* SPDX-License-Identifier: MIT
 * Copyright © 2019 Intel Corporation

#ifndef _I915_ACTIVE_H_
#define _I915_ACTIVE_H_

#include <linux/lockdep.h>

#include "i915_active_types.h"
#include "i915_request.h"

struct i915_request;
struct intel_engine_cs;
struct intel_timeline;

 * We treat requests as fences. This is not be to confused with our
 * "fence registers" but pipeline synchronisation objects ala GL_ARB_sync.
 * We use the fences to synchronize access from the CPU with activity on the
 * GPU, for example, we should not rewrite an object's PTE whilst the GPU
 * is reading them. We also track fences at a higher level to provide
 * implicit synchronisation around GEM objects, e.g. set-domain will wait
 * for outstanding GPU rendering before marking the object ready for CPU
 * access, or a pageflip will wait until the GPU is complete before showing
 * the frame on the scanout.
 * In order to use a fence, the object must track the fence it needs to
 * serialise with. For example, GEM objects want to track both read and
 * write access so that we can perform concurrent read operations between
 * the CPU and GPU engines, as well as waiting for all rendering to
 * complete, or waiting for the last GPU user of a "fence register". The
 * object then embeds a #i915_active_fence to track the most recent (in
 * retirement order) request relevant for the desired mode of access.
 * The #i915_active_fence is updated with i915_active_fence_set() to
 * track the most recent fence request, typically this is done as part of
 * i915_vma_move_to_active().
 * When the #i915_active_fence completes (is retired), it will
 * signal its completion to the owner through a callback as well as mark
 * itself as idle (i915_active_fence.request == NULL). The owner
 * can then perform any action, such as delayed freeing of an active
 * resource including itself.

void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb);

 * __i915_active_fence_init - prepares the activity tracker for use
 * @active - the active tracker
 * @fence - initial fence to track, can be NULL
 * @func - a callback when then the tracker is retired (becomes idle),
 *         can be NULL
 * i915_active_fence_init() prepares the embedded @active struct for use as
 * an activity tracker, that is for tracking the last known active fence
 * associated with it. When the last fence becomes idle, when it is retired
 * after completion, the optional callback @func is invoked.
static inline void
__i915_active_fence_init(struct i915_active_fence *active,
			 void *fence,
			 dma_fence_func_t fn)
	RCU_INIT_POINTER(active->fence, fence);
	active->cb.func = fn ?: i915_active_noop;

	__i915_active_fence_init((A), NULL, NULL)

struct dma_fence *
__i915_active_fence_set(struct i915_active_fence *active,
			struct dma_fence *fence);

 * i915_active_fence_set - updates the tracker to watch the current fence
 * @active - the active tracker
 * @rq - the request to watch
 * i915_active_fence_set() watches the given @rq for completion. While
 * that @rq is busy, the @active reports busy. When that @rq is signaled
 * (or else retired) the @active tracker is updated to report idle.
int __must_check
i915_active_fence_set(struct i915_active_fence *active,
		      struct i915_request *rq);
 * i915_active_fence_get - return a reference to the active fence
 * @active - the active tracker
 * i915_active_fence_get() returns a reference to the active fence,
 * or NULL if the active tracker is idle. The reference is obtained under RCU,
 * so no locking is required by the caller.
 * The reference should be freed with dma_fence_put().
static inline struct dma_fence *
i915_active_fence_get(struct i915_active_fence *active)
	struct dma_fence *fence;

	fence = dma_fence_get_rcu_safe(&active->fence);

	return fence;

 * i915_active_fence_isset - report whether the active tracker is assigned
 * @active - the active tracker
 * i915_active_fence_isset() returns true if the active tracker is currently
 * assigned to a fence. Due to the lazy retiring, that fence may be idle
 * and this may report stale information.
static inline bool
i915_active_fence_isset(const struct i915_active_fence *active)
	return rcu_access_pointer(active->fence);

 * GPU activity tracking
 * Each set of commands submitted to the GPU compromises a single request that
 * signals a fence upon completion. struct i915_request combines the
 * command submission, scheduling and fence signaling roles. If we want to see
 * if a particular task is complete, we need to grab the fence (struct
 * i915_request) for that task and check or wait for it to be signaled. More
 * often though we want to track the status of a bunch of tasks, for example
 * to wait for the GPU to finish accessing some memory across a variety of
 * different command pipelines from different clients. We could choose to
 * track every single request associated with the task, but knowing that
 * each request belongs to an ordered timeline (later requests within a
 * timeline must wait for earlier requests), we need only track the
 * latest request in each timeline to determine the overall status of the
 * task.
 * struct i915_active provides this tracking across timelines. It builds a
 * composite shared-fence, and is updated as new work is submitted to the task,
 * forming a snapshot of the current status. It should be embedded into the
 * different resources that need to track their associated GPU activity to
 * provide a callback when that GPU activity has ceased, or otherwise to
 * provide a serialisation point either for request submission or for CPU
 * synchronisation.

void __i915_active_init(struct i915_active *ref,
			int (*active)(struct i915_active *ref),
			void (*retire)(struct i915_active *ref),
			unsigned long flags,
			struct lock_class_key *mkey,
			struct lock_class_key *wkey);

/* Specialise each class of i915_active to avoid impossible lockdep cycles. */
#define i915_active_init(ref, active, retire, flags) do {			\
	static struct lock_class_key __mkey;					\
	static struct lock_class_key __wkey;					\
	__i915_active_init(ref, active, retire, flags, &__mkey, &__wkey);	\
} while (0)

int i915_active_add_request(struct i915_active *ref, struct i915_request *rq);

struct dma_fence *
i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f);

int __i915_active_wait(struct i915_active *ref, int state);
static inline int i915_active_wait(struct i915_active *ref)
	return __i915_active_wait(ref, TASK_INTERRUPTIBLE);

int i915_sw_fence_await_active(struct i915_sw_fence *fence,
			       struct i915_active *ref,
			       unsigned int flags);
int i915_request_await_active(struct i915_request *rq,
			      struct i915_active *ref,
			      unsigned int flags);

int i915_active_acquire(struct i915_active *ref);
int i915_active_acquire_for_context(struct i915_active *ref, u64 idx);
bool i915_active_acquire_if_busy(struct i915_active *ref);

void i915_active_release(struct i915_active *ref);

static inline void __i915_active_acquire(struct i915_active *ref)

static inline bool
i915_active_is_idle(const struct i915_active *ref)
	return !atomic_read(&ref->count);

void i915_active_fini(struct i915_active *ref);

int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
					    struct intel_engine_cs *engine);
void i915_active_acquire_barrier(struct i915_active *ref);
void i915_request_add_active_barriers(struct i915_request *rq);

void i915_active_print(struct i915_active *ref, struct drm_printer *m);
void i915_active_unlock_wait(struct i915_active *ref);

struct i915_active *i915_active_create(void);
struct i915_active *i915_active_get(struct i915_active *ref);
void i915_active_put(struct i915_active *ref);

static inline int __i915_request_await_exclusive(struct i915_request *rq,
						 struct i915_active *active)
	struct dma_fence *fence;
	int err = 0;

	fence = i915_active_fence_get(&active->excl);
	if (fence) {
		err = i915_request_await_dma_fence(rq, fence);

	return err;

void i915_active_module_exit(void);
int i915_active_module_init(void);

#endif /* _I915_ACTIVE_H_ */