#include <linux/bitops.h>
#include "rtl_core.h"
#include "r8192E_hw.h"
#include "r8192E_phyreg.h"
#include "r8190P_rtl8256.h"
#include "r8192E_phy.h"
#include "rtl_dm.h"
#include "table.h"
static u32 _rtl92e_phy_rf_fw_read(struct net_device *dev,
enum rf90_radio_path eRFPath, u32 Offset);
static void _rtl92e_phy_rf_fw_write(struct net_device *dev,
enum rf90_radio_path eRFPath, u32 Offset,
u32 Data);
static u32 _rtl92e_calculate_bit_shift(u32 dwBitMask)
{
if (!dwBitMask)
return 32;
return ffs(dwBitMask) - 1;
}
void rtl92e_set_bb_reg(struct net_device *dev, u32 dwRegAddr, u32 dwBitMask,
u32 dwData)
{
u32 OriginalValue, BitShift, NewValue;
if (dwBitMask != bMaskDWord) {
OriginalValue = rtl92e_readl(dev, dwRegAddr);
BitShift = _rtl92e_calculate_bit_shift(dwBitMask);
NewValue = (OriginalValue & ~dwBitMask) | (dwData << BitShift);
rtl92e_writel(dev, dwRegAddr, NewValue);
} else {
rtl92e_writel(dev, dwRegAddr, dwData);
}
}
u32 rtl92e_get_bb_reg(struct net_device *dev, u32 dwRegAddr, u32 dwBitMask)
{
u32 OriginalValue, BitShift;
OriginalValue = rtl92e_readl(dev, dwRegAddr);
BitShift = _rtl92e_calculate_bit_shift(dwBitMask);
return (OriginalValue & dwBitMask) >> BitShift;
}
static u32 _rtl92e_phy_rf_read(struct net_device *dev,
enum rf90_radio_path eRFPath, u32 Offset)
{
struct r8192_priv *priv = rtllib_priv(dev);
u32 ret = 0;
u32 NewOffset = 0;
struct bb_reg_definition *pPhyReg = &priv->phy_reg_def[eRFPath];
Offset &= 0x3f;
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0xf00, 0x0);
if (Offset >= 31) {
priv->rf_reg_0value[eRFPath] |= 0x140;
rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
(priv->rf_reg_0value[eRFPath] << 16));
NewOffset = Offset - 30;
} else if (Offset >= 16) {
priv->rf_reg_0value[eRFPath] |= 0x100;
priv->rf_reg_0value[eRFPath] &= (~0x40);
rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
(priv->rf_reg_0value[eRFPath] << 16));
NewOffset = Offset - 15;
} else {
NewOffset = Offset;
}
rtl92e_set_bb_reg(dev, pPhyReg->rfHSSIPara2, bLSSIReadAddress,
NewOffset);
rtl92e_set_bb_reg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x0);
rtl92e_set_bb_reg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x1);
mdelay(1);
ret = rtl92e_get_bb_reg(dev, pPhyReg->rfLSSIReadBack,
bLSSIReadBackData);
priv->rf_reg_0value[eRFPath] &= 0xebf;
rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset, bMaskDWord,
(priv->rf_reg_0value[eRFPath] << 16));
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3);
return ret;
}
static void _rtl92e_phy_rf_write(struct net_device *dev,
enum rf90_radio_path eRFPath, u32 Offset,
u32 Data)
{
struct r8192_priv *priv = rtllib_priv(dev);
u32 DataAndAddr = 0, NewOffset = 0;
struct bb_reg_definition *pPhyReg = &priv->phy_reg_def[eRFPath];
Offset &= 0x3f;
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0xf00, 0x0);
if (Offset >= 31) {
priv->rf_reg_0value[eRFPath] |= 0x140;
rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
(priv->rf_reg_0value[eRFPath] << 16));
NewOffset = Offset - 30;
} else if (Offset >= 16) {
priv->rf_reg_0value[eRFPath] |= 0x100;
priv->rf_reg_0value[eRFPath] &= (~0x40);
rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
(priv->rf_reg_0value[eRFPath] << 16));
NewOffset = Offset - 15;
} else {
NewOffset = Offset;
}
DataAndAddr = (NewOffset & 0x3f) | (Data << 16);
rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
if (Offset == 0x0)
priv->rf_reg_0value[eRFPath] = Data;
if (Offset != 0) {
priv->rf_reg_0value[eRFPath] &= 0xebf;
rtl92e_set_bb_reg(dev, pPhyReg->rf3wireOffset,
bMaskDWord,
(priv->rf_reg_0value[eRFPath] << 16));
}
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3);
}
void rtl92e_set_rf_reg(struct net_device *dev, enum rf90_radio_path eRFPath,
u32 RegAddr, u32 BitMask, u32 Data)
{
struct r8192_priv *priv = rtllib_priv(dev);
u32 Original_Value, BitShift, New_Value;
if (priv->rtllib->rf_power_state != rf_on && !priv->being_init_adapter)
return;
if (priv->rf_mode == RF_OP_By_FW) {
if (BitMask != bMask12Bits) {
Original_Value = _rtl92e_phy_rf_fw_read(dev, eRFPath,
RegAddr);
BitShift = _rtl92e_calculate_bit_shift(BitMask);
New_Value = (Original_Value & ~BitMask) | (Data << BitShift);
_rtl92e_phy_rf_fw_write(dev, eRFPath, RegAddr,
New_Value);
} else {
_rtl92e_phy_rf_fw_write(dev, eRFPath, RegAddr, Data);
}
udelay(200);
} else {
if (BitMask != bMask12Bits) {
Original_Value = _rtl92e_phy_rf_read(dev, eRFPath,
RegAddr);
BitShift = _rtl92e_calculate_bit_shift(BitMask);
New_Value = (Original_Value & ~BitMask) | (Data << BitShift);
_rtl92e_phy_rf_write(dev, eRFPath, RegAddr, New_Value);
} else {
_rtl92e_phy_rf_write(dev, eRFPath, RegAddr, Data);
}
}
}
u32 rtl92e_get_rf_reg(struct net_device *dev, enum rf90_radio_path eRFPath,
u32 RegAddr, u32 BitMask)
{
u32 Original_Value, Readback_Value, BitShift;
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->rtllib->rf_power_state != rf_on && !priv->being_init_adapter)
return 0;
mutex_lock(&priv->rf_mutex);
if (priv->rf_mode == RF_OP_By_FW) {
Original_Value = _rtl92e_phy_rf_fw_read(dev, eRFPath, RegAddr);
udelay(200);
} else {
Original_Value = _rtl92e_phy_rf_read(dev, eRFPath, RegAddr);
}
BitShift = _rtl92e_calculate_bit_shift(BitMask);
Readback_Value = (Original_Value & BitMask) >> BitShift;
mutex_unlock(&priv->rf_mutex);
return Readback_Value;
}
static u32 _rtl92e_phy_rf_fw_read(struct net_device *dev,
enum rf90_radio_path eRFPath, u32 Offset)
{
u32 Data = 0;
u8 time = 0;
Data |= ((Offset & 0xFF) << 12);
Data |= ((eRFPath & 0x3) << 20);
Data |= 0x80000000;
while (rtl92e_readl(dev, QPNR) & 0x80000000) {
if (time++ < 100)
udelay(10);
else
break;
}
rtl92e_writel(dev, QPNR, Data);
while (rtl92e_readl(dev, QPNR) & 0x80000000) {
if (time++ < 100)
udelay(10);
else
return 0;
}
return rtl92e_readl(dev, RF_DATA);
}
static void _rtl92e_phy_rf_fw_write(struct net_device *dev,
enum rf90_radio_path eRFPath, u32 Offset,
u32 Data)
{
u8 time = 0;
Data |= ((Offset & 0xFF) << 12);
Data |= ((eRFPath & 0x3) << 20);
Data |= 0x400000;
Data |= 0x80000000;
while (rtl92e_readl(dev, QPNR) & 0x80000000) {
if (time++ < 100)
udelay(10);
else
break;
}
rtl92e_writel(dev, QPNR, Data);
}
void rtl92e_config_mac(struct net_device *dev)
{
u32 dwArrayLen = 0, i = 0;
u32 *pdwArray = NULL;
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->tx_pwr_data_read_from_eeprom) {
dwArrayLen = RTL8192E_MACPHY_ARR_PG_LEN;
pdwArray = RTL8192E_MACPHY_ARR_PG;
} else {
dwArrayLen = RTL8192E_MACPHY_ARR_LEN;
pdwArray = RTL8192E_MACPHY_ARR;
}
for (i = 0; i < dwArrayLen; i += 3) {
if (pdwArray[i] == 0x318)
pdwArray[i + 2] = 0x00000800;
rtl92e_set_bb_reg(dev, pdwArray[i], pdwArray[i + 1],
pdwArray[i + 2]);
}
}
static void _rtl92e_phy_config_bb(struct net_device *dev, u8 ConfigType)
{
int i;
u32 *Rtl819XPHY_REGArray_Table = NULL;
u32 *Rtl819XAGCTAB_Array_Table = NULL;
u16 AGCTAB_ArrayLen, PHY_REGArrayLen = 0;
AGCTAB_ArrayLen = RTL8192E_AGCTAB_ARR_LEN;
Rtl819XAGCTAB_Array_Table = RTL8192E_AGCTAB_ARR;
PHY_REGArrayLen = RTL8192E_PHY_REG_1T2R_ARR_LEN;
Rtl819XPHY_REGArray_Table = RTL8192E_PHY_REG_1T2R_ARR;
if (ConfigType == BB_CONFIG_PHY_REG) {
for (i = 0; i < PHY_REGArrayLen; i += 2) {
rtl92e_set_bb_reg(dev, Rtl819XPHY_REGArray_Table[i],
bMaskDWord,
Rtl819XPHY_REGArray_Table[i + 1]);
}
} else if (ConfigType == BB_CONFIG_AGC_TAB) {
for (i = 0; i < AGCTAB_ArrayLen; i += 2) {
rtl92e_set_bb_reg(dev, Rtl819XAGCTAB_Array_Table[i],
bMaskDWord,
Rtl819XAGCTAB_Array_Table[i + 1]);
}
}
}
static void _rtl92e_init_bb_rf_reg_def(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
priv->phy_reg_def[RF90_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW;
priv->phy_reg_def[RF90_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW;
priv->phy_reg_def[RF90_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE;
priv->phy_reg_def[RF90_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE;
priv->phy_reg_def[RF90_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE;
priv->phy_reg_def[RF90_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE;
priv->phy_reg_def[RF90_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter;
priv->phy_reg_def[RF90_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;
priv->phy_reg_def[RF90_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2;
priv->phy_reg_def[RF90_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2;
priv->phy_reg_def[RF90_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
priv->phy_reg_def[RF90_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
}
bool rtl92e_check_bb_and_rf(struct net_device *dev, enum hw90_block CheckBlock,
enum rf90_radio_path eRFPath)
{
bool ret = true;
u32 i, CheckTimes = 4, dwRegRead = 0;
u32 WriteAddr[4];
u32 WriteData[] = {0xfffff027, 0xaa55a02f, 0x00000027, 0x55aa502f};
WriteAddr[HW90_BLOCK_MAC] = 0x100;
WriteAddr[HW90_BLOCK_PHY0] = 0x900;
WriteAddr[HW90_BLOCK_PHY1] = 0x800;
WriteAddr[HW90_BLOCK_RF] = 0x3;
if (CheckBlock == HW90_BLOCK_MAC) {
netdev_warn(dev, "%s(): No checks available for MAC block.\n",
__func__);
return ret;
}
for (i = 0; i < CheckTimes; i++) {
switch (CheckBlock) {
case HW90_BLOCK_PHY0:
case HW90_BLOCK_PHY1:
rtl92e_writel(dev, WriteAddr[CheckBlock],
WriteData[i]);
dwRegRead = rtl92e_readl(dev, WriteAddr[CheckBlock]);
break;
case HW90_BLOCK_RF:
WriteData[i] &= 0xfff;
rtl92e_set_rf_reg(dev, eRFPath,
WriteAddr[HW90_BLOCK_RF],
bMask12Bits, WriteData[i]);
mdelay(10);
dwRegRead = rtl92e_get_rf_reg(dev, eRFPath,
WriteAddr[HW90_BLOCK_RF],
bMaskDWord);
mdelay(10);
break;
default:
ret = false;
break;
}
if (dwRegRead != WriteData[i]) {
netdev_warn(dev, "%s(): Check failed.\n", __func__);
ret = false;
break;
}
}
return ret;
}
static bool _rtl92e_bb_config_para_file(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
bool rtStatus = true;
u8 bRegValue = 0, eCheckItem = 0;
u32 dwRegValue = 0;
bRegValue = rtl92e_readb(dev, BB_GLOBAL_RESET);
rtl92e_writeb(dev, BB_GLOBAL_RESET, (bRegValue | BB_GLOBAL_RESET_BIT));
dwRegValue = rtl92e_readl(dev, CPU_GEN);
rtl92e_writel(dev, CPU_GEN, (dwRegValue & (~CPU_GEN_BB_RST)));
for (eCheckItem = (enum hw90_block)HW90_BLOCK_PHY0;
eCheckItem <= HW90_BLOCK_PHY1; eCheckItem++) {
rtStatus = rtl92e_check_bb_and_rf(dev,
(enum hw90_block)eCheckItem,
(enum rf90_radio_path)0);
if (!rtStatus)
return rtStatus;
}
rtl92e_set_bb_reg(dev, rFPGA0_RFMOD, bCCKEn | bOFDMEn, 0x0);
_rtl92e_phy_config_bb(dev, BB_CONFIG_PHY_REG);
dwRegValue = rtl92e_readl(dev, CPU_GEN);
rtl92e_writel(dev, CPU_GEN, (dwRegValue | CPU_GEN_BB_RST));
_rtl92e_phy_config_bb(dev, BB_CONFIG_AGC_TAB);
if (priv->ic_cut > VERSION_8190_BD) {
dwRegValue = 0x0;
rtl92e_set_bb_reg(dev, rFPGA0_TxGainStage,
(bXBTxAGC | bXCTxAGC | bXDTxAGC), dwRegValue);
dwRegValue = priv->crystal_cap;
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, bXtalCap92x,
dwRegValue);
}
return rtStatus;
}
bool rtl92e_config_bb(struct net_device *dev)
{
_rtl92e_init_bb_rf_reg_def(dev);
return _rtl92e_bb_config_para_file(dev);
}
void rtl92e_get_tx_power(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
priv->mcs_tx_pwr_level_org_offset[0] =
rtl92e_readl(dev, rTxAGC_Rate18_06);
priv->mcs_tx_pwr_level_org_offset[1] =
rtl92e_readl(dev, rTxAGC_Rate54_24);
priv->mcs_tx_pwr_level_org_offset[2] =
rtl92e_readl(dev, rTxAGC_Mcs03_Mcs00);
priv->mcs_tx_pwr_level_org_offset[3] =
rtl92e_readl(dev, rTxAGC_Mcs07_Mcs04);
priv->mcs_tx_pwr_level_org_offset[4] =
rtl92e_readl(dev, rTxAGC_Mcs11_Mcs08);
priv->mcs_tx_pwr_level_org_offset[5] =
rtl92e_readl(dev, rTxAGC_Mcs15_Mcs12);
priv->def_initial_gain[0] = rtl92e_readb(dev, rOFDM0_XAAGCCore1);
priv->def_initial_gain[1] = rtl92e_readb(dev, rOFDM0_XBAGCCore1);
priv->def_initial_gain[2] = rtl92e_readb(dev, rOFDM0_XCAGCCore1);
priv->def_initial_gain[3] = rtl92e_readb(dev, rOFDM0_XDAGCCore1);
priv->framesync = rtl92e_readb(dev, rOFDM0_RxDetector3);
}
void rtl92e_set_tx_power(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = rtllib_priv(dev);
u8 powerlevel = 0, powerlevelOFDM24G = 0;
if (priv->epromtype == EEPROM_93C46) {
powerlevel = priv->tx_pwr_level_cck[channel - 1];
powerlevelOFDM24G = priv->tx_pwr_level_ofdm_24g[channel - 1];
}
rtl92e_set_cck_tx_power(dev, powerlevel);
rtl92e_set_ofdm_tx_power(dev, powerlevelOFDM24G);
}
u8 rtl92e_config_rf_path(struct net_device *dev, enum rf90_radio_path eRFPath)
{
int i;
switch (eRFPath) {
case RF90_PATH_A:
for (i = 0; i < RTL8192E_RADIO_A_ARR_LEN; i += 2) {
if (RTL8192E_RADIO_A_ARR[i] == 0xfe) {
msleep(100);
continue;
}
rtl92e_set_rf_reg(dev, eRFPath, RTL8192E_RADIO_A_ARR[i],
bMask12Bits,
RTL8192E_RADIO_A_ARR[i + 1]);
}
break;
case RF90_PATH_B:
for (i = 0; i < RTL8192E_RADIO_B_ARR_LEN; i += 2) {
if (RTL8192E_RADIO_B_ARR[i] == 0xfe) {
msleep(100);
continue;
}
rtl92e_set_rf_reg(dev, eRFPath, RTL8192E_RADIO_B_ARR[i],
bMask12Bits,
RTL8192E_RADIO_B_ARR[i + 1]);
}
break;
default:
break;
}
return 0;
}
static void _rtl92e_set_tx_power_level(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = rtllib_priv(dev);
u8 powerlevel = priv->tx_pwr_level_cck[channel - 1];
u8 powerlevelOFDM24G = priv->tx_pwr_level_ofdm_24g[channel - 1];
rtl92e_set_cck_tx_power(dev, powerlevel);
rtl92e_set_ofdm_tx_power(dev, powerlevelOFDM24G);
}
static u8 _rtl92e_phy_set_sw_chnl_cmd_array(struct net_device *dev,
struct sw_chnl_cmd *CmdTable,
u32 CmdTableIdx, u32 CmdTableSz,
enum sw_chnl_cmd_id CmdID,
u32 Para1, u32 Para2, u32 msDelay)
{
struct sw_chnl_cmd *pCmd;
if (CmdTable == NULL) {
netdev_err(dev, "%s(): CmdTable cannot be NULL.\n", __func__);
return false;
}
if (CmdTableIdx >= CmdTableSz) {
netdev_err(dev, "%s(): Invalid index requested.\n", __func__);
return false;
}
pCmd = CmdTable + CmdTableIdx;
pCmd->CmdID = CmdID;
pCmd->Para1 = Para1;
pCmd->Para2 = Para2;
pCmd->msDelay = msDelay;
return true;
}
static u8 _rtl92e_phy_switch_channel_step(struct net_device *dev, u8 channel,
u8 *stage, u8 *step, u32 *delay)
{
struct r8192_priv *priv = rtllib_priv(dev);
struct rtllib_device *ieee = priv->rtllib;
u32 PreCommonCmdCnt;
u32 PostCommonCmdCnt;
u32 RfDependCmdCnt;
struct sw_chnl_cmd *CurrentCmd = NULL;
u8 eRFPath;
if (!rtllib_legal_channel(priv->rtllib, channel)) {
netdev_err(dev, "Invalid channel requested: %d\n", channel);
return true;
}
{
PreCommonCmdCnt = 0;
_rtl92e_phy_set_sw_chnl_cmd_array(dev, ieee->PreCommonCmd,
PreCommonCmdCnt++,
MAX_PRECMD_CNT,
CmdID_SetTxPowerLevel,
0, 0, 0);
_rtl92e_phy_set_sw_chnl_cmd_array(dev, ieee->PreCommonCmd,
PreCommonCmdCnt++,
MAX_PRECMD_CNT, CmdID_End,
0, 0, 0);
PostCommonCmdCnt = 0;
_rtl92e_phy_set_sw_chnl_cmd_array(dev, ieee->PostCommonCmd,
PostCommonCmdCnt++,
MAX_POSTCMD_CNT, CmdID_End,
0, 0, 0);
RfDependCmdCnt = 0;
if (!(channel >= 1 && channel <= 14)) {
netdev_err(dev,
"Invalid channel requested for 8256: %d\n",
channel);
return false;
}
_rtl92e_phy_set_sw_chnl_cmd_array(dev,
ieee->RfDependCmd,
RfDependCmdCnt++,
MAX_RFDEPENDCMD_CNT,
CmdID_RF_WriteReg,
rZebra1_Channel,
channel, 10);
_rtl92e_phy_set_sw_chnl_cmd_array(dev,
ieee->RfDependCmd,
RfDependCmdCnt++,
MAX_RFDEPENDCMD_CNT,
CmdID_End, 0, 0, 0);
do {
switch (*stage) {
case 0:
CurrentCmd = &ieee->PreCommonCmd[*step];
break;
case 1:
CurrentCmd = &ieee->RfDependCmd[*step];
break;
case 2:
CurrentCmd = &ieee->PostCommonCmd[*step];
break;
}
if (CurrentCmd && CurrentCmd->CmdID == CmdID_End) {
if ((*stage) == 2)
return true;
(*stage)++;
(*step) = 0;
continue;
}
if (!CurrentCmd)
continue;
switch (CurrentCmd->CmdID) {
case CmdID_SetTxPowerLevel:
if (priv->ic_cut > VERSION_8190_BD)
_rtl92e_set_tx_power_level(dev,
channel);
break;
case CmdID_WritePortUlong:
rtl92e_writel(dev, CurrentCmd->Para1,
CurrentCmd->Para2);
break;
case CmdID_WritePortUshort:
rtl92e_writew(dev, CurrentCmd->Para1,
CurrentCmd->Para2);
break;
case CmdID_WritePortUchar:
rtl92e_writeb(dev, CurrentCmd->Para1,
CurrentCmd->Para2);
break;
case CmdID_RF_WriteReg:
for (eRFPath = 0; eRFPath <
priv->num_total_rf_path; eRFPath++)
rtl92e_set_rf_reg(dev,
(enum rf90_radio_path)eRFPath,
CurrentCmd->Para1, bMask12Bits,
CurrentCmd->Para2 << 7);
break;
default:
break;
}
break;
} while (true);
}
(*delay) = CurrentCmd->msDelay;
(*step)++;
return false;
}
static void _rtl92e_phy_switch_channel(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = rtllib_priv(dev);
u32 delay = 0;
while (!_rtl92e_phy_switch_channel_step(dev, channel,
&priv->sw_chnl_stage,
&priv->sw_chnl_step, &delay)) {
if (delay > 0)
msleep(delay);
if (!priv->up)
break;
}
}
static void _rtl92e_phy_switch_channel_work_item(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
_rtl92e_phy_switch_channel(dev, priv->chan);
}
u8 rtl92e_set_channel(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = rtllib_priv(dev);
if (!priv->up) {
netdev_err(dev, "%s(): Driver is not initialized\n", __func__);
return false;
}
if (priv->sw_chnl_in_progress)
return false;
switch (priv->rtllib->mode) {
case WIRELESS_MODE_B:
if (channel > 14) {
netdev_warn(dev,
"Channel %d not available in 802.11b.\n",
channel);
return false;
}
break;
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
if (channel > 14) {
netdev_warn(dev,
"Channel %d not available in 802.11g.\n",
channel);
return false;
}
break;
}
priv->sw_chnl_in_progress = true;
if (channel == 0)
channel = 1;
priv->chan = channel;
priv->sw_chnl_stage = 0;
priv->sw_chnl_step = 0;
if (priv->up)
_rtl92e_phy_switch_channel_work_item(dev);
priv->sw_chnl_in_progress = false;
return true;
}
static void _rtl92e_cck_tx_power_track_bw_switch_tssi(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
switch (priv->current_chnl_bw) {
case HT_CHANNEL_WIDTH_20:
priv->cck_present_attn =
priv->cck_present_attn_20m_def +
priv->cck_present_attn_diff;
if (priv->cck_present_attn >
(CCK_TX_BB_GAIN_TABLE_LEN - 1))
priv->cck_present_attn =
CCK_TX_BB_GAIN_TABLE_LEN - 1;
if (priv->cck_present_attn < 0)
priv->cck_present_attn = 0;
if (priv->rtllib->current_network.channel == 14 &&
!priv->bcck_in_ch14) {
priv->bcck_in_ch14 = true;
rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
} else if (priv->rtllib->current_network.channel !=
14 && priv->bcck_in_ch14) {
priv->bcck_in_ch14 = false;
rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
} else {
rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
}
break;
case HT_CHANNEL_WIDTH_20_40:
priv->cck_present_attn =
priv->cck_present_attn_40m_def +
priv->cck_present_attn_diff;
if (priv->cck_present_attn >
(CCK_TX_BB_GAIN_TABLE_LEN - 1))
priv->cck_present_attn =
CCK_TX_BB_GAIN_TABLE_LEN - 1;
if (priv->cck_present_attn < 0)
priv->cck_present_attn = 0;
if (priv->rtllib->current_network.channel == 14 &&
!priv->bcck_in_ch14) {
priv->bcck_in_ch14 = true;
rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
} else if (priv->rtllib->current_network.channel != 14
&& priv->bcck_in_ch14) {
priv->bcck_in_ch14 = false;
rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
} else {
rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
}
break;
}
}
static void _rtl92e_cck_tx_power_track_bw_switch_thermal(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->rtllib->current_network.channel == 14 &&
!priv->bcck_in_ch14)
priv->bcck_in_ch14 = true;
else if (priv->rtllib->current_network.channel != 14 &&
priv->bcck_in_ch14)
priv->bcck_in_ch14 = false;
switch (priv->current_chnl_bw) {
case HT_CHANNEL_WIDTH_20:
if (priv->rec_cck_20m_idx == 0)
priv->rec_cck_20m_idx = 6;
priv->cck_index = priv->rec_cck_20m_idx;
break;
case HT_CHANNEL_WIDTH_20_40:
priv->cck_index = priv->rec_cck_40m_idx;
break;
}
rtl92e_dm_cck_txpower_adjust(dev, priv->bcck_in_ch14);
}
static void _rtl92e_cck_tx_power_track_bw_switch(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->ic_cut >= IC_VersionCut_D)
_rtl92e_cck_tx_power_track_bw_switch_tssi(dev);
else
_rtl92e_cck_tx_power_track_bw_switch_thermal(dev);
}
static void _rtl92e_set_bw_mode_work_item(struct net_device *dev)
{
struct r8192_priv *priv = rtllib_priv(dev);
u8 regBwOpMode;
if (!priv->up) {
netdev_err(dev, "%s(): Driver is not initialized\n", __func__);
return;
}
regBwOpMode = rtl92e_readb(dev, BW_OPMODE);
switch (priv->current_chnl_bw) {
case HT_CHANNEL_WIDTH_20:
regBwOpMode |= BW_OPMODE_20MHZ;
rtl92e_writeb(dev, BW_OPMODE, regBwOpMode);
break;
case HT_CHANNEL_WIDTH_20_40:
regBwOpMode &= ~BW_OPMODE_20MHZ;
rtl92e_writeb(dev, BW_OPMODE, regBwOpMode);
break;
default:
netdev_err(dev, "%s(): unknown Bandwidth: %#X\n", __func__,
priv->current_chnl_bw);
break;
}
switch (priv->current_chnl_bw) {
case HT_CHANNEL_WIDTH_20:
rtl92e_set_bb_reg(dev, rFPGA0_RFMOD, bRFMOD, 0x0);
rtl92e_set_bb_reg(dev, rFPGA1_RFMOD, bRFMOD, 0x0);
if (!priv->btxpower_tracking) {
rtl92e_writel(dev, rCCK0_TxFilter1, 0x1a1b0000);
rtl92e_writel(dev, rCCK0_TxFilter2, 0x090e1317);
rtl92e_writel(dev, rCCK0_DebugPort, 0x00000204);
} else {
_rtl92e_cck_tx_power_track_bw_switch(dev);
}
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x00100000, 1);
break;
case HT_CHANNEL_WIDTH_20_40:
rtl92e_set_bb_reg(dev, rFPGA0_RFMOD, bRFMOD, 0x1);
rtl92e_set_bb_reg(dev, rFPGA1_RFMOD, bRFMOD, 0x1);
if (!priv->btxpower_tracking) {
rtl92e_writel(dev, rCCK0_TxFilter1, 0x35360000);
rtl92e_writel(dev, rCCK0_TxFilter2, 0x121c252e);
rtl92e_writel(dev, rCCK0_DebugPort, 0x00000409);
} else {
_rtl92e_cck_tx_power_track_bw_switch(dev);
}
rtl92e_set_bb_reg(dev, rCCK0_System, bCCKSideBand,
(priv->n_cur_40mhz_prime_sc >> 1));
rtl92e_set_bb_reg(dev, rOFDM1_LSTF, 0xC00,
priv->n_cur_40mhz_prime_sc);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x00100000, 0);
break;
default:
netdev_err(dev, "%s(): unknown Bandwidth: %#X\n", __func__,
priv->current_chnl_bw);
break;
}
rtl92e_set_bandwidth(dev, priv->current_chnl_bw);
atomic_dec(&(priv->rtllib->atm_swbw));
priv->set_bw_mode_in_progress = false;
}
void rtl92e_set_bw_mode(struct net_device *dev, enum ht_channel_width bandwidth,
enum ht_extchnl_offset Offset)
{
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->set_bw_mode_in_progress)
return;
atomic_inc(&(priv->rtllib->atm_swbw));
priv->set_bw_mode_in_progress = true;
priv->current_chnl_bw = bandwidth;
if (Offset == HT_EXTCHNL_OFFSET_LOWER)
priv->n_cur_40mhz_prime_sc = HAL_PRIME_CHNL_OFFSET_UPPER;
else if (Offset == HT_EXTCHNL_OFFSET_UPPER)
priv->n_cur_40mhz_prime_sc = HAL_PRIME_CHNL_OFFSET_LOWER;
else
priv->n_cur_40mhz_prime_sc = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
_rtl92e_set_bw_mode_work_item(dev);
}
void rtl92e_init_gain(struct net_device *dev, u8 Operation)
{
#define SCAN_RX_INITIAL_GAIN 0x17
#define POWER_DETECTION_TH 0x08
struct r8192_priv *priv = rtllib_priv(dev);
u32 BitMask;
u8 initial_gain;
if (priv->up) {
switch (Operation) {
case IG_Backup:
initial_gain = SCAN_RX_INITIAL_GAIN;
BitMask = bMaskByte0;
if (dm_digtable.dig_algorithm ==
DIG_ALGO_BY_FALSE_ALARM)
rtl92e_set_bb_reg(dev, UFWP, bMaskByte1, 0x8);
priv->initgain_backup.xaagccore1 =
rtl92e_get_bb_reg(dev, rOFDM0_XAAGCCore1,
BitMask);
priv->initgain_backup.xbagccore1 =
rtl92e_get_bb_reg(dev, rOFDM0_XBAGCCore1,
BitMask);
priv->initgain_backup.xcagccore1 =
rtl92e_get_bb_reg(dev, rOFDM0_XCAGCCore1,
BitMask);
priv->initgain_backup.xdagccore1 =
rtl92e_get_bb_reg(dev, rOFDM0_XDAGCCore1,
BitMask);
BitMask = bMaskByte2;
priv->initgain_backup.cca = (u8)rtl92e_get_bb_reg(dev,
rCCK0_CCA, BitMask);
rtl92e_writeb(dev, rOFDM0_XAAGCCore1, initial_gain);
rtl92e_writeb(dev, rOFDM0_XBAGCCore1, initial_gain);
rtl92e_writeb(dev, rOFDM0_XCAGCCore1, initial_gain);
rtl92e_writeb(dev, rOFDM0_XDAGCCore1, initial_gain);
rtl92e_writeb(dev, 0xa0a, POWER_DETECTION_TH);
break;
case IG_Restore:
BitMask = 0x7f;
if (dm_digtable.dig_algorithm ==
DIG_ALGO_BY_FALSE_ALARM)
rtl92e_set_bb_reg(dev, UFWP, bMaskByte1, 0x8);
rtl92e_set_bb_reg(dev, rOFDM0_XAAGCCore1, BitMask,
(u32)priv->initgain_backup.xaagccore1);
rtl92e_set_bb_reg(dev, rOFDM0_XBAGCCore1, BitMask,
(u32)priv->initgain_backup.xbagccore1);
rtl92e_set_bb_reg(dev, rOFDM0_XCAGCCore1, BitMask,
(u32)priv->initgain_backup.xcagccore1);
rtl92e_set_bb_reg(dev, rOFDM0_XDAGCCore1, BitMask,
(u32)priv->initgain_backup.xdagccore1);
BitMask = bMaskByte2;
rtl92e_set_bb_reg(dev, rCCK0_CCA, BitMask,
(u32)priv->initgain_backup.cca);
rtl92e_set_tx_power(dev,
priv->rtllib->current_network.channel);
if (dm_digtable.dig_algorithm ==
DIG_ALGO_BY_FALSE_ALARM)
rtl92e_set_bb_reg(dev, UFWP, bMaskByte1, 0x1);
break;
}
}
}
void rtl92e_set_rf_off(struct net_device *dev)
{
rtl92e_set_bb_reg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x0);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4, 0x300, 0x0);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x18, 0x0);
rtl92e_set_bb_reg(dev, rOFDM0_TRxPathEnable, 0xf, 0x0);
rtl92e_set_bb_reg(dev, rOFDM1_TRxPathEnable, 0xf, 0x0);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x60, 0x0);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1, 0x4, 0x0);
rtl92e_writeb(dev, ANAPAR_FOR_8192PCIE, 0x07);
}
static bool _rtl92e_set_rf_power_state(struct net_device *dev,
enum rt_rf_power_state rf_power_state)
{
struct r8192_priv *priv = rtllib_priv(dev);
struct rt_pwr_save_ctrl *psc = (struct rt_pwr_save_ctrl *)
(&priv->rtllib->pwr_save_ctrl);
bool bResult = true;
u8 i = 0, QueueID = 0;
struct rtl8192_tx_ring *ring = NULL;
if (priv->set_rf_pwr_state_in_progress)
return false;
priv->set_rf_pwr_state_in_progress = true;
switch (rf_power_state) {
case rf_on:
if ((priv->rtllib->rf_power_state == rf_off) &&
RT_IN_PS_LEVEL(psc, RT_RF_OFF_LEVL_HALT_NIC)) {
bool rtstatus;
u32 InitilizeCount = 3;
do {
InitilizeCount--;
rtstatus = rtl92e_enable_nic(dev);
} while (!rtstatus && (InitilizeCount > 0));
if (!rtstatus) {
netdev_err(dev,
"%s(): Failed to initialize Adapter.\n",
__func__);
priv->set_rf_pwr_state_in_progress = false;
return false;
}
RT_CLEAR_PS_LEVEL(psc,
RT_RF_OFF_LEVL_HALT_NIC);
} else {
rtl92e_writeb(dev, ANAPAR, 0x37);
mdelay(1);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1,
0x4, 0x1);
priv->hw_rf_off_action = 0;
rtl92e_set_bb_reg(dev, rFPGA0_XA_RFInterfaceOE,
BIT4, 0x1);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter4,
0x300, 0x3);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1,
0x18, 0x3);
rtl92e_set_bb_reg(dev, rOFDM0_TRxPathEnable,
0x3, 0x3);
rtl92e_set_bb_reg(dev, rOFDM1_TRxPathEnable,
0x3, 0x3);
rtl92e_set_bb_reg(dev, rFPGA0_AnalogParameter1,
0x60, 0x3);
}
break;
case rf_sleep:
if (priv->rtllib->rf_power_state == rf_off)
break;
for (QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; ) {
ring = &priv->tx_ring[QueueID];
if (skb_queue_len(&ring->queue) == 0) {
QueueID++;
continue;
} else {
udelay(10);
i++;
}
if (i >= MAX_DOZE_WAITING_TIMES_9x)
break;
}
rtl92e_set_rf_off(dev);
break;
case rf_off:
for (QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; ) {
ring = &priv->tx_ring[QueueID];
if (skb_queue_len(&ring->queue) == 0) {
QueueID++;
continue;
} else {
udelay(10);
i++;
}
if (i >= MAX_DOZE_WAITING_TIMES_9x)
break;
}
rtl92e_set_rf_off(dev);
break;
default:
bResult = false;
netdev_warn(dev,
"%s(): Unknown state requested: 0x%X.\n",
__func__, rf_power_state);
break;
}
if (bResult)
priv->rtllib->rf_power_state = rf_power_state;
priv->set_rf_pwr_state_in_progress = false;
return bResult;
}
bool rtl92e_set_rf_power_state(struct net_device *dev,
enum rt_rf_power_state rf_power_state)
{
struct r8192_priv *priv = rtllib_priv(dev);
bool bResult = false;
if (rf_power_state == priv->rtllib->rf_power_state &&
priv->hw_rf_off_action == 0) {
return bResult;
}
bResult = _rtl92e_set_rf_power_state(dev, rf_power_state);
return bResult;
}
void rtl92e_scan_op_backup(struct net_device *dev, u8 Operation)
{
struct r8192_priv *priv = rtllib_priv(dev);
if (priv->up) {
switch (Operation) {
case SCAN_OPT_BACKUP:
priv->rtllib->init_gain_handler(dev, IG_Backup);
break;
case SCAN_OPT_RESTORE:
priv->rtllib->init_gain_handler(dev, IG_Restore);
break;
}
}
}