#include <crypto/aes.h>
#include <crypto/aead.h>
#include <crypto/algapi.h>
#include <crypto/authenc.h>
#include <crypto/des.h>
#include <crypto/hash.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/des.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include "sec.h"
#include "sec_crypto.h"
#define SEC_PRIORITY 4001
#define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
#define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE)
#define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
#define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
#define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
#define SEC_DE_OFFSET 1
#define SEC_CIPHER_OFFSET 4
#define SEC_SCENE_OFFSET 3
#define SEC_DST_SGL_OFFSET 2
#define SEC_SRC_SGL_OFFSET 7
#define SEC_CKEY_OFFSET 9
#define SEC_CMODE_OFFSET 12
#define SEC_AKEY_OFFSET 5
#define SEC_AEAD_ALG_OFFSET 11
#define SEC_AUTH_OFFSET 6
#define SEC_DE_OFFSET_V3 9
#define SEC_SCENE_OFFSET_V3 5
#define SEC_CKEY_OFFSET_V3 13
#define SEC_CTR_CNT_OFFSET 25
#define SEC_CTR_CNT_ROLLOVER 2
#define SEC_SRC_SGL_OFFSET_V3 11
#define SEC_DST_SGL_OFFSET_V3 14
#define SEC_CALG_OFFSET_V3 4
#define SEC_AKEY_OFFSET_V3 9
#define SEC_MAC_OFFSET_V3 4
#define SEC_AUTH_ALG_OFFSET_V3 15
#define SEC_CIPHER_AUTH_V3 0xbf
#define SEC_AUTH_CIPHER_V3 0x40
#define SEC_FLAG_OFFSET 7
#define SEC_FLAG_MASK 0x0780
#define SEC_TYPE_MASK 0x0F
#define SEC_DONE_MASK 0x0001
#define SEC_ICV_MASK 0x000E
#define SEC_SQE_LEN_RATE_MASK 0x3
#define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth))
#define SEC_SGL_SGE_NR 128
#define SEC_CIPHER_AUTH 0xfe
#define SEC_AUTH_CIPHER 0x1
#define SEC_MAX_MAC_LEN 64
#define SEC_MAX_AAD_LEN 65535
#define SEC_MAX_CCM_AAD_LEN 65279
#define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth))
#define SEC_PBUF_SZ 512
#define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ
#define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE)
#define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \
SEC_MAX_MAC_LEN * 2)
#define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG)
#define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM)
#define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \
SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM))
#define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \
SEC_PBUF_LEFT_SZ(depth))
#define SEC_SQE_LEN_RATE 4
#define SEC_SQE_CFLAG 2
#define SEC_SQE_AEAD_FLAG 3
#define SEC_SQE_DONE 0x1
#define SEC_ICV_ERR 0x2
#define MIN_MAC_LEN 4
#define MAC_LEN_MASK 0x1U
#define MAX_INPUT_DATA_LEN 0xFFFE00
#define BITS_MASK 0xFF
#define BYTE_BITS 0x8
#define SEC_XTS_NAME_SZ 0x3
#define IV_CM_CAL_NUM 2
#define IV_CL_MASK 0x7
#define IV_CL_MIN 2
#define IV_CL_MID 4
#define IV_CL_MAX 8
#define IV_FLAGS_OFFSET 0x6
#define IV_CM_OFFSET 0x3
#define IV_LAST_BYTE1 1
#define IV_LAST_BYTE2 2
#define IV_LAST_BYTE_MASK 0xFF
#define IV_CTR_INIT 0x1
#define IV_BYTE_OFFSET 0x8
struct sec_skcipher {
u64 alg_msk;
struct skcipher_alg alg;
};
struct sec_aead {
u64 alg_msk;
struct aead_alg alg;
};
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
{
if (req->c_req.encrypt)
return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
ctx->hlf_q_num;
return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
ctx->hlf_q_num;
}
static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
{
if (req->c_req.encrypt)
atomic_dec(&ctx->enc_qcyclic);
else
atomic_dec(&ctx->dec_qcyclic);
}
static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
int req_id;
spin_lock_bh(&qp_ctx->req_lock);
req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC);
spin_unlock_bh(&qp_ctx->req_lock);
if (unlikely(req_id < 0)) {
dev_err(req->ctx->dev, "alloc req id fail!\n");
return req_id;
}
req->qp_ctx = qp_ctx;
qp_ctx->req_list[req_id] = req;
return req_id;
}
static void sec_free_req_id(struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
int req_id = req->req_id;
if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) {
dev_err(req->ctx->dev, "free request id invalid!\n");
return;
}
qp_ctx->req_list[req_id] = NULL;
req->qp_ctx = NULL;
spin_lock_bh(&qp_ctx->req_lock);
idr_remove(&qp_ctx->req_idr, req_id);
spin_unlock_bh(&qp_ctx->req_lock);
}
static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
{
struct sec_sqe *bd = resp;
status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
status->flag = (le16_to_cpu(bd->type2.done_flag) &
SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
status->tag = le16_to_cpu(bd->type2.tag);
status->err_type = bd->type2.error_type;
return bd->type_cipher_auth & SEC_TYPE_MASK;
}
static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
{
struct sec_sqe3 *bd3 = resp;
status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
status->flag = (le16_to_cpu(bd3->done_flag) &
SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
status->tag = le64_to_cpu(bd3->tag);
status->err_type = bd3->error_type;
return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
}
static int sec_cb_status_check(struct sec_req *req,
struct bd_status *status)
{
struct sec_ctx *ctx = req->ctx;
if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
req->err_type, status->done);
return -EIO;
}
if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
if (unlikely(status->flag != SEC_SQE_CFLAG)) {
dev_err_ratelimited(ctx->dev, "flag[%u]\n",
status->flag);
return -EIO;
}
} else if (unlikely(ctx->alg_type == SEC_AEAD)) {
if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
status->icv == SEC_ICV_ERR)) {
dev_err_ratelimited(ctx->dev,
"flag[%u], icv[%u]\n",
status->flag, status->icv);
return -EBADMSG;
}
}
return 0;
}
static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
u8 type_supported = qp_ctx->ctx->type_supported;
struct bd_status status;
struct sec_ctx *ctx;
struct sec_req *req;
int err;
u8 type;
if (type_supported == SEC_BD_TYPE2) {
type = pre_parse_finished_bd(&status, resp);
req = qp_ctx->req_list[status.tag];
} else {
type = pre_parse_finished_bd3(&status, resp);
req = (void *)(uintptr_t)status.tag;
}
if (unlikely(type != type_supported)) {
atomic64_inc(&dfx->err_bd_cnt);
pr_err("err bd type [%u]\n", type);
return;
}
if (unlikely(!req)) {
atomic64_inc(&dfx->invalid_req_cnt);
atomic_inc(&qp->qp_status.used);
return;
}
req->err_type = status.err_type;
ctx = req->ctx;
err = sec_cb_status_check(req, &status);
if (err)
atomic64_inc(&dfx->done_flag_cnt);
atomic64_inc(&dfx->recv_cnt);
ctx->req_op->buf_unmap(ctx, req);
ctx->req_op->callback(ctx, req, err);
}
static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
int ret;
if (ctx->fake_req_limit <=
atomic_read(&qp_ctx->qp->qp_status.used) &&
!(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
return -EBUSY;
spin_lock_bh(&qp_ctx->req_lock);
ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
if (ctx->fake_req_limit <=
atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
list_add_tail(&req->backlog_head, &qp_ctx->backlog);
atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
spin_unlock_bh(&qp_ctx->req_lock);
return -EBUSY;
}
spin_unlock_bh(&qp_ctx->req_lock);
if (unlikely(ret == -EBUSY))
return -ENOBUFS;
if (likely(!ret)) {
ret = -EINPROGRESS;
atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
}
return ret;
}
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
{
u16 q_depth = res->depth;
int i;
res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
&res->c_ivin_dma, GFP_KERNEL);
if (!res->c_ivin)
return -ENOMEM;
for (i = 1; i < q_depth; i++) {
res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
}
return 0;
}
static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
{
if (res->c_ivin)
dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
res->c_ivin, res->c_ivin_dma);
}
static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
{
u16 q_depth = res->depth;
int i;
res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
&res->a_ivin_dma, GFP_KERNEL);
if (!res->a_ivin)
return -ENOMEM;
for (i = 1; i < q_depth; i++) {
res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
}
return 0;
}
static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
{
if (res->a_ivin)
dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
res->a_ivin, res->a_ivin_dma);
}
static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
{
u16 q_depth = res->depth;
int i;
res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1,
&res->out_mac_dma, GFP_KERNEL);
if (!res->out_mac)
return -ENOMEM;
for (i = 1; i < q_depth; i++) {
res[i].out_mac_dma = res->out_mac_dma +
i * (SEC_MAX_MAC_LEN << 1);
res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
}
return 0;
}
static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
{
if (res->out_mac)
dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1,
res->out_mac, res->out_mac_dma);
}
static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
if (res->pbuf)
dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth),
res->pbuf, res->pbuf_dma);
}
static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
u16 q_depth = res->depth;
int size = SEC_PBUF_PAGE_NUM(q_depth);
int pbuf_page_offset;
int i, j, k;
res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth),
&res->pbuf_dma, GFP_KERNEL);
if (!res->pbuf)
return -ENOMEM;
for (i = 0; i <= size; i++) {
pbuf_page_offset = PAGE_SIZE * i;
for (j = 0; j < SEC_PBUF_NUM; j++) {
k = i * SEC_PBUF_NUM + j;
if (k == q_depth)
break;
res[k].pbuf = res->pbuf +
j * SEC_PBUF_PKG + pbuf_page_offset;
res[k].pbuf_dma = res->pbuf_dma +
j * SEC_PBUF_PKG + pbuf_page_offset;
}
}
return 0;
}
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
struct sec_alg_res *res = qp_ctx->res;
struct device *dev = ctx->dev;
int ret;
ret = sec_alloc_civ_resource(dev, res);
if (ret)
return ret;
if (ctx->alg_type == SEC_AEAD) {
ret = sec_alloc_aiv_resource(dev, res);
if (ret)
goto alloc_aiv_fail;
ret = sec_alloc_mac_resource(dev, res);
if (ret)
goto alloc_mac_fail;
}
if (ctx->pbuf_supported) {
ret = sec_alloc_pbuf_resource(dev, res);
if (ret) {
dev_err(dev, "fail to alloc pbuf dma resource!\n");
goto alloc_pbuf_fail;
}
}
return 0;
alloc_pbuf_fail:
if (ctx->alg_type == SEC_AEAD)
sec_free_mac_resource(dev, qp_ctx->res);
alloc_mac_fail:
if (ctx->alg_type == SEC_AEAD)
sec_free_aiv_resource(dev, res);
alloc_aiv_fail:
sec_free_civ_resource(dev, res);
return ret;
}
static void sec_alg_resource_free(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
struct device *dev = ctx->dev;
sec_free_civ_resource(dev, qp_ctx->res);
if (ctx->pbuf_supported)
sec_free_pbuf_resource(dev, qp_ctx->res);
if (ctx->alg_type == SEC_AEAD)
sec_free_mac_resource(dev, qp_ctx->res);
}
static int sec_alloc_qp_ctx_resource(struct hisi_qm *qm, struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
u16 q_depth = qp_ctx->qp->sq_depth;
struct device *dev = ctx->dev;
int ret = -ENOMEM;
qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL);
if (!qp_ctx->req_list)
return ret;
qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL);
if (!qp_ctx->res)
goto err_free_req_list;
qp_ctx->res->depth = q_depth;
qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
if (IS_ERR(qp_ctx->c_in_pool)) {
dev_err(dev, "fail to create sgl pool for input!\n");
goto err_free_res;
}
qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
if (IS_ERR(qp_ctx->c_out_pool)) {
dev_err(dev, "fail to create sgl pool for output!\n");
goto err_free_c_in_pool;
}
ret = sec_alg_resource_alloc(ctx, qp_ctx);
if (ret)
goto err_free_c_out_pool;
return 0;
err_free_c_out_pool:
hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
err_free_c_in_pool:
hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
err_free_res:
kfree(qp_ctx->res);
err_free_req_list:
kfree(qp_ctx->req_list);
return ret;
}
static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
{
struct device *dev = ctx->dev;
sec_alg_resource_free(ctx, qp_ctx);
hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
kfree(qp_ctx->res);
kfree(qp_ctx->req_list);
}
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
int qp_ctx_id, int alg_type)
{
struct sec_qp_ctx *qp_ctx;
struct hisi_qp *qp;
int ret;
qp_ctx = &ctx->qp_ctx[qp_ctx_id];
qp = ctx->qps[qp_ctx_id];
qp->req_type = 0;
qp->qp_ctx = qp_ctx;
qp_ctx->qp = qp;
qp_ctx->ctx = ctx;
qp->req_cb = sec_req_cb;
spin_lock_init(&qp_ctx->req_lock);
idr_init(&qp_ctx->req_idr);
INIT_LIST_HEAD(&qp_ctx->backlog);
ret = sec_alloc_qp_ctx_resource(qm, ctx, qp_ctx);
if (ret)
goto err_destroy_idr;
ret = hisi_qm_start_qp(qp, 0);
if (ret < 0)
goto err_resource_free;
return 0;
err_resource_free:
sec_free_qp_ctx_resource(ctx, qp_ctx);
err_destroy_idr:
idr_destroy(&qp_ctx->req_idr);
return ret;
}
static void sec_release_qp_ctx(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
hisi_qm_stop_qp(qp_ctx->qp);
sec_free_qp_ctx_resource(ctx, qp_ctx);
idr_destroy(&qp_ctx->req_idr);
}
static int sec_ctx_base_init(struct sec_ctx *ctx)
{
struct sec_dev *sec;
int i, ret;
ctx->qps = sec_create_qps();
if (!ctx->qps) {
pr_err("Can not create sec qps!\n");
return -ENODEV;
}
sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
ctx->sec = sec;
ctx->dev = &sec->qm.pdev->dev;
ctx->hlf_q_num = sec->ctx_q_num >> 1;
ctx->pbuf_supported = ctx->sec->iommu_used;
ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1;
ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
GFP_KERNEL);
if (!ctx->qp_ctx) {
ret = -ENOMEM;
goto err_destroy_qps;
}
for (i = 0; i < sec->ctx_q_num; i++) {
ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
if (ret)
goto err_sec_release_qp_ctx;
}
return 0;
err_sec_release_qp_ctx:
for (i = i - 1; i >= 0; i--)
sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
kfree(ctx->qp_ctx);
err_destroy_qps:
sec_destroy_qps(ctx->qps, sec->ctx_q_num);
return ret;
}
static void sec_ctx_base_uninit(struct sec_ctx *ctx)
{
int i;
for (i = 0; i < ctx->sec->ctx_q_num; i++)
sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
kfree(ctx->qp_ctx);
}
static int sec_cipher_init(struct sec_ctx *ctx)
{
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
&c_ctx->c_key_dma, GFP_KERNEL);
if (!c_ctx->c_key)
return -ENOMEM;
return 0;
}
static void sec_cipher_uninit(struct sec_ctx *ctx)
{
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
c_ctx->c_key, c_ctx->c_key_dma);
}
static int sec_auth_init(struct sec_ctx *ctx)
{
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
&a_ctx->a_key_dma, GFP_KERNEL);
if (!a_ctx->a_key)
return -ENOMEM;
return 0;
}
static void sec_auth_uninit(struct sec_ctx *ctx)
{
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
a_ctx->a_key, a_ctx->a_key_dma);
}
static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
{
const char *alg = crypto_tfm_alg_name(&tfm->base);
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
c_ctx->fallback = false;
if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
return 0;
c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(c_ctx->fbtfm)) {
pr_err("failed to alloc xts mode fallback tfm!\n");
return PTR_ERR(c_ctx->fbtfm);
}
return 0;
}
static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
ctx->alg_type = SEC_SKCIPHER;
crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
pr_err("get error skcipher iv size!\n");
return -EINVAL;
}
ret = sec_ctx_base_init(ctx);
if (ret)
return ret;
ret = sec_cipher_init(ctx);
if (ret)
goto err_cipher_init;
ret = sec_skcipher_fbtfm_init(tfm);
if (ret)
goto err_fbtfm_init;
return 0;
err_fbtfm_init:
sec_cipher_uninit(ctx);
err_cipher_init:
sec_ctx_base_uninit(ctx);
return ret;
}
static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
if (ctx->c_ctx.fbtfm)
crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
sec_cipher_uninit(ctx);
sec_ctx_base_uninit(ctx);
}
static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
const u32 keylen,
const enum sec_cmode c_mode)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
int ret;
ret = verify_skcipher_des3_key(tfm, key);
if (ret)
return ret;
switch (keylen) {
case SEC_DES3_2KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
break;
case SEC_DES3_3KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
break;
default:
return -EINVAL;
}
return 0;
}
static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
const u32 keylen,
const enum sec_cmode c_mode)
{
if (c_mode == SEC_CMODE_XTS) {
switch (keylen) {
case SEC_XTS_MIN_KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_128BIT;
break;
case SEC_XTS_MID_KEY_SIZE:
c_ctx->fallback = true;
break;
case SEC_XTS_MAX_KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_256BIT;
break;
default:
pr_err("hisi_sec2: xts mode key error!\n");
return -EINVAL;
}
} else {
if (c_ctx->c_alg == SEC_CALG_SM4 &&
keylen != AES_KEYSIZE_128) {
pr_err("hisi_sec2: sm4 key error!\n");
return -EINVAL;
} else {
switch (keylen) {
case AES_KEYSIZE_128:
c_ctx->c_key_len = SEC_CKEY_128BIT;
break;
case AES_KEYSIZE_192:
c_ctx->c_key_len = SEC_CKEY_192BIT;
break;
case AES_KEYSIZE_256:
c_ctx->c_key_len = SEC_CKEY_256BIT;
break;
default:
pr_err("hisi_sec2: aes key error!\n");
return -EINVAL;
}
}
}
return 0;
}
static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
const u32 keylen, const enum sec_calg c_alg,
const enum sec_cmode c_mode)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
struct device *dev = ctx->dev;
int ret;
if (c_mode == SEC_CMODE_XTS) {
ret = xts_verify_key(tfm, key, keylen);
if (ret) {
dev_err(dev, "xts mode key err!\n");
return ret;
}
}
c_ctx->c_alg = c_alg;
c_ctx->c_mode = c_mode;
switch (c_alg) {
case SEC_CALG_3DES:
ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
break;
case SEC_CALG_AES:
case SEC_CALG_SM4:
ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
break;
default:
return -EINVAL;
}
if (ret) {
dev_err(dev, "set sec key err!\n");
return ret;
}
memcpy(c_ctx->c_key, key, keylen);
if (c_ctx->fallback && c_ctx->fbtfm) {
ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
if (ret) {
dev_err(dev, "failed to set fallback skcipher key!\n");
return ret;
}
}
return 0;
}
#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
u32 keylen) \
{ \
return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
}
GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
struct scatterlist *src)
{
struct sec_aead_req *a_req = &req->aead_req;
struct aead_request *aead_req = a_req->aead_req;
struct sec_cipher_req *c_req = &req->c_req;
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
struct device *dev = ctx->dev;
int copy_size, pbuf_length;
int req_id = req->req_id;
struct crypto_aead *tfm;
size_t authsize;
u8 *mac_offset;
if (ctx->alg_type == SEC_AEAD)
copy_size = aead_req->cryptlen + aead_req->assoclen;
else
copy_size = c_req->c_len;
pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
qp_ctx->res[req_id].pbuf, copy_size);
if (unlikely(pbuf_length != copy_size)) {
dev_err(dev, "copy src data to pbuf error!\n");
return -EINVAL;
}
if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
tfm = crypto_aead_reqtfm(aead_req);
authsize = crypto_aead_authsize(tfm);
mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
memcpy(a_req->out_mac, mac_offset, authsize);
}
req->in_dma = qp_ctx->res[req_id].pbuf_dma;
c_req->c_out_dma = req->in_dma;
return 0;
}
static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
struct scatterlist *dst)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct sec_cipher_req *c_req = &req->c_req;
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
int copy_size, pbuf_length;
int req_id = req->req_id;
if (ctx->alg_type == SEC_AEAD)
copy_size = c_req->c_len + aead_req->assoclen;
else
copy_size = c_req->c_len;
pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
qp_ctx->res[req_id].pbuf, copy_size);
if (unlikely(pbuf_length != copy_size))
dev_err(ctx->dev, "copy pbuf data to dst error!\n");
}
static int sec_aead_mac_init(struct sec_aead_req *req)
{
struct aead_request *aead_req = req->aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
size_t authsize = crypto_aead_authsize(tfm);
u8 *mac_out = req->out_mac;
struct scatterlist *sgl = aead_req->src;
size_t copy_size;
off_t skip_size;
skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
authsize, skip_size);
if (unlikely(copy_size != authsize))
return -EINVAL;
return 0;
}
static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
struct scatterlist *src, struct scatterlist *dst)
{
struct sec_cipher_req *c_req = &req->c_req;
struct sec_aead_req *a_req = &req->aead_req;
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
struct sec_alg_res *res = &qp_ctx->res[req->req_id];
struct device *dev = ctx->dev;
int ret;
if (req->use_pbuf) {
c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
if (ctx->alg_type == SEC_AEAD) {
a_req->a_ivin = res->a_ivin;
a_req->a_ivin_dma = res->a_ivin_dma;
a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
a_req->out_mac_dma = res->pbuf_dma +
SEC_PBUF_MAC_OFFSET;
}
ret = sec_cipher_pbuf_map(ctx, req, src);
return ret;
}
c_req->c_ivin = res->c_ivin;
c_req->c_ivin_dma = res->c_ivin_dma;
if (ctx->alg_type == SEC_AEAD) {
a_req->a_ivin = res->a_ivin;
a_req->a_ivin_dma = res->a_ivin_dma;
a_req->out_mac = res->out_mac;
a_req->out_mac_dma = res->out_mac_dma;
}
req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
qp_ctx->c_in_pool,
req->req_id,
&req->in_dma);
if (IS_ERR(req->in)) {
dev_err(dev, "fail to dma map input sgl buffers!\n");
return PTR_ERR(req->in);
}
if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
ret = sec_aead_mac_init(a_req);
if (unlikely(ret)) {
dev_err(dev, "fail to init mac data for ICV!\n");
return ret;
}
}
if (dst == src) {
c_req->c_out = req->in;
c_req->c_out_dma = req->in_dma;
} else {
c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
qp_ctx->c_out_pool,
req->req_id,
&c_req->c_out_dma);
if (IS_ERR(c_req->c_out)) {
dev_err(dev, "fail to dma map output sgl buffers!\n");
hisi_acc_sg_buf_unmap(dev, src, req->in);
return PTR_ERR(c_req->c_out);
}
}
return 0;
}
static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
struct scatterlist *src, struct scatterlist *dst)
{
struct sec_cipher_req *c_req = &req->c_req;
struct device *dev = ctx->dev;
if (req->use_pbuf) {
sec_cipher_pbuf_unmap(ctx, req, dst);
} else {
if (dst != src)
hisi_acc_sg_buf_unmap(dev, src, req->in);
hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
}
}
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
struct skcipher_request *sq = req->c_req.sk_req;
return sec_cipher_map(ctx, req, sq->src, sq->dst);
}
static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
struct skcipher_request *sq = req->c_req.sk_req;
sec_cipher_unmap(ctx, req, sq->src, sq->dst);
}
static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
struct crypto_authenc_keys *keys)
{
switch (keys->enckeylen) {
case AES_KEYSIZE_128:
c_ctx->c_key_len = SEC_CKEY_128BIT;
break;
case AES_KEYSIZE_192:
c_ctx->c_key_len = SEC_CKEY_192BIT;
break;
case AES_KEYSIZE_256:
c_ctx->c_key_len = SEC_CKEY_256BIT;
break;
default:
pr_err("hisi_sec2: aead aes key error!\n");
return -EINVAL;
}
memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
return 0;
}
static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
struct crypto_authenc_keys *keys)
{
struct crypto_shash *hash_tfm = ctx->hash_tfm;
int blocksize, digestsize, ret;
if (!keys->authkeylen) {
pr_err("hisi_sec2: aead auth key error!\n");
return -EINVAL;
}
blocksize = crypto_shash_blocksize(hash_tfm);
digestsize = crypto_shash_digestsize(hash_tfm);
if (keys->authkeylen > blocksize) {
ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
keys->authkeylen, ctx->a_key);
if (ret) {
pr_err("hisi_sec2: aead auth digest error!\n");
return -EINVAL;
}
ctx->a_key_len = digestsize;
} else {
memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
ctx->a_key_len = keys->authkeylen;
}
return 0;
}
static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
{
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
if (unlikely(a_ctx->fallback_aead_tfm))
return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
return 0;
}
static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
}
static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
const u32 keylen, const enum sec_hash_alg a_alg,
const enum sec_calg c_alg,
const enum sec_mac_len mac_len,
const enum sec_cmode c_mode)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
struct device *dev = ctx->dev;
struct crypto_authenc_keys keys;
int ret;
ctx->a_ctx.a_alg = a_alg;
ctx->c_ctx.c_alg = c_alg;
ctx->a_ctx.mac_len = mac_len;
c_ctx->c_mode = c_mode;
if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
if (ret) {
dev_err(dev, "set sec aes ccm cipher key err!\n");
return ret;
}
memcpy(c_ctx->c_key, key, keylen);
if (unlikely(a_ctx->fallback_aead_tfm)) {
ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
if (ret)
return ret;
}
return 0;
}
if (crypto_authenc_extractkeys(&keys, key, keylen))
goto bad_key;
ret = sec_aead_aes_set_key(c_ctx, &keys);
if (ret) {
dev_err(dev, "set sec cipher key err!\n");
goto bad_key;
}
ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
if (ret) {
dev_err(dev, "set sec auth key err!\n");
goto bad_key;
}
if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK) ||
(ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
dev_err(dev, "MAC or AUTH key length error!\n");
goto bad_key;
}
return 0;
bad_key:
memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
return -EINVAL;
}
#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \
static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \
u32 keylen) \
{ \
return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
}
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
struct aead_request *aq = req->aead_req.aead_req;
return sec_cipher_map(ctx, req, aq->src, aq->dst);
}
static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
struct aead_request *aq = req->aead_req.aead_req;
sec_cipher_unmap(ctx, req, aq->src, aq->dst);
}
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
int ret;
ret = ctx->req_op->buf_map(ctx, req);
if (unlikely(ret))
return ret;
ctx->req_op->do_transfer(ctx, req);
ret = ctx->req_op->bd_fill(ctx, req);
if (unlikely(ret))
goto unmap_req_buf;
return ret;
unmap_req_buf:
ctx->req_op->buf_unmap(ctx, req);
return ret;
}
static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
{
ctx->req_op->buf_unmap(ctx, req);
}
static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
struct skcipher_request *sk_req = req->c_req.sk_req;
struct sec_cipher_req *c_req = &req->c_req;
memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
}
static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
struct sec_cipher_req *c_req = &req->c_req;
struct sec_sqe *sec_sqe = &req->sec_sqe;
u8 scene, sa_type, da_type;
u8 bd_type, cipher;
u8 de = 0;
memset(sec_sqe, 0, sizeof(struct sec_sqe));
sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
SEC_CMODE_OFFSET);
sec_sqe->type2.c_alg = c_ctx->c_alg;
sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
SEC_CKEY_OFFSET);
bd_type = SEC_BD_TYPE2;
if (c_req->encrypt)
cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
else
cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
sec_sqe->type_cipher_auth = bd_type | cipher;
if (req->use_pbuf) {
sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
} else {
sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
}
sec_sqe->sdm_addr_type |= da_type;
scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
if (req->in_dma != c_req->c_out_dma)
de = 0x1 << SEC_DE_OFFSET;
sec_sqe->sds_sa_type = (de | scene | sa_type);
sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
return 0;
}
static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
struct sec_cipher_req *c_req = &req->c_req;
u32 bd_param = 0;
u16 cipher;
memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
c_ctx->c_mode;
sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
SEC_CKEY_OFFSET_V3);
if (c_req->encrypt)
cipher = SEC_CIPHER_ENC;
else
cipher = SEC_CIPHER_DEC;
sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
SEC_CTR_CNT_OFFSET);
if (req->use_pbuf) {
bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
} else {
bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
}
bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
if (req->in_dma != c_req->c_out_dma)
bd_param |= 0x1 << SEC_DE_OFFSET_V3;
bd_param |= SEC_BD_TYPE3;
sec_sqe3->bd_param = cpu_to_le32(bd_param);
sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
sec_sqe3->tag = cpu_to_le64(req);
return 0;
}
static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
{
do {
--bits;
nums += counter[bits];
counter[bits] = nums & BITS_MASK;
nums >>= BYTE_BITS;
} while (bits && nums);
}
static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct skcipher_request *sk_req = req->c_req.sk_req;
u32 iv_size = req->ctx->c_ctx.ivsize;
struct scatterlist *sgl;
unsigned int cryptlen;
size_t sz;
u8 *iv;
if (req->c_req.encrypt)
sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
else
sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
if (alg_type == SEC_SKCIPHER) {
iv = sk_req->iv;
cryptlen = sk_req->cryptlen;
} else {
iv = aead_req->iv;
cryptlen = aead_req->cryptlen;
}
if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
cryptlen - iv_size);
if (unlikely(sz != iv_size))
dev_err(req->ctx->dev, "copy output iv error!\n");
} else {
sz = cryptlen / iv_size;
if (cryptlen % iv_size)
sz += 1;
ctr_iv_inc(iv, iv_size, sz);
}
}
static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
struct sec_req *backlog_req = NULL;
spin_lock_bh(&qp_ctx->req_lock);
if (ctx->fake_req_limit >=
atomic_read(&qp_ctx->qp->qp_status.used) &&
!list_empty(&qp_ctx->backlog)) {
backlog_req = list_first_entry(&qp_ctx->backlog,
typeof(*backlog_req), backlog_head);
list_del(&backlog_req->backlog_head);
}
spin_unlock_bh(&qp_ctx->req_lock);
return backlog_req;
}
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
int err)
{
struct skcipher_request *sk_req = req->c_req.sk_req;
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
struct skcipher_request *backlog_sk_req;
struct sec_req *backlog_req;
sec_free_req_id(req);
if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
sec_update_iv(req, SEC_SKCIPHER);
while (1) {
backlog_req = sec_back_req_clear(ctx, qp_ctx);
if (!backlog_req)
break;
backlog_sk_req = backlog_req->c_req.sk_req;
skcipher_request_complete(backlog_sk_req, -EINPROGRESS);
atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
}
skcipher_request_complete(sk_req, err);
}
static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct sec_cipher_req *c_req = &req->c_req;
struct sec_aead_req *a_req = &req->aead_req;
size_t authsize = ctx->a_ctx.mac_len;
u32 data_size = aead_req->cryptlen;
u8 flage = 0;
u8 cm, cl;
cl = c_req->c_ivin[0] + 1;
c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
flage |= c_req->c_ivin[0] & IV_CL_MASK;
cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
flage |= cm << IV_CM_OFFSET;
if (aead_req->assoclen)
flage |= 0x01 << IV_FLAGS_OFFSET;
memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
a_req->a_ivin[0] = flage;
if (!c_req->encrypt)
data_size = aead_req->cryptlen - authsize;
a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
data_size & IV_LAST_BYTE_MASK;
data_size >>= IV_BYTE_OFFSET;
a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
data_size & IV_LAST_BYTE_MASK;
}
static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
size_t authsize = crypto_aead_authsize(tfm);
struct sec_cipher_req *c_req = &req->c_req;
struct sec_aead_req *a_req = &req->aead_req;
memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
ctx->a_ctx.mac_len = authsize;
set_aead_auth_iv(ctx, req);
}
if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
ctx->a_ctx.mac_len = authsize;
memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
}
}
static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
struct sec_req *req, struct sec_sqe *sec_sqe)
{
struct sec_aead_req *a_req = &req->aead_req;
struct aead_request *aq = a_req->aead_req;
sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);
sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
if (dir)
sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
else
sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
}
static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
struct sec_req *req, struct sec_sqe3 *sqe3)
{
struct sec_aead_req *a_req = &req->aead_req;
struct aead_request *aq = a_req->aead_req;
sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);
sqe3->a_key_addr = sqe3->c_key_addr;
sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
sqe3->auth_mac_key |= SEC_NO_AUTH;
if (dir)
sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
else
sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
sqe3->a_len_key = cpu_to_le32(aq->assoclen);
sqe3->auth_src_offset = cpu_to_le16(0x0);
sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
}
static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
struct sec_req *req, struct sec_sqe *sec_sqe)
{
struct sec_aead_req *a_req = &req->aead_req;
struct sec_cipher_req *c_req = &req->c_req;
struct aead_request *aq = a_req->aead_req;
sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
sec_sqe->type2.mac_key_alg =
cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
sec_sqe->type2.mac_key_alg |=
cpu_to_le32((u32)((ctx->a_key_len) /
SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
sec_sqe->type2.mac_key_alg |=
cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
if (dir) {
sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
} else {
sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
}
sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
}
static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
struct sec_sqe *sec_sqe = &req->sec_sqe;
int ret;
ret = sec_skcipher_bd_fill(ctx, req);
if (unlikely(ret)) {
dev_err(ctx->dev, "skcipher bd fill is error!\n");
return ret;
}
if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
ctx->c_ctx.c_mode == SEC_CMODE_GCM)
sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
else
sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
return 0;
}
static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
struct sec_req *req, struct sec_sqe3 *sqe3)
{
struct sec_aead_req *a_req = &req->aead_req;
struct sec_cipher_req *c_req = &req->c_req;
struct aead_request *aq = a_req->aead_req;
sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
sqe3->auth_mac_key |=
cpu_to_le32((u32)(ctx->mac_len /
SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
sqe3->auth_mac_key |=
cpu_to_le32((u32)(ctx->a_key_len /
SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
sqe3->auth_mac_key |=
cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
if (dir) {
sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
} else {
sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
}
sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
}
static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
int ret;
ret = sec_skcipher_bd_fill_v3(ctx, req);
if (unlikely(ret)) {
dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
return ret;
}
if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
ctx->c_ctx.c_mode == SEC_CMODE_GCM)
sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
req, sec_sqe3);
else
sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
req, sec_sqe3);
return 0;
}
static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
{
struct aead_request *a_req = req->aead_req.aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
struct sec_aead_req *aead_req = &req->aead_req;
struct sec_cipher_req *c_req = &req->c_req;
size_t authsize = crypto_aead_authsize(tfm);
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
struct aead_request *backlog_aead_req;
struct sec_req *backlog_req;
size_t sz;
if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
sec_update_iv(req, SEC_AEAD);
if (!err && c_req->encrypt) {
struct scatterlist *sgl = a_req->dst;
sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
aead_req->out_mac,
authsize, a_req->cryptlen +
a_req->assoclen);
if (unlikely(sz != authsize)) {
dev_err(c->dev, "copy out mac err!\n");
err = -EINVAL;
}
}
sec_free_req_id(req);
while (1) {
backlog_req = sec_back_req_clear(c, qp_ctx);
if (!backlog_req)
break;
backlog_aead_req = backlog_req->aead_req.aead_req;
aead_request_complete(backlog_aead_req, -EINPROGRESS);
atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
}
aead_request_complete(a_req, err);
}
static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
sec_free_req_id(req);
sec_free_queue_id(ctx, req);
}
static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx;
int queue_id;
queue_id = sec_alloc_queue_id(ctx, req);
qp_ctx = &ctx->qp_ctx[queue_id];
req->req_id = sec_alloc_req_id(req, qp_ctx);
if (unlikely(req->req_id < 0)) {
sec_free_queue_id(ctx, req);
return req->req_id;
}
return 0;
}
static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_cipher_req *c_req = &req->c_req;
int ret;
ret = sec_request_init(ctx, req);
if (unlikely(ret))
return ret;
ret = sec_request_transfer(ctx, req);
if (unlikely(ret))
goto err_uninit_req;
if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
ctx->c_ctx.c_mode == SEC_CMODE_CTR))
sec_update_iv(req, ctx->alg_type);
ret = ctx->req_op->bd_send(ctx, req);
if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
goto err_send_req;
}
return ret;
err_send_req:
if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
if (ctx->alg_type == SEC_SKCIPHER)
memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
ctx->c_ctx.ivsize);
else
memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
ctx->c_ctx.ivsize);
}
sec_request_untransfer(ctx, req);
err_uninit_req:
sec_request_uninit(ctx, req);
return ret;
}
static const struct sec_req_op sec_skcipher_req_ops = {
.buf_map = sec_skcipher_sgl_map,
.buf_unmap = sec_skcipher_sgl_unmap,
.do_transfer = sec_skcipher_copy_iv,
.bd_fill = sec_skcipher_bd_fill,
.bd_send = sec_bd_send,
.callback = sec_skcipher_callback,
.process = sec_process,
};
static const struct sec_req_op sec_aead_req_ops = {
.buf_map = sec_aead_sgl_map,
.buf_unmap = sec_aead_sgl_unmap,
.do_transfer = sec_aead_set_iv,
.bd_fill = sec_aead_bd_fill,
.bd_send = sec_bd_send,
.callback = sec_aead_callback,
.process = sec_process,
};
static const struct sec_req_op sec_skcipher_req_ops_v3 = {
.buf_map = sec_skcipher_sgl_map,
.buf_unmap = sec_skcipher_sgl_unmap,
.do_transfer = sec_skcipher_copy_iv,
.bd_fill = sec_skcipher_bd_fill_v3,
.bd_send = sec_bd_send,
.callback = sec_skcipher_callback,
.process = sec_process,
};
static const struct sec_req_op sec_aead_req_ops_v3 = {
.buf_map = sec_aead_sgl_map,
.buf_unmap = sec_aead_sgl_unmap,
.do_transfer = sec_aead_set_iv,
.bd_fill = sec_aead_bd_fill_v3,
.bd_send = sec_bd_send,
.callback = sec_aead_callback,
.process = sec_process,
};
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
ret = sec_skcipher_init(tfm);
if (ret)
return ret;
if (ctx->sec->qm.ver < QM_HW_V3) {
ctx->type_supported = SEC_BD_TYPE2;
ctx->req_op = &sec_skcipher_req_ops;
} else {
ctx->type_supported = SEC_BD_TYPE3;
ctx->req_op = &sec_skcipher_req_ops_v3;
}
return ret;
}
static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
{
sec_skcipher_uninit(tfm);
}
static int sec_aead_init(struct crypto_aead *tfm)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
int ret;
crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
ctx->alg_type = SEC_AEAD;
ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
ctx->c_ctx.ivsize > SEC_IV_SIZE) {
pr_err("get error aead iv size!\n");
return -EINVAL;
}
ret = sec_ctx_base_init(ctx);
if (ret)
return ret;
if (ctx->sec->qm.ver < QM_HW_V3) {
ctx->type_supported = SEC_BD_TYPE2;
ctx->req_op = &sec_aead_req_ops;
} else {
ctx->type_supported = SEC_BD_TYPE3;
ctx->req_op = &sec_aead_req_ops_v3;
}
ret = sec_auth_init(ctx);
if (ret)
goto err_auth_init;
ret = sec_cipher_init(ctx);
if (ret)
goto err_cipher_init;
return ret;
err_cipher_init:
sec_auth_uninit(ctx);
err_auth_init:
sec_ctx_base_uninit(ctx);
return ret;
}
static void sec_aead_exit(struct crypto_aead *tfm)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
sec_cipher_uninit(ctx);
sec_auth_uninit(ctx);
sec_ctx_base_uninit(ctx);
}
static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
int ret;
ret = sec_aead_init(tfm);
if (ret) {
pr_err("hisi_sec2: aead init error!\n");
return ret;
}
auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
if (IS_ERR(auth_ctx->hash_tfm)) {
dev_err(ctx->dev, "aead alloc shash error!\n");
sec_aead_exit(tfm);
return PTR_ERR(auth_ctx->hash_tfm);
}
return 0;
}
static void sec_aead_ctx_exit(struct crypto_aead *tfm)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
crypto_free_shash(ctx->a_ctx.hash_tfm);
sec_aead_exit(tfm);
}
static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
{
struct aead_alg *alg = crypto_aead_alg(tfm);
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
const char *aead_name = alg->base.cra_name;
int ret;
ret = sec_aead_init(tfm);
if (ret) {
dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
return ret;
}
a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
CRYPTO_ALG_NEED_FALLBACK |
CRYPTO_ALG_ASYNC);
if (IS_ERR(a_ctx->fallback_aead_tfm)) {
dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
sec_aead_exit(tfm);
return PTR_ERR(a_ctx->fallback_aead_tfm);
}
a_ctx->fallback = false;
return 0;
}
static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
sec_aead_exit(tfm);
}
static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
{
return sec_aead_ctx_init(tfm, "sha1");
}
static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
{
return sec_aead_ctx_init(tfm, "sha256");
}
static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
{
return sec_aead_ctx_init(tfm, "sha512");
}
static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx,
struct sec_req *sreq)
{
u32 cryptlen = sreq->c_req.sk_req->cryptlen;
struct device *dev = ctx->dev;
u8 c_mode = ctx->c_ctx.c_mode;
int ret = 0;
switch (c_mode) {
case SEC_CMODE_XTS:
if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
dev_err(dev, "skcipher XTS mode input length error!\n");
ret = -EINVAL;
}
break;
case SEC_CMODE_ECB:
case SEC_CMODE_CBC:
if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
dev_err(dev, "skcipher AES input length error!\n");
ret = -EINVAL;
}
break;
case SEC_CMODE_CFB:
case SEC_CMODE_OFB:
case SEC_CMODE_CTR:
if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
dev_err(dev, "skcipher HW version error!\n");
ret = -EINVAL;
}
break;
default:
ret = -EINVAL;
}
return ret;
}
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
struct skcipher_request *sk_req = sreq->c_req.sk_req;
struct device *dev = ctx->dev;
u8 c_alg = ctx->c_ctx.c_alg;
if (unlikely(!sk_req->src || !sk_req->dst ||
sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
dev_err(dev, "skcipher input param error!\n");
return -EINVAL;
}
sreq->c_req.c_len = sk_req->cryptlen;
if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
sreq->use_pbuf = true;
else
sreq->use_pbuf = false;
if (c_alg == SEC_CALG_3DES) {
if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
dev_err(dev, "skcipher 3des input length error!\n");
return -EINVAL;
}
return 0;
} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
return sec_skcipher_cryptlen_check(ctx, sreq);
}
dev_err(dev, "skcipher algorithm error!\n");
return -EINVAL;
}
static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
struct skcipher_request *sreq, bool encrypt)
{
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
struct device *dev = ctx->dev;
int ret;
if (!c_ctx->fbtfm) {
dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
return -EINVAL;
}
skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
skcipher_request_set_callback(subreq, sreq->base.flags,
NULL, NULL);
skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
sreq->cryptlen, sreq->iv);
if (encrypt)
ret = crypto_skcipher_encrypt(subreq);
else
ret = crypto_skcipher_decrypt(subreq);
skcipher_request_zero(subreq);
return ret;
}
static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
struct sec_req *req = skcipher_request_ctx(sk_req);
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
if (!sk_req->cryptlen) {
if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
return -EINVAL;
return 0;
}
req->flag = sk_req->base.flags;
req->c_req.sk_req = sk_req;
req->c_req.encrypt = encrypt;
req->ctx = ctx;
ret = sec_skcipher_param_check(ctx, req);
if (unlikely(ret))
return -EINVAL;
if (unlikely(ctx->c_ctx.fallback))
return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
return ctx->req_op->process(ctx, req);
}
static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
{
return sec_skcipher_crypto(sk_req, true);
}
static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
{
return sec_skcipher_crypto(sk_req, false);
}
#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
{\
.base = {\
.cra_name = sec_cra_name,\
.cra_driver_name = "hisi_sec_"sec_cra_name,\
.cra_priority = SEC_PRIORITY,\
.cra_flags = CRYPTO_ALG_ASYNC |\
CRYPTO_ALG_NEED_FALLBACK,\
.cra_blocksize = blk_size,\
.cra_ctxsize = sizeof(struct sec_ctx),\
.cra_module = THIS_MODULE,\
},\
.init = ctx_init,\
.exit = ctx_exit,\
.setkey = sec_set_key,\
.decrypt = sec_skcipher_decrypt,\
.encrypt = sec_skcipher_encrypt,\
.min_keysize = sec_min_key_size,\
.max_keysize = sec_max_key_size,\
.ivsize = iv_size,\
}
#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
max_key_size, blk_size, iv_size) \
SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
static struct sec_skcipher sec_skciphers[] = {
{
.alg_msk = BIT(0),
.alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE,
AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0),
},
{
.alg_msk = BIT(1),
.alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE,
AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(2),
.alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE,
AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(3),
.alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE,
SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(4),
.alg = SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb, AES_MIN_KEY_SIZE,
AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(5),
.alg = SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb, AES_MIN_KEY_SIZE,
AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(12),
.alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE,
AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(13),
.alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE,
AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(14),
.alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE,
SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(15),
.alg = SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb, AES_MIN_KEY_SIZE,
AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(16),
.alg = SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb, AES_MIN_KEY_SIZE,
AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(23),
.alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE,
SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0),
},
{
.alg_msk = BIT(24),
.alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE,
SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE,
DES3_EDE_BLOCK_SIZE),
},
};
static int aead_iv_demension_check(struct aead_request *aead_req)
{
u8 cl;
cl = aead_req->iv[0] + 1;
if (cl < IV_CL_MIN || cl > IV_CL_MAX)
return -EINVAL;
if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
return -EOVERFLOW;
return 0;
}
static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
struct aead_request *req = sreq->aead_req.aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
size_t authsize = crypto_aead_authsize(tfm);
u8 c_mode = ctx->c_ctx.c_mode;
struct device *dev = ctx->dev;
int ret;
if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
req->assoclen > SEC_MAX_AAD_LEN)) {
dev_err(dev, "aead input spec error!\n");
return -EINVAL;
}
if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
(c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
authsize & MAC_LEN_MASK)))) {
dev_err(dev, "aead input mac length error!\n");
return -EINVAL;
}
if (c_mode == SEC_CMODE_CCM) {
if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
return -EINVAL;
}
ret = aead_iv_demension_check(req);
if (ret) {
dev_err(dev, "aead input iv param error!\n");
return ret;
}
}
if (sreq->c_req.encrypt)
sreq->c_req.c_len = req->cryptlen;
else
sreq->c_req.c_len = req->cryptlen - authsize;
if (c_mode == SEC_CMODE_CBC) {
if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
dev_err(dev, "aead crypto length error!\n");
return -EINVAL;
}
}
return 0;
}
static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
struct aead_request *req = sreq->aead_req.aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
size_t authsize = crypto_aead_authsize(tfm);
struct device *dev = ctx->dev;
u8 c_alg = ctx->c_ctx.c_alg;
if (unlikely(!req->src || !req->dst)) {
dev_err(dev, "aead input param error!\n");
return -EINVAL;
}
if (ctx->sec->qm.ver == QM_HW_V2) {
if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
req->cryptlen <= authsize))) {
ctx->a_ctx.fallback = true;
return -EINVAL;
}
}
if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
dev_err(dev, "aead crypto alg error!\n");
return -EINVAL;
}
if (unlikely(sec_aead_spec_check(ctx, sreq)))
return -EINVAL;
if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
SEC_PBUF_SZ)
sreq->use_pbuf = true;
else
sreq->use_pbuf = false;
return 0;
}
static int sec_aead_soft_crypto(struct sec_ctx *ctx,
struct aead_request *aead_req,
bool encrypt)
{
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
struct device *dev = ctx->dev;
struct aead_request *subreq;
int ret;
if (!a_ctx->fallback_aead_tfm) {
dev_err(dev, "aead fallback tfm is NULL!\n");
return -EINVAL;
}
subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
if (!subreq)
return -ENOMEM;
aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
aead_request_set_callback(subreq, aead_req->base.flags,
aead_req->base.complete, aead_req->base.data);
aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
aead_req->cryptlen, aead_req->iv);
aead_request_set_ad(subreq, aead_req->assoclen);
if (encrypt)
ret = crypto_aead_encrypt(subreq);
else
ret = crypto_aead_decrypt(subreq);
aead_request_free(subreq);
return ret;
}
static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
struct sec_req *req = aead_request_ctx(a_req);
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
int ret;
req->flag = a_req->base.flags;
req->aead_req.aead_req = a_req;
req->c_req.encrypt = encrypt;
req->ctx = ctx;
ret = sec_aead_param_check(ctx, req);
if (unlikely(ret)) {
if (ctx->a_ctx.fallback)
return sec_aead_soft_crypto(ctx, a_req, encrypt);
return -EINVAL;
}
return ctx->req_op->process(ctx, req);
}
static int sec_aead_encrypt(struct aead_request *a_req)
{
return sec_aead_crypto(a_req, true);
}
static int sec_aead_decrypt(struct aead_request *a_req)
{
return sec_aead_crypto(a_req, false);
}
#define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
ctx_exit, blk_size, iv_size, max_authsize)\
{\
.base = {\
.cra_name = sec_cra_name,\
.cra_driver_name = "hisi_sec_"sec_cra_name,\
.cra_priority = SEC_PRIORITY,\
.cra_flags = CRYPTO_ALG_ASYNC |\
CRYPTO_ALG_NEED_FALLBACK,\
.cra_blocksize = blk_size,\
.cra_ctxsize = sizeof(struct sec_ctx),\
.cra_module = THIS_MODULE,\
},\
.init = ctx_init,\
.exit = ctx_exit,\
.setkey = sec_set_key,\
.setauthsize = sec_aead_setauthsize,\
.decrypt = sec_aead_decrypt,\
.encrypt = sec_aead_encrypt,\
.ivsize = iv_size,\
.maxauthsize = max_authsize,\
}
static struct sec_aead sec_aeads[] = {
{
.alg_msk = BIT(6),
.alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(7),
.alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(17),
.alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(18),
.alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
AES_BLOCK_SIZE),
},
{
.alg_msk = BIT(43),
.alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1,
sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
},
{
.alg_msk = BIT(44),
.alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256,
sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
},
{
.alg_msk = BIT(45),
.alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512,
sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
},
};
static void sec_unregister_skcipher(u64 alg_mask, int end)
{
int i;
for (i = 0; i < end; i++)
if (sec_skciphers[i].alg_msk & alg_mask)
crypto_unregister_skcipher(&sec_skciphers[i].alg);
}
static int sec_register_skcipher(u64 alg_mask)
{
int i, ret, count;
count = ARRAY_SIZE(sec_skciphers);
for (i = 0; i < count; i++) {
if (!(sec_skciphers[i].alg_msk & alg_mask))
continue;
ret = crypto_register_skcipher(&sec_skciphers[i].alg);
if (ret)
goto err;
}
return 0;
err:
sec_unregister_skcipher(alg_mask, i);
return ret;
}
static void sec_unregister_aead(u64 alg_mask, int end)
{
int i;
for (i = 0; i < end; i++)
if (sec_aeads[i].alg_msk & alg_mask)
crypto_unregister_aead(&sec_aeads[i].alg);
}
static int sec_register_aead(u64 alg_mask)
{
int i, ret, count;
count = ARRAY_SIZE(sec_aeads);
for (i = 0; i < count; i++) {
if (!(sec_aeads[i].alg_msk & alg_mask))
continue;
ret = crypto_register_aead(&sec_aeads[i].alg);
if (ret)
goto err;
}
return 0;
err:
sec_unregister_aead(alg_mask, i);
return ret;
}
int sec_register_to_crypto(struct hisi_qm *qm)
{
u64 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH, SEC_DRV_ALG_BITMAP_LOW);
int ret;
ret = sec_register_skcipher(alg_mask);
if (ret)
return ret;
ret = sec_register_aead(alg_mask);
if (ret)
sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
return ret;
}
void sec_unregister_from_crypto(struct hisi_qm *qm)
{
u64 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH, SEC_DRV_ALG_BITMAP_LOW);
sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads));
sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
}