/* tnum: tracked (or tristate) numbers * * A tnum tracks knowledge about the bits of a value. Each bit can be either * known (0 or 1), or unknown (x). Arithmetic operations on tnums will * propagate the unknown bits such that the tnum result represents all the * possible results for possible values of the operands. */ #ifndef _LINUX_TNUM_H #define _LINUX_TNUM_H #include <linux/types.h> struct tnum { u64 value; u64 mask; }; /* Constructors */ /* Represent a known constant as a tnum. */ struct tnum tnum_const(u64 value); /* A completely unknown value */ extern const struct tnum tnum_unknown; /* An unknown value that is a superset of @min <= value <= @max. * * Could include values outside the range of [@min, @max]. * For example tnum_range(0, 2) is represented by {0, 1, 2, *3*}, * rather than the intended set of {0, 1, 2}. */ struct tnum tnum_range(u64 min, u64 max); /* Arithmetic and logical ops */ /* Shift a tnum left (by a fixed shift) */ struct tnum tnum_lshift(struct tnum a, u8 shift); /* Shift (rsh) a tnum right (by a fixed shift) */ struct tnum tnum_rshift(struct tnum a, u8 shift); /* Shift (arsh) a tnum right (by a fixed min_shift) */ struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness); /* Add two tnums, return @a + @b */ struct tnum tnum_add(struct tnum a, struct tnum b); /* Subtract two tnums, return @a - @b */ struct tnum tnum_sub(struct tnum a, struct tnum b); /* Bitwise-AND, return @a & @b */ struct tnum tnum_and(struct tnum a, struct tnum b); /* Bitwise-OR, return @a | @b */ struct tnum tnum_or(struct tnum a, struct tnum b); /* Bitwise-XOR, return @a ^ @b */ struct tnum tnum_xor(struct tnum a, struct tnum b); /* Multiply two tnums, return @a * @b */ struct tnum tnum_mul(struct tnum a, struct tnum b); /* Return a tnum representing numbers satisfying both @a and @b */ struct tnum tnum_intersect(struct tnum a, struct tnum b); /* Return @a with all but the lowest @size bytes cleared */ struct tnum tnum_cast(struct tnum a, u8 size); /* Returns true if @a is a known constant */ static inline bool tnum_is_const(struct tnum a) { return !a.mask; } /* Returns true if @a == tnum_const(@b) */ static inline bool tnum_equals_const(struct tnum a, u64 b) { return tnum_is_const(a) && a.value == b; } /* Returns true if @a is completely unknown */ static inline bool tnum_is_unknown(struct tnum a) { return !~a.mask; } /* Returns true if @a is known to be a multiple of @size. * @size must be a power of two. */ bool tnum_is_aligned(struct tnum a, u64 size); /* Returns true if @b represents a subset of @a. * * Note that using tnum_range() as @a requires extra cautions as tnum_in() may * return true unexpectedly due to tnum limited ability to represent tight * range, e.g. * * tnum_in(tnum_range(0, 2), tnum_const(3)) == true * * As a rule of thumb, if @a is explicitly coded rather than coming from * reg->var_off, it should be in form of tnum_const(), tnum_range(0, 2**n - 1), * or tnum_range(2**n, 2**(n+1) - 1). */ bool tnum_in(struct tnum a, struct tnum b); /* Formatting functions. These have snprintf-like semantics: they will write * up to @size bytes (including the terminating NUL byte), and return the number * of bytes (excluding the terminating NUL) which would have been written had * sufficient space been available. (Thus tnum_sbin always returns 64.) */ /* Format a tnum as a pair of hex numbers (value; mask) */ int tnum_strn(char *str, size_t size, struct tnum a); /* Format a tnum as tristate binary expansion */ int tnum_sbin(char *str, size_t size, struct tnum a); /* Returns the 32-bit subreg */ struct tnum tnum_subreg(struct tnum a); /* Returns the tnum with the lower 32-bit subreg cleared */ struct tnum tnum_clear_subreg(struct tnum a); /* Returns the tnum with the lower 32-bit subreg set to value */ struct tnum tnum_const_subreg(struct tnum a, u32 value); /* Returns true if 32-bit subreg @a is a known constant*/ static inline bool tnum_subreg_is_const(struct tnum a) { return !(tnum_subreg(a)).mask; } #endif /* _LINUX_TNUM_H */