#include <linux/gfp.h>
#include <linux/init.h>
#include <linux/sched.h>
#include "afs_fs.h"
#include "internal.h"
static int afs_deliver_vl_get_entry_by_name_u(struct afs_call *call)
{
struct afs_uvldbentry__xdr *uvldb;
struct afs_vldb_entry *entry;
bool new_only = false;
u32 tmp, nr_servers, vlflags;
int i, ret;
_enter("");
ret = afs_transfer_reply(call);
if (ret < 0)
return ret;
uvldb = call->buffer;
entry = call->ret_vldb;
nr_servers = ntohl(uvldb->nServers);
if (nr_servers > AFS_NMAXNSERVERS)
nr_servers = AFS_NMAXNSERVERS;
for (i = 0; i < ARRAY_SIZE(uvldb->name) - 1; i++)
entry->name[i] = (u8)ntohl(uvldb->name[i]);
entry->name[i] = 0;
entry->name_len = strlen(entry->name);
for (i = 0; i < nr_servers; i++) {
tmp = ntohl(uvldb->serverFlags[i]);
if (!(tmp & AFS_VLSF_DONTUSE) &&
(tmp & AFS_VLSF_NEWREPSITE))
new_only = true;
}
vlflags = ntohl(uvldb->flags);
for (i = 0; i < nr_servers; i++) {
struct afs_uuid__xdr *xdr;
struct afs_uuid *uuid;
int j;
int n = entry->nr_servers;
tmp = ntohl(uvldb->serverFlags[i]);
if (tmp & AFS_VLSF_DONTUSE ||
(new_only && !(tmp & AFS_VLSF_NEWREPSITE)))
continue;
if (tmp & AFS_VLSF_RWVOL) {
entry->fs_mask[n] |= AFS_VOL_VTM_RW;
if (vlflags & AFS_VLF_BACKEXISTS)
entry->fs_mask[n] |= AFS_VOL_VTM_BAK;
}
if (tmp & AFS_VLSF_ROVOL)
entry->fs_mask[n] |= AFS_VOL_VTM_RO;
if (!entry->fs_mask[n])
continue;
xdr = &uvldb->serverNumber[i];
uuid = (struct afs_uuid *)&entry->fs_server[n];
uuid->time_low = xdr->time_low;
uuid->time_mid = htons(ntohl(xdr->time_mid));
uuid->time_hi_and_version = htons(ntohl(xdr->time_hi_and_version));
uuid->clock_seq_hi_and_reserved = (u8)ntohl(xdr->clock_seq_hi_and_reserved);
uuid->clock_seq_low = (u8)ntohl(xdr->clock_seq_low);
for (j = 0; j < 6; j++)
uuid->node[j] = (u8)ntohl(xdr->node[j]);
entry->addr_version[n] = ntohl(uvldb->serverUnique[i]);
entry->nr_servers++;
}
for (i = 0; i < AFS_MAXTYPES; i++)
entry->vid[i] = ntohl(uvldb->volumeId[i]);
if (vlflags & AFS_VLF_RWEXISTS)
__set_bit(AFS_VLDB_HAS_RW, &entry->flags);
if (vlflags & AFS_VLF_ROEXISTS)
__set_bit(AFS_VLDB_HAS_RO, &entry->flags);
if (vlflags & AFS_VLF_BACKEXISTS)
__set_bit(AFS_VLDB_HAS_BAK, &entry->flags);
if (!(vlflags & (AFS_VLF_RWEXISTS | AFS_VLF_ROEXISTS | AFS_VLF_BACKEXISTS))) {
entry->error = -ENOMEDIUM;
__set_bit(AFS_VLDB_QUERY_ERROR, &entry->flags);
}
__set_bit(AFS_VLDB_QUERY_VALID, &entry->flags);
_leave(" = 0 [done]");
return 0;
}
static void afs_destroy_vl_get_entry_by_name_u(struct afs_call *call)
{
kfree(call->ret_vldb);
afs_flat_call_destructor(call);
}
static const struct afs_call_type afs_RXVLGetEntryByNameU = {
.name = "VL.GetEntryByNameU",
.op = afs_VL_GetEntryByNameU,
.deliver = afs_deliver_vl_get_entry_by_name_u,
.destructor = afs_destroy_vl_get_entry_by_name_u,
};
struct afs_vldb_entry *afs_vl_get_entry_by_name_u(struct afs_vl_cursor *vc,
const char *volname,
int volnamesz)
{
struct afs_vldb_entry *entry;
struct afs_call *call;
struct afs_net *net = vc->cell->net;
size_t reqsz, padsz;
__be32 *bp;
_enter("");
padsz = (4 - (volnamesz & 3)) & 3;
reqsz = 8 + volnamesz + padsz;
entry = kzalloc(sizeof(struct afs_vldb_entry), GFP_KERNEL);
if (!entry)
return ERR_PTR(-ENOMEM);
call = afs_alloc_flat_call(net, &afs_RXVLGetEntryByNameU, reqsz,
sizeof(struct afs_uvldbentry__xdr));
if (!call) {
kfree(entry);
return ERR_PTR(-ENOMEM);
}
call->key = vc->key;
call->ret_vldb = entry;
call->max_lifespan = AFS_VL_MAX_LIFESPAN;
bp = call->request;
*bp++ = htonl(VLGETENTRYBYNAMEU);
*bp++ = htonl(volnamesz);
memcpy(bp, volname, volnamesz);
if (padsz > 0)
memset((void *)bp + volnamesz, 0, padsz);
trace_afs_make_vl_call(call);
afs_make_call(&vc->ac, call, GFP_KERNEL);
return (struct afs_vldb_entry *)afs_wait_for_call_to_complete(call, &vc->ac);
}
static int afs_deliver_vl_get_addrs_u(struct afs_call *call)
{
struct afs_addr_list *alist;
__be32 *bp;
u32 uniquifier, nentries, count;
int i, ret;
_enter("{%u,%zu/%u}",
call->unmarshall, iov_iter_count(call->iter), call->count);
switch (call->unmarshall) {
case 0:
afs_extract_to_buf(call,
sizeof(struct afs_uuid__xdr) + 3 * sizeof(__be32));
call->unmarshall++;
fallthrough;
case 1:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
bp = call->buffer + sizeof(struct afs_uuid__xdr);
uniquifier = ntohl(*bp++);
nentries = ntohl(*bp++);
count = ntohl(*bp);
nentries = min(nentries, count);
alist = afs_alloc_addrlist(nentries, FS_SERVICE, AFS_FS_PORT);
if (!alist)
return -ENOMEM;
alist->version = uniquifier;
call->ret_alist = alist;
call->count = count;
call->count2 = nentries;
call->unmarshall++;
more_entries:
count = min(call->count, 4U);
afs_extract_to_buf(call, count * sizeof(__be32));
fallthrough;
case 2:
ret = afs_extract_data(call, call->count > 4);
if (ret < 0)
return ret;
alist = call->ret_alist;
bp = call->buffer;
count = min(call->count, 4U);
for (i = 0; i < count; i++)
if (alist->nr_addrs < call->count2)
afs_merge_fs_addr4(alist, *bp++, AFS_FS_PORT);
call->count -= count;
if (call->count > 0)
goto more_entries;
call->unmarshall++;
break;
}
_leave(" = 0 [done]");
return 0;
}
static void afs_vl_get_addrs_u_destructor(struct afs_call *call)
{
afs_put_addrlist(call->ret_alist);
return afs_flat_call_destructor(call);
}
static const struct afs_call_type afs_RXVLGetAddrsU = {
.name = "VL.GetAddrsU",
.op = afs_VL_GetAddrsU,
.deliver = afs_deliver_vl_get_addrs_u,
.destructor = afs_vl_get_addrs_u_destructor,
};
struct afs_addr_list *afs_vl_get_addrs_u(struct afs_vl_cursor *vc,
const uuid_t *uuid)
{
struct afs_ListAddrByAttributes__xdr *r;
const struct afs_uuid *u = (const struct afs_uuid *)uuid;
struct afs_call *call;
struct afs_net *net = vc->cell->net;
__be32 *bp;
int i;
_enter("");
call = afs_alloc_flat_call(net, &afs_RXVLGetAddrsU,
sizeof(__be32) + sizeof(struct afs_ListAddrByAttributes__xdr),
sizeof(struct afs_uuid__xdr) + 3 * sizeof(__be32));
if (!call)
return ERR_PTR(-ENOMEM);
call->key = vc->key;
call->ret_alist = NULL;
call->max_lifespan = AFS_VL_MAX_LIFESPAN;
bp = call->request;
*bp++ = htonl(VLGETADDRSU);
r = (struct afs_ListAddrByAttributes__xdr *)bp;
r->Mask = htonl(AFS_VLADDR_UUID);
r->ipaddr = 0;
r->index = 0;
r->spare = 0;
r->uuid.time_low = u->time_low;
r->uuid.time_mid = htonl(ntohs(u->time_mid));
r->uuid.time_hi_and_version = htonl(ntohs(u->time_hi_and_version));
r->uuid.clock_seq_hi_and_reserved = htonl(u->clock_seq_hi_and_reserved);
r->uuid.clock_seq_low = htonl(u->clock_seq_low);
for (i = 0; i < 6; i++)
r->uuid.node[i] = htonl(u->node[i]);
trace_afs_make_vl_call(call);
afs_make_call(&vc->ac, call, GFP_KERNEL);
return (struct afs_addr_list *)afs_wait_for_call_to_complete(call, &vc->ac);
}
static int afs_deliver_vl_get_capabilities(struct afs_call *call)
{
u32 count;
int ret;
_enter("{%u,%zu/%u}",
call->unmarshall, iov_iter_count(call->iter), call->count);
switch (call->unmarshall) {
case 0:
afs_extract_to_tmp(call);
call->unmarshall++;
fallthrough;
case 1:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
count = ntohl(call->tmp);
call->count = count;
call->count2 = count;
call->unmarshall++;
afs_extract_discard(call, count * sizeof(__be32));
fallthrough;
case 2:
ret = afs_extract_data(call, false);
if (ret < 0)
return ret;
call->unmarshall++;
break;
}
_leave(" = 0 [done]");
return 0;
}
static void afs_destroy_vl_get_capabilities(struct afs_call *call)
{
afs_put_vlserver(call->net, call->vlserver);
afs_flat_call_destructor(call);
}
static const struct afs_call_type afs_RXVLGetCapabilities = {
.name = "VL.GetCapabilities",
.op = afs_VL_GetCapabilities,
.deliver = afs_deliver_vl_get_capabilities,
.done = afs_vlserver_probe_result,
.destructor = afs_destroy_vl_get_capabilities,
};
struct afs_call *afs_vl_get_capabilities(struct afs_net *net,
struct afs_addr_cursor *ac,
struct key *key,
struct afs_vlserver *server,
unsigned int server_index)
{
struct afs_call *call;
__be32 *bp;
_enter("");
call = afs_alloc_flat_call(net, &afs_RXVLGetCapabilities, 1 * 4, 16 * 4);
if (!call)
return ERR_PTR(-ENOMEM);
call->key = key;
call->vlserver = afs_get_vlserver(server);
call->server_index = server_index;
call->upgrade = true;
call->async = true;
call->max_lifespan = AFS_PROBE_MAX_LIFESPAN;
bp = call->request;
*bp++ = htonl(VLGETCAPABILITIES);
trace_afs_make_vl_call(call);
afs_make_call(ac, call, GFP_KERNEL);
return call;
}
static int afs_deliver_yfsvl_get_endpoints(struct afs_call *call)
{
struct afs_addr_list *alist;
__be32 *bp;
u32 uniquifier, size;
int ret;
_enter("{%u,%zu,%u}",
call->unmarshall, iov_iter_count(call->iter), call->count2);
switch (call->unmarshall) {
case 0:
afs_extract_to_buf(call, sizeof(uuid_t) + 3 * sizeof(__be32));
call->unmarshall = 1;
fallthrough;
case 1:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
bp = call->buffer + sizeof(uuid_t);
uniquifier = ntohl(*bp++);
call->count = ntohl(*bp++);
call->count2 = ntohl(*bp);
if (call->count > YFS_MAXENDPOINTS)
return afs_protocol_error(call, afs_eproto_yvl_fsendpt_num);
alist = afs_alloc_addrlist(call->count, FS_SERVICE, AFS_FS_PORT);
if (!alist)
return -ENOMEM;
alist->version = uniquifier;
call->ret_alist = alist;
if (call->count == 0)
goto extract_volendpoints;
next_fsendpoint:
switch (call->count2) {
case YFS_ENDPOINT_IPV4:
size = sizeof(__be32) * (1 + 1 + 1);
break;
case YFS_ENDPOINT_IPV6:
size = sizeof(__be32) * (1 + 4 + 1);
break;
default:
return afs_protocol_error(call, afs_eproto_yvl_fsendpt_type);
}
size += sizeof(__be32);
afs_extract_to_buf(call, size);
call->unmarshall = 2;
fallthrough;
case 2:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
alist = call->ret_alist;
bp = call->buffer;
switch (call->count2) {
case YFS_ENDPOINT_IPV4:
if (ntohl(bp[0]) != sizeof(__be32) * 2)
return afs_protocol_error(
call, afs_eproto_yvl_fsendpt4_len);
afs_merge_fs_addr4(alist, bp[1], ntohl(bp[2]));
bp += 3;
break;
case YFS_ENDPOINT_IPV6:
if (ntohl(bp[0]) != sizeof(__be32) * 5)
return afs_protocol_error(
call, afs_eproto_yvl_fsendpt6_len);
afs_merge_fs_addr6(alist, bp + 1, ntohl(bp[5]));
bp += 6;
break;
default:
return afs_protocol_error(call, afs_eproto_yvl_fsendpt_type);
}
call->count2 = ntohl(*bp++);
call->count--;
if (call->count > 0)
goto next_fsendpoint;
extract_volendpoints:
call->count = call->count2;
if (!call->count)
goto end;
if (call->count > YFS_MAXENDPOINTS)
return afs_protocol_error(call, afs_eproto_yvl_vlendpt_type);
afs_extract_to_buf(call, 1 * sizeof(__be32));
call->unmarshall = 3;
fallthrough;
case 3:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
bp = call->buffer;
next_volendpoint:
call->count2 = ntohl(*bp++);
switch (call->count2) {
case YFS_ENDPOINT_IPV4:
size = sizeof(__be32) * (1 + 1 + 1);
break;
case YFS_ENDPOINT_IPV6:
size = sizeof(__be32) * (1 + 4 + 1);
break;
default:
return afs_protocol_error(call, afs_eproto_yvl_vlendpt_type);
}
if (call->count > 1)
size += sizeof(__be32);
afs_extract_to_buf(call, size);
call->unmarshall = 4;
fallthrough;
case 4:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
bp = call->buffer;
switch (call->count2) {
case YFS_ENDPOINT_IPV4:
if (ntohl(bp[0]) != sizeof(__be32) * 2)
return afs_protocol_error(
call, afs_eproto_yvl_vlendpt4_len);
bp += 3;
break;
case YFS_ENDPOINT_IPV6:
if (ntohl(bp[0]) != sizeof(__be32) * 5)
return afs_protocol_error(
call, afs_eproto_yvl_vlendpt6_len);
bp += 6;
break;
default:
return afs_protocol_error(call, afs_eproto_yvl_vlendpt_type);
}
call->count--;
if (call->count > 0)
goto next_volendpoint;
end:
afs_extract_discard(call, 0);
call->unmarshall = 5;
fallthrough;
case 5:
ret = afs_extract_data(call, false);
if (ret < 0)
return ret;
call->unmarshall = 6;
fallthrough;
case 6:
break;
}
_leave(" = 0 [done]");
return 0;
}
static const struct afs_call_type afs_YFSVLGetEndpoints = {
.name = "YFSVL.GetEndpoints",
.op = afs_YFSVL_GetEndpoints,
.deliver = afs_deliver_yfsvl_get_endpoints,
.destructor = afs_vl_get_addrs_u_destructor,
};
struct afs_addr_list *afs_yfsvl_get_endpoints(struct afs_vl_cursor *vc,
const uuid_t *uuid)
{
struct afs_call *call;
struct afs_net *net = vc->cell->net;
__be32 *bp;
_enter("");
call = afs_alloc_flat_call(net, &afs_YFSVLGetEndpoints,
sizeof(__be32) * 2 + sizeof(*uuid),
sizeof(struct in6_addr) + sizeof(__be32) * 3);
if (!call)
return ERR_PTR(-ENOMEM);
call->key = vc->key;
call->ret_alist = NULL;
call->max_lifespan = AFS_VL_MAX_LIFESPAN;
bp = call->request;
*bp++ = htonl(YVLGETENDPOINTS);
*bp++ = htonl(YFS_SERVER_UUID);
memcpy(bp, uuid, sizeof(*uuid));
trace_afs_make_vl_call(call);
afs_make_call(&vc->ac, call, GFP_KERNEL);
return (struct afs_addr_list *)afs_wait_for_call_to_complete(call, &vc->ac);
}
static int afs_deliver_yfsvl_get_cell_name(struct afs_call *call)
{
char *cell_name;
u32 namesz, paddedsz;
int ret;
_enter("{%u,%zu/%u}",
call->unmarshall, iov_iter_count(call->iter), call->count);
switch (call->unmarshall) {
case 0:
afs_extract_to_tmp(call);
call->unmarshall++;
fallthrough;
case 1:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
namesz = ntohl(call->tmp);
if (namesz > AFS_MAXCELLNAME)
return afs_protocol_error(call, afs_eproto_cellname_len);
paddedsz = (namesz + 3) & ~3;
call->count = namesz;
call->count2 = paddedsz - namesz;
cell_name = kmalloc(namesz + 1, GFP_KERNEL);
if (!cell_name)
return -ENOMEM;
cell_name[namesz] = 0;
call->ret_str = cell_name;
afs_extract_begin(call, cell_name, namesz);
call->unmarshall++;
fallthrough;
case 2:
ret = afs_extract_data(call, true);
if (ret < 0)
return ret;
afs_extract_discard(call, call->count2);
call->unmarshall++;
fallthrough;
case 3:
ret = afs_extract_data(call, false);
if (ret < 0)
return ret;
call->unmarshall++;
break;
}
_leave(" = 0 [done]");
return 0;
}
static void afs_destroy_yfsvl_get_cell_name(struct afs_call *call)
{
kfree(call->ret_str);
afs_flat_call_destructor(call);
}
static const struct afs_call_type afs_YFSVLGetCellName = {
.name = "YFSVL.GetCellName",
.op = afs_YFSVL_GetCellName,
.deliver = afs_deliver_yfsvl_get_cell_name,
.destructor = afs_destroy_yfsvl_get_cell_name,
};
char *afs_yfsvl_get_cell_name(struct afs_vl_cursor *vc)
{
struct afs_call *call;
struct afs_net *net = vc->cell->net;
__be32 *bp;
_enter("");
call = afs_alloc_flat_call(net, &afs_YFSVLGetCellName, 1 * 4, 0);
if (!call)
return ERR_PTR(-ENOMEM);
call->key = vc->key;
call->ret_str = NULL;
call->max_lifespan = AFS_VL_MAX_LIFESPAN;
bp = call->request;
*bp++ = htonl(YVLGETCELLNAME);
trace_afs_make_vl_call(call);
afs_make_call(&vc->ac, call, GFP_KERNEL);
return (char *)afs_wait_for_call_to_complete(call, &vc->ac);
}