// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *  The driver for the ForteMedia FM801 based soundcards
 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
 */

#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/tlv.h>
#include <sound/ac97_codec.h>
#include <sound/mpu401.h>
#include <sound/opl3.h>
#include <sound/initval.h>

#ifdef CONFIG_SND_FM801_TEA575X_BOOL
#include <media/drv-intf/tea575x.h>
#endif

MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
MODULE_DESCRIPTION("ForteMedia FM801");
MODULE_LICENSE("GPL");

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
/*
 *  Enable TEA575x tuner
 *    1 = MediaForte 256-PCS
 *    2 = MediaForte 256-PCP
 *    3 = MediaForte 64-PCR
 *   16 = setup tuner only (this is additional bit), i.e. SF64-PCR FM card
 *  High 16-bits are video (radio) device number + 1
 */
static int tea575x_tuner[SNDRV_CARDS];
static int radio_nr[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = -1};

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
module_param_array(tea575x_tuner, int, NULL, 0444);
MODULE_PARM_DESC(tea575x_tuner, "TEA575x tuner access method (0 = auto, 1 = SF256-PCS, 2=SF256-PCP, 3=SF64-PCR, 8=disable, +16=tuner-only).");
module_param_array(radio_nr, int, NULL, 0444);
MODULE_PARM_DESC(radio_nr, "Radio device numbers");


#define TUNER_DISABLED		(1<<3)
#define TUNER_ONLY		(1<<4)
#define TUNER_TYPE_MASK		(~TUNER_ONLY & 0xFFFF)

/*
 *  Direct registers
 */

#define fm801_writew(chip,reg,value)	outw((value), chip->port + FM801_##reg)
#define fm801_readw(chip,reg)		inw(chip->port + FM801_##reg)

#define fm801_writel(chip,reg,value)	outl((value), chip->port + FM801_##reg)

#define FM801_PCM_VOL		0x00	/* PCM Output Volume */
#define FM801_FM_VOL		0x02	/* FM Output Volume */
#define FM801_I2S_VOL		0x04	/* I2S Volume */
#define FM801_REC_SRC		0x06	/* Record Source */
#define FM801_PLY_CTRL		0x08	/* Playback Control */
#define FM801_PLY_COUNT		0x0a	/* Playback Count */
#define FM801_PLY_BUF1		0x0c	/* Playback Bufer I */
#define FM801_PLY_BUF2		0x10	/* Playback Buffer II */
#define FM801_CAP_CTRL		0x14	/* Capture Control */
#define FM801_CAP_COUNT		0x16	/* Capture Count */
#define FM801_CAP_BUF1		0x18	/* Capture Buffer I */
#define FM801_CAP_BUF2		0x1c	/* Capture Buffer II */
#define FM801_CODEC_CTRL	0x22	/* Codec Control */
#define FM801_I2S_MODE		0x24	/* I2S Mode Control */
#define FM801_VOLUME		0x26	/* Volume Up/Down/Mute Status */
#define FM801_I2C_CTRL		0x29	/* I2C Control */
#define FM801_AC97_CMD		0x2a	/* AC'97 Command */
#define FM801_AC97_DATA		0x2c	/* AC'97 Data */
#define FM801_MPU401_DATA	0x30	/* MPU401 Data */
#define FM801_MPU401_CMD	0x31	/* MPU401 Command */
#define FM801_GPIO_CTRL		0x52	/* General Purpose I/O Control */
#define FM801_GEN_CTRL		0x54	/* General Control */
#define FM801_IRQ_MASK		0x56	/* Interrupt Mask */
#define FM801_IRQ_STATUS	0x5a	/* Interrupt Status */
#define FM801_OPL3_BANK0	0x68	/* OPL3 Status Read / Bank 0 Write */
#define FM801_OPL3_DATA0	0x69	/* OPL3 Data 0 Write */
#define FM801_OPL3_BANK1	0x6a	/* OPL3 Bank 1 Write */
#define FM801_OPL3_DATA1	0x6b	/* OPL3 Bank 1 Write */
#define FM801_POWERDOWN		0x70	/* Blocks Power Down Control */

/* codec access */
#define FM801_AC97_READ		(1<<7)	/* read=1, write=0 */
#define FM801_AC97_VALID	(1<<8)	/* port valid=1 */
#define FM801_AC97_BUSY		(1<<9)	/* busy=1 */
#define FM801_AC97_ADDR_SHIFT	10	/* codec id (2bit) */

/* playback and record control register bits */
#define FM801_BUF1_LAST		(1<<1)
#define FM801_BUF2_LAST		(1<<2)
#define FM801_START		(1<<5)
#define FM801_PAUSE		(1<<6)
#define FM801_IMMED_STOP	(1<<7)
#define FM801_RATE_SHIFT	8
#define FM801_RATE_MASK		(15 << FM801_RATE_SHIFT)
#define FM801_CHANNELS_4	(1<<12)	/* playback only */
#define FM801_CHANNELS_6	(2<<12)	/* playback only */
#define FM801_CHANNELS_6MS	(3<<12)	/* playback only */
#define FM801_CHANNELS_MASK	(3<<12)
#define FM801_16BIT		(1<<14)
#define FM801_STEREO		(1<<15)

/* IRQ status bits */
#define FM801_IRQ_PLAYBACK	(1<<8)
#define FM801_IRQ_CAPTURE	(1<<9)
#define FM801_IRQ_VOLUME	(1<<14)
#define FM801_IRQ_MPU		(1<<15)

/* GPIO control register */
#define FM801_GPIO_GP0		(1<<0)	/* read/write */
#define FM801_GPIO_GP1		(1<<1)
#define FM801_GPIO_GP2		(1<<2)
#define FM801_GPIO_GP3		(1<<3)
#define FM801_GPIO_GP(x)	(1<<(0+(x)))
#define FM801_GPIO_GD0		(1<<8)	/* directions: 1 = input, 0 = output*/
#define FM801_GPIO_GD1		(1<<9)
#define FM801_GPIO_GD2		(1<<10)
#define FM801_GPIO_GD3		(1<<11)
#define FM801_GPIO_GD(x)	(1<<(8+(x)))
#define FM801_GPIO_GS0		(1<<12)	/* function select: */
#define FM801_GPIO_GS1		(1<<13)	/*    1 = GPIO */
#define FM801_GPIO_GS2		(1<<14)	/*    0 = other (S/PDIF, VOL) */
#define FM801_GPIO_GS3		(1<<15)
#define FM801_GPIO_GS(x)	(1<<(12+(x)))
	
/**
 * struct fm801 - describes FM801 chip
 * @dev:		device for this chio
 * @irq:		irq number
 * @port:		I/O port number
 * @multichannel:	multichannel support
 * @secondary:		secondary codec
 * @secondary_addr:	address of the secondary codec
 * @tea575x_tuner:	tuner access method & flags
 * @ply_ctrl:		playback control
 * @cap_ctrl:		capture control
 * @ply_buffer:		playback buffer
 * @ply_buf:		playback buffer index
 * @ply_count:		playback buffer count
 * @ply_size:		playback buffer size
 * @ply_pos:		playback position
 * @cap_buffer:		capture buffer
 * @cap_buf:		capture buffer index
 * @cap_count:		capture buffer count
 * @cap_size:		capture buffer size
 * @cap_pos:		capture position
 * @ac97_bus:		ac97 bus handle
 * @ac97:		ac97 handle
 * @ac97_sec:		ac97 secondary handle
 * @card:		ALSA card
 * @pcm:		PCM devices
 * @rmidi:		rmidi device
 * @playback_substream:	substream for playback
 * @capture_substream:	substream for capture
 * @p_dma_size:		playback DMA size
 * @c_dma_size:		capture DMA size
 * @reg_lock:		lock
 * @proc_entry:		/proc entry
 * @v4l2_dev:		v4l2 device
 * @tea:		tea575a structure
 * @saved_regs:		context saved during suspend
 */
struct fm801 {
	struct device *dev;
	int irq;

	unsigned long port;
	unsigned int multichannel: 1,
		     secondary: 1;
	unsigned char secondary_addr;
	unsigned int tea575x_tuner;

	unsigned short ply_ctrl;
	unsigned short cap_ctrl;

	unsigned long ply_buffer;
	unsigned int ply_buf;
	unsigned int ply_count;
	unsigned int ply_size;
	unsigned int ply_pos;

	unsigned long cap_buffer;
	unsigned int cap_buf;
	unsigned int cap_count;
	unsigned int cap_size;
	unsigned int cap_pos;

	struct snd_ac97_bus *ac97_bus;
	struct snd_ac97 *ac97;
	struct snd_ac97 *ac97_sec;

	struct snd_card *card;
	struct snd_pcm *pcm;
	struct snd_rawmidi *rmidi;
	struct snd_pcm_substream *playback_substream;
	struct snd_pcm_substream *capture_substream;
	unsigned int p_dma_size;
	unsigned int c_dma_size;

	spinlock_t reg_lock;
	struct snd_info_entry *proc_entry;

#ifdef CONFIG_SND_FM801_TEA575X_BOOL
	struct v4l2_device v4l2_dev;
	struct snd_tea575x tea;
#endif

#ifdef CONFIG_PM_SLEEP
	u16 saved_regs[0x20];
#endif
};

/*
 * IO accessors
 */

static inline void fm801_iowrite16(struct fm801 *chip, unsigned short offset, u16 value)
{
	outw(value, chip->port + offset);
}

static inline u16 fm801_ioread16(struct fm801 *chip, unsigned short offset)
{
	return inw(chip->port + offset);
}

static const struct pci_device_id snd_fm801_ids[] = {
	{ 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* FM801 */
	{ 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* Gallant Odyssey Sound 4 */
	{ 0, }
};

MODULE_DEVICE_TABLE(pci, snd_fm801_ids);

/*
 *  common I/O routines
 */

static bool fm801_ac97_is_ready(struct fm801 *chip, unsigned int iterations)
{
	unsigned int idx;

	for (idx = 0; idx < iterations; idx++) {
		if (!(fm801_readw(chip, AC97_CMD) & FM801_AC97_BUSY))
			return true;
		udelay(10);
	}
	return false;
}

static bool fm801_ac97_is_valid(struct fm801 *chip, unsigned int iterations)
{
	unsigned int idx;

	for (idx = 0; idx < iterations; idx++) {
		if (fm801_readw(chip, AC97_CMD) & FM801_AC97_VALID)
			return true;
		udelay(10);
	}
	return false;
}

static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
				 unsigned short mask, unsigned short value)
{
	int change;
	unsigned long flags;
	unsigned short old, new;

	spin_lock_irqsave(&chip->reg_lock, flags);
	old = fm801_ioread16(chip, reg);
	new = (old & ~mask) | value;
	change = old != new;
	if (change)
		fm801_iowrite16(chip, reg, new);
	spin_unlock_irqrestore(&chip->reg_lock, flags);
	return change;
}

static void snd_fm801_codec_write(struct snd_ac97 *ac97,
				  unsigned short reg,
				  unsigned short val)
{
	struct fm801 *chip = ac97->private_data;

	/*
	 *  Wait until the codec interface is not ready..
	 */
	if (!fm801_ac97_is_ready(chip, 100)) {
		dev_err(chip->card->dev, "AC'97 interface is busy (1)\n");
		return;
	}

	/* write data and address */
	fm801_writew(chip, AC97_DATA, val);
	fm801_writew(chip, AC97_CMD, reg | (ac97->addr << FM801_AC97_ADDR_SHIFT));
	/*
	 *  Wait until the write command is not completed..
	 */
	if (!fm801_ac97_is_ready(chip, 1000))
		dev_err(chip->card->dev, "AC'97 interface #%d is busy (2)\n",
		ac97->num);
}

static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
{
	struct fm801 *chip = ac97->private_data;

	/*
	 *  Wait until the codec interface is not ready..
	 */
	if (!fm801_ac97_is_ready(chip, 100)) {
		dev_err(chip->card->dev, "AC'97 interface is busy (1)\n");
		return 0;
	}

	/* read command */
	fm801_writew(chip, AC97_CMD,
		     reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ);
	if (!fm801_ac97_is_ready(chip, 100)) {
		dev_err(chip->card->dev, "AC'97 interface #%d is busy (2)\n",
			ac97->num);
		return 0;
	}

	if (!fm801_ac97_is_valid(chip, 1000)) {
		dev_err(chip->card->dev,
			"AC'97 interface #%d is not valid (2)\n", ac97->num);
		return 0;
	}

	return fm801_readw(chip, AC97_DATA);
}

static const unsigned int rates[] = {
  5500,  8000,  9600, 11025,
  16000, 19200, 22050, 32000,
  38400, 44100, 48000
};

static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
	.count = ARRAY_SIZE(rates),
	.list = rates,
	.mask = 0,
};

static const unsigned int channels[] = {
  2, 4, 6
};

static const struct snd_pcm_hw_constraint_list hw_constraints_channels = {
	.count = ARRAY_SIZE(channels),
	.list = channels,
	.mask = 0,
};

/*
 *  Sample rate routines
 */

static unsigned short snd_fm801_rate_bits(unsigned int rate)
{
	unsigned int idx;

	for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
		if (rates[idx] == rate)
			return idx;
	snd_BUG();
	return ARRAY_SIZE(rates) - 1;
}

/*
 *  PCM part
 */

static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
				      int cmd)
{
	struct fm801 *chip = snd_pcm_substream_chip(substream);

	spin_lock(&chip->reg_lock);
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		chip->ply_ctrl &= ~(FM801_BUF1_LAST |
				     FM801_BUF2_LAST |
				     FM801_PAUSE);
		chip->ply_ctrl |= FM801_START |
				   FM801_IMMED_STOP;
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
		break;
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
	case SNDRV_PCM_TRIGGER_SUSPEND:
		chip->ply_ctrl |= FM801_PAUSE;
		break;
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
	case SNDRV_PCM_TRIGGER_RESUME:
		chip->ply_ctrl &= ~FM801_PAUSE;
		break;
	default:
		spin_unlock(&chip->reg_lock);
		snd_BUG();
		return -EINVAL;
	}
	fm801_writew(chip, PLY_CTRL, chip->ply_ctrl);
	spin_unlock(&chip->reg_lock);
	return 0;
}

static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
				     int cmd)
{
	struct fm801 *chip = snd_pcm_substream_chip(substream);

	spin_lock(&chip->reg_lock);
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		chip->cap_ctrl &= ~(FM801_BUF1_LAST |
				     FM801_BUF2_LAST |
				     FM801_PAUSE);
		chip->cap_ctrl |= FM801_START |
				   FM801_IMMED_STOP;
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
		break;
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
	case SNDRV_PCM_TRIGGER_SUSPEND:
		chip->cap_ctrl |= FM801_PAUSE;
		break;
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
	case SNDRV_PCM_TRIGGER_RESUME:
		chip->cap_ctrl &= ~FM801_PAUSE;
		break;
	default:
		spin_unlock(&chip->reg_lock);
		snd_BUG();
		return -EINVAL;
	}
	fm801_writew(chip, CAP_CTRL, chip->cap_ctrl);
	spin_unlock(&chip->reg_lock);
	return 0;
}

static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
{
	struct fm801 *chip = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;

	chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
	chip->ply_count = snd_pcm_lib_period_bytes(substream);
	spin_lock_irq(&chip->reg_lock);
	chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
			     FM801_STEREO | FM801_RATE_MASK |
			     FM801_CHANNELS_MASK);
	if (snd_pcm_format_width(runtime->format) == 16)
		chip->ply_ctrl |= FM801_16BIT;
	if (runtime->channels > 1) {
		chip->ply_ctrl |= FM801_STEREO;
		if (runtime->channels == 4)
			chip->ply_ctrl |= FM801_CHANNELS_4;
		else if (runtime->channels == 6)
			chip->ply_ctrl |= FM801_CHANNELS_6;
	}
	chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
	chip->ply_buf = 0;
	fm801_writew(chip, PLY_CTRL, chip->ply_ctrl);
	fm801_writew(chip, PLY_COUNT, chip->ply_count - 1);
	chip->ply_buffer = runtime->dma_addr;
	chip->ply_pos = 0;
	fm801_writel(chip, PLY_BUF1, chip->ply_buffer);
	fm801_writel(chip, PLY_BUF2,
		     chip->ply_buffer + (chip->ply_count % chip->ply_size));
	spin_unlock_irq(&chip->reg_lock);
	return 0;
}

static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
{
	struct fm801 *chip = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;

	chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
	chip->cap_count = snd_pcm_lib_period_bytes(substream);
	spin_lock_irq(&chip->reg_lock);
	chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
			     FM801_STEREO | FM801_RATE_MASK);
	if (snd_pcm_format_width(runtime->format) == 16)
		chip->cap_ctrl |= FM801_16BIT;
	if (runtime->channels > 1)
		chip->cap_ctrl |= FM801_STEREO;
	chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
	chip->cap_buf = 0;
	fm801_writew(chip, CAP_CTRL, chip->cap_ctrl);
	fm801_writew(chip, CAP_COUNT, chip->cap_count - 1);
	chip->cap_buffer = runtime->dma_addr;
	chip->cap_pos = 0;
	fm801_writel(chip, CAP_BUF1, chip->cap_buffer);
	fm801_writel(chip, CAP_BUF2,
		     chip->cap_buffer + (chip->cap_count % chip->cap_size));
	spin_unlock_irq(&chip->reg_lock);
	return 0;
}

static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
{
	struct fm801 *chip = snd_pcm_substream_chip(substream);
	size_t ptr;

	if (!(chip->ply_ctrl & FM801_START))
		return 0;
	spin_lock(&chip->reg_lock);
	ptr = chip->ply_pos + (chip->ply_count - 1) - fm801_readw(chip, PLY_COUNT);
	if (fm801_readw(chip, IRQ_STATUS) & FM801_IRQ_PLAYBACK) {
		ptr += chip->ply_count;
		ptr %= chip->ply_size;
	}
	spin_unlock(&chip->reg_lock);
	return bytes_to_frames(substream->runtime, ptr);
}

static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
{
	struct fm801 *chip = snd_pcm_substream_chip(substream);
	size_t ptr;

	if (!(chip->cap_ctrl & FM801_START))
		return 0;
	spin_lock(&chip->reg_lock);
	ptr = chip->cap_pos + (chip->cap_count - 1) - fm801_readw(chip, CAP_COUNT);
	if (fm801_readw(chip, IRQ_STATUS) & FM801_IRQ_CAPTURE) {
		ptr += chip->cap_count;
		ptr %= chip->cap_size;
	}
	spin_unlock(&chip->reg_lock);
	return bytes_to_frames(substream->runtime, ptr);
}

static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id)
{
	struct fm801 *chip = dev_id;
	unsigned short status;
	unsigned int tmp;

	status = fm801_readw(chip, IRQ_STATUS);
	status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
	if (! status)
		return IRQ_NONE;
	/* ack first */
	fm801_writew(chip, IRQ_STATUS, status);
	if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
		spin_lock(&chip->reg_lock);
		chip->ply_buf++;
		chip->ply_pos += chip->ply_count;
		chip->ply_pos %= chip->ply_size;
		tmp = chip->ply_pos + chip->ply_count;
		tmp %= chip->ply_size;
		if (chip->ply_buf & 1)
			fm801_writel(chip, PLY_BUF1, chip->ply_buffer + tmp);
		else
			fm801_writel(chip, PLY_BUF2, chip->ply_buffer + tmp);
		spin_unlock(&chip->reg_lock);
		snd_pcm_period_elapsed(chip->playback_substream);
	}
	if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
		spin_lock(&chip->reg_lock);
		chip->cap_buf++;
		chip->cap_pos += chip->cap_count;
		chip->cap_pos %= chip->cap_size;
		tmp = chip->cap_pos + chip->cap_count;
		tmp %= chip->cap_size;
		if (chip->cap_buf & 1)
			fm801_writel(chip, CAP_BUF1, chip->cap_buffer + tmp);
		else
			fm801_writel(chip, CAP_BUF2, chip->cap_buffer + tmp);
		spin_unlock(&chip->reg_lock);
		snd_pcm_period_elapsed(chip->capture_substream);
	}
	if (chip->rmidi && (status & FM801_IRQ_MPU))
		snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
	if (status & FM801_IRQ_VOLUME) {
		/* TODO */
	}

	return IRQ_HANDLED;
}

static const struct snd_pcm_hardware snd_fm801_playback =
{
	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
				 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
				 SNDRV_PCM_INFO_MMAP_VALID),
	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
	.rates =		SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
	.rate_min =		5500,
	.rate_max =		48000,
	.channels_min =		1,
	.channels_max =		2,
	.buffer_bytes_max =	(128*1024),
	.period_bytes_min =	64,
	.period_bytes_max =	(128*1024),
	.periods_min =		1,
	.periods_max =		1024,
	.fifo_size =		0,
};

static const struct snd_pcm_hardware snd_fm801_capture =
{
	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
				 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
				 SNDRV_PCM_INFO_MMAP_VALID),
	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
	.rates =		SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
	.rate_min =		5500,
	.rate_max =		48000,
	.channels_min =		1,
	.channels_max =		2,
	.buffer_bytes_max =	(128*1024),
	.period_bytes_min =	64,
	.period_bytes_max =	(128*1024),
	.periods_min =		1,
	.periods_max =		1024,
	.fifo_size =		0,
};

static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
{
	struct fm801 *chip = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err;

	chip->playback_substream = substream;
	runtime->hw = snd_fm801_playback;
	snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
				   &hw_constraints_rates);
	if (chip->multichannel) {
		runtime->hw.channels_max = 6;
		snd_pcm_hw_constraint_list(runtime, 0,
					   SNDRV_PCM_HW_PARAM_CHANNELS,
					   &hw_constraints_channels);
	}
	err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
	if (err < 0)
		return err;
	return 0;
}

static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
{
	struct fm801 *chip = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err;

	chip->capture_substream = substream;
	runtime->hw = snd_fm801_capture;
	snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
				   &hw_constraints_rates);
	err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
	if (err < 0)
		return err;
	return 0;
}

static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
{
	struct fm801 *chip = snd_pcm_substream_chip(substream);

	chip->playback_substream = NULL;
	return 0;
}

static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
{
	struct fm801 *chip = snd_pcm_substream_chip(substream);

	chip->capture_substream = NULL;
	return 0;
}

static const struct snd_pcm_ops snd_fm801_playback_ops = {
	.open =		snd_fm801_playback_open,
	.close =	snd_fm801_playback_close,
	.prepare =	snd_fm801_playback_prepare,
	.trigger =	snd_fm801_playback_trigger,
	.pointer =	snd_fm801_playback_pointer,
};

static const struct snd_pcm_ops snd_fm801_capture_ops = {
	.open =		snd_fm801_capture_open,
	.close =	snd_fm801_capture_close,
	.prepare =	snd_fm801_capture_prepare,
	.trigger =	snd_fm801_capture_trigger,
	.pointer =	snd_fm801_capture_pointer,
};

static int snd_fm801_pcm(struct fm801 *chip, int device)
{
	struct pci_dev *pdev = to_pci_dev(chip->dev);
	struct snd_pcm *pcm;
	int err;

	err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm);
	if (err < 0)
		return err;

	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);

	pcm->private_data = chip;
	pcm->info_flags = 0;
	strcpy(pcm->name, "FM801");
	chip->pcm = pcm;

	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &pdev->dev,
				       chip->multichannel ? 128*1024 : 64*1024, 128*1024);

	return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
				     snd_pcm_alt_chmaps,
				     chip->multichannel ? 6 : 2, 0,
				     NULL);
}

/*
 *  TEA5757 radio
 */

#ifdef CONFIG_SND_FM801_TEA575X_BOOL

/* GPIO to TEA575x maps */
struct snd_fm801_tea575x_gpio {
	u8 data, clk, wren, most;
	char *name;
};

static const struct snd_fm801_tea575x_gpio snd_fm801_tea575x_gpios[] = {
	{ .data = 1, .clk = 3, .wren = 2, .most = 0, .name = "SF256-PCS" },
	{ .data = 1, .clk = 0, .wren = 2, .most = 3, .name = "SF256-PCP" },
	{ .data = 2, .clk = 0, .wren = 1, .most = 3, .name = "SF64-PCR" },
};

#define get_tea575x_gpio(chip) \
	(&snd_fm801_tea575x_gpios[((chip)->tea575x_tuner & TUNER_TYPE_MASK) - 1])

static void snd_fm801_tea575x_set_pins(struct snd_tea575x *tea, u8 pins)
{
	struct fm801 *chip = tea->private_data;
	unsigned short reg = fm801_readw(chip, GPIO_CTRL);
	struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip);

	reg &= ~(FM801_GPIO_GP(gpio.data) |
		 FM801_GPIO_GP(gpio.clk) |
		 FM801_GPIO_GP(gpio.wren));

	reg |= (pins & TEA575X_DATA) ? FM801_GPIO_GP(gpio.data) : 0;
	reg |= (pins & TEA575X_CLK)  ? FM801_GPIO_GP(gpio.clk) : 0;
	/* WRITE_ENABLE is inverted */
	reg |= (pins & TEA575X_WREN) ? 0 : FM801_GPIO_GP(gpio.wren);

	fm801_writew(chip, GPIO_CTRL, reg);
}

static u8 snd_fm801_tea575x_get_pins(struct snd_tea575x *tea)
{
	struct fm801 *chip = tea->private_data;
	unsigned short reg = fm801_readw(chip, GPIO_CTRL);
	struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip);
	u8 ret;

	ret = 0;
	if (reg & FM801_GPIO_GP(gpio.data))
		ret |= TEA575X_DATA;
	if (reg & FM801_GPIO_GP(gpio.most))
		ret |= TEA575X_MOST;
	return ret;
}

static void snd_fm801_tea575x_set_direction(struct snd_tea575x *tea, bool output)
{
	struct fm801 *chip = tea->private_data;
	unsigned short reg = fm801_readw(chip, GPIO_CTRL);
	struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip);

	/* use GPIO lines and set write enable bit */
	reg |= FM801_GPIO_GS(gpio.data) |
	       FM801_GPIO_GS(gpio.wren) |
	       FM801_GPIO_GS(gpio.clk) |
	       FM801_GPIO_GS(gpio.most);
	if (output) {
		/* all of lines are in the write direction */
		/* clear data and clock lines */
		reg &= ~(FM801_GPIO_GD(gpio.data) |
			 FM801_GPIO_GD(gpio.wren) |
			 FM801_GPIO_GD(gpio.clk) |
			 FM801_GPIO_GP(gpio.data) |
			 FM801_GPIO_GP(gpio.clk) |
			 FM801_GPIO_GP(gpio.wren));
	} else {
		/* use GPIO lines, set data direction to input */
		reg |= FM801_GPIO_GD(gpio.data) |
		       FM801_GPIO_GD(gpio.most) |
		       FM801_GPIO_GP(gpio.data) |
		       FM801_GPIO_GP(gpio.most) |
		       FM801_GPIO_GP(gpio.wren);
		/* all of lines are in the write direction, except data */
		/* clear data, write enable and clock lines */
		reg &= ~(FM801_GPIO_GD(gpio.wren) |
			 FM801_GPIO_GD(gpio.clk) |
			 FM801_GPIO_GP(gpio.clk));
	}

	fm801_writew(chip, GPIO_CTRL, reg);
}

static const struct snd_tea575x_ops snd_fm801_tea_ops = {
	.set_pins = snd_fm801_tea575x_set_pins,
	.get_pins = snd_fm801_tea575x_get_pins,
	.set_direction = snd_fm801_tea575x_set_direction,
};
#endif

/*
 *  Mixer routines
 */

#define FM801_SINGLE(xname, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
  .get = snd_fm801_get_single, .put = snd_fm801_put_single, \
  .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }

static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
				 struct snd_ctl_elem_info *uinfo)
{
	int mask = (kcontrol->private_value >> 16) & 0xff;

	uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 1;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = mask;
	return 0;
}

static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
	int reg = kcontrol->private_value & 0xff;
	int shift = (kcontrol->private_value >> 8) & 0xff;
	int mask = (kcontrol->private_value >> 16) & 0xff;
	int invert = (kcontrol->private_value >> 24) & 0xff;
	long *value = ucontrol->value.integer.value;

	value[0] = (fm801_ioread16(chip, reg) >> shift) & mask;
	if (invert)
		value[0] = mask - value[0];
	return 0;
}

static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
	int reg = kcontrol->private_value & 0xff;
	int shift = (kcontrol->private_value >> 8) & 0xff;
	int mask = (kcontrol->private_value >> 16) & 0xff;
	int invert = (kcontrol->private_value >> 24) & 0xff;
	unsigned short val;

	val = (ucontrol->value.integer.value[0] & mask);
	if (invert)
		val = mask - val;
	return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
}

#define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
  .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
  .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
#define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  .name = xname, .info = snd_fm801_info_double, \
  .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
  .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \
  .tlv = { .p = (xtlv) } }

static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
				 struct snd_ctl_elem_info *uinfo)
{
	int mask = (kcontrol->private_value >> 16) & 0xff;

	uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 2;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = mask;
	return 0;
}

static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xff;
	int shift_left = (kcontrol->private_value >> 8) & 0x0f;
	int shift_right = (kcontrol->private_value >> 12) & 0x0f;
	int mask = (kcontrol->private_value >> 16) & 0xff;
	int invert = (kcontrol->private_value >> 24) & 0xff;
	long *value = ucontrol->value.integer.value;

	spin_lock_irq(&chip->reg_lock);
	value[0] = (fm801_ioread16(chip, reg) >> shift_left) & mask;
	value[1] = (fm801_ioread16(chip, reg) >> shift_right) & mask;
	spin_unlock_irq(&chip->reg_lock);
	if (invert) {
		value[0] = mask - value[0];
		value[1] = mask - value[1];
	}
	return 0;
}

static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
	int reg = kcontrol->private_value & 0xff;
	int shift_left = (kcontrol->private_value >> 8) & 0x0f;
	int shift_right = (kcontrol->private_value >> 12) & 0x0f;
	int mask = (kcontrol->private_value >> 16) & 0xff;
	int invert = (kcontrol->private_value >> 24) & 0xff;
	unsigned short val1, val2;
 
	val1 = ucontrol->value.integer.value[0] & mask;
	val2 = ucontrol->value.integer.value[1] & mask;
	if (invert) {
		val1 = mask - val1;
		val2 = mask - val2;
	}
	return snd_fm801_update_bits(chip, reg,
				     (mask << shift_left) | (mask << shift_right),
				     (val1 << shift_left ) | (val2 << shift_right));
}

static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
			      struct snd_ctl_elem_info *uinfo)
{
	static const char * const texts[5] = {
		"AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
	};
 
	return snd_ctl_enum_info(uinfo, 1, 5, texts);
}

static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
			     struct snd_ctl_elem_value *ucontrol)
{
	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
        unsigned short val;
 
	val = fm801_readw(chip, REC_SRC) & 7;
	if (val > 4)
		val = 4;
        ucontrol->value.enumerated.item[0] = val;
        return 0;
}

static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
			     struct snd_ctl_elem_value *ucontrol)
{
	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
        unsigned short val;
 
	val = ucontrol->value.enumerated.item[0];
	if (val > 4)
                return -EINVAL;
	return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
}

static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0);

#define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)

static const struct snd_kcontrol_new snd_fm801_controls[] = {
FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1,
		 db_scale_dsp),
FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1,
		 db_scale_dsp),
FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1,
		 db_scale_dsp),
FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
{
	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
	.name = "Digital Capture Source",
	.info = snd_fm801_info_mux,
	.get = snd_fm801_get_mux,
	.put = snd_fm801_put_mux,
}
};

#define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)

static const struct snd_kcontrol_new snd_fm801_controls_multi[] = {
FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
};

static int snd_fm801_mixer(struct fm801 *chip)
{
	struct snd_ac97_template ac97;
	unsigned int i;
	int err;
	static const struct snd_ac97_bus_ops ops = {
		.write = snd_fm801_codec_write,
		.read = snd_fm801_codec_read,
	};

	err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus);
	if (err < 0)
		return err;

	memset(&ac97, 0, sizeof(ac97));
	ac97.private_data = chip;
	err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97);
	if (err < 0)
		return err;
	if (chip->secondary) {
		ac97.num = 1;
		ac97.addr = chip->secondary_addr;
		err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec);
		if (err < 0)
			return err;
	}
	for (i = 0; i < FM801_CONTROLS; i++) {
		err = snd_ctl_add(chip->card,
			snd_ctl_new1(&snd_fm801_controls[i], chip));
		if (err < 0)
			return err;
	}
	if (chip->multichannel) {
		for (i = 0; i < FM801_CONTROLS_MULTI; i++) {
			err = snd_ctl_add(chip->card,
				snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
			if (err < 0)
				return err;
		}
	}
	return 0;
}

/*
 *  initialization routines
 */

static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
			  unsigned short reg, unsigned long waits)
{
	unsigned long timeout = jiffies + waits;

	fm801_writew(chip, AC97_CMD,
		     reg | (codec_id << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ);
	udelay(5);
	do {
		if ((fm801_readw(chip, AC97_CMD) &
		     (FM801_AC97_VALID | FM801_AC97_BUSY)) == FM801_AC97_VALID)
			return 0;
		schedule_timeout_uninterruptible(1);
	} while (time_after(timeout, jiffies));
	return -EIO;
}

static int reset_codec(struct fm801 *chip)
{
	/* codec cold reset + AC'97 warm reset */
	fm801_writew(chip, CODEC_CTRL, (1 << 5) | (1 << 6));
	fm801_readw(chip, CODEC_CTRL); /* flush posting data */
	udelay(100);
	fm801_writew(chip, CODEC_CTRL, 0);

	return wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750));
}

static void snd_fm801_chip_multichannel_init(struct fm801 *chip)
{
	unsigned short cmdw;

	if (chip->multichannel) {
		if (chip->secondary_addr) {
			wait_for_codec(chip, chip->secondary_addr,
				       AC97_VENDOR_ID1, msecs_to_jiffies(50));
		} else {
			/* my card has the secondary codec */
			/* at address #3, so the loop is inverted */
			int i;
			for (i = 3; i > 0; i--) {
				if (!wait_for_codec(chip, i, AC97_VENDOR_ID1,
						     msecs_to_jiffies(50))) {
					cmdw = fm801_readw(chip, AC97_DATA);
					if (cmdw != 0xffff && cmdw != 0) {
						chip->secondary = 1;
						chip->secondary_addr = i;
						break;
					}
				}
			}
		}

		/* the recovery phase, it seems that probing for non-existing codec might */
		/* cause timeout problems */
		wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
	}
}

static void snd_fm801_chip_init(struct fm801 *chip)
{
	unsigned short cmdw;

	/* init volume */
	fm801_writew(chip, PCM_VOL, 0x0808);
	fm801_writew(chip, FM_VOL, 0x9f1f);
	fm801_writew(chip, I2S_VOL, 0x8808);

	/* I2S control - I2S mode */
	fm801_writew(chip, I2S_MODE, 0x0003);

	/* interrupt setup */
	cmdw = fm801_readw(chip, IRQ_MASK);
	if (chip->irq < 0)
		cmdw |= 0x00c3;		/* mask everything, no PCM nor MPU */
	else
		cmdw &= ~0x0083;	/* unmask MPU, PLAYBACK & CAPTURE */
	fm801_writew(chip, IRQ_MASK, cmdw);

	/* interrupt clear */
	fm801_writew(chip, IRQ_STATUS,
		     FM801_IRQ_PLAYBACK | FM801_IRQ_CAPTURE | FM801_IRQ_MPU);
}

static void snd_fm801_free(struct snd_card *card)
{
	struct fm801 *chip = card->private_data;
	unsigned short cmdw;

	/* interrupt setup - mask everything */
	cmdw = fm801_readw(chip, IRQ_MASK);
	cmdw |= 0x00c3;
	fm801_writew(chip, IRQ_MASK, cmdw);

#ifdef CONFIG_SND_FM801_TEA575X_BOOL
	if (!(chip->tea575x_tuner & TUNER_DISABLED)) {
		snd_tea575x_exit(&chip->tea);
		v4l2_device_unregister(&chip->v4l2_dev);
	}
#endif
}

static int snd_fm801_create(struct snd_card *card,
			    struct pci_dev *pci,
			    int tea575x_tuner,
			    int radio_nr)
{
	struct fm801 *chip = card->private_data;
	int err;

	err = pcim_enable_device(pci);
	if (err < 0)
		return err;
	spin_lock_init(&chip->reg_lock);
	chip->card = card;
	chip->dev = &pci->dev;
	chip->irq = -1;
	chip->tea575x_tuner = tea575x_tuner;
	err = pci_request_regions(pci, "FM801");
	if (err < 0)
		return err;
	chip->port = pci_resource_start(pci, 0);

	if (pci->revision >= 0xb1)	/* FM801-AU */
		chip->multichannel = 1;

	if (!(chip->tea575x_tuner & TUNER_ONLY)) {
		if (reset_codec(chip) < 0) {
			dev_info(chip->card->dev,
				 "Primary AC'97 codec not found, assume SF64-PCR (tuner-only)\n");
			chip->tea575x_tuner = 3 | TUNER_ONLY;
		} else {
			snd_fm801_chip_multichannel_init(chip);
		}
	}

	if ((chip->tea575x_tuner & TUNER_ONLY) == 0) {
		if (devm_request_irq(&pci->dev, pci->irq, snd_fm801_interrupt,
				IRQF_SHARED, KBUILD_MODNAME, chip)) {
			dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
			return -EBUSY;
		}
		chip->irq = pci->irq;
		card->sync_irq = chip->irq;
		pci_set_master(pci);
	}

	card->private_free = snd_fm801_free;
	snd_fm801_chip_init(chip);

#ifdef CONFIG_SND_FM801_TEA575X_BOOL
	err = v4l2_device_register(&pci->dev, &chip->v4l2_dev);
	if (err < 0)
		return err;
	chip->tea.v4l2_dev = &chip->v4l2_dev;
	chip->tea.radio_nr = radio_nr;
	chip->tea.private_data = chip;
	chip->tea.ops = &snd_fm801_tea_ops;
	sprintf(chip->tea.bus_info, "PCI:%s", pci_name(pci));
	if ((chip->tea575x_tuner & TUNER_TYPE_MASK) > 0 &&
	    (chip->tea575x_tuner & TUNER_TYPE_MASK) < 4) {
		if (snd_tea575x_init(&chip->tea, THIS_MODULE)) {
			dev_err(card->dev, "TEA575x radio not found\n");
			return -ENODEV;
		}
	} else if ((chip->tea575x_tuner & TUNER_TYPE_MASK) == 0) {
		unsigned int tuner_only = chip->tea575x_tuner & TUNER_ONLY;

		/* autodetect tuner connection */
		for (tea575x_tuner = 1; tea575x_tuner <= 3; tea575x_tuner++) {
			chip->tea575x_tuner = tea575x_tuner;
			if (!snd_tea575x_init(&chip->tea, THIS_MODULE)) {
				dev_info(card->dev,
					 "detected TEA575x radio type %s\n",
					   get_tea575x_gpio(chip)->name);
				break;
			}
		}
		if (tea575x_tuner == 4) {
			dev_err(card->dev, "TEA575x radio not found\n");
			chip->tea575x_tuner = TUNER_DISABLED;
		}

		chip->tea575x_tuner |= tuner_only;
	}
	if (!(chip->tea575x_tuner & TUNER_DISABLED)) {
		strscpy(chip->tea.card, get_tea575x_gpio(chip)->name,
			sizeof(chip->tea.card));
	}
#endif
	return 0;
}

static int __snd_card_fm801_probe(struct pci_dev *pci,
				  const struct pci_device_id *pci_id)
{
	static int dev;
	struct snd_card *card;
	struct fm801 *chip;
	struct snd_opl3 *opl3;
	int err;

        if (dev >= SNDRV_CARDS)
                return -ENODEV;
	if (!enable[dev]) {
		dev++;
		return -ENOENT;
	}

	err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
				sizeof(*chip), &card);
	if (err < 0)
		return err;
	chip = card->private_data;
	err = snd_fm801_create(card, pci, tea575x_tuner[dev], radio_nr[dev]);
	if (err < 0)
		return err;

	strcpy(card->driver, "FM801");
	strcpy(card->shortname, "ForteMedia FM801-");
	strcat(card->shortname, chip->multichannel ? "AU" : "AS");
	sprintf(card->longname, "%s at 0x%lx, irq %i",
		card->shortname, chip->port, chip->irq);

	if (chip->tea575x_tuner & TUNER_ONLY)
		goto __fm801_tuner_only;

	err = snd_fm801_pcm(chip, 0);
	if (err < 0)
		return err;
	err = snd_fm801_mixer(chip);
	if (err < 0)
		return err;
	err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
				  chip->port + FM801_MPU401_DATA,
				  MPU401_INFO_INTEGRATED |
				  MPU401_INFO_IRQ_HOOK,
				  -1, &chip->rmidi);
	if (err < 0)
		return err;
	err = snd_opl3_create(card, chip->port + FM801_OPL3_BANK0,
			      chip->port + FM801_OPL3_BANK1,
			      OPL3_HW_OPL3_FM801, 1, &opl3);
	if (err < 0)
		return err;
	err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
	if (err < 0)
		return err;

      __fm801_tuner_only:
	err = snd_card_register(card);
	if (err < 0)
		return err;
	pci_set_drvdata(pci, card);
	dev++;
	return 0;
}

static int snd_card_fm801_probe(struct pci_dev *pci,
				const struct pci_device_id *pci_id)
{
	return snd_card_free_on_error(&pci->dev, __snd_card_fm801_probe(pci, pci_id));
}

#ifdef CONFIG_PM_SLEEP
static const unsigned char saved_regs[] = {
	FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
	FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
	FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
	FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
};

static int snd_fm801_suspend(struct device *dev)
{
	struct snd_card *card = dev_get_drvdata(dev);
	struct fm801 *chip = card->private_data;
	int i;

	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);

	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
		chip->saved_regs[i] = fm801_ioread16(chip, saved_regs[i]);

	if (chip->tea575x_tuner & TUNER_ONLY) {
		/* FIXME: tea575x suspend */
	} else {
		snd_ac97_suspend(chip->ac97);
		snd_ac97_suspend(chip->ac97_sec);
	}

	return 0;
}

static int snd_fm801_resume(struct device *dev)
{
	struct snd_card *card = dev_get_drvdata(dev);
	struct fm801 *chip = card->private_data;
	int i;

	if (chip->tea575x_tuner & TUNER_ONLY) {
		snd_fm801_chip_init(chip);
	} else {
		reset_codec(chip);
		snd_fm801_chip_multichannel_init(chip);
		snd_fm801_chip_init(chip);
		snd_ac97_resume(chip->ac97);
		snd_ac97_resume(chip->ac97_sec);
	}

	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
		fm801_iowrite16(chip, saved_regs[i], chip->saved_regs[i]);

#ifdef CONFIG_SND_FM801_TEA575X_BOOL
	if (!(chip->tea575x_tuner & TUNER_DISABLED))
		snd_tea575x_set_freq(&chip->tea);
#endif

	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
	return 0;
}

static SIMPLE_DEV_PM_OPS(snd_fm801_pm, snd_fm801_suspend, snd_fm801_resume);
#define SND_FM801_PM_OPS	&snd_fm801_pm
#else
#define SND_FM801_PM_OPS	NULL
#endif /* CONFIG_PM_SLEEP */

static struct pci_driver fm801_driver = {
	.name = KBUILD_MODNAME,
	.id_table = snd_fm801_ids,
	.probe = snd_card_fm801_probe,
	.driver = {
		.pm = SND_FM801_PM_OPS,
	},
};

module_pci_driver