VP9_MV_CLASS0_HP_0_START \
(VP9_MV_CLASS0_FP_1_START + VP9_MV_CLASS0_FP_1_SIZE)
#define VP9_MV_CLASS0_HP_0_SIZE 2
#define VP9_MV_CLASS0_HP_1_START \
(VP9_MV_CLASS0_HP_0_START + VP9_MV_CLASS0_HP_0_SIZE)
#define VP9_MV_CLASS0_HP_1_SIZE 2
#define VP9_MV_START VP9_MV_JOINTS_START
#define VP9_MV_SIZE 72 /*only use 69*/
#define VP9_TOTAL_SIZE (VP9_MV_START + VP9_MV_SIZE)
#define VP9_COEF_COUNT_START 0
#define VP9_COEF_COUNT_BAND_0_OFFSET 0
#define VP9_COEF_COUNT_BAND_1_OFFSET \
(VP9_COEF_COUNT_BAND_0_OFFSET + 3 * 5)
#define VP9_COEF_COUNT_BAND_2_OFFSET \
(VP9_COEF_COUNT_BAND_1_OFFSET + 6 * 5)
#define VP9_COEF_COUNT_BAND_3_OFFSET \
(VP9_COEF_COUNT_BAND_2_OFFSET + 6 * 5)
#define VP9_COEF_COUNT_BAND_4_OFFSET \
(VP9_COEF_COUNT_BAND_3_OFFSET + 6 * 5)
#define VP9_COEF_COUNT_BAND_5_OFFSET \
(VP9_COEF_COUNT_BAND_4_OFFSET + 6 * 5)
#define VP9_COEF_COUNT_SIZE_ONE_SET 165 /* ((3 + 5 * 6) * 5 */
#define VP9_COEF_COUNT_4X4_START \
(VP9_COEF_COUNT_START + 0 * VP9_COEF_COUNT_SIZE_ONE_SET)
#define VP9_COEF_COUNT_8X8_START \
(VP9_COEF_COUNT_START + 4 * VP9_COEF_COUNT_SIZE_ONE_SET)
#define VP9_COEF_COUNT_16X16_START \
(VP9_COEF_COUNT_START + 8 * VP9_COEF_COUNT_SIZE_ONE_SET)
#define VP9_COEF_COUNT_32X32_START \
(VP9_COEF_COUNT_START + 12 * VP9_COEF_COUNT_SIZE_ONE_SET)
#define VP9_COEF_COUNT_SIZE_PLANE (2 * VP9_COEF_COUNT_SIZE_ONE_SET)
#define VP9_COEF_COUNT_SIZE (4 * 2 * 2 * VP9_COEF_COUNT_SIZE_ONE_SET)
#define VP9_INTRA_INTER_COUNT_START \
(VP9_COEF_COUNT_START + VP9_COEF_COUNT_SIZE)
#define VP9_INTRA_INTER_COUNT_SIZE (4 * 2)
#define VP9_COMP_INTER_COUNT_START \
(VP9_INTRA_INTER_COUNT_START + VP9_INTRA_INTER_COUNT_SIZE)
#define VP9_COMP_INTER_COUNT_SIZE (5 * 2)
#define VP9_COMP_REF_COUNT_START \
(VP9_COMP_INTER_COUNT_START + VP9_COMP_INTER_COUNT_SIZE)
#define VP9_COMP_REF_COUNT_SIZE (5 * 2)
#define VP9_SINGLE_REF_COUNT_START \
(VP9_COMP_REF_COUNT_START + VP9_COMP_REF_COUNT_SIZE)
#define VP9_SINGLE_REF_COUNT_SIZE (10 * 2)
#define VP9_TX_MODE_COUNT_START \
(VP9_SINGLE_REF_COUNT_START + VP9_SINGLE_REF_COUNT_SIZE)
#define VP9_TX_MODE_COUNT_SIZE (12 * 2)
#define VP9_SKIP_COUNT_START \
(VP9_TX_MODE_COUNT_START + VP9_TX_MODE_COUNT_SIZE)
#define VP9_SKIP_COUNT_SIZE (3 * 2)
#define VP9_MV_SIGN_0_COUNT_START \
(VP9_SKIP_COUNT_START + VP9_SKIP_COUNT_SIZE)
#define VP9_MV_SIGN_0_COUNT_SIZE (1 * 2)
#define VP9_MV_SIGN_1_COUNT_START \
(VP9_MV_SIGN_0_COUNT_START + VP9_MV_SIGN_0_COUNT_SIZE)
#define VP9_MV_SIGN_1_COUNT_SIZE (1 * 2)
#define VP9_MV_BITS_0_COUNT_START \
(VP9_MV_SIGN_1_COUNT_START + VP9_MV_SIGN_1_COUNT_SIZE)
#define VP9_MV_BITS_0_COUNT_SIZE (10 * 2)
#define VP9_MV_BITS_1_COUNT_START \
(VP9_MV_BITS_0_COUNT_START + VP9_MV_BITS_0_COUNT_SIZE)
#define VP9_MV_BITS_1_COUNT_SIZE (10 * 2)
#define VP9_MV_CLASS0_HP_0_COUNT_START \
(VP9_MV_BITS_1_COUNT_START + VP9_MV_BITS_1_COUNT_SIZE)
#define VP9_MV_CLASS0_HP_0_COUNT_SIZE (2 * 2)
#define VP9_MV_CLASS0_HP_1_COUNT_START \
(VP9_MV_CLASS0_HP_0_COUNT_START + VP9_MV_CLASS0_HP_0_COUNT_SIZE)
#define VP9_MV_CLASS0_HP_1_COUNT_SIZE (2 * 2)
#define VP9_INTER_MODE_COUNT_START \
(VP9_MV_CLASS0_HP_1_COUNT_START + VP9_MV_CLASS0_HP_1_COUNT_SIZE)
#define VP9_INTER_MODE_COUNT_SIZE (7 * 4)
#define VP9_IF_Y_MODE_COUNT_START \
(VP9_INTER_MODE_COUNT_START + VP9_INTER_MODE_COUNT_SIZE)
#define VP9_IF_Y_MODE_COUNT_SIZE (10 * 4)
#define VP9_IF_UV_MODE_COUNT_START \
(VP9_IF_Y_MODE_COUNT_START + VP9_IF_Y_MODE_COUNT_SIZE)
#define VP9_IF_UV_MODE_COUNT_SIZE (10 * 10)
#define VP9_PARTITION_P_COUNT_START \
(VP9_IF_UV_MODE_COUNT_START + VP9_IF_UV_MODE_COUNT_SIZE)
#define VP9_PARTITION_P_COUNT_SIZE (4 * 4 * 4)
#define VP9_INTERP_COUNT_START \
(VP9_PARTITION_P_COUNT_START + VP9_PARTITION_P_COUNT_SIZE)
#define VP9_INTERP_COUNT_SIZE (4 * 3)
#define VP9_MV_JOINTS_COUNT_START \
(VP9_INTERP_COUNT_START + VP9_INTERP_COUNT_SIZE)
#define VP9_MV_JOINTS_COUNT_SIZE (1 * 4)
#define VP9_MV_CLASSES_0_COUNT_START \
(VP9_MV_JOINTS_COUNT_START + VP9_MV_JOINTS_COUNT_SIZE)
#define VP9_MV_CLASSES_0_COUNT_SIZE (1 * 11)
#define VP9_MV_CLASS0_0_COUNT_START \
(VP9_MV_CLASSES_0_COUNT_START + VP9_MV_CLASSES_0_COUNT_SIZE)
#define VP9_MV_CLASS0_0_COUNT_SIZE (1 * 2)
#define VP9_MV_CLASSES_1_COUNT_START \
(VP9_MV_CLASS0_0_COUNT_START + VP9_MV_CLASS0_0_COUNT_SIZE)
#define VP9_MV_CLASSES_1_COUNT_SIZE (1 * 11)
#define VP9_MV_CLASS0_1_COUNT_START \
(VP9_MV_CLASSES_1_COUNT_START + VP9_MV_CLASSES_1_COUNT_SIZE)
#define VP9_MV_CLASS0_1_COUNT_SIZE (1 * 2)
#define VP9_MV_CLASS0_FP_0_COUNT_START \
(VP9_MV_CLASS0_1_COUNT_START + VP9_MV_CLASS0_1_COUNT_SIZE)
#define VP9_MV_CLASS0_FP_0_COUNT_SIZE (3 * 4)
#define VP9_MV_CLASS0_FP_1_COUNT_START \
(VP9_MV_CLASS0_FP_0_COUNT_START + VP9_MV_CLASS0_FP_0_COUNT_SIZE)
#define VP9_MV_CLASS0_FP_1_COUNT_SIZE (3 * 4)
#define DC_PRED 0 /* Average of above and left pixels */
#define V_PRED 1 /* Vertical */
#define H_PRED 2 /* Horizontal */
#define D45_PRED 3 /* Directional 45 deg = round(arctan(1/1) * 180/pi) */
#define D135_PRED 4 /* Directional 135 deg = 180 - 45 */
#define D117_PRED 5 /* Directional 117 deg = 180 - 63 */
#define D153_PRED 6 /* Directional 153 deg = 180 - 27 */
#define D207_PRED 7 /* Directional 207 deg = 180 + 27 */
#define D63_PRED 8 /* Directional 63 deg = round(arctan(2/1) * 180/pi) */
#define TM_PRED 9 /* True-motion */
static inline int round_power_of_two(int value, int num)
{
return (value + (1 << (num - 1))) >> num;
}
#define MODE_MV_COUNT_SAT 20
static const int count_to_update_factor[MODE_MV_COUNT_SAT + 1] = {
0, 6, 12, 19, 25, 32, 38, 44, 51, 57, 64,
70, 76, 83, 89, 96, 102, 108, 115, 121, 128
};
union rpm_param {
struct {
u16 data[RPM_BUF_SIZE];
} l;
struct {
u16 profile;
u16 show_existing_frame;
u16 frame_to_show_idx;
u16 frame_type;
u16 show_frame;
u16 error_resilient_mode;
u16 intra_only;
u16 display_size_present;
u16 reset_frame_context;
u16 refresh_frame_flags;
u16 width;
u16 height;
u16 display_width;
u16 display_height;
u16 ref_info;
u16 same_frame_size;
u16 mode_ref_delta_enabled;
u16 ref_deltas[4];
u16 mode_deltas[2];
u16 filter_level;
u16 sharpness_level;
u16 bit_depth;
u16 seg_quant_info[8];
u16 seg_enabled;
u16 seg_abs_delta;
u16 seg_lf_info[8];
} p;
};
enum SEG_LVL_FEATURES {
SEG_LVL_ALT_Q = 0,
SEG_LVL_ALT_LF = 1,
SEG_LVL_REF_FRAME = 2,
SEG_LVL_SKIP = 3,
SEG_LVL_MAX = 4
};
struct segmentation {
u8 enabled;
u8 update_map;
u8 update_data;
u8 abs_delta;
u8 temporal_update;
s16 feature_data[MAX_SEGMENTS][SEG_LVL_MAX];
unsigned int feature_mask[MAX_SEGMENTS];
};
struct loop_filter_thresh {
u8 mblim;
u8 lim;
u8 hev_thr;
};
struct loop_filter_info_n {
struct loop_filter_thresh lfthr[MAX_LOOP_FILTER + 1];
u8 lvl[MAX_SEGMENTS][MAX_REF_FRAMES][MAX_MODE_LF_DELTAS];
};
struct loopfilter {
int filter_level;
int sharpness_level;
int last_sharpness_level;
u8 mode_ref_delta_enabled;
u8 mode_ref_delta_update;
signed char ref_deltas[MAX_REF_LF_DELTAS];
signed char last_ref_deltas[MAX_REF_LF_DELTAS];
signed char mode_deltas[MAX_MODE_LF_DELTAS];
signed char last_mode_deltas[MAX_MODE_LF_DELTAS];
};
struct vp9_frame {
struct list_head list;
struct vb2_v4l2_buffer *vbuf;
int index;
int intra_only;
int show;
int type;
int done;
unsigned int width;
unsigned int height;
};
struct codec_vp9 {
struct mutex lock;
struct codec_hevc_common common;
void *workspace_vaddr;
dma_addr_t workspace_paddr;
union rpm_param rpm_param;
int is_10bit;
u32 width, height;
struct list_head ref_frames_list;
u32 frames_num;
void *fbc_buffer_vaddr[MAX_REF_PIC_NUM];
dma_addr_t fbc_buffer_paddr[MAX_REF_PIC_NUM];
int ref_frame_map[REF_FRAMES];
int next_ref_frame_map[REF_FRAMES];
struct vp9_frame *frame_refs[REFS_PER_FRAME];
u32 lcu_total;
int default_filt_lvl;
struct loop_filter_info_n lfi;
struct loopfilter lf;
struct segmentation seg_4lf;
struct vp9_frame *cur_frame;
struct vp9_frame *prev_frame;
};
static int div_r32(s64 m, int n)
{
s64 qu = div_s64(m, n);
return (int)qu;
}
static int clip_prob(int p)
{
return clamp_val(p, 1, 255);
}
static int segfeature_active(struct segmentation *seg, int segment_id,
enum SEG_LVL_FEATURES feature_id)
{
return seg->enabled &&
(seg->feature_mask[segment_id] & (1 << feature_id));
}
static int get_segdata(struct segmentation *seg, int segment_id,
enum SEG_LVL_FEATURES feature_id)
{
return seg->feature_data[segment_id][feature_id];
}
static void vp9_update_sharpness(struct loop_filter_info_n *lfi,
int sharpness_lvl)
{
int lvl;
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
int block_inside_limit = lvl >> ((sharpness_lvl > 0) +
(sharpness_lvl > 4));
if (sharpness_lvl > 0) {
if (block_inside_limit > (9 - sharpness_lvl))
block_inside_limit = (9 - sharpness_lvl);
}
if (block_inside_limit < 1)
block_inside_limit = 1;
lfi->lfthr[lvl].lim = (u8)block_inside_limit;
lfi->lfthr[lvl].mblim = (u8)(2 * (lvl + 2) +
block_inside_limit);
}
}
static void
vp9_loop_filter_init(struct amvdec_core *core, struct codec_vp9 *vp9)
{
struct loop_filter_info_n *lfi = &vp9->lfi;
struct loopfilter *lf = &vp9->lf;
struct segmentation *seg_4lf = &vp9->seg_4lf;
int i;
memset(lfi, 0, sizeof(struct loop_filter_info_n));
memset(lf, 0, sizeof(struct loopfilter));
memset(seg_4lf, 0, sizeof(struct segmentation));
lf->sharpness_level = 0;
vp9_update_sharpness(lfi, lf->sharpness_level);
lf->last_sharpness_level = lf->sharpness_level;
for (i = 0; i < 32; i++) {
unsigned int thr;
thr = ((lfi->lfthr[i * 2 + 1].lim & 0x3f) << 8) |
(lfi->lfthr[i * 2 + 1].mblim & 0xff);
thr = (thr << 16) | ((lfi->lfthr[i * 2].lim & 0x3f) << 8) |
(lfi->lfthr[i * 2].mblim & 0xff);
amvdec_write_dos(core, HEVC_DBLK_CFG9, thr);
}
if (core->platform->revision >= VDEC_REVISION_SM1)
amvdec_write_dos(core, HEVC_DBLK_CFGB,
(0x3 << 14) |
(0x3 << 12) |
(0x3 << 10) |
BIT(0));
else if (core->platform->revision >= VDEC_REVISION_G12A)
amvdec_write_dos(core, HEVC_DBLK_CFGB, (0x54 << 8) | BIT(0));
else
amvdec_write_dos(core, HEVC_DBLK_CFGB, 0x40400001);
}
static void
vp9_loop_filter_frame_init(struct amvdec_core *core, struct segmentation *seg,
struct loop_filter_info_n *lfi,
struct loopfilter *lf, int default_filt_lvl)
{
int i;
int seg_id;
const int scale = 1 << (default_filt_lvl >> 5);
if (lf->last_sharpness_level != lf->sharpness_level) {
vp9_update_sharpness(lfi, lf->sharpness_level);
lf->last_sharpness_level = lf->sharpness_level;
for (i = 0; i < 32; i++) {
unsigned int thr;
thr = ((lfi->lfthr[i * 2 + 1].lim & 0x3f) << 8) |
(lfi->lfthr[i * 2 + 1].mblim & 0xff);
thr = (thr << 16) |
((lfi->lfthr[i * 2].lim & 0x3f) << 8) |
(lfi->lfthr[i * 2].mblim & 0xff);
amvdec_write_dos(core, HEVC_DBLK_CFG9, thr);
}
}
for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
int lvl_seg = default_filt_lvl;
if (segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) {
const int data = get_segdata(seg, seg_id,
SEG_LVL_ALT_LF);
lvl_seg = clamp_t(int,
seg->abs_delta == SEGMENT_ABSDATA ?
data : default_filt_lvl + data,
0, MAX_LOOP_FILTER);
}
if (!lf->mode_ref_delta_enabled) {
memset(lfi->lvl[seg_id], lvl_seg,
sizeof(lfi->lvl[seg_id]));
} else {
int ref, mode;
const int intra_lvl =
lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
lfi->lvl[seg_id][INTRA_FRAME][0] =
clamp_val(intra_lvl, 0, MAX_LOOP_FILTER);
for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref) {
for (mode = 0; mode < MAX_MODE_LF_DELTAS;
++mode) {
const int inter_lvl =
lvl_seg +
lf->ref_deltas[ref] * scale +
lf->mode_deltas[mode] * scale;
lfi->lvl[seg_id][ref][mode] =
clamp_val(inter_lvl, 0,
MAX_LOOP_FILTER);
}
}
}
}
for (i = 0; i < 16; i++) {
unsigned int level;
level = ((lfi->lvl[i >> 1][3][i & 1] & 0x3f) << 24) |
((lfi->lvl[i >> 1][2][i & 1] & 0x3f) << 16) |
((lfi->lvl[i >> 1][1][i & 1] & 0x3f) << 8) |
(lfi->lvl[i >> 1][0][i & 1] & 0x3f);
if (!default_filt_lvl)
level = 0;
amvdec_write_dos(core, HEVC_DBLK_CFGA, level);
}
}
static void codec_vp9_flush_output(struct amvdec_session *sess)
{
struct codec_vp9 *vp9 = sess->priv;
struct vp9_frame *tmp, *n;
mutex_lock(&vp9->lock);
list_for_each_entry_safe(tmp, n, &vp9->ref_frames_list, list) {
if (!tmp->done) {
if (tmp->show)
amvdec_dst_buf_done(sess, tmp->vbuf,
V4L2_FIELD_NONE);
else
v4l2_m2m_buf_queue(sess->m2m_ctx, tmp->vbuf);
vp9->frames_num--;
}
list_del(&tmp->list);
kfree(tmp);
}
mutex_unlock(&vp9->lock);
}
static u32 codec_vp9_num_pending_bufs(struct amvdec_session *sess)
{
struct codec_vp9 *vp9 = sess->priv;
if (!vp9)
return 0;
return vp9->frames_num;
}
static int codec_vp9_alloc_workspace(struct amvdec_core *core,
struct codec_vp9 *vp9)
{
vp9->workspace_vaddr = dma_alloc_coherent(core->dev, SIZE_WORKSPACE,
&vp9->workspace_paddr,
GFP_KERNEL);
if (!vp9->workspace_vaddr) {
dev_err(core->dev, "Failed to allocate VP9 Workspace\n");
return -ENOMEM;
}
return 0;
}
static void codec_vp9_setup_workspace(struct amvdec_session *sess,
struct codec_vp9 *vp9)
{
struct amvdec_core *core = sess->core;
u32 revision = core->platform->revision;
dma_addr_t wkaddr = vp9->workspace_paddr;
amvdec_write_dos(core, HEVCD_IPP_LINEBUFF_BASE, wkaddr + IPP_OFFSET);
amvdec_write_dos(core, VP9_RPM_BUFFER, wkaddr + RPM_OFFSET);
amvdec_write_dos(core, VP9_SHORT_TERM_RPS, wkaddr + SH_TM_RPS_OFFSET);
amvdec_write_dos(core, VP9_PPS_BUFFER, wkaddr + PPS_OFFSET);
amvdec_write_dos(core, VP9_SAO_UP, wkaddr + SAO_UP_OFFSET);
amvdec_write_dos(core, VP9_STREAM_SWAP_BUFFER,
wkaddr + SWAP_BUF_OFFSET);
amvdec_write_dos(core, VP9_STREAM_SWAP_BUFFER2,
wkaddr + SWAP_BUF2_OFFSET);
amvdec_write_dos(core, VP9_SCALELUT, wkaddr + SCALELUT_OFFSET);
if (core->platform->revision >= VDEC_REVISION_G12A)
amvdec_write_dos(core, HEVC_DBLK_CFGE,
wkaddr + DBLK_PARA_OFFSET);
amvdec_write_dos(core, HEVC_DBLK_CFG4, wkaddr + DBLK_PARA_OFFSET);
amvdec_write_dos(core, HEVC_DBLK_CFG5, wkaddr + DBLK_DATA_OFFSET);
amvdec_write_dos(core, VP9_SEG_MAP_BUFFER, wkaddr + SEG_MAP_OFFSET);
amvdec_write_dos(core, VP9_PROB_SWAP_BUFFER, wkaddr + PROB_OFFSET);
amvdec_write_dos(core, VP9_COUNT_SWAP_BUFFER, wkaddr + COUNT_OFFSET);
amvdec_write_dos(core, LMEM_DUMP_ADR, wkaddr + LMEM_OFFSET);
if (codec_hevc_use_mmu(revision, sess->pixfmt_cap, vp9->is_10bit)) {
amvdec_write_dos(core, HEVC_SAO_MMU_VH0_ADDR,
wkaddr + MMU_VBH_OFFSET);
amvdec_write_dos(core, HEVC_SAO_MMU_VH1_ADDR,
wkaddr + MMU_VBH_OFFSET + (MMU_VBH_SIZE / 2));
if (revision >= VDEC_REVISION_G12A)
amvdec_write_dos(core, HEVC_ASSIST_MMU_MAP_ADDR,
vp9->common.mmu_map_paddr);
else
amvdec_write_dos(core, VP9_MMU_MAP_BUFFER,
vp9->common.mmu_map_paddr);
}
}
static int codec_vp9_start(struct amvdec_session *sess)
{
struct amvdec_core *core = sess->core;
struct codec_vp9 *vp9;
u32 val;
int i;
int ret;
vp9 = kzalloc(sizeof(*vp9), GFP_KERNEL);
if (!vp9)
return -ENOMEM;
ret = codec_vp9_alloc_workspace(core, vp9);
if (ret)
goto free_vp9;
codec_vp9_setup_workspace(sess, vp9);
amvdec_write_dos_bits(core, HEVC_STREAM_CONTROL, BIT(0));
if (core->platform->revision >= VDEC_REVISION_G12A)
amvdec_write_dos_bits(core, HEVC_STREAM_FIFO_CTL, BIT(29));
val = amvdec_read_dos(core, HEVC_PARSER_INT_CONTROL) & 0x7fffffff;
val |= (3 << 29) | BIT(24) | BIT(22) | BIT(7) | BIT(4) | BIT(0);
amvdec_write_dos(core, HEVC_PARSER_INT_CONTROL, val);
amvdec_write_dos_bits(core, HEVC_SHIFT_STATUS, BIT(0));
amvdec_write_dos(core, HEVC_SHIFT_CONTROL, BIT(10) | BIT(9) |
(3 << 6) | BIT(5) | BIT(2) | BIT(1) | BIT(0));
amvdec_write_dos(core, HEVC_CABAC_CONTROL, BIT(0));
amvdec_write_dos(core, HEVC_PARSER_CORE_CONTROL, BIT(0));
amvdec_write_dos(core, HEVC_SHIFT_STARTCODE, 0x00000001);
amvdec_write_dos(core, VP9_DEC_STATUS_REG, 0);
amvdec_write_dos(core, HEVC_PARSER_CMD_WRITE, BIT(16));
for (i = 0; i < ARRAY_SIZE(vdec_hevc_parser_cmd); ++i)
amvdec_write_dos(core, HEVC_PARSER_CMD_WRITE,
vdec_hevc_parser_cmd[i]);
amvdec_write_dos(core, HEVC_PARSER_CMD_SKIP_0, PARSER_CMD_SKIP_CFG_0);
amvdec_write_dos(core, HEVC_PARSER_CMD_SKIP_1, PARSER_CMD_SKIP_CFG_1);
amvdec_write_dos(core, HEVC_PARSER_CMD_SKIP_2, PARSER_CMD_SKIP_CFG_2);
amvdec_write_dos(core, HEVC_PARSER_IF_CONTROL,
BIT(5) | BIT(2) | BIT(0));
amvdec_write_dos(core, HEVCD_IPP_TOP_CNTL, BIT(0));
amvdec_write_dos(core, HEVCD_IPP_TOP_CNTL, BIT(1));
amvdec_write_dos(core, VP9_WAIT_FLAG, 1);
amvdec_write_dos(core, HEVC_ASSIST_MBOX1_CLR_REG, 1);
amvdec_write_dos(core, HEVC_ASSIST_MBOX1_MASK, 1);
amvdec_write_dos(core, HEVC_PSCALE_CTRL, 0);
amvdec_write_dos(core, NAL_SEARCH_CTL, 0x8);
amvdec_write_dos(core, DECODE_STOP_POS, 0);
amvdec_write_dos(core, VP9_DECODE_MODE, DECODE_MODE_SINGLE);
pr_debug("decode_count: %u; decode_size: %u\n",
amvdec_read_dos(core, HEVC_DECODE_COUNT),
amvdec_read_dos(core, HEVC_DECODE_SIZE));
vp9_loop_filter_init(core, vp9);
INIT_LIST_HEAD(&vp9->ref_frames_list);
mutex_init(&vp9->lock);
memset(&vp9->ref_frame_map, -1, sizeof(vp9->ref_frame_map));
memset(&vp9->next_ref_frame_map, -1, sizeof(vp9->next_ref_frame_map));
for (i = 0; i < REFS_PER_FRAME; ++i)
vp9->frame_refs[i] = NULL;
sess->priv = vp9;
return 0;
free_vp9:
kfree(vp9);
return ret;
}
static int codec_vp9_stop(struct amvdec_session *sess)
{
struct amvdec_core *core = sess->core;
struct codec_vp9 *vp9 = sess->priv;
mutex_lock(&vp9->lock);
if (vp9->workspace_vaddr)
dma_free_coherent(core->dev, SIZE_WORKSPACE,
vp9->workspace_vaddr,
vp9->workspace_paddr);
codec_hevc_free_fbc_buffers(sess, &vp9->common);
mutex_unlock(&vp9->lock);
return 0;
}
static void codec_vp9_set_mcrcc(struct amvdec_session *sess)
{
struct amvdec_core *core = sess->core;
struct codec_vp9 *vp9 = sess->priv;
u32 val;
amvdec_write_dos(core, HEVCD_MCRCC_CTL1, 0x2);
if (vp9->cur_frame->type == KEY_FRAME || vp9->cur_frame->intra_only) {
amvdec_write_dos(core, HEVCD_MCRCC_CTL1, 0x0);
return;
}
amvdec_write_dos(core, HEVCD_MPP_ANC_CANVAS_ACCCONFIG_ADDR, BIT(1));
val = amvdec_read_dos(core, HEVCD_MPP_ANC_CANVAS_DATA_ADDR) & 0xffff;
val |= (val << 16);
amvdec_write_dos(core, HEVCD_MCRCC_CTL2, val);
val = amvdec_read_dos(core, HEVCD_MPP_ANC_CANVAS_DATA_ADDR) & 0xffff;
val |= (val << 16);
amvdec_write_dos(core, HEVCD_MCRCC_CTL3, val);
amvdec_write_dos(core, HEVCD_MCRCC_CTL1, 0xff0);
}
static void codec_vp9_set_sao(struct amvdec_session *sess,
struct vb2_buffer *vb)
{
struct amvdec_core *core = sess->core;
struct codec_vp9 *vp9 = sess->priv;
dma_addr_t buf_y_paddr;
dma_addr_t buf_u_v_paddr;
u32 val;
if (codec_hevc_use_downsample(sess->pixfmt_cap, vp9->is_10bit))
buf_y_paddr =
vp9->common.fbc_buffer_paddr[vb->index];
else
buf_y_paddr =
vb2_dma_contig_plane_dma_addr(vb, 0);
if (codec_hevc_use_fbc(sess->pixfmt_cap, vp9->is_10bit)) {
val = amvdec_read_dos(core, HEVC_SAO_CTRL5) & ~0xff0200;
amvdec_write_dos(core, HEVC_SAO_CTRL5, val);
amvdec_write_dos(core, HEVC_CM_BODY_START_ADDR, buf_y_paddr);
}
if (sess->pixfmt_cap == V4L2_PIX_FMT_NV12M) {
buf_y_paddr =
vb2_dma_contig_plane_dma_addr(vb, 0);
buf_u_v_paddr =
vb2_dma_contig_plane_dma_addr(vb, 1);
amvdec_write_dos(core, HEVC_SAO_Y_START_ADDR, buf_y_paddr);
amvdec_write_dos(core, HEVC_SAO_C_START_ADDR, buf_u_v_paddr);
amvdec_write_dos(core, HEVC_SAO_Y_WPTR, buf_y_paddr);
amvdec_write_dos(core, HEVC_SAO_C_WPTR, buf_u_v_paddr);
}
if (codec_hevc_use_mmu(core->platform->revision, sess->pixfmt_cap,
vp9->is_10bit)) {
amvdec_write_dos(core, HEVC_CM_HEADER_START_ADDR,
vp9->common.mmu_header_paddr[vb->index]);
amvdec_write_dos_bits(core, HEVC_SAO_CTRL5, BIT(10));
}
amvdec_write_dos(core, HEVC_SAO_Y_LENGTH,
amvdec_get_output_size(sess));
amvdec_write_dos(core, HEVC_SAO_C_LENGTH,
(amvdec_get_output_size(sess) / 2));
if (core->platform->revision >= VDEC_REVISION_G12A) {
amvdec_clear_dos_bits(core, HEVC_DBLK_CFGB,
BIT(4) | BIT(5) | BIT(8) | BIT(9));
if (codec_hevc_use_fbc(sess->pixfmt_cap, vp9->is_10bit))
amvdec_write_dos_bits(core, HEVC_DBLK_CFGB, BIT(8));
if (sess->pixfmt_cap == V4L2_PIX_FMT_NV12M)
amvdec_write_dos_bits(core, HEVC_DBLK_CFGB, BIT(9));
if (sess->width >= 1280)
amvdec_write_dos_bits(core, HEVC_DBLK_CFGB, BIT(4));
pr_debug("HEVC_DBLK_CFGB: %08X\n",
amvdec_read_dos(core, HEVC_DBLK_CFGB));
}
val = amvdec_read_dos(core, HEVC_SAO_CTRL1) & ~0x3ff0;
val |= 0xff0;
if (core->platform->revision < VDEC_REVISION_G12A) {
val &= ~0x3;
if (!codec_hevc_use_fbc(sess->pixfmt_cap, vp9->is_10bit))
val |= BIT(0);
}
amvdec_write_dos(core, HEVC_SAO_CTRL1, val);
pr_debug("HEVC_SAO_CTRL1: %08X\n", val);
val = amvdec_read_dos(core, HEVC_SAO_CTRL5) & ~0xff0000;
amvdec_write_dos(core, HEVC_SAO_CTRL5, val);
val = amvdec_read_dos(core, HEVCD_IPP_AXIIF_CONFIG) & ~0x30;
val |= 0xf;
val &= ~BIT(12);
amvdec_write_dos(core, HEVCD_IPP_AXIIF_CONFIG, val);
}
static dma_addr_t codec_vp9_get_frame_mv_paddr(struct codec_vp9 *vp9,
struct vp9_frame *frame)
{
return vp9->workspace_paddr + MPRED_MV_OFFSET +
(frame->index * MPRED_MV_BUF_SIZE);
}
static void codec_vp9_set_mpred_mv(struct amvdec_core *core,
struct codec_vp9 *vp9)
{
int mpred_mv_rd_end_addr;
int use_prev_frame_mvs = vp9->prev_frame->width ==
vp9->cur_frame->width &&
vp9->prev_frame->height ==
vp9->cur_frame->height &&
!vp9->prev_frame->intra_only &&
vp9->prev_frame->show &&
vp9->prev_frame->type != KEY_FRAME;
amvdec_write_dos(core, HEVC_MPRED_CTRL3, 0x24122412);
amvdec_write_dos(core, HEVC_MPRED_ABV_START_ADDR,
vp9->workspace_paddr + MPRED_ABV_OFFSET);
amvdec_clear_dos_bits(core, HEVC_MPRED_CTRL4, BIT(6));
if (use_prev_frame_mvs)
amvdec_write_dos_bits(core, HEVC_MPRED_CTRL4, BIT(6));
amvdec_write_dos(core, HEVC_MPRED_MV_WR_START_ADDR,
codec_vp9_get_frame_mv_paddr(vp9, vp9->cur_frame));
amvdec_write_dos(core, HEVC_MPRED_MV_WPTR,
codec_vp9_get_frame_mv_paddr(vp9, vp9->cur_frame));
amvdec_write_dos(core, HEVC_MPRED_MV_RD_START_ADDR,
codec_vp9_get_frame_mv_paddr(vp9, vp9->prev_frame));
amvdec_write_dos(core, HEVC_MPRED_MV_RPTR,
codec_vp9_get_frame_mv_paddr(vp9, vp9->prev_frame));
mpred_mv_rd_end_addr =
codec_vp9_get_frame_mv_paddr(vp9, vp9->prev_frame) +
(vp9->lcu_total * MV_MEM_UNIT);
amvdec_write_dos(core, HEVC_MPRED_MV_RD_END_ADDR, mpred_mv_rd_end_addr);
}
static void codec_vp9_update_next_ref(struct codec_vp9 *vp9)
{
union rpm_param *param = &vp9->rpm_param;
u32 buf_idx = vp9->cur_frame->index;
int ref_index = 0;
int refresh_frame_flags;
int mask;
refresh_frame_flags = vp9->cur_frame->type == KEY_FRAME ?
0xff : param->p.refresh_frame_flags;
for (mask = refresh_frame_flags; mask; mask >>= 1) {
pr_debug("mask=%08X; ref_index=%d\n", mask, ref_index);
if (mask & 1)
vp9->next_ref_frame_map[ref_index] = buf_idx;
else
vp9->next_ref_frame_map[ref_index] =
vp9->ref_frame_map[ref_index];
++ref_index;
}
for (; ref_index < REF_FRAMES; ++ref_index)
vp9->next_ref_frame_map[ref_index] =
vp9->ref_frame_map[ref_index];
}
static void codec_vp9_save_refs(struct codec_vp9 *vp9)
{
union rpm_param *param = &vp9->rpm_param;
int i;
for (i = 0; i < REFS_PER_FRAME; ++i) {
const int ref = (param->p.ref_info >>
(((REFS_PER_FRAME - i - 1) * 4) + 1)) & 0x7;
if (vp9->ref_frame_map[ref] < 0)
continue;
pr_warn("%s: FIXME, would need to save ref %d\n",
__func__, vp9->ref_frame_map[ref]);
}
}
static void codec_vp9_update_ref(struct codec_vp9 *vp9)
{
union rpm_param *param = &vp9->rpm_param;
int ref_index = 0;
int mask;
int refresh_frame_flags;
if (!vp9->cur_frame)
return;
refresh_frame_flags = vp9->cur_frame->type == KEY_FRAME ?
0xff : param->p.refresh_frame_flags;
for (mask = refresh_frame_flags; mask; mask >>= 1) {
vp9->ref_frame_map[ref_index] =
vp9->next_ref_frame_map[ref_index];
++ref_index;
}
if (param->p.show_existing_frame)
return;
for (; ref_index < REF_FRAMES; ++ref_index)
vp9->ref_frame_map[ref_index] =
vp9->next_ref_frame_map[ref_index];
}
static struct vp9_frame *codec_vp9_get_frame_by_idx(struct codec_vp9 *vp9,
int idx)
{
struct vp9_frame *frame;
list_for_each_entry(frame, &vp9->ref_frames_list, list) {
if (frame->index == idx)
return frame;
}
return NULL;
}
static void codec_vp9_sync_ref(struct codec_vp9 *vp9)
{
union rpm_param *param = &vp9->rpm_param;
int i;
for (i = 0; i < REFS_PER_FRAME; ++i) {
const int ref = (param->p.ref_info >>
(((REFS_PER_FRAME - i - 1) * 4) + 1)) & 0x7;
const int idx = vp9->ref_frame_map[ref];
vp9->frame_refs[i] = codec_vp9_get_frame_by_idx(vp9, idx);
if (!vp9->frame_refs[i])
pr_warn("%s: couldn't find VP9 ref %d\n", __func__,
idx);
}
}
static void codec_vp9_set_refs(struct amvdec_session *sess,
struct codec_vp9 *vp9)
{
struct amvdec_core *core = sess->core;
int i;
for (i = 0; i < REFS_PER_FRAME; ++i) {
struct vp9_frame *frame = vp9->frame_refs[i];
int id_y;
int id_u_v;
if (!frame)
continue;
if (codec_hevc_use_fbc(sess->pixfmt_cap, vp9->is_10bit)) {
id_y = frame->index;
id_u_v = id_y;
} else {
id_y = frame->index * 2;
id_u_v = id_y + 1;
}
amvdec_write_dos(core, HEVCD_MPP_ANC_CANVAS_DATA_ADDR,
(id_u_v << 16) | (id_u_v << 8) | id_y);
}
}
static void codec_vp9_set_mc(struct amvdec_session *sess,
struct codec_vp9 *vp9)
{
struct amvdec_core *core = sess->core;
u32 scale = 0;
u32 sz;
int i;
amvdec_write_dos(core, HEVCD_MPP_ANC_CANVAS_ACCCONFIG_ADDR, 1);
codec_vp9_set_refs(sess, vp9);
amvdec_write_dos(core, HEVCD_MPP_ANC_CANVAS_ACCCONFIG_ADDR,
(16 << 8) | 1);
codec_vp9_set_refs(sess, vp9);
amvdec_write_dos(core, VP9D_MPP_REFINFO_TBL_ACCCONFIG, BIT(2));
for (i = 0; i < REFS_PER_FRAME; ++i) {
if (!vp9->frame_refs[i])
continue;
if (vp9->frame_refs[i]->width != vp9->width ||
vp9->frame_refs[i]->height != vp9->height)
scale = 1;
sz = amvdec_am21c_body_size(vp9->frame_refs[i]->width,
vp9->frame_refs[i]->height);
amvdec_write_dos(core, VP9D_MPP_REFINFO_DATA,
vp9->frame_refs[i]->width);
amvdec_write_dos(core, VP9D_MPP_REFINFO_DATA,
vp9->frame_refs[i]->height);
amvdec_write_dos(core, VP9D_MPP_REFINFO_DATA,
(vp9->frame_refs[i]->width << 14) /
vp9->width);
amvdec_write_dos(core, VP9D_MPP_REFINFO_DATA,
(vp9->frame_refs[i]->height << 14) /
vp9->height);
amvdec_write_dos(core, VP9D_MPP_REFINFO_DATA, sz >> 5);
}
amvdec_write_dos(core, VP9D_MPP_REF_SCALE_ENBL, scale);
}
static struct vp9_frame *codec_vp9_get_new_frame(struct amvdec_session *sess)
{
struct codec_vp9 *vp9 = sess->priv;
union rpm_param *param = &vp9->rpm_param;
struct vb2_v4l2_buffer *vbuf;
struct vp9_frame *new_frame;
new_frame = kzalloc(sizeof(*new_frame), GFP_KERNEL);
if (!new_frame)
return NULL;
vbuf = v4l2_m2m_dst_buf_remove(sess->m2m_ctx);
if (!vbuf) {
dev_err(sess->core->dev, "No dst buffer available\n");
kfree(new_frame);
return NULL;
}
while (codec_vp9_get_frame_by_idx(vp9, vbuf->vb2_buf.index)) {
struct vb2_v4l2_buffer *old_vbuf = vbuf;
vbuf = v4l2_m2m_dst_buf_remove(sess->m2m_ctx);
v4l2_m2m_buf_queue(sess->m2m_ctx, old_vbuf);
if (!vbuf) {
dev_err(sess->core->dev, "No dst buffer available\n");
kfree(new_frame);
return NULL;
}
}
new_frame->vbuf = vbuf;
new_frame->index = vbuf->vb2_buf.index;
new_frame->intra_only = param->p.intra_only;
new_frame->show = param->p.show_frame;
new_frame->type = param->p.frame_type;
new_frame->width = vp9->width;
new_frame->height = vp9->height;
list_add_tail(&new_frame->list, &vp9->ref_frames_list);
vp9->frames_num++;
return new_frame;
}
static void codec_vp9_show_existing_frame(struct codec_vp9 *vp9)
{
union rpm_param *param = &vp9->rpm_param;
if (!param->p.show_existing_frame)
return;
pr_debug("showing frame %u\n", param->p.frame_to_show_idx);
}
static void codec_vp9_rm_noshow_frame(struct amvdec_session *sess)
{
struct codec_vp9 *vp9 = sess->priv;
struct vp9_frame *tmp;
list_for_each_entry(tmp, &vp9->ref_frames_list, list) {
if (tmp->show)
continue;
pr_debug("rm noshow: %u\n", tmp->index);
v4l2_m2m_buf_queue(sess->m2m_ctx, tmp->vbuf);
list_del(&tmp->list);
kfree(tmp);
vp9->frames_num--;
return;
}
}
static void codec_vp9_process_frame(struct amvdec_session *sess)
{
struct amvdec_core *core = sess->core;
struct codec_vp9 *vp9 = sess->priv;
union rpm_param *param = &vp9->rpm_param;
int intra_only;
if (!param->p.show_frame)
codec_vp9_rm_noshow_frame(sess);
vp9->cur_frame = codec_vp9_get_new_frame(sess);
if (!vp9->cur_frame)
return;
pr_debug("frame %d: type: %08X; show_exist: %u; show: %u, intra_only: %u\n",
vp9->cur_frame->index,
param->p.frame_type, param->p.show_existing_frame,
param->p.show_frame, param->p.intra_only);
if (param->p.frame_type != KEY_FRAME)
codec_vp9_sync_ref(vp9);
codec_vp9_update_next_ref(vp9);
codec_vp9_show_existing_frame(vp9);
if (codec_hevc_use_mmu(core->platform->revision, sess->pixfmt_cap,
vp9->is_10bit))
codec_hevc_fill_mmu_map(sess, &vp9->common,
&vp9->cur_frame->vbuf->vb2_buf);
intra_only = param->p.show_frame ? 0 : param->p.intra_only;
if (param->p.frame_type != KEY_FRAME && !intra_only) {
codec_vp9_set_mc(sess, vp9);
codec_vp9_set_mpred_mv(core, vp9);
} else {
amvdec_clear_dos_bits(core, HEVC_MPRED_CTRL4, BIT(6));
}
amvdec_write_dos(core, HEVC_PARSER_PICTURE_SIZE,
(vp9->height << 16) | vp9->width);
codec_vp9_set_mcrcc(sess);
codec_vp9_set_sao(sess, &vp9->cur_frame->vbuf->vb2_buf);
vp9_loop_filter_frame_init(core, &vp9->seg_4lf,
&vp9->lfi, &vp9->lf,
vp9->default_filt_lvl);
amvdec_write_dos(core, VP9_DEC_STATUS_REG, VP9_10B_DECODE_SLICE);
}
static void codec_vp9_process_lf(struct codec_vp9 *vp9)
{
union rpm_param *param = &vp9->rpm_param;
int i;
vp9->lf.mode_ref_delta_enabled = param->p.mode_ref_delta_enabled;
vp9->lf.sharpness_level = param->p.sharpness_level;
vp9->default_filt_lvl = param->p.filter_level;
vp9->seg_4lf.enabled = param->p.seg_enabled;
vp9->seg_4lf.abs_delta = param->p.seg_abs_delta;
for (i = 0; i < 4; i++)
vp9->lf.ref_deltas[i] = param->p.ref_deltas[i];
for (i = 0; i < 2; i++)
vp9->lf.mode_deltas[i] = param->p.mode_deltas[i];
for (i = 0; i < MAX_SEGMENTS; i++)
vp9->seg_4lf.feature_mask[i] =
(param->p.seg_lf_info[i] & 0x8000) ?
(1 << SEG_LVL_ALT_LF) : 0;
for (i = 0; i < MAX_SEGMENTS; i++)
vp9->seg_4lf.feature_data[i][SEG_LVL_ALT_LF] =
(param->p.seg_lf_info[i] & 0x100) ?
-(param->p.seg_lf_info[i] & 0x3f)
: (param->p.seg_lf_info[i] & 0x3f);
}
static void codec_vp9_resume(struct amvdec_session *sess)
{
struct codec_vp9 *vp9 = sess->priv;
mutex_lock(&vp9->lock);
if (codec_hevc_setup_buffers(sess, &vp9->common, vp9->is_10bit)) {
mutex_unlock(&vp9->lock);
amvdec_abort(sess);
return;
}
codec_vp9_setup_workspace(sess, vp9);
codec_hevc_setup_decode_head(sess, vp9->is_10bit);
codec_vp9_process_lf(vp9);
codec_vp9_process_frame(sess);
mutex_unlock(&vp9->lock);
}
static void codec_vp9_fetch_rpm(struct amvdec_session *sess)
{
struct codec_vp9 *vp9 = sess->priv;
u16 *rpm_vaddr = vp9->workspace_vaddr + RPM_OFFSET;
int i, j;
for (i = 0; i < RPM_BUF_SIZE; i += 4)
for (j = 0; j < 4; j++)
vp9->rpm_param.l.data[i + j] = rpm_vaddr[i + 3 - j];
}
static int codec_vp9_process_rpm(struct codec_vp9 *vp9)
{
union rpm_param *param = &vp9->rpm_param;
int src_changed = 0;
int is_10bit = 0;
int pic_width_64 = ALIGN(param->p.width, 64);
int pic_height_32 = ALIGN(param->p.height, 32);
int pic_width_lcu = (pic_width_64 % LCU_SIZE) ?
pic_width_64 / LCU_SIZE + 1
: pic_width_64 / LCU_SIZE;
int pic_height_lcu = (pic_height_32 % LCU_SIZE) ?
pic_height_32 / LCU_SIZE + 1
: pic_height_32 / LCU_SIZE;
vp9->lcu_total = pic_width_lcu * pic_height_lcu;
if (param->p.bit_depth == 10)
is_10bit = 1;
if (vp9->width != param->p.width || vp9->height != param->p.height ||
vp9->is_10bit != is_10bit)
src_changed = 1;
vp9->width = param->p.width;
vp9->height = param->p.height;
vp9->is_10bit = is_10bit;
pr_debug("width: %u; height: %u; is_10bit: %d; src_changed: %d\n",
vp9->width, vp9->height, is_10bit, src_changed);
return src_changed;
}
static bool codec_vp9_is_ref(struct codec_vp9 *vp9, struct vp9_frame *frame)
{
int i;
for (i = 0; i < REF_FRAMES; ++i)
if (vp9->ref_frame_map[i] == frame->index)
return true;
return false;
}
static void codec_vp9_show_frame(struct amvdec_session *sess)
{
struct codec_vp9 *vp9 = sess->priv;
struct vp9_frame *tmp, *n;
list_for_each_entry_safe(tmp, n, &vp9->ref_frames_list, list) {
if (!tmp->show || tmp == vp9->cur_frame)
continue;
if (!tmp->done) {
pr_debug("Doning %u\n", tmp->index);
amvdec_dst_buf_done(sess, tmp->vbuf, V4L2_FIELD_NONE);
tmp->done = 1;
vp9->frames_num--;
}
if (codec_vp9_is_ref(vp9, tmp) || tmp == vp9->prev_frame)
continue;
pr_debug("deleting %d\n", tmp->index);
list_del(&tmp->list);
kfree(tmp);
}
}
static void vp9_tree_merge_probs(unsigned int *prev_prob,
unsigned int *cur_prob,
int coef_node_start, int tree_left,
int tree_right,
int tree_i, int node)
{
int prob_32, prob_res, prob_shift;
int pre_prob, new_prob;
int den, m_count, get_prob, factor;
prob_32 = prev_prob[coef_node_start / 4 * 2];
prob_res = coef_node_start & 3;
prob_shift = prob_res * 8;
pre_prob = (prob_32 >> prob_shift) & 0xff;
den = tree_left + tree_right;
if (den == 0) {
new_prob = pre_prob;
} else {
m_count = min(den, MODE_MV_COUNT_SAT);
get_prob =
clip_prob(div_r32(((int64_t)tree_left * 256 +
(den >> 1)),
den));
factor = count_to_update_factor[m_count];
new_prob = round_power_of_two(pre_prob * (256 - factor) +
get_prob * factor, 8);
}
cur_prob[coef_node_start / 4 * 2] =
(cur_prob[coef_node_start / 4 * 2] & (~(0xff << prob_shift))) |
(new_prob << prob_shift);
}
static void adapt_coef_probs_cxt(unsigned int *prev_prob,
unsigned int *cur_prob,
unsigned int *count,
int update_factor,
int cxt_num,
int coef_cxt_start,
int coef_count_cxt_start)
{
int prob_32, prob_res, prob_shift;
int pre_prob, new_prob;
int num, den, m_count, get_prob, factor;
int node, coef_node_start;
int count_sat = 24;
int cxt;
for (cxt = 0; cxt < cxt_num; cxt++) {
const int n0 = count[coef_count_cxt_start];
const int n1 = count[coef_count_cxt_start + 1];
const int n2 = count[coef_count_cxt_start + 2];
const int neob = count[coef_count_cxt_start + 3];
const int nneob = count[coef_count_cxt_start + 4];
const unsigned int branch_ct[3][2] = {
{ neob, nneob },
{ n0, n1 + n2 },
{ n1, n2 }
};
coef_node_start = coef_cxt_start;
for (node = 0 ; node < 3 ; node++) {
prob_32 = prev_prob[coef_node_start / 4 * 2];
prob_res = coef_node_start & 3;
prob_shift = prob_res * 8;
pre_prob = (prob_32 >> prob_shift) & 0xff;
num = branch_ct[node][0];
den = branch_ct[node][0] + branch_ct[node][1];
m_count = min(den, count_sat);
get_prob = (den == 0) ?
128u :
clip_prob(div_r32(((int64_t)num * 256 +
(den >> 1)), den));
factor = update_factor * m_count / count_sat;
new_prob =
round_power_of_two(pre_prob * (256 - factor) +
get_prob * factor, 8);
cur_prob[coef_node_start / 4 * 2] =
(cur_prob[coef_node_start / 4 * 2] &
(~(0xff << prob_shift))) |
(new_prob << prob_shift);
coef_node_start += 1;
}
coef_cxt_start = coef_cxt_start + 3;
coef_count_cxt_start = coef_count_cxt_start + 5;
}
}
static void adapt_coef_probs(int prev_kf, int cur_kf, int pre_fc,
unsigned int *prev_prob, unsigned int *cur_prob,
unsigned int *count)
{
int tx_size, coef_tx_size_start, coef_count_tx_size_start;
int plane, coef_plane_start, coef_count_plane_start;
int type, coef_type_start, coef_count_type_start;
int band, coef_band_start, coef_count_band_start;
int cxt_num;
int coef_cxt_start, coef_count_cxt_start;
int node, coef_node_start, coef_count_node_start;
int tree_i, tree_left, tree_right;
int mvd_i;
int update_factor = cur_kf ? 112 : (prev_kf ? 128 : 112);
int prob_32;
int prob_res;
int prob_shift;
int pre_prob;
int den;
int get_prob;
int m_count;
int factor;
int new_prob;
for (tx_size = 0 ; tx_size < 4 ; tx_size++) {
coef_tx_size_start = VP9_COEF_START +
tx_size * 4 * VP9_COEF_SIZE_ONE_SET;
coef_count_tx_size_start = VP9_COEF_COUNT_START +
tx_size * 4 * VP9_COEF_COUNT_SIZE_ONE_SET;
coef_plane_start = coef_tx_size_start;
coef_count_plane_start = coef_count_tx_size_start;
for (plane = 0 ; plane < 2 ; plane++) {
coef_type_start = coef_plane_start;
coef_count_type_start = coef_count_plane_start;
for (type = 0 ; type < 2 ; type++) {
coef_band_start = coef_type_start;
coef_count_band_start = coef_count_type_start;
for (band = 0 ; band < 6 ; band++) {
if (band == 0)
cxt_num = 3;
else
cxt_num = 6;
coef_cxt_start = coef_band_start;
coef_count_cxt_start =
coef_count_band_start;
adapt_coef_probs_cxt(prev_prob,
cur_prob,
count,
update_factor,
cxt_num,
coef_cxt_start,
coef_count_cxt_start);
if (band == 0) {
coef_band_start += 10;
coef_count_band_start += 15;
} else {
coef_band_start += 18;
coef_count_band_start += 30;
}
}
coef_type_start += VP9_COEF_SIZE_ONE_SET;
coef_count_type_start +=
VP9_COEF_COUNT_SIZE_ONE_SET;
}
coef_plane_start += 2 * VP9_COEF_SIZE_ONE_SET;
coef_count_plane_start +=
2 * VP9_COEF_COUNT_SIZE_ONE_SET;
}
}
if (cur_kf == 0) {
for (coef_count_node_start = VP9_INTRA_INTER_COUNT_START;
coef_count_node_start < (VP9_MV_CLASS0_HP_1_COUNT_START +
VP9_MV_CLASS0_HP_1_COUNT_SIZE);
coef_count_node_start += 2) {
if (coef_count_node_start ==
VP9_INTRA_INTER_COUNT_START)
coef_node_start = VP9_INTRA_INTER_START;
else if (coef_count_node_start ==
VP9_COMP_INTER_COUNT_START)
coef_node_start = VP9_COMP_INTER_START;
else if (coef_count_node_start ==
VP9_TX_MODE_COUNT_START)
coef_node_start = VP9_TX_MODE_START;
else if (coef_count_node_start ==
VP9_SKIP_COUNT_START)
coef_node_start = VP9_SKIP_START;
else if (coef_count_node_start ==
VP9_MV_SIGN_0_COUNT_START)
coef_node_start = VP9_MV_SIGN_0_START;
else if (coef_count_node_start ==
VP9_MV_SIGN_1_COUNT_START)
coef_node_start = VP9_MV_SIGN_1_START;
else if (coef_count_node_start ==
VP9_MV_BITS_0_COUNT_START)
coef_node_start = VP9_MV_BITS_0_START;
else if (coef_count_node_start ==
VP9_MV_BITS_1_COUNT_START)
coef_node_start = VP9_MV_BITS_1_START;
else
coef_node_start = VP9_MV_CLASS0_HP_0_START;
den = count[coef_count_node_start] +
count[coef_count_node_start + 1];
prob_32 = prev_prob[coef_node_start / 4 * 2];
prob_res = coef_node_start & 3;
prob_shift = prob_res * 8;
pre_prob = (prob_32 >> prob_shift) & 0xff;
if (den == 0) {
new_prob = pre_prob;
} else {
m_count = min(den, MODE_MV_COUNT_SAT);
get_prob =
clip_prob(div_r32(((int64_t)
count[coef_count_node_start] * 256 +
(den >> 1)),
den));
factor = count_to_update_factor[m_count];
new_prob =
round_power_of_two(pre_prob *
(256 - factor) +
get_prob * factor,
8);
}
cur_prob[coef_node_start / 4 * 2] =
(cur_prob[coef_node_start / 4 * 2] &
(~(0xff << prob_shift))) |
(new_prob << prob_shift);
coef_node_start = coef_node_start + 1;
}
coef_node_start = VP9_INTER_MODE_START;
coef_count_node_start = VP9_INTER_MODE_COUNT_START;
for (tree_i = 0 ; tree_i < 7 ; tree_i++) {
for (node = 0 ; node < 3 ; node++) {
unsigned int start = coef_count_node_start;
switch (node) {
case 2:
tree_left = count[start + 1];
tree_right = count[start + 3];
break;
case 1:
tree_left = count[start + 0];
tree_right = count[start + 1] +
count[start + 3];
break;
default:
tree_left = count[start + 2];
tree_right = count[start + 0] +
count[start + 1] +
count[start + 3];
break;
}
vp9_tree_merge_probs(prev_prob, cur_prob,
coef_node_start,
tree_left, tree_right,
tree_i, node);
coef_node_start = coef_node_start + 1;
}
coef_count_node_start = coef_count_node_start + 4;
}
coef_node_start = VP9_IF_Y_MODE_START;
coef_count_node_start = VP9_IF_Y_MODE_COUNT_START;
for (tree_i = 0 ; tree_i < 14 ; tree_i++) {
for (node = 0 ; node < 9 ; node++) {
unsigned int start = coef_count_node_start;
switch (node) {
case 8:
tree_left =
count[start + D153_PRED];
tree_right =
count[start + D207_PRED];
break;
case 7:
tree_left =
count[start + D63_PRED];
tree_right =
count[start + D207_PRED] +
count[start + D153_PRED];
break;
case 6:
tree_left =
count[start + D45_PRED];
tree_right =
count[start + D207_PRED] +
count[start + D153_PRED] +
count[start + D63_PRED];
break;
case 5:
tree_left =
count[start + D135_PRED];
tree_right =
count[start + D117_PRED];
break;
case 4:
tree_left =
count[start + H_PRED];
tree_right =
count[start + D117_PRED] +
count[start + D135_PRED];
break;
case 3:
tree_left =
count[start + H_PRED] +
count[start + D117_PRED] +
count[start + D135_PRED];
tree_right =
count[start + D45_PRED] +
count[start + D207_PRED] +
count[start + D153_PRED] +
count[start + D63_PRED];
break;
case 2:
tree_left =
count[start + V_PRED];
tree_right =
count[start + H_PRED] +
count[start + D117_PRED] +
count[start + D135_PRED] +
count[start + D45_PRED] +
count[start + D207_PRED] +
count[start + D153_PRED] +
count[start + D63_PRED];
break;
case 1:
tree_left =
count[start + TM_PRED];
tree_right =
count[start + V_PRED] +
count[start + H_PRED] +
count[start + D117_PRED] +
count[start + D135_PRED] +
count[start + D45_PRED] +
count[start + D207_PRED] +
count[start + D153_PRED] +
count[start + D63_PRED];
break;
default:
tree_left =
count[start + DC_PRED];
tree_right =
count[start + TM_PRED] +
count[start + V_PRED] +
count[start + H_PRED] +
count[start + D117_PRED] +
count[start + D135_PRED] +
count[start + D45_PRED] +
count[start + D207_PRED] +
count[start + D153_PRED] +
count[start + D63_PRED];
break;
}
vp9_tree_merge_probs(prev_prob, cur_prob,
coef_node_start,
tree_left, tree_right,
tree_i, node);
coef_node_start = coef_node_start + 1;
}
coef_count_node_start = coef_count_node_start + 10;
}
coef_node_start = VP9_PARTITION_P_START;
coef_count_node_start = VP9_PARTITION_P_COUNT_START;
for (tree_i = 0 ; tree_i < 16 ; tree_i++) {
for (node = 0 ; node < 3 ; node++) {
unsigned int start = coef_count_node_start;
switch (node) {
case 2:
tree_left = count[start + 2];
tree_right = count[start + 3];
break;
case 1:
tree_left = count[start + 1];
tree_right = count[start + 2] +
count[start + 3];
break;
default:
tree_left = count[start + 0];
tree_right = count[start + 1] +
count[start + 2] +
count[start + 3];
break;
}
vp9_tree_merge_probs(prev_prob, cur_prob,
coef_node_start,
tree_left, tree_right,
tree_i, node);
coef_node_start = coef_node_start + 1;
}
coef_count_node_start = coef_count_node_start + 4;
}
coef_node_start = VP9_INTERP_START;
coef_count_node_start = VP9_INTERP_COUNT_START;
for (tree_i = 0 ; tree_i < 4 ; tree_i++) {
for (node = 0 ; node < 2 ; node++) {
unsigned int start = coef_count_node_start;
switch (node) {
case 1:
tree_left = count[start + 1];
tree_right = count[start + 2];
break;
default:
tree_left = count[start + 0];
tree_right = count[start + 1] +
count[start + 2];
break;
}
vp9_tree_merge_probs(prev_prob, cur_prob,
coef_node_start,
tree_left, tree_right,
tree_i, node);
coef_node_start = coef_node_start + 1;
}
coef_count_node_start = coef_count_node_start + 3;
}
coef_node_start = VP9_MV_JOINTS_START;
coef_count_node_start = VP9_MV_JOINTS_COUNT_START;
for (tree_i = 0 ; tree_i < 1 ; tree_i++) {
for (node = 0 ; node < 3 ; node++) {
unsigned int start = coef_count_node_start;
switch (node) {
case 2:
tree_left = count[start + 2];
tree_right = count[start + 3];
break;
case 1:
tree_left = count[start + 1];
tree_right = count[start + 2] +
count[start + 3];
break;
default:
tree_left = count[start + 0];
tree_right = count[start + 1] +
count[start + 2] +
count[start + 3];
break;
}
vp9_tree_merge_probs(prev_prob, cur_prob,
coef_node_start,
tree_left, tree_right,
tree_i, node);
coef_node_start = coef_node_start + 1;
}
coef_count_node_start = coef_count_node_start + 4;
}
for (mvd_i = 0 ; mvd_i < 2 ; mvd_i++) {
coef_node_start = mvd_i ? VP9_MV_CLASSES_1_START :
VP9_MV_CLASSES_0_START;
coef_count_node_start = mvd_i ?
VP9_MV_CLASSES_1_COUNT_START :
VP9_MV_CLASSES_0_COUNT_START;
tree_i = 0;
for (node = 0; node < 10; node++) {
unsigned int start = coef_count_node_start;
switch (node) {
case 9:
tree_left = count[start + 9];
tree_right = count[start + 10];
break;
case 8:
tree_left = count[start + 7];
tree_right = count[start + 8];
break;
case 7:
tree_left = count[start + 7] +
count[start + 8];
tree_right = count[start + 9] +
count[start + 10];
break;
case 6:
tree_left = count[start + 6];
tree_right = count[start + 7] +
count[start + 8] +
count[start + 9] +
count[start + 10];
break;
case 5:
tree_left = count[start + 4];
tree_right = count[start + 5];
break;
case 4:
tree_left = count[start + 4] +
count[start + 5];
tree_right = count[start + 6] +
count[start + 7] +
count[start + 8] +
count[start + 9] +
count[start + 10];
break;
case 3:
tree_left = count[start + 2];
tree_right = count[start + 3];
break;
case 2:
tree_left = count[start + 2] +
count[start + 3];
tree_right = count[start + 4] +
count[start + 5] +
count[start + 6] +
count[start + 7] +
count[start + 8] +
count[start + 9] +
count[start + 10];
break;
case 1:
tree_left = count[start + 1];
tree_right = count[start + 2] +
count[start + 3] +
count[start + 4] +
count[start + 5] +
count[start + 6] +
count[start + 7] +
count[start + 8] +
count[start + 9] +
count[start + 10];
break;
default:
tree_left = count[start + 0];
tree_right = count[start + 1] +
count[start + 2] +
count[start + 3] +
count[start + 4] +
count[start + 5] +
count[start + 6] +
count[start + 7] +
count[start + 8] +
count[start + 9] +
count[start + 10];
break;
}
vp9_tree_merge_probs(prev_prob, cur_prob,
coef_node_start,
tree_left, tree_right,
tree_i, node);
coef_node_start = coef_node_start + 1;
}
coef_node_start = mvd_i ? VP9_MV_CLASS0_1_START :
VP9_MV_CLASS0_0_START;
coef_count_node_start = mvd_i ?
VP9_MV_CLASS0_1_COUNT_START :
VP9_MV_CLASS0_0_COUNT_START;
tree_i = 0;
node = 0;
tree_left = count[coef_count_node_start + 0];
tree_right = count[coef_count_node_start + 1];
vp9_tree_merge_probs(prev_prob, cur_prob,
coef_node_start,
tree_left, tree_right,
tree_i, node);
coef_node_start = mvd_i ? VP9_MV_CLASS0_FP_1_START :
VP9_MV_CLASS0_FP_0_START;
coef_count_node_start = mvd_i ?
VP9_MV_CLASS0_FP_1_COUNT_START :
VP9_MV_CLASS0_FP_0_COUNT_START;
for (tree_i = 0; tree_i < 3; tree_i++) {
for (node = 0; node < 3; node++) {
unsigned int start =
coef_count_node_start;
switch (node) {
case 2:
tree_left = count[start + 2];
tree_right = count[start + 3];
break;
case 1:
tree_left = count[start + 1];
tree_right = count[start + 2] +
count[start + 3];
break;
default:
tree_left = count[start + 0];
tree_right = count[start + 1] +
count[start + 2] +
count[start + 3];
break;
}
vp9_tree_merge_probs(prev_prob,
cur_prob,
coef_node_start,
tree_left,
tree_right,
tree_i, node);
coef_node_start = coef_node_start + 1;
}
coef_count_node_start =
coef_count_node_start + 4;
}
}
}
}
static irqreturn_t codec_vp9_threaded_isr(struct amvdec_session *sess)
{
struct amvdec_core *core = sess->core;
struct codec_vp9 *vp9 = sess->priv;
u32 dec_status = amvdec_read_dos(core, VP9_DEC_STATUS_REG);
u32 prob_status = amvdec_read_dos(core, VP9_ADAPT_PROB_REG);
int i;
if (!vp9)
return IRQ_HANDLED;
mutex_lock(&vp9->lock);
if (dec_status != VP9_HEAD_PARSER_DONE) {
dev_err(core->dev_dec, "Unrecognized dec_status: %08X\n",
dec_status);
amvdec_abort(sess);
goto unlock;
}
pr_debug("ISR: %08X;%08X\n", dec_status, prob_status);
sess->keyframe_found = 1;
if ((prob_status & 0xff) == 0xfd && vp9->cur_frame) {
u8 *prev_prob_b = ((u8 *)vp9->workspace_vaddr +
PROB_OFFSET) +
((prob_status >> 8) * 0x1000);
u8 *cur_prob_b = ((u8 *)vp9->workspace_vaddr +
PROB_OFFSET) + 0x4000;
u8 *count_b = (u8 *)vp9->workspace_vaddr +
COUNT_OFFSET;
int last_frame_type = vp9->prev_frame ?
vp9->prev_frame->type :
KEY_FRAME;
adapt_coef_probs(last_frame_type == KEY_FRAME,
vp9->cur_frame->type == KEY_FRAME ? 1 : 0,
prob_status >> 8,
(unsigned int *)prev_prob_b,
(unsigned int *)cur_prob_b,
(unsigned int *)count_b);
memcpy(prev_prob_b, cur_prob_b, ADAPT_PROB_SIZE);
amvdec_write_dos(core, VP9_ADAPT_PROB_REG, 0);
}
for (i = 0; i < REFS_PER_FRAME ; ++i)
vp9->frame_refs[i] = NULL;
vp9->prev_frame = vp9->cur_frame;
codec_vp9_update_ref(vp9);
codec_vp9_fetch_rpm(sess);
if (codec_vp9_process_rpm(vp9)) {
amvdec_src_change(sess, vp9->width, vp9->height, 16);
vp9->cur_frame = NULL;
codec_vp9_show_frame(sess);
if (vp9->frames_num)
codec_vp9_save_refs(vp9);
goto unlock;
}
codec_vp9_process_lf(vp9);
codec_vp9_process_frame(sess);
codec_vp9_show_frame(sess);
unlock:
mutex_unlock(&vp9->lock);
return IRQ_HANDLED;
}
static irqreturn_t codec_vp9_isr(struct amvdec_session *sess)
{
return IRQ_WAKE_THREAD;
}
struct amvdec_codec_ops codec_vp9_ops = {
.start = codec_vp9_start,
.stop = codec_vp9_stop,
.isr = codec_vp9_isr,
.threaded_isr = codec_vp9_threaded_isr,
.num_pending_bufs = codec_vp9_num_pending_bufs,
.drain = codec_vp9_flush_output,
.resume = codec_vp9_resume,
}