// SPDX-License-Identifier: GPL-2.0-only
/******************************************************************************

    AudioScience HPI driver
    Copyright (C) 1997-2014  AudioScience Inc. <support@audioscience.com>


 Hardware Programming Interface (HPI) for AudioScience
 ASI50xx, AS51xx, ASI6xxx, ASI87xx ASI89xx series adapters.
 These PCI and PCIe bus adapters are based on a
 TMS320C6205 PCI bus mastering DSP,
 and (except ASI50xx) TI TMS320C6xxx floating point DSP

 Exported function:
 void HPI_6205(struct hpi_message *phm, struct hpi_response *phr)

(C) Copyright AudioScience Inc. 1998-2010
*******************************************************************************/
#define SOURCEFILE_NAME "hpi6205.c"

#include "hpi_internal.h"
#include "hpimsginit.h"
#include "hpidebug.h"
#include "hpi6205.h"
#include "hpidspcd.h"
#include "hpicmn.h"

/*****************************************************************************/
/* HPI6205 specific error codes */
#define HPI6205_ERROR_BASE 1000	/* not actually used anywhere */

/* operational/messaging errors */
#define HPI6205_ERROR_MSG_RESP_IDLE_TIMEOUT     1015
#define HPI6205_ERROR_MSG_RESP_TIMEOUT          1016

/* initialization/bootload errors */
#define HPI6205_ERROR_6205_NO_IRQ       1002
#define HPI6205_ERROR_6205_INIT_FAILED  1003
#define HPI6205_ERROR_6205_REG          1006
#define HPI6205_ERROR_6205_DSPPAGE      1007
#define HPI6205_ERROR_C6713_HPIC        1009
#define HPI6205_ERROR_C6713_HPIA        1010
#define HPI6205_ERROR_C6713_PLL         1011
#define HPI6205_ERROR_DSP_INTMEM        1012
#define HPI6205_ERROR_DSP_EXTMEM        1013
#define HPI6205_ERROR_DSP_PLD           1014
#define HPI6205_ERROR_6205_EEPROM       1017
#define HPI6205_ERROR_DSP_EMIF1         1018
#define HPI6205_ERROR_DSP_EMIF2         1019
#define HPI6205_ERROR_DSP_EMIF3         1020
#define HPI6205_ERROR_DSP_EMIF4         1021

/*****************************************************************************/
/* for C6205 PCI i/f */
/* Host Status Register (HSR) bitfields */
#define C6205_HSR_INTSRC        0x01
#define C6205_HSR_INTAVAL       0x02
#define C6205_HSR_INTAM         0x04
#define C6205_HSR_CFGERR        0x08
#define C6205_HSR_EEREAD        0x10
/* Host-to-DSP Control Register (HDCR) bitfields */
#define C6205_HDCR_WARMRESET    0x01
#define C6205_HDCR_DSPINT       0x02
#define C6205_HDCR_PCIBOOT      0x04
/* DSP Page Register (DSPP) bitfields, */
/* defines 4 Mbyte page that BAR0 points to */
#define C6205_DSPP_MAP1         0x400

/* BAR0 maps to prefetchable 4 Mbyte memory block set by DSPP.
 * BAR1 maps to non-prefetchable 8 Mbyte memory block
 * of DSP memory mapped registers (starting at 0x01800000).
 * 0x01800000 is hardcoded in the PCI i/f, so that only the offset from this
 * needs to be added to the BAR1 base address set in the PCI config reg
 */
#define C6205_BAR1_PCI_IO_OFFSET (0x027FFF0L)
#define C6205_BAR1_HSR  (C6205_BAR1_PCI_IO_OFFSET)
#define C6205_BAR1_HDCR (C6205_BAR1_PCI_IO_OFFSET+4)
#define C6205_BAR1_DSPP (C6205_BAR1_PCI_IO_OFFSET+8)

/* used to control LED (revA) and reset C6713 (revB) */
#define C6205_BAR0_TIMER1_CTL (0x01980000L)

/* For first 6713 in CE1 space, using DA17,16,2 */
#define HPICL_ADDR      0x01400000L
#define HPICH_ADDR      0x01400004L
#define HPIAL_ADDR      0x01410000L
#define HPIAH_ADDR      0x01410004L
#define HPIDIL_ADDR     0x01420000L
#define HPIDIH_ADDR     0x01420004L
#define HPIDL_ADDR      0x01430000L
#define HPIDH_ADDR      0x01430004L

#define C6713_EMIF_GCTL         0x01800000
#define C6713_EMIF_CE1          0x01800004
#define C6713_EMIF_CE0          0x01800008
#define C6713_EMIF_CE2          0x01800010
#define C6713_EMIF_CE3          0x01800014
#define C6713_EMIF_SDRAMCTL     0x01800018
#define C6713_EMIF_SDRAMTIMING  0x0180001C
#define C6713_EMIF_SDRAMEXT     0x01800020

struct hpi_hw_obj {
	/* PCI registers */
	__iomem u32 *prHSR;
	__iomem u32 *prHDCR;
	__iomem u32 *prDSPP;

	u32 dsp_page;

	struct consistent_dma_area h_locked_mem;
	struct bus_master_interface *p_interface_buffer;

	u16 flag_outstream_just_reset[HPI_MAX_STREAMS];
	/* a non-NULL handle means there is an HPI allocated buffer */
	struct consistent_dma_area instream_host_buffers[HPI_MAX_STREAMS];
	struct consistent_dma_area outstream_host_buffers[HPI_MAX_STREAMS];
	/* non-zero size means a buffer exists, may be external */
	u32 instream_host_buffer_size[HPI_MAX_STREAMS];
	u32 outstream_host_buffer_size[HPI_MAX_STREAMS];

	struct consistent_dma_area h_control_cache;
	struct hpi_control_cache *p_cache;
};

/*****************************************************************************/
/* local prototypes */

#define check_before_bbm_copy(status, p_bbm_data, l_first_write, l_second_write)

static int wait_dsp_ack(struct hpi_hw_obj *phw, int state, int timeout_us);

static void send_dsp_command(struct hpi_hw_obj *phw, int cmd);

static u16 adapter_boot_load_dsp(struct hpi_adapter_obj *pao,
	u32 *pos_error_code);

static u16 message_response_sequence(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static void hw_message(struct hpi_adapter_obj *pao, struct hpi_message *phm,
	struct hpi_response *phr);

#define HPI6205_TIMEOUT 1000000

static void subsys_create_adapter(struct hpi_message *phm,
	struct hpi_response *phr);
static void adapter_delete(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static u16 create_adapter_obj(struct hpi_adapter_obj *pao,
	u32 *pos_error_code);

static void delete_adapter_obj(struct hpi_adapter_obj *pao);

static int adapter_irq_query_and_clear(struct hpi_adapter_obj *pao,
	u32 message);

static void outstream_host_buffer_allocate(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static void outstream_host_buffer_get_info(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static void outstream_host_buffer_free(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);
static void outstream_write(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static void outstream_get_info(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static void outstream_start(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static void outstream_open(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static void outstream_reset(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static void instream_host_buffer_allocate(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static void instream_host_buffer_get_info(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static void instream_host_buffer_free(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static void instream_read(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static void instream_get_info(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static void instream_start(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr);

static u32 boot_loader_read_mem32(struct hpi_adapter_obj *pao, int dsp_index,
	u32 address);

static void boot_loader_write_mem32(struct hpi_adapter_obj *pao,
	int dsp_index, u32 address, u32 data);

static u16 boot_loader_config_emif(struct hpi_adapter_obj *pao,
	int dsp_index);

static u16 boot_loader_test_memory(struct hpi_adapter_obj *pao, int dsp_index,
	u32 address, u32 length);

static u16 boot_loader_test_internal_memory(struct hpi_adapter_obj *pao,
	int dsp_index);

static u16 boot_loader_test_external_memory(struct hpi_adapter_obj *pao,
	int dsp_index);

static u16 boot_loader_test_pld(struct hpi_adapter_obj *pao, int dsp_index);

/*****************************************************************************/

static void subsys_message(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	switch (phm->function) {
	case HPI_SUBSYS_CREATE_ADAPTER:
		subsys_create_adapter(phm, phr);
		break;
	default:
		phr->error = HPI_ERROR_INVALID_FUNC;
		break;
	}
}

static void control_message(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{

	struct hpi_hw_obj *phw = pao->priv;
	u16 pending_cache_error = 0;

	switch (phm->function) {
	case HPI_CONTROL_GET_STATE:
		if (pao->has_control_cache) {
			rmb();	/* make sure we see updates DMAed from DSP */
			if (hpi_check_control_cache(phw->p_cache, phm, phr)) {
				break;
			} else if (phm->u.c.attribute == HPI_METER_PEAK) {
				pending_cache_error =
					HPI_ERROR_CONTROL_CACHING;
			}
		}
		hw_message(pao, phm, phr);
		if (pending_cache_error && !phr->error)
			phr->error = pending_cache_error;
		break;
	case HPI_CONTROL_GET_INFO:
		hw_message(pao, phm, phr);
		break;
	case HPI_CONTROL_SET_STATE:
		hw_message(pao, phm, phr);
		if (pao->has_control_cache)
			hpi_cmn_control_cache_sync_to_msg(phw->p_cache, phm,
				phr);
		break;
	default:
		phr->error = HPI_ERROR_INVALID_FUNC;
		break;
	}
}

static void adapter_message(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	switch (phm->function) {
	case HPI_ADAPTER_DELETE:
		adapter_delete(pao, phm, phr);
		break;
	default:
		hw_message(pao, phm, phr);
		break;
	}
}

static void outstream_message(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{

	if (phm->obj_index >= HPI_MAX_STREAMS) {
		phr->error = HPI_ERROR_INVALID_OBJ_INDEX;
		HPI_DEBUG_LOG(WARNING,
			"Message referencing invalid stream %d "
			"on adapter index %d\n", phm->obj_index,
			phm->adapter_index);
		return;
	}

	switch (phm->function) {
	case HPI_OSTREAM_WRITE:
		outstream_write(pao, phm, phr);
		break;
	case HPI_OSTREAM_GET_INFO:
		outstream_get_info(pao, phm, phr);
		break;
	case HPI_OSTREAM_HOSTBUFFER_ALLOC:
		outstream_host_buffer_allocate(pao, phm, phr);
		break;
	case HPI_OSTREAM_HOSTBUFFER_GET_INFO:
		outstream_host_buffer_get_info(pao, phm, phr);
		break;
	case HPI_OSTREAM_HOSTBUFFER_FREE:
		outstream_host_buffer_free(pao, phm, phr);
		break;
	case HPI_OSTREAM_START:
		outstream_start(pao, phm, phr);
		break;
	case HPI_OSTREAM_OPEN:
		outstream_open(pao, phm, phr);
		break;
	case HPI_OSTREAM_RESET:
		outstream_reset(pao, phm, phr);
		break;
	default:
		hw_message(pao, phm, phr);
		break;
	}
}

static void instream_message(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{

	if (phm->obj_index >= HPI_MAX_STREAMS) {
		phr->error = HPI_ERROR_INVALID_OBJ_INDEX;
		HPI_DEBUG_LOG(WARNING,
			"Message referencing invalid stream %d "
			"on adapter index %d\n", phm->obj_index,
			phm->adapter_index);
		return;
	}

	switch (phm->function) {
	case HPI_ISTREAM_READ:
		instream_read(pao, phm, phr);
		break;
	case HPI_ISTREAM_GET_INFO:
		instream_get_info(pao, phm, phr);
		break;
	case HPI_ISTREAM_HOSTBUFFER_ALLOC:
		instream_host_buffer_allocate(pao, phm, phr);
		break;
	case HPI_ISTREAM_HOSTBUFFER_GET_INFO:
		instream_host_buffer_get_info(pao, phm, phr);
		break;
	case HPI_ISTREAM_HOSTBUFFER_FREE:
		instream_host_buffer_free(pao, phm, phr);
		break;
	case HPI_ISTREAM_START:
		instream_start(pao, phm, phr);
		break;
	default:
		hw_message(pao, phm, phr);
		break;
	}
}

/*****************************************************************************/
/** Entry point to this HPI backend
 * All calls to the HPI start here
 */
static
void _HPI_6205(struct hpi_adapter_obj *pao, struct hpi_message *phm,
	struct hpi_response *phr)
{
	if (pao && (pao->dsp_crashed >= 10)
		&& (phm->function != HPI_ADAPTER_DEBUG_READ)) {
		/* allow last resort debug read even after crash */
		hpi_init_response(phr, phm->object, phm->function,
			HPI_ERROR_DSP_HARDWARE);
		HPI_DEBUG_LOG(WARNING, " %d,%d dsp crashed.\n", phm->object,
			phm->function);
		return;
	}

	/* Init default response  */
	if (phm->function != HPI_SUBSYS_CREATE_ADAPTER)
		phr->error = HPI_ERROR_PROCESSING_MESSAGE;

	HPI_DEBUG_LOG(VERBOSE, "start of switch\n");
	switch (phm->type) {
	case HPI_TYPE_REQUEST:
		switch (phm->object) {
		case HPI_OBJ_SUBSYSTEM:
			subsys_message(pao, phm, phr);
			break;

		case HPI_OBJ_ADAPTER:
			adapter_message(pao, phm, phr);
			break;

		case HPI_OBJ_CONTROL:
			control_message(pao, phm, phr);
			break;

		case HPI_OBJ_OSTREAM:
			outstream_message(pao, phm, phr);
			break;

		case HPI_OBJ_ISTREAM:
			instream_message(pao, phm, phr);
			break;

		default:
			hw_message(pao, phm, phr);
			break;
		}
		break;

	default:
		phr->error = HPI_ERROR_INVALID_TYPE;
		break;
	}
}

void HPI_6205(struct hpi_message *phm, struct hpi_response *phr)
{
	struct hpi_adapter_obj *pao = NULL;

	if (phm->object != HPI_OBJ_SUBSYSTEM) {
		/* normal messages must have valid adapter index */
		pao = hpi_find_adapter(phm->adapter_index);
	} else {
		/* subsys messages don't address an adapter */
		_HPI_6205(NULL, phm, phr);
		return;
	}

	if (pao)
		_HPI_6205(pao, phm, phr);
	else
		hpi_init_response(phr, phm->object, phm->function,
			HPI_ERROR_BAD_ADAPTER_NUMBER);
}

/*****************************************************************************/
/* SUBSYSTEM */

/** Create an adapter object and initialise it based on resource information
 * passed in in the message
 * *** NOTE - you cannot use this function AND the FindAdapters function at the
 * same time, the application must use only one of them to get the adapters ***
 */
static void subsys_create_adapter(struct hpi_message *phm,
	struct hpi_response *phr)
{
	/* create temp adapter obj, because we don't know what index yet */
	struct hpi_adapter_obj ao;
	u32 os_error_code;
	u16 err;

	HPI_DEBUG_LOG(DEBUG, " subsys_create_adapter\n");

	memset(&ao, 0, sizeof(ao));

	ao.priv = kzalloc(sizeof(struct hpi_hw_obj), GFP_KERNEL);
	if (!ao.priv) {
		HPI_DEBUG_LOG(ERROR, "can't get mem for adapter object\n");
		phr->error = HPI_ERROR_MEMORY_ALLOC;
		return;
	}

	ao.pci = *phm->u.s.resource.r.pci;
	err = create_adapter_obj(&ao, &os_error_code);
	if (err) {
		delete_adapter_obj(&ao);
		if (err >= HPI_ERROR_BACKEND_BASE) {
			phr->error = HPI_ERROR_DSP_BOOTLOAD;
			phr->specific_error = err;
		} else {
			phr->error = err;
		}
		phr->u.s.data = os_error_code;
		return;
	}

	phr->u.s.adapter_type = ao.type;
	phr->u.s.adapter_index = ao.index;
	phr->error = 0;
}

/** delete an adapter - required by WDM driver */
static void adapter_delete(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	struct hpi_hw_obj *phw;

	if (!pao) {
		phr->error = HPI_ERROR_INVALID_OBJ_INDEX;
		return;
	}
	phw = pao->priv;
	/* reset adapter h/w */
	/* Reset C6713 #1 */
	boot_loader_write_mem32(pao, 0, C6205_BAR0_TIMER1_CTL, 0);
	/* reset C6205 */
	iowrite32(C6205_HDCR_WARMRESET, phw->prHDCR);

	delete_adapter_obj(pao);
	hpi_delete_adapter(pao);
	phr->error = 0;
}

/** Create adapter object
  allocate buffers, bootload DSPs, initialise control cache
*/
static u16 create_adapter_obj(struct hpi_adapter_obj *pao,
	u32 *pos_error_code)
{
	struct hpi_hw_obj *phw = pao->priv;
	struct bus_master_interface *interface;
	u32 phys_addr;
	int i;
	u16 err;

	/* init error reporting */
	pao->dsp_crashed = 0;

	for (i = 0; i < HPI_MAX_STREAMS; i++)
		phw->flag_outstream_just_reset[i] = 1;

	/* The C6205 memory area 1 is 8Mbyte window into DSP registers */
	phw->prHSR =
		pao->pci.ap_mem_base[1] +
		C6205_BAR1_HSR / sizeof(*pao->pci.ap_mem_base[1]);
	phw->prHDCR =
		pao->pci.ap_mem_base[1] +
		C6205_BAR1_HDCR / sizeof(*pao->pci.ap_mem_base[1]);
	phw->prDSPP =
		pao->pci.ap_mem_base[1] +
		C6205_BAR1_DSPP / sizeof(*pao->pci.ap_mem_base[1]);

	pao->has_control_cache = 0;

	if (hpios_locked_mem_alloc(&phw->h_locked_mem,
			sizeof(struct bus_master_interface),
			pao->pci.pci_dev))
		phw->p_interface_buffer = NULL;
	else if (hpios_locked_mem_get_virt_addr(&phw->h_locked_mem,
			(void *)&phw->p_interface_buffer))
		phw->p_interface_buffer = NULL;

	HPI_DEBUG_LOG(DEBUG, "interface buffer address %p\n",
		phw->p_interface_buffer);

	if (phw->p_interface_buffer) {
		memset((void *)phw->p_interface_buffer, 0,
			sizeof(struct bus_master_interface));
		phw->p_interface_buffer->dsp_ack = H620_HIF_UNKNOWN;
	}

	err = adapter_boot_load_dsp(pao, pos_error_code);
	if (err) {
		HPI_DEBUG_LOG(ERROR, "DSP code load failed\n");
		/* no need to clean up as SubSysCreateAdapter */
		/* calls DeleteAdapter on error. */
		return err;
	}
	HPI_DEBUG_LOG(INFO, "load DSP code OK\n");

	/* allow boot load even if mem alloc wont work */
	if (!phw->p_interface_buffer)
		return HPI_ERROR_MEMORY_ALLOC;

	interface = phw->p_interface_buffer;

	/* make sure the DSP has started ok */
	if (!wait_dsp_ack(phw, H620_HIF_RESET, HPI6205_TIMEOUT * 10)) {
		HPI_DEBUG_LOG(ERROR, "timed out waiting reset state \n");
		return HPI6205_ERROR_6205_INIT_FAILED;
	}
	/* Note that *pao, *phw are zeroed after allocation,
	 * so pointers and flags are NULL by default.
	 * Allocate bus mastering control cache buffer and tell the DSP about it
	 */
	if (interface->control_cache.number_of_controls) {
		u8 *p_control_cache_virtual;

		err = hpios_locked_mem_alloc(&phw->h_control_cache,
			interface->control_cache.size_in_bytes,
			pao->pci.pci_dev);
		if (!err)
			err = hpios_locked_mem_get_virt_addr(&phw->
				h_control_cache,
				(void *)&p_control_cache_virtual);
		if (!err) {
			memset(p_control_cache_virtual, 0,
				interface->control_cache.size_in_bytes);

			phw->p_cache =
				hpi_alloc_control_cache(interface->
				control_cache.number_of_controls,
				interface->control_cache.size_in_bytes,
				p_control_cache_virtual);

			if (!phw->p_cache)
				err = HPI_ERROR_MEMORY_ALLOC;
		}
		if (!err) {
			err = hpios_locked_mem_get_phys_addr(&phw->
				h_control_cache, &phys_addr);
			interface->control_cache.physical_address32 =
				phys_addr;
		}

		if (!err)
			pao->has_control_cache = 1;
		else {
			if (hpios_locked_mem_valid(&phw->h_control_cache))
				hpios_locked_mem_free(&phw->h_control_cache);
			pao->has_control_cache = 0;
		}
	}
	send_dsp_command(phw, H620_HIF_IDLE);

	{
		struct hpi_message hm;
		struct hpi_response hr;

		HPI_DEBUG_LOG(VERBOSE, "init ADAPTER_GET_INFO\n");
		memset(&hm, 0, sizeof(hm));
		/* wAdapterIndex == version == 0 */
		hm.type = HPI_TYPE_REQUEST;
		hm.size = sizeof(hm);
		hm.object = HPI_OBJ_ADAPTER;
		hm.function = HPI_ADAPTER_GET_INFO;

		memset(&hr, 0, sizeof(hr));
		hr.size = sizeof(hr);

		err = message_response_sequence(pao, &hm, &hr);
		if (err) {
			HPI_DEBUG_LOG(ERROR, "message transport error %d\n",
				err);
			return err;
		}
		if (hr.error)
			return hr.error;

		pao->type = hr.u.ax.info.adapter_type;
		pao->index = hr.u.ax.info.adapter_index;

		HPI_DEBUG_LOG(VERBOSE,
			"got adapter info type %x index %d serial %d\n",
			hr.u.ax.info.adapter_type, hr.u.ax.info.adapter_index,
			hr.u.ax.info.serial_number);
	}

	if (phw->p_cache)
		phw->p_cache->adap_idx = pao->index;

	HPI_DEBUG_LOG(INFO, "bootload DSP OK\n");

	pao->irq_query_and_clear = adapter_irq_query_and_clear;
	pao->instream_host_buffer_status =
		phw->p_interface_buffer->instream_host_buffer_status;
	pao->outstream_host_buffer_status =
		phw->p_interface_buffer->outstream_host_buffer_status;

	return hpi_add_adapter(pao);
}

/** Free memory areas allocated by adapter
 * this routine is called from AdapterDelete,
  * and SubSysCreateAdapter if duplicate index
*/
static void delete_adapter_obj(struct hpi_adapter_obj *pao)
{
	struct hpi_hw_obj *phw = pao->priv;
	int i;

	if (hpios_locked_mem_valid(&phw->h_control_cache)) {
		hpios_locked_mem_free(&phw->h_control_cache);
		hpi_free_control_cache(phw->p_cache);
	}

	if (hpios_locked_mem_valid(&phw->h_locked_mem)) {
		hpios_locked_mem_free(&phw->h_locked_mem);
		phw->p_interface_buffer = NULL;
	}

	for (i = 0; i < HPI_MAX_STREAMS; i++)
		if (hpios_locked_mem_valid(&phw->instream_host_buffers[i])) {
			hpios_locked_mem_free(&phw->instream_host_buffers[i]);
			/*?phw->InStreamHostBuffers[i] = NULL; */
			phw->instream_host_buffer_size[i] = 0;
		}

	for (i = 0; i < HPI_MAX_STREAMS; i++)
		if (hpios_locked_mem_valid(&phw->outstream_host_buffers[i])) {
			hpios_locked_mem_free(&phw->outstream_host_buffers
				[i]);
			phw->outstream_host_buffer_size[i] = 0;
		}
	kfree(phw);
}

/*****************************************************************************/
/* Adapter functions */
static int adapter_irq_query_and_clear(struct hpi_adapter_obj *pao,
	u32 message)
{
	struct hpi_hw_obj *phw = pao->priv;
	u32 hsr = 0;

	hsr = ioread32(phw->prHSR);
	if (hsr & C6205_HSR_INTSRC) {
		/* reset the interrupt from the DSP */
		iowrite32(C6205_HSR_INTSRC, phw->prHSR);
		return HPI_IRQ_MIXER;
	}

	return HPI_IRQ_NONE;
}

/*****************************************************************************/
/* OutStream Host buffer functions */

/** Allocate or attach buffer for busmastering
*/
static void outstream_host_buffer_allocate(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	u16 err = 0;
	u32 command = phm->u.d.u.buffer.command;
	struct hpi_hw_obj *phw = pao->priv;
	struct bus_master_interface *interface = phw->p_interface_buffer;

	hpi_init_response(phr, phm->object, phm->function, 0);

	if (command == HPI_BUFFER_CMD_EXTERNAL
		|| command == HPI_BUFFER_CMD_INTERNAL_ALLOC) {
		/* ALLOC phase, allocate a buffer with power of 2 size,
		   get its bus address for PCI bus mastering
		 */
		phm->u.d.u.buffer.buffer_size =
			roundup_pow_of_two(phm->u.d.u.buffer.buffer_size);
		/* return old size and allocated size,
		   so caller can detect change */
		phr->u.d.u.stream_info.data_available =
			phw->outstream_host_buffer_size[phm->obj_index];
		phr->u.d.u.stream_info.buffer_size =
			phm->u.d.u.buffer.buffer_size;

		if (phw->outstream_host_buffer_size[phm->obj_index] ==
			phm->u.d.u.buffer.buffer_size) {
			/* Same size, no action required */
			return;
		}

		if (hpios_locked_mem_valid(&phw->outstream_host_buffers[phm->
					obj_index]))
			hpios_locked_mem_free(&phw->outstream_host_buffers
				[phm->obj_index]);

		err = hpios_locked_mem_alloc(&phw->outstream_host_buffers
			[phm->obj_index], phm->u.d.u.buffer.buffer_size,
			pao->pci.pci_dev);

		if (err) {
			phr->error = HPI_ERROR_INVALID_DATASIZE;
			phw->outstream_host_buffer_size[phm->obj_index] = 0;
			return;
		}

		err = hpios_locked_mem_get_phys_addr
			(&phw->outstream_host_buffers[phm->obj_index],
			&phm->u.d.u.buffer.pci_address);
		/* get the phys addr into msg for single call alloc caller
		 * needs to do this for split alloc (or use the same message)
		 * return the phy address for split alloc in the respose too
		 */
		phr->u.d.u.stream_info.auxiliary_data_available =
			phm->u.d.u.buffer.pci_address;

		if (err) {
			hpios_locked_mem_free(&phw->outstream_host_buffers
				[phm->obj_index]);
			phw->outstream_host_buffer_size[phm->obj_index] = 0;
			phr->error = HPI_ERROR_MEMORY_ALLOC;
			return;
		}
	}

	if (command == HPI_BUFFER_CMD_EXTERNAL
		|| command == HPI_BUFFER_CMD_INTERNAL_GRANTADAPTER) {
		/* GRANT phase.  Set up the BBM status, tell the DSP about
		   the buffer so it can start using BBM.
		 */
		struct hpi_hostbuffer_status *status;

		if (phm->u.d.u.buffer.buffer_size & (phm->u.d.u.buffer.
				buffer_size - 1)) {
			HPI_DEBUG_LOG(ERROR,
				"Buffer size must be 2^N not %d\n",
				phm->u.d.u.buffer.buffer_size);
			phr->error = HPI_ERROR_INVALID_DATASIZE;
			return;
		}
		phw->outstream_host_buffer_size[phm->obj_index] =
			phm->u.d.u.buffer.buffer_size;
		status = &interface->outstream_host_buffer_status[phm->
			obj_index];
		status->samples_processed = 0;
		status->stream_state = HPI_STATE_STOPPED;
		status->dsp_index = 0;
		status->host_index = status->dsp_index;
		status->size_in_bytes = phm->u.d.u.buffer.buffer_size;
		status->auxiliary_data_available = 0;

		hw_message(pao, phm, phr);

		if (phr->error
			&& hpios_locked_mem_valid(&phw->
				outstream_host_buffers[phm->obj_index])) {
			hpios_locked_mem_free(&phw->outstream_host_buffers
				[phm->obj_index]);
			phw->outstream_host_buffer_size[phm->obj_index] = 0;
		}
	}
}

static void outstream_host_buffer_get_info(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	struct hpi_hw_obj *phw = pao->priv;
	struct bus_master_interface *interface = phw->p_interface_buffer;
	struct hpi_hostbuffer_status *status;
	u8 *p_bbm_data;

	if (hpios_locked_mem_valid(&phw->outstream_host_buffers[phm->
				obj_index])) {
		if (hpios_locked_mem_get_virt_addr(&phw->
				outstream_host_buffers[phm->obj_index],
				(void *)&p_bbm_data)) {
			phr->error = HPI_ERROR_INVALID_OPERATION;
			return;
		}
		status = &interface->outstream_host_buffer_status[phm->
			obj_index];
		hpi_init_response(phr, HPI_OBJ_OSTREAM,
			HPI_OSTREAM_HOSTBUFFER_GET_INFO, 0);
		phr->u.d.u.hostbuffer_info.p_buffer = p_bbm_data;
		phr->u.d.u.hostbuffer_info.p_status = status;
	} else {
		hpi_init_response(phr, HPI_OBJ_OSTREAM,
			HPI_OSTREAM_HOSTBUFFER_GET_INFO,
			HPI_ERROR_INVALID_OPERATION);
	}
}

static void outstream_host_buffer_free(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	struct hpi_hw_obj *phw = pao->priv;
	u32 command = phm->u.d.u.buffer.command;

	if (phw->outstream_host_buffer_size[phm->obj_index]) {
		if (command == HPI_BUFFER_CMD_EXTERNAL
			|| command == HPI_BUFFER_CMD_INTERNAL_REVOKEADAPTER) {
			phw->outstream_host_buffer_size[phm->obj_index] = 0;
			hw_message(pao, phm, phr);
			/* Tell adapter to stop using the host buffer. */
		}
		if (command == HPI_BUFFER_CMD_EXTERNAL
			|| command == HPI_BUFFER_CMD_INTERNAL_FREE)
			hpios_locked_mem_free(&phw->outstream_host_buffers
				[phm->obj_index]);
	}
	/* Should HPI_ERROR_INVALID_OPERATION be returned
	   if no host buffer is allocated? */
	else
		hpi_init_response(phr, HPI_OBJ_OSTREAM,
			HPI_OSTREAM_HOSTBUFFER_FREE, 0);

}

static u32 outstream_get_space_available(struct hpi_hostbuffer_status *status)
{
	return status->size_in_bytes - (status->host_index -
		status->dsp_index);
}

static void outstream_write(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	struct hpi_hw_obj *phw = pao->priv;
	struct bus_master_interface *interface = phw->p_interface_buffer;
	struct hpi_hostbuffer_status *status;
	u32 space_available;

	if (!phw->outstream_host_buffer_size[phm->obj_index]) {
		/* there  is no BBM buffer, write via message */
		hw_message(pao, phm, phr);
		return;
	}

	hpi_init_response(phr, phm->object, phm->function, 0);
	status = &interface->outstream_host_buffer_status[phm->obj_index];

	space_available = outstream_get_space_available(status);
	if (space_available < phm->u.d.u.data.data_size) {
		phr->error = HPI_ERROR_INVALID_DATASIZE;
		return;
	}

	/* HostBuffers is used to indicate host buffer is internally allocated.
	   otherwise, assumed external, data written externally */
	if (phm->u.d.u.data.pb_data
		&& hpios_locked_mem_valid(&phw->outstream_host_buffers[phm->
				obj_index])) {
		u8 *p_bbm_data;
		u32 l_first_write;
		u8 *p_app_data = (u8 *)phm->u.d.u.data.pb_data;

		if (hpios_locked_mem_get_virt_addr(&phw->
				outstream_host_buffers[phm->obj_index],
				(void *)&p_bbm_data)) {
			phr->error = HPI_ERROR_INVALID_OPERATION;
			return;
		}

		/* either all data,
		   or enough to fit from current to end of BBM buffer */
		l_first_write =
			min(phm->u.d.u.data.data_size,
			status->size_in_bytes -
			(status->host_index & (status->size_in_bytes - 1)));

		memcpy(p_bbm_data +
			(status->host_index & (status->size_in_bytes - 1)),
			p_app_data, l_first_write);
		/* remaining data if any */
		memcpy(p_bbm_data, p_app_data + l_first_write,
			phm->u.d.u.data.data_size - l_first_write);
	}

	/*
	 * This version relies on the DSP code triggering an OStream buffer
	 * update immediately following a SET_FORMAT call. The host has
	 * already written data into the BBM buffer, but the DSP won't know
	 * about it until dwHostIndex is adjusted.
	 */
	if (phw->flag_outstream_just_reset[phm->obj_index]) {
		/* Format can only change after reset. Must tell DSP. */
		u16 function = phm->function;
		phw->flag_outstream_just_reset[phm->obj_index] = 0;
		phm->function = HPI_OSTREAM_SET_FORMAT;
		hw_message(pao, phm, phr);	/* send the format to the DSP */
		phm->function = function;
		if (phr->error)
			return;
	}

	status->host_index += phm->u.d.u.data.data_size;
}

static void outstream_get_info(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	struct hpi_hw_obj *phw = pao->priv;
	struct bus_master_interface *interface = phw->p_interface_buffer;
	struct hpi_hostbuffer_status *status;

	if (!phw->outstream_host_buffer_size[phm->obj_index]) {
		hw_message(pao, phm, phr);
		return;
	}

	hpi_init_response(phr, phm->object, phm->function, 0);

	status = &interface->outstream_host_buffer_status[phm->obj_index];

	phr->u.d.u.stream_info.state = (u16)status->stream_state;
	phr->u.d.u.stream_info.samples_transferred =
		status->samples_processed;
	phr->u.d.u.stream_info.buffer_size = status->size_in_bytes;
	phr->u.d.u.stream_info.data_available =
		status->size_in_bytes - outstream_get_space_available(status);
	phr->u.d.u.stream_info.auxiliary_data_available =
		status->auxiliary_data_available;
}

static void outstream_start(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	hw_message(pao, phm, phr);
}

static void outstream_reset(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	struct hpi_hw_obj *phw = pao->priv;
	phw->flag_outstream_just_reset[phm->obj_index] = 1;
	hw_message(pao, phm, phr);
}

static void outstream_open(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	outstream_reset(pao, phm, phr);
}

/*****************************************************************************/
/* InStream Host buffer functions */

static void instream_host_buffer_allocate(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	u16 err = 0;
	u32 command = phm->u.d.u.buffer.command;
	struct hpi_hw_obj *phw = pao->priv;
	struct bus_master_interface *interface = phw->p_interface_buffer;

	hpi_init_response(phr, phm->object, phm->function, 0);

	if (command == HPI_BUFFER_CMD_EXTERNAL
		|| command == HPI_BUFFER_CMD_INTERNAL_ALLOC) {

		phm->u.d.u.buffer.buffer_size =
			roundup_pow_of_two(phm->u.d.u.buffer.buffer_size);
		phr->u.d.u.stream_info.data_available =
			phw->instream_host_buffer_size[phm->obj_index];
		phr->u.d.u.stream_info.buffer_size =
			phm->u.d.u.buffer.buffer_size;

		if (phw->instream_host_buffer_size[phm->obj_index] ==
			phm->u.d.u.buffer.buffer_size) {
			/* Same size, no action required */
			return;
		}

		if (hpios_locked_mem_valid(&phw->instream_host_buffers[phm->
					obj_index]))
			hpios_locked_mem_free(&phw->instream_host_buffers
				[phm->obj_index]);

		err = hpios_locked_mem_alloc(&phw->instream_host_buffers[phm->
				obj_index], phm->u.d.u.buffer.buffer_size,
			pao->pci.pci_dev);

		if (err) {
			phr->error = HPI_ERROR_INVALID_DATASIZE;
			phw->instream_host_buffer_size[phm->obj_index] = 0;
			return;
		}

		err = hpios_locked_mem_get_phys_addr
			(&phw->instream_host_buffers[phm->obj_index],
			&phm->u.d.u.buffer.pci_address);
		/* get the phys addr into msg for single call alloc. Caller
		   needs to do this for split alloc so return the phy address */
		phr->u.d.u.stream_info.auxiliary_data_available =
			phm->u.d.u.buffer.pci_address;
		if (err) {
			hpios_locked_mem_free(&phw->instream_host_buffers
				[phm->obj_index]);
			phw->instream_host_buffer_size[phm->obj_index] = 0;
			phr->error = HPI_ERROR_MEMORY_ALLOC;
			return;
		}
	}

	if (command == HPI_BUFFER_CMD_EXTERNAL
		|| command == HPI_BUFFER_CMD_INTERNAL_GRANTADAPTER) {
		struct hpi_hostbuffer_status *status;

		if (phm->u.d.u.buffer.buffer_size & (phm->u.d.u.buffer.
				buffer_size - 1)) {
			HPI_DEBUG_LOG(ERROR,
				"Buffer size must be 2^N not %d\n",
				phm->u.d.u.buffer.buffer_size);
			phr->error = HPI_ERROR_INVALID_DATASIZE;
			return;
		}

		phw->instream_host_buffer_size[phm->obj_index] =
			phm->u.d.u.buffer.buffer_size;
		status = &interface->instream_host_buffer_status[phm->
			obj_index];
		status->samples_processed = 0;
		status->stream_state = HPI_STATE_STOPPED;
		status->dsp_index = 0;
		status->host_index = status->dsp_index;
		status->size_in_bytes = phm->u.d.u.buffer.buffer_size;
		status->auxiliary_data_available = 0;

		hw_message(pao, phm, phr);

		if (phr->error
			&& hpios_locked_mem_valid(&phw->
				instream_host_buffers[phm->obj_index])) {
			hpios_locked_mem_free(&phw->instream_host_buffers
				[phm->obj_index]);
			phw->instream_host_buffer_size[phm->obj_index] = 0;
		}
	}
}

static void instream_host_buffer_get_info(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	struct hpi_hw_obj *phw = pao->priv;
	struct bus_master_interface *interface = phw->p_interface_buffer;
	struct hpi_hostbuffer_status *status;
	u8 *p_bbm_data;

	if (hpios_locked_mem_valid(&phw->instream_host_buffers[phm->
				obj_index])) {
		if (hpios_locked_mem_get_virt_addr(&phw->
				instream_host_buffers[phm->obj_index],
				(void *)&p_bbm_data)) {
			phr->error = HPI_ERROR_INVALID_OPERATION;
			return;
		}
		status = &interface->instream_host_buffer_status[phm->
			obj_index];
		hpi_init_response(phr, HPI_OBJ_ISTREAM,
			HPI_ISTREAM_HOSTBUFFER_GET_INFO, 0);
		phr->u.d.u.hostbuffer_info.p_buffer = p_bbm_data;
		phr->u.d.u.hostbuffer_info.p_status = status;
	} else {
		hpi_init_response(phr, HPI_OBJ_ISTREAM,
			HPI_ISTREAM_HOSTBUFFER_GET_INFO,
			HPI_ERROR_INVALID_OPERATION);
	}
}

static void instream_host_buffer_free(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	struct hpi_hw_obj *phw = pao->priv;
	u32 command = phm->u.d.u.buffer.command;

	if (phw->instream_host_buffer_size[phm->obj_index]) {
		if (command == HPI_BUFFER_CMD_EXTERNAL
			|| command == HPI_BUFFER_CMD_INTERNAL_REVOKEADAPTER) {
			phw->instream_host_buffer_size[phm->obj_index] = 0;
			hw_message(pao, phm, phr);
		}

		if (command == HPI_BUFFER_CMD_EXTERNAL
			|| command == HPI_BUFFER_CMD_INTERNAL_FREE)
			hpios_locked_mem_free(&phw->instream_host_buffers
				[phm->obj_index]);

	} else {
		/* Should HPI_ERROR_INVALID_OPERATION be returned
		   if no host buffer is allocated? */
		hpi_init_response(phr, HPI_OBJ_ISTREAM,
			HPI_ISTREAM_HOSTBUFFER_FREE, 0);

	}

}

static void instream_start(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	hw_message(pao, phm, phr);
}

static u32 instream_get_bytes_available(struct hpi_hostbuffer_status *status)
{
	return status->dsp_index - status->host_index;
}

static void instream_read(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	struct hpi_hw_obj *phw = pao->priv;
	struct bus_master_interface *interface = phw->p_interface_buffer;
	struct hpi_hostbuffer_status *status;
	u32 data_available;
	u8 *p_bbm_data;
	u32 l_first_read;
	u8 *p_app_data = (u8 *)phm->u.d.u.data.pb_data;

	if (!phw->instream_host_buffer_size[phm->obj_index]) {
		hw_message(pao, phm, phr);
		return;
	}
	hpi_init_response(phr, phm->object, phm->function, 0);

	status = &interface->instream_host_buffer_status[phm->obj_index];
	data_available = instream_get_bytes_available(status);
	if (data_available < phm->u.d.u.data.data_size) {
		phr->error = HPI_ERROR_INVALID_DATASIZE;
		return;
	}

	if (hpios_locked_mem_valid(&phw->instream_host_buffers[phm->
				obj_index])) {
		if (hpios_locked_mem_get_virt_addr(&phw->
				instream_host_buffers[phm->obj_index],
				(void *)&p_bbm_data)) {
			phr->error = HPI_ERROR_INVALID_OPERATION;
			return;
		}

		/* either all data,
		   or enough to fit from current to end of BBM buffer */
		l_first_read =
			min(phm->u.d.u.data.data_size,
			status->size_in_bytes -
			(status->host_index & (status->size_in_bytes - 1)));

		memcpy(p_app_data,
			p_bbm_data +
			(status->host_index & (status->size_in_bytes - 1)),
			l_first_read);
		/* remaining data if any */
		memcpy(p_app_data + l_first_read, p_bbm_data,
			phm->u.d.u.data.data_size - l_first_read);
	}
	status->host_index += phm->u.d.u.data.data_size;
}

static void instream_get_info(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	struct hpi_hw_obj *phw = pao->priv;
	struct bus_master_interface *interface = phw->p_interface_buffer;
	struct hpi_hostbuffer_status *status;
	if (!phw->instream_host_buffer_size[phm->obj_index]) {
		hw_message(pao, phm, phr);
		return;
	}

	status = &interface->instream_host_buffer_status[phm->obj_index];

	hpi_init_response(phr, phm->object, phm->function, 0);

	phr->u.d.u.stream_info.state = (u16)status->stream_state;
	phr->u.d.u.stream_info.samples_transferred =
		status->samples_processed;
	phr->u.d.u.stream_info.buffer_size = status->size_in_bytes;
	phr->u.d.u.stream_info.data_available =
		instream_get_bytes_available(status);
	phr->u.d.u.stream_info.auxiliary_data_available =
		status->auxiliary_data_available;
}

/*****************************************************************************/
/* LOW-LEVEL */
#define HPI6205_MAX_FILES_TO_LOAD 2

static u16 adapter_boot_load_dsp(struct hpi_adapter_obj *pao,
	u32 *pos_error_code)
{
	struct hpi_hw_obj *phw = pao->priv;
	struct dsp_code dsp_code;
	u16 boot_code_id[HPI6205_MAX_FILES_TO_LOAD];
	u32 temp;
	int dsp = 0, i = 0;
	u16 err = 0;

	boot_code_id[0] = HPI_ADAPTER_ASI(0x6205);

	boot_code_id[1] = pao->pci.pci_dev->subsystem_device;
	boot_code_id[1] = HPI_ADAPTER_FAMILY_ASI(boot_code_id[1]);

	/* fix up cases where bootcode id[1] != subsys id */
	switch (boot_code_id[1]) {
	case HPI_ADAPTER_FAMILY_ASI(0x5000):
		boot_code_id[0] = boot_code_id[1];
		boot_code_id[1] = 0;
		break;
	case HPI_ADAPTER_FAMILY_ASI(0x5300):
	case HPI_ADAPTER_FAMILY_ASI(0x5400):
	case HPI_ADAPTER_FAMILY_ASI(0x6300):
		boot_code_id[1] = HPI_ADAPTER_FAMILY_ASI(0x6400);
		break;
	case HPI_ADAPTER_FAMILY_ASI(0x5500):
	case HPI_ADAPTER_FAMILY_ASI(0x5600):
	case HPI_ADAPTER_FAMILY_ASI(0x6500):
		boot_code_id[1] = HPI_ADAPTER_FAMILY_ASI(0x6600);
		break;
	case HPI_ADAPTER_FAMILY_ASI(0x8800):
		boot_code_id[1] = HPI_ADAPTER_FAMILY_ASI(0x8900);
		break;
	default:
		break;
	}

	/* reset DSP by writing a 1 to the WARMRESET bit */
	temp = C6205_HDCR_WARMRESET;
	iowrite32(temp, phw->prHDCR);
	hpios_delay_micro_seconds(1000);

	/* check that PCI i/f was configured by EEPROM */
	temp = ioread32(phw->prHSR);
	if ((temp & (C6205_HSR_CFGERR | C6205_HSR_EEREAD)) !=
		C6205_HSR_EEREAD)
		return HPI6205_ERROR_6205_EEPROM;
	temp |= 0x04;
	/* disable PINTA interrupt */
	iowrite32(temp, phw->prHSR);

	/* check control register reports PCI boot mode */
	temp = ioread32(phw->prHDCR);
	if (!(temp & C6205_HDCR_PCIBOOT))
		return HPI6205_ERROR_6205_REG;

	/* try writing a few numbers to the DSP page register */
	/* and reading them back. */
	temp = 3;
	iowrite32(temp, phw->prDSPP);
	if ((temp | C6205_DSPP_MAP1) != ioread32(phw->prDSPP))
		return HPI6205_ERROR_6205_DSPPAGE;
	temp = 2;
	iowrite32(temp, phw->prDSPP);
	if ((temp | C6205_DSPP_MAP1) != ioread32(phw->prDSPP))
		return HPI6205_ERROR_6205_DSPPAGE;
	temp = 1;
	iowrite32(temp, phw->prDSPP);
	if ((temp | C6205_DSPP_MAP1) != ioread32(phw->prDSPP))
		return HPI6205_ERROR_6205_DSPPAGE;
	/* reset DSP page to the correct number */
	temp = 0;
	iowrite32(temp, phw->prDSPP);
	if ((temp | C6205_DSPP_MAP1) != ioread32(phw->prDSPP))
		return HPI6205_ERROR_6205_DSPPAGE;
	phw->dsp_page = 0;

	/* release 6713 from reset before 6205 is bootloaded.
	   This ensures that the EMIF is inactive,
	   and the 6713 HPI gets the correct bootmode etc
	 */
	if (boot_code_id[1] != 0) {
		/* DSP 1 is a C6713 */
		/* CLKX0 <- '1' release the C6205 bootmode pulldowns */
		boot_loader_write_mem32(pao, 0, 0x018C0024, 0x00002202);
		hpios_delay_micro_seconds(100);
		/* Reset the 6713 #1 - revB */
		boot_loader_write_mem32(pao, 0, C6205_BAR0_TIMER1_CTL, 0);
		/* value of bit 3 is unknown after DSP reset, other bits shoudl be 0 */
		if (0 != (boot_loader_read_mem32(pao, 0,
					(C6205_BAR0_TIMER1_CTL)) & ~8))
			return HPI6205_ERROR_6205_REG;
		hpios_delay_micro_seconds(100);

		/* Release C6713 from reset - revB */
		boot_loader_write_mem32(pao, 0, C6205_BAR0_TIMER1_CTL, 4);
		if (4 != (boot_loader_read_mem32(pao, 0,
					(C6205_BAR0_TIMER1_CTL)) & ~8))
			return HPI6205_ERROR_6205_REG;
		hpios_delay_micro_seconds(100);
	}

	for (dsp = 0; dsp < HPI6205_MAX_FILES_TO_LOAD; dsp++) {
		/* is there a DSP to load? */
		if (boot_code_id[dsp] == 0)
			continue;

		err = boot_loader_config_emif(pao, dsp);
		if (err)
			return err;

		err = boot_loader_test_internal_memory(pao, dsp);
		if (err)
			return err;

		err = boot_loader_test_external_memory(pao, dsp);
		if (err)
			return err;

		err = boot_loader_test_pld(pao, dsp);
		if (err)
			return err;

		/* write the DSP code down into the DSPs memory */
		err = hpi_dsp_code_open(boot_code_id[dsp], pao->pci.pci_dev,
			&dsp_code, pos_error_code);
		if (err)
			return err;

		while (1) {
			u32 length;
			u32 address;
			u32 type;
			u32 *pcode;

			err = hpi_dsp_code_read_word(&dsp_code, &length);
			if (err)
				break;
			if (length == 0xFFFFFFFF)
				break;	/* end of code */

			err = hpi_dsp_code_read_word(&dsp_code, &address);
			if (err)
				break;
			err = hpi_dsp_code_read_word(&dsp_code, &type);
			if (err)
				break;
			err = hpi_dsp_code_read_block(length, &dsp_code,
				&pcode);
			if (err)
				break;
			for (i = 0; i < (int)length; i++) {
				boot_loader_write_mem32(pao, dsp, address,
					*pcode);
				/* dummy read every 4 words */
				/* for 6205 advisory 1.4.4 */
				if (i % 4 == 0)
					boot_loader_read_mem32(pao, dsp,
						address);
				pcode++;
				address += 4;
			}

		}
		if (err) {
			hpi_dsp_code_close(&dsp_code);
			return err;
		}

		/* verify code */
		hpi_dsp_code_rewind(&dsp_code);
		while (1) {
			u32 length = 0;
			u32 address = 0;
			u32 type = 0;
			u32 *pcode = NULL;
			u32 data = 0;

			hpi_dsp_code_read_word(&dsp_code, &length);
			if (length == 0xFFFFFFFF)
				break;	/* end of code */

			hpi_dsp_code_read_word(&dsp_code, &address);
			hpi_dsp_code_read_word(&dsp_code, &type);
			hpi_dsp_code_read_block(length, &dsp_code, &pcode);

			for (i = 0; i < (int)length; i++) {
				data = boot_loader_read_mem32(pao, dsp,
					address);
				if (data != *pcode) {
					err = 0;
					break;
				}
				pcode++;
				address += 4;
			}
			if (err)
				break;
		}
		hpi_dsp_code_close(&dsp_code);
		if (err)
			return err;
	}

	/* After bootloading all DSPs, start DSP0 running
	 * The DSP0 code will handle starting and synchronizing with its slaves
	 */
	if (phw->p_interface_buffer) {
		/* we need to tell the card the physical PCI address */
		u32 physicalPC_iaddress;
		struct bus_master_interface *interface =
			phw->p_interface_buffer;
		u32 host_mailbox_address_on_dsp;
		u32 physicalPC_iaddress_verify = 0;
		int time_out = 10;
		/* set ack so we know when DSP is ready to go */
		/* (dwDspAck will be changed to HIF_RESET) */
		interface->dsp_ack = H620_HIF_UNKNOWN;
		wmb();	/* ensure ack is written before dsp writes back */

		err = hpios_locked_mem_get_phys_addr(&phw->h_locked_mem,
			&physicalPC_iaddress);

		/* locate the host mailbox on the DSP. */
		host_mailbox_address_on_dsp = 0x80000000;
		while ((physicalPC_iaddress != physicalPC_iaddress_verify)
			&& time_out--) {
			boot_loader_write_mem32(pao, 0,
				host_mailbox_address_on_dsp,
				physicalPC_iaddress);
			physicalPC_iaddress_verify =
				boot_loader_read_mem32(pao, 0,
				host_mailbox_address_on_dsp);
		}
	}
	HPI_DEBUG_LOG(DEBUG, "starting DS_ps running\n");
	/* enable interrupts */
	temp = ioread32(phw->prHSR);
	temp &= ~(u32)C6205_HSR_INTAM;
	iowrite32(temp, phw->prHSR);

	/* start code running... */
	temp = ioread32(phw->prHDCR);
	temp |= (u32)C6205_HDCR_DSPINT;
	iowrite32(temp, phw->prHDCR);

	/* give the DSP 10ms to start up */
	hpios_delay_micro_seconds(10000);
	return err;

}

/*****************************************************************************/
/* Bootloader utility functions */

static u32 boot_loader_read_mem32(struct hpi_adapter_obj *pao, int dsp_index,
	u32 address)
{
	struct hpi_hw_obj *phw = pao->priv;
	u32 data = 0;
	__iomem u32 *p_data;

	if (dsp_index == 0) {
		/* DSP 0 is always C6205 */
		if ((address >= 0x01800000) & (address < 0x02000000)) {
			/* BAR1 register access */
			p_data = pao->pci.ap_mem_base[1] +
				(address & 0x007fffff) /
				sizeof(*pao->pci.ap_mem_base[1]);
			/* HPI_DEBUG_LOG(WARNING,
			   "BAR1 access %08x\n", dwAddress); */
		} else {
			u32 dw4M_page = address >> 22L;
			if (dw4M_page != phw->dsp_page) {
				phw->dsp_page = dw4M_page;
				/* *INDENT OFF* */
				iowrite32(phw->dsp_page, phw->prDSPP);
				/* *INDENT-ON* */
			}
			address &= 0x3fffff;	/* address within 4M page */
			/* BAR0 memory access */
			p_data = pao->pci.ap_mem_base[0] +
				address / sizeof(u32);
		}
		data = ioread32(p_data);
	} else if (dsp_index == 1) {
		/* DSP 1 is a C6713 */
		u32 lsb;
		boot_loader_write_mem32(pao, 0, HPIAL_ADDR, address);
		boot_loader_write_mem32(pao, 0, HPIAH_ADDR, address >> 16);
		lsb = boot_loader_read_mem32(pao, 0, HPIDL_ADDR);
		data = boot_loader_read_mem32(pao, 0, HPIDH_ADDR);
		data = (data << 16) | (lsb & 0xFFFF);
	}
	return data;
}

static void boot_loader_write_mem32(struct hpi_adapter_obj *pao,
	int dsp_index, u32 address, u32 data)
{
	struct hpi_hw_obj *phw = pao->priv;
	__iomem u32 *p_data;
	/*      u32 dwVerifyData=0; */

	if (dsp_index == 0) {
		/* DSP 0 is always C6205 */
		if ((address >= 0x01800000) & (address < 0x02000000)) {
			/* BAR1 - DSP  register access using */
			/* Non-prefetchable PCI access */
			p_data = pao->pci.ap_mem_base[1] +
				(address & 0x007fffff) /
				sizeof(*pao->pci.ap_mem_base[1]);
		} else {
			/* BAR0 access - all of DSP memory using */
			/* pre-fetchable PCI access */
			u32 dw4M_page = address >> 22L;
			if (dw4M_page != phw->dsp_page) {
				phw->dsp_page = dw4M_page;
				/* *INDENT-OFF* */
				iowrite32(phw->dsp_page, phw->prDSPP);
				/* *INDENT-ON* */
			}
			address &= 0x3fffff;	/* address within 4M page */
			p_data = pao->pci.ap_mem_base[0] +
				address / sizeof(u32);
		}
		iowrite32(data, p_data);
	} else if (dsp_index == 1) {
		/* DSP 1 is a C6713 */
		boot_loader_write_mem32(pao, 0, HPIAL_ADDR, address);
		boot_loader_write_mem32(pao, 0, HPIAH_ADDR, address >> 16);

		/* dummy read every 4 words for 6205 advisory 1.4.4 */
		boot_loader_read_mem32(pao, 0, 0);

		boot_loader_write_mem32(pao, 0, HPIDL_ADDR, data);
		boot_loader_write_mem32(pao, 0, HPIDH_ADDR, data >> 16);

		/* dummy read every 4 words for 6205 advisory 1.4.4 */
		boot_loader_read_mem32(pao, 0, 0);
	}
}

static u16 boot_loader_config_emif(struct hpi_adapter_obj *pao, int dsp_index)
{
	if (dsp_index == 0) {
		u32 setting;

		/* DSP 0 is always C6205 */

		/* Set the EMIF */
		/* memory map of C6205 */
		/* 00000000-0000FFFF    16Kx32 internal program */
		/* 00400000-00BFFFFF    CE0     2Mx32 SDRAM running @ 100MHz */

		/* EMIF config */
		/*------------ */
		/* Global EMIF control */
		boot_loader_write_mem32(pao, dsp_index, 0x01800000, 0x3779);
#define WS_OFS 28
#define WST_OFS 22
#define WH_OFS 20
#define RS_OFS 16
#define RST_OFS 8
#define MTYPE_OFS 4
#define RH_OFS 0

		/* EMIF CE0 setup - 2Mx32 Sync DRAM on ASI5000 cards only */
		setting = 0x00000030;
		boot_loader_write_mem32(pao, dsp_index, 0x01800008, setting);
		if (setting != boot_loader_read_mem32(pao, dsp_index,
				0x01800008))
			return HPI6205_ERROR_DSP_EMIF1;

		/* EMIF CE1 setup - 32 bit async. This is 6713 #1 HPI, */
		/* which occupies D15..0. 6713 starts at 27MHz, so need */
		/* plenty of wait states. See dsn8701.rtf, and 6713 errata. */
		/* WST should be 71, but 63  is max possible */
		setting =
			(1L << WS_OFS) | (63L << WST_OFS) | (1L << WH_OFS) |
			(1L << RS_OFS) | (63L << RST_OFS) | (1L << RH_OFS) |
			(2L << MTYPE_OFS);
		boot_loader_write_mem32(pao, dsp_index, 0x01800004, setting);
		if (setting != boot_loader_read_mem32(pao, dsp_index,
				0x01800004))
			return HPI6205_ERROR_DSP_EMIF2;

		/* EMIF CE2 setup - 32 bit async. This is 6713 #2 HPI, */
		/* which occupies D15..0. 6713 starts at 27MHz, so need */
		/* plenty of wait states */
		setting =
			(1L << WS_OFS) | (28L << WST_OFS) | (1L << WH_OFS) |
			(1L << RS_OFS) | (63L << RST_OFS) | (1L << RH_OFS) |
			(2L << MTYPE_OFS);
		boot_loader_write_mem32(pao, dsp_index, 0x01800010, setting);
		if (setting != boot_loader_read_mem32(pao, dsp_index,
				0x01800010))
			return HPI6205_ERROR_DSP_EMIF3;

		/* EMIF CE3 setup - 32 bit async. */
		/* This is the PLD on the ASI5000 cards only */
		setting =
			(1L << WS_OFS) | (10L << WST_OFS) | (1L << WH_OFS) |
			(1L << RS_OFS) | (10L << RST_OFS) | (1L << RH_OFS) |
			(2L << MTYPE_OFS);
		boot_loader_write_mem32(pao, dsp_index, 0x01800014, setting);
		if (setting != boot_loader_read_mem32(pao, dsp_index,
				0x01800014))
			return HPI6205_ERROR_DSP_EMIF4;

		/* set EMIF SDRAM control for 2Mx32 SDRAM (512x32x4 bank) */
		/*  need to use this else DSP code crashes? */
		boot_loader_write_mem32(pao, dsp_index, 0x01800018,
			0x07117000);

		/* EMIF SDRAM Refresh Timing */
		/* EMIF SDRAM timing  (orig = 0x410, emulator = 0x61a) */
		boot_loader_write_mem32(pao, dsp_index, 0x0180001C,
			0x00000410);

	} else if (dsp_index == 1) {
		/* test access to the C6713s HPI registers */
		u32 write_data = 0, read_data = 0, i = 0;

		/* Set up HPIC for little endian, by setiing HPIC:HWOB=1 */
		write_data = 1;
		boot_loader_write_mem32(pao, 0, HPICL_ADDR, write_data);
		boot_loader_write_mem32(pao, 0, HPICH_ADDR, write_data);
		/* C67 HPI is on lower 16bits of 32bit EMIF */
		read_data =
			0xFFF7 & boot_loader_read_mem32(pao, 0, HPICL_ADDR);
		if (write_data != read_data) {
			HPI_DEBUG_LOG(ERROR, "HPICL %x %x\n", write_data,
				read_data);
			return HPI6205_ERROR_C6713_HPIC;
		}
		/* HPIA - walking ones test */
		write_data = 1;
		for (i = 0; i < 32; i++) {
			boot_loader_write_mem32(pao, 0, HPIAL_ADDR,
				write_data);
			boot_loader_write_mem32(pao, 0, HPIAH_ADDR,
				(write_data >> 16));
			read_data =
				0xFFFF & boot_loader_read_mem32(pao, 0,
				HPIAL_ADDR);
			read_data =
				read_data | ((0xFFFF &
					boot_loader_read_mem32(pao, 0,
						HPIAH_ADDR))
				<< 16);
			if (read_data != write_data) {
				HPI_DEBUG_LOG(ERROR, "HPIA %x %x\n",
					write_data, read_data);
				return HPI6205_ERROR_C6713_HPIA;
			}
			write_data = write_data << 1;
		}

		/* setup C67x PLL
		 *  ** C6713 datasheet says we cannot program PLL from HPI,
		 * and indeed if we try to set the PLL multiply from the HPI,
		 * the PLL does not seem to lock, so we enable the PLL and
		 * use the default multiply of x 7, which for a 27MHz clock
		 * gives a DSP speed of 189MHz
		 */
		/* bypass PLL */
		boot_loader_write_mem32(pao, dsp_index, 0x01B7C100, 0x0000);
		hpios_delay_micro_seconds(1000);
		/* EMIF = 189/3=63MHz */
		boot_loader_write_mem32(pao, dsp_index, 0x01B7C120, 0x8002);
		/* peri = 189/2 */
		boot_loader_write_mem32(pao, dsp_index, 0x01B7C11C, 0x8001);
		/* cpu  = 189/1 */
		boot_loader_write_mem32(pao, dsp_index, 0x01B7C118, 0x8000);
		hpios_delay_micro_seconds(1000);
		/* ** SGT test to take GPO3 high when we start the PLL */
		/* and low when the delay is completed */
		/* FSX0 <- '1' (GPO3) */
		boot_loader_write_mem32(pao, 0, (0x018C0024L), 0x00002A0A);
		/* PLL not bypassed */
		boot_loader_write_mem32(pao, dsp_index, 0x01B7C100, 0x0001);
		hpios_delay_micro_seconds(1000);
		/* FSX0 <- '0' (GPO3) */
		boot_loader_write_mem32(pao, 0, (0x018C0024L), 0x00002A02);

		/* 6205 EMIF CE1 resetup - 32 bit async. */
		/* Now 6713 #1 is running at 189MHz can reduce waitstates */
		boot_loader_write_mem32(pao, 0, 0x01800004,	/* CE1 */
			(1L << WS_OFS) | (8L << WST_OFS) | (1L << WH_OFS) |
			(1L << RS_OFS) | (12L << RST_OFS) | (1L << RH_OFS) |
			(2L << MTYPE_OFS));

		hpios_delay_micro_seconds(1000);

		/* check that we can read one of the PLL registers */
		/* PLL should not be bypassed! */
		if ((boot_loader_read_mem32(pao, dsp_index, 0x01B7C100) & 0xF)
			!= 0x0001) {
			return HPI6205_ERROR_C6713_PLL;
		}
		/* setup C67x EMIF  (note this is the only use of
		   BAR1 via BootLoader_WriteMem32) */
		boot_loader_write_mem32(pao, dsp_index, C6713_EMIF_GCTL,
			0x000034A8);

		/* EMIF CE0 setup - 2Mx32 Sync DRAM
		   31..28       Wr setup
		   27..22       Wr strobe
		   21..20       Wr hold
		   19..16       Rd setup
		   15..14       -
		   13..8        Rd strobe
		   7..4         MTYPE   0011            Sync DRAM 32bits
		   3            Wr hold MSB
		   2..0         Rd hold
		 */
		boot_loader_write_mem32(pao, dsp_index, C6713_EMIF_CE0,
			0x00000030);

		/* EMIF SDRAM Extension
		   0x00
		   31-21        0000b 0000b 000b
		   20           WR2RD = 2cycles-1  = 1b

		   19-18        WR2DEAC = 3cycle-1 = 10b
		   17           WR2WR = 2cycle-1   = 1b
		   16-15        R2WDQM = 4cycle-1  = 11b
		   14-12        RD2WR = 6cycles-1  = 101b

		   11-10        RD2DEAC = 4cycle-1 = 11b
		   9            RD2RD = 2cycle-1   = 1b
		   8-7          THZP = 3cycle-1    = 10b
		   6-5          TWR  = 2cycle-1    = 01b (tWR = 17ns)
		   4            TRRD = 2cycle      = 0b  (tRRD = 14ns)
		   3-1          TRAS = 5cycle-1    = 100b (Tras=42ns)
		   1            CAS latency = 3cyc = 1b
		   (for Micron 2M32-7 operating at 100MHz)
		 */
		boot_loader_write_mem32(pao, dsp_index, C6713_EMIF_SDRAMEXT,
			0x001BDF29);

		/* EMIF SDRAM control - set up for a 2Mx32 SDRAM (512x32x4 bank)
		   31           -       0b       -
		   30           SDBSZ   1b              4 bank
		   29..28       SDRSZ   00b             11 row address pins

		   27..26       SDCSZ   01b             8 column address pins
		   25           RFEN    1b              refersh enabled
		   24           INIT    1b              init SDRAM!

		   23..20       TRCD    0001b                   (Trcd/Tcyc)-1 = (20/10)-1 = 1

		   19..16       TRP     0001b                   (Trp/Tcyc)-1 = (20/10)-1 = 1

		   15..12       TRC     0110b                   (Trc/Tcyc)-1 = (70/10)-1 = 6

		   11..0        -       0000b 0000b 0000b
		 */
		boot_loader_write_mem32(pao, dsp_index, C6713_EMIF_SDRAMCTL,
			0x47116000);

		/* SDRAM refresh timing
		   Need 4,096 refresh cycles every 64ms = 15.625us = 1562cycles of 100MHz = 0x61A
		 */
		boot_loader_write_mem32(pao, dsp_index,
			C6713_EMIF_SDRAMTIMING, 0x00000410);

		hpios_delay_micro_seconds(1000);
	} else if (dsp_index == 2) {
		/* DSP 2 is a C6713 */
	}

	return 0;
}

static u16 boot_loader_test_memory(struct hpi_adapter_obj *pao, int dsp_index,
	u32 start_address, u32 length)
{
	u32 i = 0, j = 0;
	u32 test_addr = 0;
	u32 test_data = 0, data = 0;

	length = 1000;

	/* for 1st word, test each bit in the 32bit word, */
	/* dwLength specifies number of 32bit words to test */
	/*for(i=0; i<dwLength; i++) */
	i = 0;
	{
		test_addr = start_address + i * 4;
		test_data = 0x00000001;
		for (j = 0; j < 32; j++) {
			boot_loader_write_mem32(pao, dsp_index, test_addr,
				test_data);
			data = boot_loader_read_mem32(pao, dsp_index,
				test_addr);
			if (data != test_data) {
				HPI_DEBUG_LOG(VERBOSE,
					"Memtest error details  "
					"%08x %08x %08x %i\n", test_addr,
					test_data, data, dsp_index);
				return 1;	/* error */
			}
			test_data = test_data << 1;
		}	/* for(j) */
	}	/* for(i) */

	/* for the next 100 locations test each location, leaving it as zero */
	/* write a zero to the next word in memory before we read */
	/* the previous write to make sure every memory location is unique */
	for (i = 0; i < 100; i++) {
		test_addr = start_address + i * 4;
		test_data = 0xA5A55A5A;
		boot_loader_write_mem32(pao, dsp_index, test_addr, test_data);
		boot_loader_write_mem32(pao, dsp_index, test_addr + 4, 0);
		data = boot_loader_read_mem32(pao, dsp_index, test_addr);
		if (data != test_data) {
			HPI_DEBUG_LOG(VERBOSE,
				"Memtest error details  "
				"%08x %08x %08x %i\n", test_addr, test_data,
				data, dsp_index);
			return 1;	/* error */
		}
		/* leave location as zero */
		boot_loader_write_mem32(pao, dsp_index, test_addr, 0x0);
	}

	/* zero out entire memory block */
	for (i = 0; i < length; i++) {
		test_addr = start_address + i * 4;
		boot_loader_write_mem32(pao, dsp_index, test_addr, 0x0);
	}
	return 0;
}

static u16 boot_loader_test_internal_memory(struct hpi_adapter_obj *pao,
	int dsp_index)
{
	int err = 0;
	if (dsp_index == 0) {
		/* DSP 0 is a C6205 */
		/* 64K prog mem */
		err = boot_loader_test_memory(pao, dsp_index, 0x00000000,
			0x10000);
		if (!err)
			/* 64K data mem */
			err = boot_loader_test_memory(pao, dsp_index,
				0x80000000, 0x10000);
	} else if (dsp_index == 1) {
		/* DSP 1 is a C6713 */
		/* 192K internal mem */
		err = boot_loader_test_memory(pao, dsp_index, 0x00000000,
			0x30000);
		if (!err)
			/* 64K internal mem / L2 cache */
			err = boot_loader_test_memory(pao, dsp_index,
				0x00030000, 0x10000);
	}

	if (err)
		return HPI6205_ERROR_DSP_INTMEM;
	else
		return 0;
}

static u16 boot_loader_test_external_memory(struct hpi_adapter_obj *pao,
	int dsp_index)
{
	u32 dRAM_start_address = 0;
	u32 dRAM_size = 0;

	if (dsp_index == 0) {
		/* only test for SDRAM if an ASI5000 card */
		if (pao->pci.pci_dev->subsystem_device == 0x5000) {
			/* DSP 0 is always C6205 */
			dRAM_start_address = 0x00400000;
			dRAM_size = 0x200000;
			/*dwDRAMinc=1024; */
		} else
			return 0;
	} else if (dsp_index == 1) {
		/* DSP 1 is a C6713 */
		dRAM_start_address = 0x80000000;
		dRAM_size = 0x200000;
		/*dwDRAMinc=1024; */
	}

	if (boot_loader_test_memory(pao, dsp_index, dRAM_start_address,
			dRAM_size))
		return HPI6205_ERROR_DSP_EXTMEM;
	return 0;
}

static u16 boot_loader_test_pld(struct hpi_adapter_obj *pao, int dsp_index)
{
	u32 data = 0;
	if (dsp_index == 0) {
		/* only test for DSP0 PLD on ASI5000 card */
		if (pao->pci.pci_dev->subsystem_device == 0x5000) {
			/* PLD is located at CE3=0x03000000 */
			data = boot_loader_read_mem32(pao, dsp_index,
				0x03000008);
			if ((data & 0xF) != 0x5)
				return HPI6205_ERROR_DSP_PLD;
			data = boot_loader_read_mem32(pao, dsp_index,
				0x0300000C);
			if ((data & 0xF) != 0xA)
				return HPI6205_ERROR_DSP_PLD;
		}
	} else if (dsp_index == 1) {
		/* DSP 1 is a C6713 */
		if (pao->pci.pci_dev->subsystem_device == 0x8700) {
			/* PLD is located at CE1=0x90000000 */
			data = boot_loader_read_mem32(pao, dsp_index,
				0x90000010);
			if ((data & 0xFF) != 0xAA)
				return HPI6205_ERROR_DSP_PLD;
			/* 8713 - LED on */
			boot_loader_write_mem32(pao, dsp_index, 0x90000000,
				0x02);
		}
	}
	return 0;
}

/** Transfer data to or from DSP
 nOperation = H620_H620_HIF_SEND_DATA or H620_HIF_GET_DATA
*/
static short hpi6205_transfer_data(struct hpi_adapter_obj *pao, u8 *p_data,
	u32 data_size, int operation)
{
	struct hpi_hw_obj *phw = pao->priv;
	u32 data_transferred = 0;
	u16 err = 0;
	u32 temp2;
	struct bus_master_interface *interface = phw->p_interface_buffer;

	if (!p_data)
		return HPI_ERROR_INVALID_DATA_POINTER;

	data_size &= ~3L;	/* round data_size down to nearest 4 bytes */

	/* make sure state is IDLE */
	if (!wait_dsp_ack(phw, H620_HIF_IDLE, HPI6205_TIMEOUT))
		return HPI_ERROR_DSP_HARDWARE;

	while (data_transferred < data_size) {
		u32 this_copy = data_size - data_transferred;

		if (this_copy > HPI6205_SIZEOF_DATA)
			this_copy = HPI6205_SIZEOF_DATA;

		if (operation == H620_HIF_SEND_DATA)
			memcpy((void *)&interface->u.b_data[0],
				&p_data[data_transferred], this_copy);

		interface->transfer_size_in_bytes = this_copy;

		/* DSP must change this back to nOperation */
		interface->dsp_ack = H620_HIF_IDLE;
		send_dsp_command(phw, operation);

		temp2 = wait_dsp_ack(phw, operation, HPI6205_TIMEOUT);
		HPI_DEBUG_LOG(DEBUG, "spun %d times for data xfer of %d\n",
			HPI6205_TIMEOUT - temp2, this_copy);

		if (!temp2) {
			/* timed out */
			HPI_DEBUG_LOG(ERROR,
				"Timed out waiting for " "state %d got %d\n",
				operation, interface->dsp_ack);

			break;
		}
		if (operation == H620_HIF_GET_DATA)
			memcpy(&p_data[data_transferred],
				(void *)&interface->u.b_data[0], this_copy);

		data_transferred += this_copy;
	}
	if (interface->dsp_ack != operation)
		HPI_DEBUG_LOG(DEBUG, "interface->dsp_ack=%d, expected %d\n",
			interface->dsp_ack, operation);
	/*                      err=HPI_ERROR_DSP_HARDWARE; */

	send_dsp_command(phw, H620_HIF_IDLE);

	return err;
}

/* wait for up to timeout_us microseconds for the DSP
   to signal state by DMA into dwDspAck
*/
static int wait_dsp_ack(struct hpi_hw_obj *phw, int state, int timeout_us)
{
	struct bus_master_interface *interface = phw->p_interface_buffer;
	int t = timeout_us / 4;

	rmb();	/* ensure interface->dsp_ack is up to date */
	while ((interface->dsp_ack != state) && --t) {
		hpios_delay_micro_seconds(4);
		rmb();	/* DSP changes dsp_ack by DMA */
	}

	/*HPI_DEBUG_LOG(VERBOSE, "Spun %d for %d\n", timeout_us/4-t, state); */
	return t * 4;
}

/* set the busmaster interface to cmd, then interrupt the DSP */
static void send_dsp_command(struct hpi_hw_obj *phw, int cmd)
{
	struct bus_master_interface *interface = phw->p_interface_buffer;
	u32 r;

	interface->host_cmd = cmd;
	wmb();	/* DSP gets state by DMA, make sure it is written to memory */
	/* before we interrupt the DSP */
	r = ioread32(phw->prHDCR);
	r |= (u32)C6205_HDCR_DSPINT;
	iowrite32(r, phw->prHDCR);
	r &= ~(u32)C6205_HDCR_DSPINT;
	iowrite32(r, phw->prHDCR);
}

static unsigned int message_count;

static u16 message_response_sequence(struct hpi_adapter_obj *pao,
	struct hpi_message *phm, struct hpi_response *phr)
{
	u32 time_out, time_out2;
	struct hpi_hw_obj *phw = pao->priv;
	struct bus_master_interface *interface = phw->p_interface_buffer;
	u16 err = 0;

	message_count++;
	if (phm->size > sizeof(interface->u.message_buffer)) {
		phr->error = HPI_ERROR_MESSAGE_BUFFER_TOO_SMALL;
		phr->specific_error = sizeof(interface->u.message_buffer);
		phr->size = sizeof(struct hpi_response_header);
		HPI_DEBUG_LOG(ERROR,
			"message len %d too big for buffer %zd \n", phm->size,
			sizeof(interface->u.message_buffer));
		return 0;
	}

	/* Assume buffer of type struct bus_master_interface_62
	   is allocated "noncacheable" */

	if (!wait_dsp_ack(phw, H620_HIF_IDLE, HPI6205_TIMEOUT)) {
		HPI_DEBUG_LOG(DEBUG, "timeout waiting for idle\n");
		return HPI6205_ERROR_MSG_RESP_IDLE_TIMEOUT;
	}

	memcpy(&interface->u.message_buffer, phm, phm->size);
	/* signal we want a response */
	send_dsp_command(phw, H620_HIF_GET_RESP);

	time_out2 = wait_dsp_ack(phw, H620_HIF_GET_RESP, HPI6205_TIMEOUT);

	if (!time_out2) {
		HPI_DEBUG_LOG(ERROR,
			"(%u) Timed out waiting for " "GET_RESP state [%x]\n",
			message_count, interface->dsp_ack);
	} else {
		HPI_DEBUG_LOG(VERBOSE,
			"(%u) transition to GET_RESP after %u\n",
			message_count, HPI6205_TIMEOUT - time_out2);
	}
	/* spin waiting on HIF interrupt flag (end of msg process) */
	time_out = HPI6205_TIMEOUT;

	/* read the result */
	if (time_out) {
		if (interface->u.response_buffer.response.size <= phr->size)
			memcpy(phr, &interface->u.response_buffer,
				interface->u.response_buffer.response.size);
		else {
			HPI_DEBUG_LOG(ERROR,
				"response len %d too big for buffer %d\n",
				interface->u.response_buffer.response.size,
				phr->size);
			memcpy(phr, &interface->u.response_buffer,
				sizeof(struct hpi_response_header));
			phr->error = HPI_ERROR_RESPONSE_BUFFER_TOO_SMALL;
			phr->specific_error =
				interface->u.response_buffer.response.size;
			phr->size = sizeof(struct hpi_response_header);
		}
	}
	/* set interface back to idle */
	send_dsp_command(phw, H620_HIF_IDLE);

	if (!time_out || !time_out2) {
		HPI_DEBUG_LOG(DEBUG, "something timed out!\n");
		return HPI6205_ERROR_MSG_RESP_TIMEOUT;
	}
	/* special case for adapter close - */
	/* wait for the DSP to indicate it is idle */
	if (phm->function == HPI_ADAPTER_CLOSE) {
		if (!wait_dsp_ack(phw, H620_HIF_IDLE, HPI6205_TIMEOUT)) {
			HPI_DEBUG_LOG(DEBUG,
				"Timeout waiting for idle "
				"(on adapter_close)\n");
			return HPI6205_ERROR_MSG_RESP_IDLE_TIMEOUT;
		}
	}
	err = hpi_validate_response(phm, phr);
	return err;
}

static void hw_message(struct hpi_adapter_obj *pao, struct hpi_message *phm,
	struct hpi_response *phr)
{

	u16 err = 0;

	hpios_dsplock_lock(pao);

	err = message_response_sequence(pao, phm, phr);

	/* maybe an error response */
	if (err) {
		/* something failed in the HPI/DSP interface */
		if (err >= HPI_ERROR_BACKEND_BASE) {
			phr->error = HPI_ERROR_DSP_COMMUNICATION;
			phr->specific_error = err;
		} else {
			phr->error = err;
		}

		pao->dsp_crashed++;

		/* just the header of the response is valid */
		phr->size = sizeof(struct hpi_response_header);
		goto err;
	} else
		pao->dsp_crashed = 0;

	if (phr->error != 0)	/* something failed in the DSP */
		goto err;

	switch (phm->function) {
	case HPI_OSTREAM_WRITE:
	case HPI_ISTREAM_ANC_WRITE:
		err = hpi6205_transfer_data(pao, phm->u.d.u.data.pb_data,
			phm->u.d.u.data.data_size, H620_HIF_SEND_DATA);
		break;

	case HPI_ISTREAM_READ:
	case HPI_OSTREAM_ANC_READ:
		err = hpi6205_transfer_data(pao, phm->u.d.u.data.pb_data,
			phm->u.d.u.data.data_size, H620_HIF_GET_DATA);
		break;

	}
	phr->error = err;

err:
	hpios_dsplock_unlock(pao);

	return;
}