#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/etherdevice.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/in6.h>
#include <linux/tcp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/uaccess.h>
#include <linux/errno.h>
#include <net/ndisc.h>
#include "gdm_lte.h"
#include "netlink_k.h"
#include "hci.h"
#include "hci_packet.h"
#include "gdm_endian.h"
#define NETLINK_LTE 30
#define DEFAULT_MTU_SIZE 1500
#define IP_VERSION_4 4
#define IP_VERSION_6 6
static struct {
int ref_cnt;
struct sock *sock;
} lte_event;
static struct device_type wwan_type = {
.name = "wwan",
};
static int gdm_lte_open(struct net_device *dev)
{
netif_start_queue(dev);
return 0;
}
static int gdm_lte_close(struct net_device *dev)
{
netif_stop_queue(dev);
return 0;
}
static int gdm_lte_set_config(struct net_device *dev, struct ifmap *map)
{
if (dev->flags & IFF_UP)
return -EBUSY;
return 0;
}
static void tx_complete(void *arg)
{
struct nic *nic = arg;
if (netif_queue_stopped(nic->netdev))
netif_wake_queue(nic->netdev);
}
static int gdm_lte_rx(struct sk_buff *skb, struct nic *nic, int nic_type)
{
int ret, len;
len = skb->len + ETH_HLEN;
ret = netif_rx(skb);
if (ret == NET_RX_DROP) {
nic->stats.rx_dropped++;
} else {
nic->stats.rx_packets++;
nic->stats.rx_bytes += len;
}
return 0;
}
static int gdm_lte_emulate_arp(struct sk_buff *skb_in, u32 nic_type)
{
struct nic *nic = netdev_priv(skb_in->dev);
struct sk_buff *skb_out;
struct ethhdr eth;
struct vlan_ethhdr vlan_eth;
struct arphdr *arp_in;
struct arphdr *arp_out;
struct arpdata {
u8 ar_sha[ETH_ALEN];
u8 ar_sip[4];
u8 ar_tha[ETH_ALEN];
u8 ar_tip[4];
};
struct arpdata *arp_data_in;
struct arpdata *arp_data_out;
u8 arp_temp[60];
void *mac_header_data;
u32 mac_header_len;
if (skb_in->len == 0)
return -ENODATA;
if (ntohs(((struct ethhdr *)skb_in->data)->h_proto) == ETH_P_8021Q) {
memcpy(&vlan_eth, skb_in->data, sizeof(struct vlan_ethhdr));
mac_header_data = &vlan_eth;
mac_header_len = VLAN_ETH_HLEN;
} else {
memcpy(ð, skb_in->data, sizeof(struct ethhdr));
mac_header_data = ð
mac_header_len = ETH_HLEN;
}
arp_in = (struct arphdr *)(skb_in->data + mac_header_len);
arp_data_in = (struct arpdata *)(skb_in->data + mac_header_len +
sizeof(struct arphdr));
arp_out = (struct arphdr *)arp_temp;
arp_data_out = (struct arpdata *)(arp_temp + sizeof(struct arphdr));
memcpy(arp_out, arp_in, sizeof(struct arphdr));
arp_out->ar_op = htons(ARPOP_REPLY);
arp_data_out->ar_sha[0] = arp_data_in->ar_sha[0];
arp_data_out->ar_sha[1] = arp_data_in->ar_sha[1];
memcpy(&arp_data_out->ar_sha[2], &arp_data_in->ar_tip[0], 4);
memcpy(&arp_data_out->ar_sip[0], &arp_data_in->ar_tip[0], 4);
memcpy(&arp_data_out->ar_tha[0], &arp_data_in->ar_sha[0], 6);
memcpy(&arp_data_out->ar_tip[0], &arp_data_in->ar_sip[0], 4);
memcpy(mac_header_data, mac_header_data + ETH_ALEN, ETH_ALEN);
memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
skb_out = dev_alloc_skb(skb_in->len);
if (!skb_out)
return -ENOMEM;
skb_reserve(skb_out, NET_IP_ALIGN);
skb_put_data(skb_out, mac_header_data, mac_header_len);
skb_put_data(skb_out, arp_out, sizeof(struct arphdr));
skb_put_data(skb_out, arp_data_out, sizeof(struct arpdata));
skb_out->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
skb_out->dev = skb_in->dev;
skb_reset_mac_header(skb_out);
skb_pull(skb_out, ETH_HLEN);
gdm_lte_rx(skb_out, nic, nic_type);
return 0;
}
static __sum16 icmp6_checksum(struct ipv6hdr *ipv6, u16 *ptr, int len)
{
unsigned short *w;
__wsum sum = 0;
int i;
u16 pa;
union {
struct {
u8 ph_src[16];
u8 ph_dst[16];
u32 ph_len;
u8 ph_zero[3];
u8 ph_nxt;
} ph __packed;
u16 pa[20];
} pseudo_header;
memset(&pseudo_header, 0, sizeof(pseudo_header));
memcpy(&pseudo_header.ph.ph_src, &ipv6->saddr.in6_u.u6_addr8, 16);
memcpy(&pseudo_header.ph.ph_dst, &ipv6->daddr.in6_u.u6_addr8, 16);
pseudo_header.ph.ph_len = be16_to_cpu(ipv6->payload_len);
pseudo_header.ph.ph_nxt = ipv6->nexthdr;
for (i = 0; i < ARRAY_SIZE(pseudo_header.pa); i++) {
pa = pseudo_header.pa[i];
sum = csum_add(sum, csum_unfold((__force __sum16)pa));
}
w = ptr;
while (len > 1) {
sum = csum_add(sum, csum_unfold((__force __sum16)*w++));
len -= 2;
}
return csum_fold(sum);
}
static int gdm_lte_emulate_ndp(struct sk_buff *skb_in, u32 nic_type)
{
struct nic *nic = netdev_priv(skb_in->dev);
struct sk_buff *skb_out;
struct ethhdr eth;
struct vlan_ethhdr vlan_eth;
struct neighbour_advertisement {
u8 target_address[16];
u8 type;
u8 length;
u8 link_layer_address[6];
};
struct neighbour_advertisement na;
struct neighbour_solicitation {
u8 target_address[16];
};
struct neighbour_solicitation *ns;
struct ipv6hdr *ipv6_in;
struct ipv6hdr ipv6_out;
struct icmp6hdr *icmp6_in;
struct icmp6hdr icmp6_out;
void *mac_header_data;
u32 mac_header_len;
if (ntohs(((struct ethhdr *)skb_in->data)->h_proto) == ETH_P_8021Q) {
memcpy(&vlan_eth, skb_in->data, sizeof(struct vlan_ethhdr));
if (ntohs(vlan_eth.h_vlan_encapsulated_proto) != ETH_P_IPV6)
return -EPROTONOSUPPORT;
mac_header_data = &vlan_eth;
mac_header_len = VLAN_ETH_HLEN;
} else {
memcpy(ð, skb_in->data, sizeof(struct ethhdr));
if (ntohs(eth.h_proto) != ETH_P_IPV6)
return -EPROTONOSUPPORT;
mac_header_data = ð
mac_header_len = ETH_HLEN;
}
ipv6_in = (struct ipv6hdr *)(skb_in->data + mac_header_len);
if (ipv6_in->version != 6 || ipv6_in->nexthdr != IPPROTO_ICMPV6)
return -EPROTONOSUPPORT;
icmp6_in = (struct icmp6hdr *)(skb_in->data + mac_header_len +
sizeof(struct ipv6hdr));
if (icmp6_in->icmp6_type == NDISC_ROUTER_SOLICITATION) {
return -EPROTONOSUPPORT;
} else if (icmp6_in->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION) {
u8 icmp_na[sizeof(struct icmp6hdr) +
sizeof(struct neighbour_advertisement)];
u8 zero_addr8[16] = {0,};
if (memcmp(ipv6_in->saddr.in6_u.u6_addr8, zero_addr8, 16) == 0)
return 0;
icmp6_out.icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT;
icmp6_out.icmp6_code = 0;
icmp6_out.icmp6_cksum = 0;
icmp6_out.icmp6_dataun.un_data32[0] = htonl(0x60000000);
ns = (struct neighbour_solicitation *)
(skb_in->data + mac_header_len +
sizeof(struct ipv6hdr) + sizeof(struct icmp6hdr));
memcpy(&na.target_address, ns->target_address, 16);
na.type = 0x02;
na.length = 1;
na.link_layer_address[0] = 0x00;
na.link_layer_address[1] = 0x0a;
na.link_layer_address[2] = 0x3b;
na.link_layer_address[3] = 0xaf;
na.link_layer_address[4] = 0x63;
na.link_layer_address[5] = 0xc7;
memcpy(&ipv6_out, ipv6_in, sizeof(struct ipv6hdr));
memcpy(ipv6_out.saddr.in6_u.u6_addr8, &na.target_address, 16);
memcpy(ipv6_out.daddr.in6_u.u6_addr8,
ipv6_in->saddr.in6_u.u6_addr8, 16);
ipv6_out.payload_len = htons(sizeof(struct icmp6hdr) +
sizeof(struct neighbour_advertisement));
memcpy(icmp_na, &icmp6_out, sizeof(struct icmp6hdr));
memcpy(icmp_na + sizeof(struct icmp6hdr), &na,
sizeof(struct neighbour_advertisement));
icmp6_out.icmp6_cksum = icmp6_checksum(&ipv6_out,
(u16 *)icmp_na,
sizeof(icmp_na));
} else {
return -EINVAL;
}
memcpy(mac_header_data, mac_header_data + ETH_ALEN, ETH_ALEN);
memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
skb_out = dev_alloc_skb(skb_in->len);
if (!skb_out)
return -ENOMEM;
skb_reserve(skb_out, NET_IP_ALIGN);
skb_put_data(skb_out, mac_header_data, mac_header_len);
skb_put_data(skb_out, &ipv6_out, sizeof(struct ipv6hdr));
skb_put_data(skb_out, &icmp6_out, sizeof(struct icmp6hdr));
skb_put_data(skb_out, &na, sizeof(struct neighbour_advertisement));
skb_out->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
skb_out->dev = skb_in->dev;
skb_reset_mac_header(skb_out);
skb_pull(skb_out, ETH_HLEN);
gdm_lte_rx(skb_out, nic, nic_type);
return 0;
}
static s32 gdm_lte_tx_nic_type(struct net_device *dev, struct sk_buff *skb)
{
struct nic *nic = netdev_priv(dev);
struct ethhdr *eth;
struct vlan_ethhdr *vlan_eth;
struct iphdr *ip;
struct ipv6hdr *ipv6;
int mac_proto;
void *network_data;
u32 nic_type;
nic_type = 0x00000010 | nic->nic_id;
eth = (struct ethhdr *)skb->data;
if (ntohs(eth->h_proto) == ETH_P_8021Q) {
vlan_eth = skb_vlan_eth_hdr(skb);
mac_proto = ntohs(vlan_eth->h_vlan_encapsulated_proto);
network_data = skb->data + VLAN_ETH_HLEN;
nic_type |= NIC_TYPE_F_VLAN;
} else {
mac_proto = ntohs(eth->h_proto);
network_data = skb->data + ETH_HLEN;
}
switch (mac_proto) {
case ETH_P_ARP:
nic_type |= NIC_TYPE_ARP;
break;
case ETH_P_IP:
nic_type |= NIC_TYPE_F_IPV4;
ip = network_data;
if (ip->protocol == IPPROTO_UDP) {
struct udphdr *udp =
network_data + sizeof(struct iphdr);
if (ntohs(udp->dest) == 67 || ntohs(udp->dest) == 68)
nic_type |= NIC_TYPE_F_DHCP;
}
break;
case ETH_P_IPV6:
nic_type |= NIC_TYPE_F_IPV6;
ipv6 = network_data;
if (ipv6->nexthdr == IPPROTO_ICMPV6) {
struct icmp6hdr *icmp6 =
network_data + sizeof(struct ipv6hdr);
if (icmp6->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION)
nic_type |= NIC_TYPE_ICMPV6;
} else if (ipv6->nexthdr == IPPROTO_UDP) {
struct udphdr *udp =
network_data + sizeof(struct ipv6hdr);
if (ntohs(udp->dest) == 546 || ntohs(udp->dest) == 547)
nic_type |= NIC_TYPE_F_DHCP;
}
break;
default:
break;
}
return nic_type;
}
static netdev_tx_t gdm_lte_tx(struct sk_buff *skb, struct net_device *dev)
{
struct nic *nic = netdev_priv(dev);
u32 nic_type;
void *data_buf;
int data_len;
int idx;
int ret = 0;
nic_type = gdm_lte_tx_nic_type(dev, skb);
if (nic_type == 0) {
netdev_err(dev, "tx - invalid nic_type\n");
return -EMEDIUMTYPE;
}
if (nic_type & NIC_TYPE_ARP) {
if (gdm_lte_emulate_arp(skb, nic_type) == 0) {
dev_kfree_skb(skb);
return 0;
}
}
if (nic_type & NIC_TYPE_ICMPV6) {
if (gdm_lte_emulate_ndp(skb, nic_type) == 0) {
dev_kfree_skb(skb);
return 0;
}
}
if (nic_type & NIC_TYPE_F_VLAN) {
struct vlan_ethhdr *vlan_eth = skb_vlan_eth_hdr(skb);
nic->vlan_id = ntohs(vlan_eth->h_vlan_TCI) & VLAN_VID_MASK;
data_buf = skb->data + (VLAN_ETH_HLEN - ETH_HLEN);
data_len = skb->len - (VLAN_ETH_HLEN - ETH_HLEN);
} else {
nic->vlan_id = 0;
data_buf = skb->data;
data_len = skb->len;
}
if (nic_type & NIC_TYPE_ICMPV6)
nic_type = NIC_TYPE_ICMPV6;
if (!(nic_type & NIC_TYPE_F_DHCP))
nic_type &= NIC_TYPE_MASK;
ret = sscanf(dev->name, "lte%d", &idx);
if (ret != 1) {
dev_kfree_skb(skb);
return -EINVAL;
}
ret = nic->phy_dev->send_sdu_func(nic->phy_dev->priv_dev,
data_buf, data_len,
nic->pdn_table.dft_eps_id, 0,
tx_complete, nic, idx,
nic_type);
if (ret == TX_NO_BUFFER || ret == TX_NO_SPC) {
netif_stop_queue(dev);
if (ret == TX_NO_BUFFER)
ret = 0;
else
ret = -ENOSPC;
} else if (ret == TX_NO_DEV) {
ret = -ENODEV;
}
if (ret) {
nic->stats.tx_dropped++;
} else {
nic->stats.tx_packets++;
nic->stats.tx_bytes += data_len;
}
dev_kfree_skb(skb);
return 0;
}
static struct net_device_stats *gdm_lte_stats(struct net_device *dev)
{
struct nic *nic = netdev_priv(dev);
return &nic->stats;
}
static int gdm_lte_event_send(struct net_device *dev, char *buf, int len)
{
struct phy_dev *phy_dev = ((struct nic *)netdev_priv(dev))->phy_dev;
struct hci_packet *hci = (struct hci_packet *)buf;
int length;
int idx;
int ret;
ret = sscanf(dev->name, "lte%d", &idx);
if (ret != 1)
return -EINVAL;
length = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev),
hci->len) + HCI_HEADER_SIZE;
return netlink_send(lte_event.sock, idx, 0, buf, length, dev);
}
static void gdm_lte_event_rcv(struct net_device *dev, u16 type,
void *msg, int len)
{
struct nic *nic = netdev_priv(dev);
nic->phy_dev->send_hci_func(nic->phy_dev->priv_dev, msg, len, NULL,
NULL);
}
int gdm_lte_event_init(void)
{
if (lte_event.ref_cnt == 0)
lte_event.sock = netlink_init(NETLINK_LTE, gdm_lte_event_rcv);
if (lte_event.sock) {
lte_event.ref_cnt++;
return 0;
}
pr_err("event init failed\n");
return -ENODATA;
}
void gdm_lte_event_exit(void)
{
if (lte_event.sock && --lte_event.ref_cnt == 0) {
sock_release(lte_event.sock->sk_socket);
lte_event.sock = NULL;
}
}
static int find_dev_index(u32 nic_type)
{
u8 index;
index = (u8)(nic_type & 0x0000000f);
if (index >= MAX_NIC_TYPE)
return -EINVAL;
return index;
}
static void gdm_lte_netif_rx(struct net_device *dev, char *buf,
int len, int flagged_nic_type)
{
u32 nic_type;
struct nic *nic;
struct sk_buff *skb;
struct ethhdr eth;
struct vlan_ethhdr vlan_eth;
void *mac_header_data;
u32 mac_header_len;
char ip_version = 0;
nic_type = flagged_nic_type & NIC_TYPE_MASK;
nic = netdev_priv(dev);
if (flagged_nic_type & NIC_TYPE_F_DHCP) {
if (flagged_nic_type & NIC_TYPE_F_IPV4) {
struct dhcp_packet {
u8 op;
u8 htype;
u8 hlen;
u8 hops;
u32 xid;
u16 secs;
u16 flags;
#define BROADCAST_FLAG 0x8000
u32 ciaddr;
u32 yiaddr;
u32 siaddr_nip;
u32 gateway_nip;
u8 chaddr[16];
u8 sname[64];
u8 file[128];
u32 cookie;
} __packed;
int offset = sizeof(struct iphdr) +
sizeof(struct udphdr) +
offsetof(struct dhcp_packet, chaddr);
if (offset + ETH_ALEN > len)
return;
ether_addr_copy(nic->dest_mac_addr, buf + offset);
}
}
if (nic->vlan_id > 0) {
mac_header_data = (void *)&vlan_eth;
mac_header_len = VLAN_ETH_HLEN;
} else {
mac_header_data = (void *)ð
mac_header_len = ETH_HLEN;
}
ether_addr_copy(mac_header_data, nic->dest_mac_addr);
memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
vlan_eth.h_vlan_TCI = htons(nic->vlan_id);
vlan_eth.h_vlan_proto = htons(ETH_P_8021Q);
if (nic_type == NIC_TYPE_ARP) {
eth.h_proto = htons(ETH_P_ARP);
vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_ARP);
} else {
ip_version = buf[0] >> 4;
if (ip_version == IP_VERSION_4) {
eth.h_proto = htons(ETH_P_IP);
vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_IP);
} else if (ip_version == IP_VERSION_6) {
eth.h_proto = htons(ETH_P_IPV6);
vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_IPV6);
} else {
netdev_err(dev, "Unknown IP version %d\n", ip_version);
return;
}
}
skb = dev_alloc_skb(len + mac_header_len + NET_IP_ALIGN);
if (!skb)
return;
skb_reserve(skb, NET_IP_ALIGN);
skb_put_data(skb, mac_header_data, mac_header_len);
skb_put_data(skb, buf, len);
skb->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
skb->dev = dev;
skb_reset_mac_header(skb);
skb_pull(skb, ETH_HLEN);
gdm_lte_rx(skb, nic, nic_type);
}
static void gdm_lte_multi_sdu_pkt(struct phy_dev *phy_dev, char *buf, int len)
{
struct net_device *dev;
struct multi_sdu *multi_sdu = (struct multi_sdu *)buf;
struct sdu *sdu = NULL;
u8 endian = phy_dev->get_endian(phy_dev->priv_dev);
u8 *data = (u8 *)multi_sdu->data;
int copied;
u16 i = 0;
u16 num_packet;
u16 hci_len;
u16 cmd_evt;
u32 nic_type;
int index;
num_packet = gdm_dev16_to_cpu(endian, multi_sdu->num_packet);
for (i = 0; i < num_packet; i++) {
copied = data - multi_sdu->data;
if (len < copied + sizeof(*sdu)) {
pr_err("rx prevent buffer overflow");
return;
}
sdu = (struct sdu *)data;
cmd_evt = gdm_dev16_to_cpu(endian, sdu->cmd_evt);
hci_len = gdm_dev16_to_cpu(endian, sdu->len);
nic_type = gdm_dev32_to_cpu(endian, sdu->nic_type);
if (cmd_evt != LTE_RX_SDU) {
pr_err("rx sdu wrong hci %04x\n", cmd_evt);
return;
}
if (hci_len < 12 ||
len < copied + sizeof(*sdu) + (hci_len - 12)) {
pr_err("rx sdu invalid len %d\n", hci_len);
return;
}
index = find_dev_index(nic_type);
if (index < 0) {
pr_err("rx sdu invalid nic_type :%x\n", nic_type);
return;
}
dev = phy_dev->dev[index];
gdm_lte_netif_rx(dev, (char *)sdu->data,
(int)(hci_len - 12), nic_type);
data += ((hci_len + 3) & 0xfffc) + HCI_HEADER_SIZE;
}
}
static void gdm_lte_pdn_table(struct net_device *dev, char *buf, int len)
{
struct nic *nic = netdev_priv(dev);
struct hci_pdn_table_ind *pdn_table = (struct hci_pdn_table_ind *)buf;
u8 ed = nic->phy_dev->get_endian(nic->phy_dev->priv_dev);
if (!pdn_table->activate) {
memset(&nic->pdn_table, 0x00, sizeof(struct pdn_table));
netdev_info(dev, "pdn deactivated\n");
return;
}
nic->pdn_table.activate = pdn_table->activate;
nic->pdn_table.dft_eps_id = gdm_dev32_to_cpu(ed, pdn_table->dft_eps_id);
nic->pdn_table.nic_type = gdm_dev32_to_cpu(ed, pdn_table->nic_type);
netdev_info(dev, "pdn activated, nic_type=0x%x\n",
nic->pdn_table.nic_type);
}
static int gdm_lte_receive_pkt(struct phy_dev *phy_dev, char *buf, int len)
{
struct hci_packet *hci = (struct hci_packet *)buf;
struct hci_pdn_table_ind *pdn_table = (struct hci_pdn_table_ind *)buf;
struct sdu *sdu;
struct net_device *dev;
u8 endian = phy_dev->get_endian(phy_dev->priv_dev);
int ret = 0;
u16 cmd_evt;
u32 nic_type;
int index;
if (!len)
return ret;
cmd_evt = gdm_dev16_to_cpu(endian, hci->cmd_evt);
dev = phy_dev->dev[0];
if (!dev)
return 0;
switch (cmd_evt) {
case LTE_RX_SDU:
sdu = (struct sdu *)hci->data;
nic_type = gdm_dev32_to_cpu(endian, sdu->nic_type);
index = find_dev_index(nic_type);
if (index < 0)
return index;
dev = phy_dev->dev[index];
gdm_lte_netif_rx(dev, hci->data, len, nic_type);
break;
case LTE_RX_MULTI_SDU:
gdm_lte_multi_sdu_pkt(phy_dev, buf, len);
break;
case LTE_LINK_ON_OFF_INDICATION:
netdev_info(dev, "link %s\n",
((struct hci_connect_ind *)buf)->connect
? "on" : "off");
break;
case LTE_PDN_TABLE_IND:
pdn_table = (struct hci_pdn_table_ind *)buf;
nic_type = gdm_dev32_to_cpu(endian, pdn_table->nic_type);
index = find_dev_index(nic_type);
if (index < 0)
return index;
dev = phy_dev->dev[index];
gdm_lte_pdn_table(dev, buf, len);
fallthrough;
default:
ret = gdm_lte_event_send(dev, buf, len);
break;
}
return ret;
}
static int rx_complete(void *arg, void *data, int len, int context)
{
struct phy_dev *phy_dev = arg;
return gdm_lte_receive_pkt(phy_dev, data, len);
}
void start_rx_proc(struct phy_dev *phy_dev)
{
int i;
for (i = 0; i < MAX_RX_SUBMIT_COUNT; i++)
phy_dev->rcv_func(phy_dev->priv_dev,
rx_complete, phy_dev, USB_COMPLETE);
}
static const struct net_device_ops gdm_netdev_ops = {
.ndo_open = gdm_lte_open,
.ndo_stop = gdm_lte_close,
.ndo_set_config = gdm_lte_set_config,
.ndo_start_xmit = gdm_lte_tx,
.ndo_get_stats = gdm_lte_stats,
};
static u8 gdm_lte_macaddr[ETH_ALEN] = {0x00, 0x0a, 0x3b, 0x00, 0x00, 0x00};
static void form_mac_address(u8 *dev_addr, u8 *nic_src, u8 *nic_dest,
u8 *mac_address, u8 index)
{
if (!mac_address)
ether_addr_copy(dev_addr, gdm_lte_macaddr);
else
ether_addr_copy(dev_addr, mac_address);
dev_addr[ETH_ALEN - 1] += index;
eth_random_addr(nic_src);
memcpy(nic_src, dev_addr, 3);
ether_addr_copy(nic_dest, dev_addr);
}
static void validate_mac_address(u8 *mac_address)
{
if (is_zero_ether_addr(mac_address) || (mac_address[0] & 0x01)) {
pr_err("MAC invalid, restoring default\n");
memcpy(mac_address, gdm_lte_macaddr, 6);
}
}
int register_lte_device(struct phy_dev *phy_dev,
struct device *dev, u8 *mac_address)
{
struct nic *nic;
struct net_device *net;
char pdn_dev_name[16];
u8 addr[ETH_ALEN];
int ret = 0;
u8 index;
validate_mac_address(mac_address);
for (index = 0; index < MAX_NIC_TYPE; index++) {
sprintf(pdn_dev_name, "lte%%dpdn%d", index);
net = alloc_netdev(sizeof(struct nic), pdn_dev_name,
NET_NAME_UNKNOWN, ether_setup);
if (!net) {
ret = -ENOMEM;
goto err;
}
net->netdev_ops = &gdm_netdev_ops;
net->flags &= ~IFF_MULTICAST;
net->mtu = DEFAULT_MTU_SIZE;
nic = netdev_priv(net);
memset(nic, 0, sizeof(struct nic));
nic->netdev = net;
nic->phy_dev = phy_dev;
nic->nic_id = index;
form_mac_address(addr,
nic->src_mac_addr,
nic->dest_mac_addr,
mac_address,
index);
eth_hw_addr_set(net, addr);
SET_NETDEV_DEV(net, dev);
SET_NETDEV_DEVTYPE(net, &wwan_type);
ret = register_netdev(net);
if (ret)
goto err;
netif_carrier_on(net);
phy_dev->dev[index] = net;
}
return 0;
err:
unregister_lte_device(phy_dev);
return ret;
}
void unregister_lte_device(struct phy_dev *phy_dev)
{
struct net_device *net;
int index;
for (index = 0; index < MAX_NIC_TYPE; index++) {
net = phy_dev->dev[index];
if (!net)
continue;
unregister_netdev(net);
free_netdev(net);
}
}