#include <linux/dev_printk.h>
#include <linux/dma-mapping.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/kstrtox.h>
#include <linux/overflow.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <asm/errno.h>
#include "adf_accel_devices.h"
#include "adf_cfg.h"
#include "adf_cfg_strings.h"
#include "adf_clock.h"
#include "adf_common_drv.h"
#include "adf_heartbeat.h"
#include "adf_transport_internal.h"
#include "icp_qat_fw_init_admin.h"
#define ADF_HB_EMPTY_SIG 0xA5A5A5A5
struct hb_cnt_pair {
__u16 resp_heartbeat_cnt;
__u16 req_heartbeat_cnt;
};
static int adf_hb_check_polling_freq(struct adf_accel_dev *accel_dev)
{
u64 curr_time = adf_clock_get_current_time();
u64 polling_time = curr_time - accel_dev->heartbeat->last_hb_check_time;
if (polling_time < accel_dev->heartbeat->hb_timer) {
dev_warn(&GET_DEV(accel_dev),
"HB polling too frequent. Configured HB timer %d ms\n",
accel_dev->heartbeat->hb_timer);
return -EINVAL;
}
accel_dev->heartbeat->last_hb_check_time = curr_time;
return 0;
}
static bool validate_hb_ctrs_cnt(struct adf_accel_dev *accel_dev)
{
const size_t hb_ctrs = accel_dev->hw_device->num_hb_ctrs;
const size_t max_aes = accel_dev->hw_device->num_engines;
const size_t hb_struct_size = sizeof(struct hb_cnt_pair);
const size_t exp_diff_size = array3_size(ADF_NUM_PKE_STRAND, max_aes,
hb_struct_size);
const size_t dev_ctrs = size_mul(max_aes, hb_ctrs);
const size_t stats_size = size_mul(dev_ctrs, hb_struct_size);
const u32 exp_diff_cnt = exp_diff_size / sizeof(u32);
const u32 stats_el_cnt = stats_size / sizeof(u32);
struct hb_cnt_pair *hb_stats = accel_dev->heartbeat->dma.virt_addr;
const u32 *mem_to_chk = (u32 *)(hb_stats + dev_ctrs);
u32 el_diff_cnt = 0;
int i;
for (i = 0; i < stats_el_cnt; i++) {
if (mem_to_chk[i] == ADF_HB_EMPTY_SIG)
break;
el_diff_cnt++;
}
return el_diff_cnt && el_diff_cnt == exp_diff_cnt;
}
void adf_heartbeat_check_ctrs(struct adf_accel_dev *accel_dev)
{
struct hb_cnt_pair *hb_stats = accel_dev->heartbeat->dma.virt_addr;
const size_t hb_ctrs = accel_dev->hw_device->num_hb_ctrs;
const size_t max_aes = accel_dev->hw_device->num_engines;
const size_t dev_ctrs = size_mul(max_aes, hb_ctrs);
const size_t stats_size = size_mul(dev_ctrs, sizeof(struct hb_cnt_pair));
const size_t mem_items_to_fill = size_mul(stats_size, 2) / sizeof(u32);
memset32((uint32_t *)hb_stats, ADF_HB_EMPTY_SIG, mem_items_to_fill);
accel_dev->heartbeat->ctrs_cnt_checked = false;
}
EXPORT_SYMBOL_GPL(adf_heartbeat_check_ctrs);
static int get_timer_ticks(struct adf_accel_dev *accel_dev, unsigned int *value)
{
char timer_str[ADF_CFG_MAX_VAL_LEN_IN_BYTES] = { };
u32 timer_ms = ADF_CFG_HB_TIMER_DEFAULT_MS;
int cfg_read_status;
u32 ticks;
int ret;
cfg_read_status = adf_cfg_get_param_value(accel_dev, ADF_GENERAL_SEC,
ADF_HEARTBEAT_TIMER, timer_str);
if (cfg_read_status == 0) {
if (kstrtouint(timer_str, 10, &timer_ms))
dev_dbg(&GET_DEV(accel_dev),
"kstrtouint failed to parse the %s, param value",
ADF_HEARTBEAT_TIMER);
}
if (timer_ms < ADF_CFG_HB_TIMER_MIN_MS) {
dev_err(&GET_DEV(accel_dev), "Timer cannot be less than %u\n",
ADF_CFG_HB_TIMER_MIN_MS);
return -EINVAL;
}
if (accel_dev->timer)
timer_ms = ADF_CFG_HB_TIMER_MIN_MS;
ret = adf_heartbeat_ms_to_ticks(accel_dev, timer_ms, &ticks);
if (ret)
return ret;
adf_heartbeat_save_cfg_param(accel_dev, timer_ms);
accel_dev->heartbeat->hb_timer = timer_ms;
*value = ticks;
return 0;
}
static int check_ae(struct hb_cnt_pair *curr, struct hb_cnt_pair *prev,
u16 *count, const size_t hb_ctrs)
{
size_t thr;
for (thr = 0; thr < hb_ctrs; thr++) {
u16 req = curr[thr].req_heartbeat_cnt;
u16 resp = curr[thr].resp_heartbeat_cnt;
u16 last = prev[thr].resp_heartbeat_cnt;
if ((thr == ADF_AE_ADMIN_THREAD || req != resp) && resp == last) {
u16 retry = ++count[thr];
if (retry >= ADF_CFG_HB_COUNT_THRESHOLD)
return -EIO;
} else {
count[thr] = 0;
}
}
return 0;
}
static int adf_hb_get_status(struct adf_accel_dev *accel_dev)
{
struct adf_hw_device_data *hw_device = accel_dev->hw_device;
struct hb_cnt_pair *live_stats, *last_stats, *curr_stats;
const size_t hb_ctrs = hw_device->num_hb_ctrs;
const unsigned long ae_mask = hw_device->ae_mask;
const size_t max_aes = hw_device->num_engines;
const size_t dev_ctrs = size_mul(max_aes, hb_ctrs);
const size_t stats_size = size_mul(dev_ctrs, sizeof(*curr_stats));
struct hb_cnt_pair *ae_curr_p, *ae_prev_p;
u16 *count_fails, *ae_count_p;
size_t ae_offset;
size_t ae = 0;
int ret = 0;
if (!accel_dev->heartbeat->ctrs_cnt_checked) {
if (validate_hb_ctrs_cnt(accel_dev))
hw_device->num_hb_ctrs += ADF_NUM_PKE_STRAND;
accel_dev->heartbeat->ctrs_cnt_checked = true;
}
live_stats = accel_dev->heartbeat->dma.virt_addr;
last_stats = live_stats + dev_ctrs;
count_fails = (u16 *)(last_stats + dev_ctrs);
curr_stats = kmemdup(live_stats, stats_size, GFP_KERNEL);
if (!curr_stats)
return -ENOMEM;
for_each_set_bit(ae, &ae_mask, max_aes) {
ae_offset = size_mul(ae, hb_ctrs);
ae_curr_p = curr_stats + ae_offset;
ae_prev_p = last_stats + ae_offset;
ae_count_p = count_fails + ae_offset;
ret = check_ae(ae_curr_p, ae_prev_p, ae_count_p, hb_ctrs);
if (ret)
break;
}
memcpy(last_stats, curr_stats, stats_size);
kfree(curr_stats);
return ret;
}
void adf_heartbeat_status(struct adf_accel_dev *accel_dev,
enum adf_device_heartbeat_status *hb_status)
{
struct adf_heartbeat *hb;
if (!adf_dev_started(accel_dev) ||
test_bit(ADF_STATUS_RESTARTING, &accel_dev->status)) {
*hb_status = HB_DEV_UNRESPONSIVE;
return;
}
if (adf_hb_check_polling_freq(accel_dev) == -EINVAL) {
*hb_status = HB_DEV_UNSUPPORTED;
return;
}
hb = accel_dev->heartbeat;
hb->hb_sent_counter++;
if (adf_hb_get_status(accel_dev)) {
dev_err(&GET_DEV(accel_dev),
"Heartbeat ERROR: QAT is not responding.\n");
*hb_status = HB_DEV_UNRESPONSIVE;
hb->hb_failed_counter++;
return;
}
*hb_status = HB_DEV_ALIVE;
}
int adf_heartbeat_ms_to_ticks(struct adf_accel_dev *accel_dev, unsigned int time_ms,
u32 *value)
{
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
u32 clk_per_sec;
if (!hw_data->get_hb_clock)
return -EINVAL;
clk_per_sec = hw_data->get_hb_clock(hw_data);
*value = time_ms * (clk_per_sec / MSEC_PER_SEC);
return 0;
}
int adf_heartbeat_save_cfg_param(struct adf_accel_dev *accel_dev,
unsigned int timer_ms)
{
char timer_str[ADF_CFG_MAX_VAL_LEN_IN_BYTES];
snprintf(timer_str, sizeof(timer_str), "%u", timer_ms);
return adf_cfg_add_key_value_param(accel_dev, ADF_GENERAL_SEC,
ADF_HEARTBEAT_TIMER, timer_str,
ADF_STR);
}
EXPORT_SYMBOL_GPL(adf_heartbeat_save_cfg_param);
int adf_heartbeat_init(struct adf_accel_dev *accel_dev)
{
struct adf_heartbeat *hb;
hb = kzalloc(sizeof(*hb), GFP_KERNEL);
if (!hb)
goto err_ret;
hb->dma.virt_addr = dma_alloc_coherent(&GET_DEV(accel_dev), PAGE_SIZE,
&hb->dma.phy_addr, GFP_KERNEL);
if (!hb->dma.virt_addr)
goto err_free;
hb->ctrs_cnt_checked = true;
accel_dev->heartbeat = hb;
return 0;
err_free:
kfree(hb);
err_ret:
return -ENOMEM;
}
int adf_heartbeat_start(struct adf_accel_dev *accel_dev)
{
unsigned int timer_ticks;
int ret;
if (!accel_dev->heartbeat) {
dev_warn(&GET_DEV(accel_dev), "Heartbeat instance not found!");
return -EFAULT;
}
if (accel_dev->hw_device->check_hb_ctrs)
accel_dev->hw_device->check_hb_ctrs(accel_dev);
ret = get_timer_ticks(accel_dev, &timer_ticks);
if (ret)
return ret;
ret = adf_send_admin_hb_timer(accel_dev, timer_ticks);
if (ret)
dev_warn(&GET_DEV(accel_dev), "Heartbeat not supported!");
return ret;
}
void adf_heartbeat_shutdown(struct adf_accel_dev *accel_dev)
{
struct adf_heartbeat *hb = accel_dev->heartbeat;
if (!hb)
return;
if (hb->dma.virt_addr)
dma_free_coherent(&GET_DEV(accel_dev), PAGE_SIZE,
hb->dma.virt_addr, hb->dma.phy_addr);
kfree(hb);
accel_dev->heartbeat = NULL;
}