#include "i915_drv.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_dp_link_training.h"
#define LT_MSG_PREFIX "[CONNECTOR:%d:%s][ENCODER:%d:%s][%s] "
#define LT_MSG_ARGS(_intel_dp, _dp_phy) (_intel_dp)->attached_connector->base.base.id, \
(_intel_dp)->attached_connector->base.name, \
dp_to_dig_port(_intel_dp)->base.base.base.id, \
dp_to_dig_port(_intel_dp)->base.base.name, \
drm_dp_phy_name(_dp_phy)
#define lt_dbg(_intel_dp, _dp_phy, _format, ...) \
drm_dbg_kms(&dp_to_i915(_intel_dp)->drm, \
LT_MSG_PREFIX _format, \
LT_MSG_ARGS(_intel_dp, _dp_phy), ## __VA_ARGS__)
#define lt_err(_intel_dp, _dp_phy, _format, ...) do { \
if (intel_digital_port_connected(&dp_to_dig_port(_intel_dp)->base)) \
drm_err(&dp_to_i915(_intel_dp)->drm, \
LT_MSG_PREFIX _format, \
LT_MSG_ARGS(_intel_dp, _dp_phy), ## __VA_ARGS__); \
else \
lt_dbg(_intel_dp, _dp_phy, "Sink disconnected: " _format, ## __VA_ARGS__); \
} while (0)
static void intel_dp_reset_lttpr_common_caps(struct intel_dp *intel_dp)
{
memset(intel_dp->lttpr_common_caps, 0, sizeof(intel_dp->lttpr_common_caps));
}
static void intel_dp_reset_lttpr_count(struct intel_dp *intel_dp)
{
intel_dp->lttpr_common_caps[DP_PHY_REPEATER_CNT -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV] = 0;
}
static u8 *intel_dp_lttpr_phy_caps(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
return intel_dp->lttpr_phy_caps[dp_phy - DP_PHY_LTTPR1];
}
static void intel_dp_read_lttpr_phy_caps(struct intel_dp *intel_dp,
const u8 dpcd[DP_RECEIVER_CAP_SIZE],
enum drm_dp_phy dp_phy)
{
u8 *phy_caps = intel_dp_lttpr_phy_caps(intel_dp, dp_phy);
if (drm_dp_read_lttpr_phy_caps(&intel_dp->aux, dpcd, dp_phy, phy_caps) < 0) {
lt_dbg(intel_dp, dp_phy, "failed to read the PHY caps\n");
return;
}
lt_dbg(intel_dp, dp_phy, "PHY capabilities: %*ph\n",
(int)sizeof(intel_dp->lttpr_phy_caps[0]),
phy_caps);
}
static bool intel_dp_read_lttpr_common_caps(struct intel_dp *intel_dp,
const u8 dpcd[DP_RECEIVER_CAP_SIZE])
{
int ret;
ret = drm_dp_read_lttpr_common_caps(&intel_dp->aux, dpcd,
intel_dp->lttpr_common_caps);
if (ret < 0)
goto reset_caps;
lt_dbg(intel_dp, DP_PHY_DPRX, "LTTPR common capabilities: %*ph\n",
(int)sizeof(intel_dp->lttpr_common_caps),
intel_dp->lttpr_common_caps);
if (intel_dp->lttpr_common_caps[0] < 0x14)
goto reset_caps;
return true;
reset_caps:
intel_dp_reset_lttpr_common_caps(intel_dp);
return false;
}
static bool
intel_dp_set_lttpr_transparent_mode(struct intel_dp *intel_dp, bool enable)
{
u8 val = enable ? DP_PHY_REPEATER_MODE_TRANSPARENT :
DP_PHY_REPEATER_MODE_NON_TRANSPARENT;
return drm_dp_dpcd_write(&intel_dp->aux, DP_PHY_REPEATER_MODE, &val, 1) == 1;
}
static int intel_dp_init_lttpr(struct intel_dp *intel_dp, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
{
int lttpr_count;
int i;
if (!intel_dp_read_lttpr_common_caps(intel_dp, dpcd))
return 0;
lttpr_count = drm_dp_lttpr_count(intel_dp->lttpr_common_caps);
if (lttpr_count == 0)
return 0;
intel_dp_set_lttpr_transparent_mode(intel_dp, true);
if (lttpr_count < 0)
return 0;
if (!intel_dp_set_lttpr_transparent_mode(intel_dp, false)) {
lt_dbg(intel_dp, DP_PHY_DPRX,
"Switching to LTTPR non-transparent LT mode failed, fall-back to transparent mode\n");
intel_dp_set_lttpr_transparent_mode(intel_dp, true);
intel_dp_reset_lttpr_count(intel_dp);
return 0;
}
for (i = 0; i < lttpr_count; i++)
intel_dp_read_lttpr_phy_caps(intel_dp, dpcd, DP_PHY_LTTPR(i));
return lttpr_count;
}
int intel_dp_init_lttpr_and_dprx_caps(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int lttpr_count = 0;
if (!intel_dp_is_edp(intel_dp) &&
(DISPLAY_VER(i915) >= 10 && !IS_GEMINILAKE(i915))) {
u8 dpcd[DP_RECEIVER_CAP_SIZE];
if (drm_dp_dpcd_probe(&intel_dp->aux, DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV))
return -EIO;
if (drm_dp_read_dpcd_caps(&intel_dp->aux, dpcd))
return -EIO;
lttpr_count = intel_dp_init_lttpr(intel_dp, dpcd);
}
if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd)) {
intel_dp_reset_lttpr_common_caps(intel_dp);
return -EIO;
}
return lttpr_count;
}
static u8 dp_voltage_max(u8 preemph)
{
switch (preemph & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
return DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
default:
return DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
}
}
static u8 intel_dp_lttpr_voltage_max(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
const u8 *phy_caps = intel_dp_lttpr_phy_caps(intel_dp, dp_phy);
if (drm_dp_lttpr_voltage_swing_level_3_supported(phy_caps))
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
else
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
}
static u8 intel_dp_lttpr_preemph_max(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
const u8 *phy_caps = intel_dp_lttpr_phy_caps(intel_dp, dp_phy);
if (drm_dp_lttpr_pre_emphasis_level_3_supported(phy_caps))
return DP_TRAIN_PRE_EMPH_LEVEL_3;
else
return DP_TRAIN_PRE_EMPH_LEVEL_2;
}
static bool
intel_dp_phy_is_downstream_of_source(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int lttpr_count = drm_dp_lttpr_count(intel_dp->lttpr_common_caps);
drm_WARN_ON_ONCE(&i915->drm, lttpr_count <= 0 && dp_phy != DP_PHY_DPRX);
return lttpr_count <= 0 || dp_phy == DP_PHY_LTTPR(lttpr_count - 1);
}
static u8 intel_dp_phy_voltage_max(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
u8 voltage_max;
if (intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy))
voltage_max = intel_dp->voltage_max(intel_dp, crtc_state);
else
voltage_max = intel_dp_lttpr_voltage_max(intel_dp, dp_phy + 1);
drm_WARN_ON_ONCE(&i915->drm,
voltage_max != DP_TRAIN_VOLTAGE_SWING_LEVEL_2 &&
voltage_max != DP_TRAIN_VOLTAGE_SWING_LEVEL_3);
return voltage_max;
}
static u8 intel_dp_phy_preemph_max(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
u8 preemph_max;
if (intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy))
preemph_max = intel_dp->preemph_max(intel_dp);
else
preemph_max = intel_dp_lttpr_preemph_max(intel_dp, dp_phy + 1);
drm_WARN_ON_ONCE(&i915->drm,
preemph_max != DP_TRAIN_PRE_EMPH_LEVEL_2 &&
preemph_max != DP_TRAIN_PRE_EMPH_LEVEL_3);
return preemph_max;
}
static bool has_per_lane_signal_levels(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
return !intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy) ||
DISPLAY_VER(i915) >= 11;
}
static u8 intel_dp_get_lane_adjust_tx_ffe_preset(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE],
int lane)
{
u8 tx_ffe = 0;
if (has_per_lane_signal_levels(intel_dp, dp_phy)) {
lane = min(lane, crtc_state->lane_count - 1);
tx_ffe = drm_dp_get_adjust_tx_ffe_preset(link_status, lane);
} else {
for (lane = 0; lane < crtc_state->lane_count; lane++)
tx_ffe = max(tx_ffe, drm_dp_get_adjust_tx_ffe_preset(link_status, lane));
}
return tx_ffe;
}
static u8 intel_dp_get_lane_adjust_vswing_preemph(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE],
int lane)
{
u8 v = 0;
u8 p = 0;
u8 voltage_max;
u8 preemph_max;
if (has_per_lane_signal_levels(intel_dp, dp_phy)) {
lane = min(lane, crtc_state->lane_count - 1);
v = drm_dp_get_adjust_request_voltage(link_status, lane);
p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
} else {
for (lane = 0; lane < crtc_state->lane_count; lane++) {
v = max(v, drm_dp_get_adjust_request_voltage(link_status, lane));
p = max(p, drm_dp_get_adjust_request_pre_emphasis(link_status, lane));
}
}
preemph_max = intel_dp_phy_preemph_max(intel_dp, dp_phy);
if (p >= preemph_max)
p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
v = min(v, dp_voltage_max(p));
voltage_max = intel_dp_phy_voltage_max(intel_dp, crtc_state, dp_phy);
if (v >= voltage_max)
v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
return v | p;
}
static u8 intel_dp_get_lane_adjust_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE],
int lane)
{
if (intel_dp_is_uhbr(crtc_state))
return intel_dp_get_lane_adjust_tx_ffe_preset(intel_dp, crtc_state,
dp_phy, link_status, lane);
else
return intel_dp_get_lane_adjust_vswing_preemph(intel_dp, crtc_state,
dp_phy, link_status, lane);
}
#define TRAIN_REQ_FMT "%d/%d/%d/%d"
#define _TRAIN_REQ_VSWING_ARGS(link_status, lane) \
(drm_dp_get_adjust_request_voltage((link_status), (lane)) >> DP_TRAIN_VOLTAGE_SWING_SHIFT)
#define TRAIN_REQ_VSWING_ARGS(link_status) \
_TRAIN_REQ_VSWING_ARGS(link_status, 0), \
_TRAIN_REQ_VSWING_ARGS(link_status, 1), \
_TRAIN_REQ_VSWING_ARGS(link_status, 2), \
_TRAIN_REQ_VSWING_ARGS(link_status, 3)
#define _TRAIN_REQ_PREEMPH_ARGS(link_status, lane) \
(drm_dp_get_adjust_request_pre_emphasis((link_status), (lane)) >> DP_TRAIN_PRE_EMPHASIS_SHIFT)
#define TRAIN_REQ_PREEMPH_ARGS(link_status) \
_TRAIN_REQ_PREEMPH_ARGS(link_status, 0), \
_TRAIN_REQ_PREEMPH_ARGS(link_status, 1), \
_TRAIN_REQ_PREEMPH_ARGS(link_status, 2), \
_TRAIN_REQ_PREEMPH_ARGS(link_status, 3)
#define _TRAIN_REQ_TX_FFE_ARGS(link_status, lane) \
drm_dp_get_adjust_tx_ffe_preset((link_status), (lane))
#define TRAIN_REQ_TX_FFE_ARGS(link_status) \
_TRAIN_REQ_TX_FFE_ARGS(link_status, 0), \
_TRAIN_REQ_TX_FFE_ARGS(link_status, 1), \
_TRAIN_REQ_TX_FFE_ARGS(link_status, 2), \
_TRAIN_REQ_TX_FFE_ARGS(link_status, 3)
void
intel_dp_get_adjust_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE])
{
int lane;
if (intel_dp_is_uhbr(crtc_state)) {
lt_dbg(intel_dp, dp_phy,
"128b/132b, lanes: %d, "
"TX FFE request: " TRAIN_REQ_FMT "\n",
crtc_state->lane_count,
TRAIN_REQ_TX_FFE_ARGS(link_status));
} else {
lt_dbg(intel_dp, dp_phy,
"8b/10b, lanes: %d, "
"vswing request: " TRAIN_REQ_FMT ", "
"pre-emphasis request: " TRAIN_REQ_FMT "\n",
crtc_state->lane_count,
TRAIN_REQ_VSWING_ARGS(link_status),
TRAIN_REQ_PREEMPH_ARGS(link_status));
}
for (lane = 0; lane < 4; lane++)
intel_dp->train_set[lane] =
intel_dp_get_lane_adjust_train(intel_dp, crtc_state,
dp_phy, link_status, lane);
}
static int intel_dp_training_pattern_set_reg(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
return dp_phy == DP_PHY_DPRX ?
DP_TRAINING_PATTERN_SET :
DP_TRAINING_PATTERN_SET_PHY_REPEATER(dp_phy);
}
static bool
intel_dp_set_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
u8 dp_train_pat)
{
int reg = intel_dp_training_pattern_set_reg(intel_dp, dp_phy);
u8 buf[sizeof(intel_dp->train_set) + 1];
int len;
intel_dp_program_link_training_pattern(intel_dp, crtc_state,
dp_phy, dp_train_pat);
buf[0] = dp_train_pat;
memcpy(buf + 1, intel_dp->train_set, crtc_state->lane_count);
len = crtc_state->lane_count + 1;
return drm_dp_dpcd_write(&intel_dp->aux, reg, buf, len) == len;
}
static char dp_training_pattern_name(u8 train_pat)
{
switch (train_pat) {
case DP_TRAINING_PATTERN_1:
case DP_TRAINING_PATTERN_2:
case DP_TRAINING_PATTERN_3:
return '0' + train_pat;
case DP_TRAINING_PATTERN_4:
return '4';
default:
MISSING_CASE(train_pat);
return '?';
}
}
void
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
u8 dp_train_pat)
{
u8 train_pat = intel_dp_training_pattern_symbol(dp_train_pat);
if (train_pat != DP_TRAINING_PATTERN_DISABLE)
lt_dbg(intel_dp, dp_phy, "Using DP training pattern TPS%c\n",
dp_training_pattern_name(train_pat));
intel_dp->set_link_train(intel_dp, crtc_state, dp_train_pat);
}
#define TRAIN_SET_FMT "%d%s/%d%s/%d%s/%d%s"
#define _TRAIN_SET_VSWING_ARGS(train_set) \
((train_set) & DP_TRAIN_VOLTAGE_SWING_MASK) >> DP_TRAIN_VOLTAGE_SWING_SHIFT, \
(train_set) & DP_TRAIN_MAX_SWING_REACHED ? "(max)" : ""
#define TRAIN_SET_VSWING_ARGS(train_set) \
_TRAIN_SET_VSWING_ARGS((train_set)[0]), \
_TRAIN_SET_VSWING_ARGS((train_set)[1]), \
_TRAIN_SET_VSWING_ARGS((train_set)[2]), \
_TRAIN_SET_VSWING_ARGS((train_set)[3])
#define _TRAIN_SET_PREEMPH_ARGS(train_set) \
((train_set) & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT, \
(train_set) & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ? "(max)" : ""
#define TRAIN_SET_PREEMPH_ARGS(train_set) \
_TRAIN_SET_PREEMPH_ARGS((train_set)[0]), \
_TRAIN_SET_PREEMPH_ARGS((train_set)[1]), \
_TRAIN_SET_PREEMPH_ARGS((train_set)[2]), \
_TRAIN_SET_PREEMPH_ARGS((train_set)[3])
#define _TRAIN_SET_TX_FFE_ARGS(train_set) \
((train_set) & DP_TX_FFE_PRESET_VALUE_MASK), ""
#define TRAIN_SET_TX_FFE_ARGS(train_set) \
_TRAIN_SET_TX_FFE_ARGS((train_set)[0]), \
_TRAIN_SET_TX_FFE_ARGS((train_set)[1]), \
_TRAIN_SET_TX_FFE_ARGS((train_set)[2]), \
_TRAIN_SET_TX_FFE_ARGS((train_set)[3])
void intel_dp_set_signal_levels(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
if (intel_dp_is_uhbr(crtc_state)) {
lt_dbg(intel_dp, dp_phy,
"128b/132b, lanes: %d, "
"TX FFE presets: " TRAIN_SET_FMT "\n",
crtc_state->lane_count,
TRAIN_SET_TX_FFE_ARGS(intel_dp->train_set));
} else {
lt_dbg(intel_dp, dp_phy,
"8b/10b, lanes: %d, "
"vswing levels: " TRAIN_SET_FMT ", "
"pre-emphasis levels: " TRAIN_SET_FMT "\n",
crtc_state->lane_count,
TRAIN_SET_VSWING_ARGS(intel_dp->train_set),
TRAIN_SET_PREEMPH_ARGS(intel_dp->train_set));
}
if (intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy))
encoder->set_signal_levels(encoder, crtc_state);
}
static bool
intel_dp_reset_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
u8 dp_train_pat)
{
memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
intel_dp_set_signal_levels(intel_dp, crtc_state, dp_phy);
return intel_dp_set_link_train(intel_dp, crtc_state, dp_phy, dp_train_pat);
}
static bool
intel_dp_update_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
int reg = dp_phy == DP_PHY_DPRX ?
DP_TRAINING_LANE0_SET :
DP_TRAINING_LANE0_SET_PHY_REPEATER(dp_phy);
int ret;
intel_dp_set_signal_levels(intel_dp, crtc_state, dp_phy);
ret = drm_dp_dpcd_write(&intel_dp->aux, reg,
intel_dp->train_set, crtc_state->lane_count);
return ret == crtc_state->lane_count;
}
static bool intel_dp_lane_max_tx_ffe_reached(u8 train_set_lane)
{
return (train_set_lane & DP_TX_FFE_PRESET_VALUE_MASK) ==
DP_TX_FFE_PRESET_VALUE_MASK;
}
static bool intel_dp_lane_max_vswing_reached(u8 train_set_lane)
{
u8 v = (train_set_lane & DP_TRAIN_VOLTAGE_SWING_MASK) >>
DP_TRAIN_VOLTAGE_SWING_SHIFT;
u8 p = (train_set_lane & DP_TRAIN_PRE_EMPHASIS_MASK) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT;
if ((train_set_lane & DP_TRAIN_MAX_SWING_REACHED) == 0)
return false;
if (v + p != 3)
return false;
return true;
}
static bool intel_dp_link_max_vswing_reached(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
int lane;
for (lane = 0; lane < crtc_state->lane_count; lane++) {
u8 train_set_lane = intel_dp->train_set[lane];
if (intel_dp_is_uhbr(crtc_state)) {
if (!intel_dp_lane_max_tx_ffe_reached(train_set_lane))
return false;
} else {
if (!intel_dp_lane_max_vswing_reached(train_set_lane))
return false;
}
}
return true;
}
static void
intel_dp_update_downspread_ctrl(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
u8 link_config[2];
link_config[0] = crtc_state->vrr.flipline ? DP_MSA_TIMING_PAR_IGNORE_EN : 0;
link_config[1] = intel_dp_is_uhbr(crtc_state) ?
DP_SET_ANSI_128B132B : DP_SET_ANSI_8B10B;
drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
}
static void
intel_dp_update_link_bw_set(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
u8 link_bw, u8 rate_select)
{
u8 link_config[2];
link_config[0] = link_bw;
link_config[1] = crtc_state->lane_count;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
if (!link_bw)
drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
&rate_select, 1);
}
static bool
intel_dp_prepare_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
u8 link_bw, rate_select;
if (intel_dp->prepare_link_retrain)
intel_dp->prepare_link_retrain(intel_dp, crtc_state);
intel_dp_compute_rate(intel_dp, crtc_state->port_clock,
&link_bw, &rate_select);
if (!link_bw) {
__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
lt_dbg(intel_dp, DP_PHY_DPRX, "Reloading eDP link rates\n");
drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
sink_rates, sizeof(sink_rates));
}
if (link_bw)
lt_dbg(intel_dp, DP_PHY_DPRX, "Using LINK_BW_SET value %02x\n",
link_bw);
else
lt_dbg(intel_dp, DP_PHY_DPRX,
"Using LINK_RATE_SET value %02x\n",
rate_select);
intel_dp_update_downspread_ctrl(intel_dp, crtc_state);
intel_dp_update_link_bw_set(intel_dp, crtc_state, link_bw,
rate_select);
return true;
}
static bool intel_dp_adjust_request_changed(const struct intel_crtc_state *crtc_state,
const u8 old_link_status[DP_LINK_STATUS_SIZE],
const u8 new_link_status[DP_LINK_STATUS_SIZE])
{
int lane;
for (lane = 0; lane < crtc_state->lane_count; lane++) {
u8 old, new;
if (intel_dp_is_uhbr(crtc_state)) {
old = drm_dp_get_adjust_tx_ffe_preset(old_link_status, lane);
new = drm_dp_get_adjust_tx_ffe_preset(new_link_status, lane);
} else {
old = drm_dp_get_adjust_request_voltage(old_link_status, lane) |
drm_dp_get_adjust_request_pre_emphasis(old_link_status, lane);
new = drm_dp_get_adjust_request_voltage(new_link_status, lane) |
drm_dp_get_adjust_request_pre_emphasis(new_link_status, lane);
}
if (old != new)
return true;
}
return false;
}
void
intel_dp_dump_link_status(struct intel_dp *intel_dp, enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE])
{
lt_dbg(intel_dp, dp_phy,
"ln0_1:0x%x ln2_3:0x%x align:0x%x sink:0x%x adj_req0_1:0x%x adj_req2_3:0x%x\n",
link_status[0], link_status[1], link_status[2],
link_status[3], link_status[4], link_status[5]);
}
static bool
intel_dp_link_training_clock_recovery(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
u8 old_link_status[DP_LINK_STATUS_SIZE] = {};
int voltage_tries, cr_tries, max_cr_tries;
u8 link_status[DP_LINK_STATUS_SIZE];
bool max_vswing_reached = false;
int delay_us;
delay_us = drm_dp_read_clock_recovery_delay(&intel_dp->aux,
intel_dp->dpcd, dp_phy,
intel_dp_is_uhbr(crtc_state));
if (!intel_dp_reset_link_train(intel_dp, crtc_state, dp_phy,
DP_TRAINING_PATTERN_1 |
DP_LINK_SCRAMBLING_DISABLE)) {
lt_err(intel_dp, dp_phy, "Failed to enable link training\n");
return false;
}
if (intel_dp->dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
max_cr_tries = 10;
else
max_cr_tries = 80;
voltage_tries = 1;
for (cr_tries = 0; cr_tries < max_cr_tries; ++cr_tries) {
usleep_range(delay_us, 2 * delay_us);
if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, dp_phy,
link_status) < 0) {
lt_err(intel_dp, dp_phy, "Failed to get link status\n");
return false;
}
if (drm_dp_clock_recovery_ok(link_status, crtc_state->lane_count)) {
lt_dbg(intel_dp, dp_phy, "Clock recovery OK\n");
return true;
}
if (voltage_tries == 5) {
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
lt_dbg(intel_dp, dp_phy, "Same voltage tried 5 times\n");
return false;
}
if (max_vswing_reached) {
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
lt_dbg(intel_dp, dp_phy, "Max Voltage Swing reached\n");
return false;
}
intel_dp_get_adjust_train(intel_dp, crtc_state, dp_phy,
link_status);
if (!intel_dp_update_link_train(intel_dp, crtc_state, dp_phy)) {
lt_err(intel_dp, dp_phy, "Failed to update link training\n");
return false;
}
if (!intel_dp_adjust_request_changed(crtc_state, old_link_status, link_status))
++voltage_tries;
else
voltage_tries = 1;
memcpy(old_link_status, link_status, sizeof(link_status));
if (intel_dp_link_max_vswing_reached(intel_dp, crtc_state))
max_vswing_reached = true;
}
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
lt_err(intel_dp, dp_phy, "Failed clock recovery %d times, giving up!\n",
max_cr_tries);
return false;
}
static u32 intel_dp_training_pattern(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
bool source_tps3, sink_tps3, source_tps4, sink_tps4;
if (intel_dp_is_uhbr(crtc_state))
return DP_TRAINING_PATTERN_2;
source_tps4 = intel_dp_source_supports_tps4(i915);
sink_tps4 = dp_phy != DP_PHY_DPRX ||
drm_dp_tps4_supported(intel_dp->dpcd);
if (source_tps4 && sink_tps4) {
return DP_TRAINING_PATTERN_4;
} else if (crtc_state->port_clock == 810000) {
if (!source_tps4)
lt_dbg(intel_dp, dp_phy,
"8.1 Gbps link rate without source TPS4 support\n");
if (!sink_tps4)
lt_dbg(intel_dp, dp_phy,
"8.1 Gbps link rate without sink TPS4 support\n");
}
source_tps3 = intel_dp_source_supports_tps3(i915);
sink_tps3 = dp_phy != DP_PHY_DPRX ||
drm_dp_tps3_supported(intel_dp->dpcd);
if (source_tps3 && sink_tps3) {
return DP_TRAINING_PATTERN_3;
} else if (crtc_state->port_clock >= 540000) {
if (!source_tps3)
lt_dbg(intel_dp, dp_phy,
">=5.4/6.48 Gbps link rate without source TPS3 support\n");
if (!sink_tps3)
lt_dbg(intel_dp, dp_phy,
">=5.4/6.48 Gbps link rate without sink TPS3 support\n");
}
return DP_TRAINING_PATTERN_2;
}
static bool
intel_dp_link_training_channel_equalization(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
int tries;
u32 training_pattern;
u8 link_status[DP_LINK_STATUS_SIZE];
bool channel_eq = false;
int delay_us;
delay_us = drm_dp_read_channel_eq_delay(&intel_dp->aux,
intel_dp->dpcd, dp_phy,
intel_dp_is_uhbr(crtc_state));
training_pattern = intel_dp_training_pattern(intel_dp, crtc_state, dp_phy);
if (training_pattern != DP_TRAINING_PATTERN_4)
training_pattern |= DP_LINK_SCRAMBLING_DISABLE;
if (!intel_dp_set_link_train(intel_dp, crtc_state, dp_phy,
training_pattern)) {
lt_err(intel_dp, dp_phy, "Failed to start channel equalization\n");
return false;
}
for (tries = 0; tries < 5; tries++) {
usleep_range(delay_us, 2 * delay_us);
if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, dp_phy,
link_status) < 0) {
lt_err(intel_dp, dp_phy, "Failed to get link status\n");
break;
}
if (!drm_dp_clock_recovery_ok(link_status,
crtc_state->lane_count)) {
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
lt_dbg(intel_dp, dp_phy,
"Clock recovery check failed, cannot continue channel equalization\n");
break;
}
if (drm_dp_channel_eq_ok(link_status,
crtc_state->lane_count)) {
channel_eq = true;
lt_dbg(intel_dp, dp_phy, "Channel EQ done. DP Training successful\n");
break;
}
intel_dp_get_adjust_train(intel_dp, crtc_state, dp_phy,
link_status);
if (!intel_dp_update_link_train(intel_dp, crtc_state, dp_phy)) {
lt_err(intel_dp, dp_phy, "Failed to update link training\n");
break;
}
}
if (tries == 5) {
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
lt_dbg(intel_dp, dp_phy, "Channel equalization failed 5 times\n");
}
return channel_eq;
}
static bool intel_dp_disable_dpcd_training_pattern(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
int reg = intel_dp_training_pattern_set_reg(intel_dp, dp_phy);
u8 val = DP_TRAINING_PATTERN_DISABLE;
return drm_dp_dpcd_write(&intel_dp->aux, reg, &val, 1) == 1;
}
static int
intel_dp_128b132b_intra_hop(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
u8 sink_status;
int ret;
ret = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_STATUS, &sink_status);
if (ret != 1) {
lt_dbg(intel_dp, DP_PHY_DPRX, "Failed to read sink status\n");
return ret < 0 ? ret : -EIO;
}
return sink_status & DP_INTRA_HOP_AUX_REPLY_INDICATION ? 1 : 0;
}
void intel_dp_stop_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
intel_dp->link_trained = true;
intel_dp_disable_dpcd_training_pattern(intel_dp, DP_PHY_DPRX);
intel_dp_program_link_training_pattern(intel_dp, crtc_state, DP_PHY_DPRX,
DP_TRAINING_PATTERN_DISABLE);
if (intel_dp_is_uhbr(crtc_state) &&
wait_for(intel_dp_128b132b_intra_hop(intel_dp, crtc_state) == 0, 500)) {
lt_dbg(intel_dp, DP_PHY_DPRX, "128b/132b intra-hop not clearing\n");
}
}
static bool
intel_dp_link_train_phy(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
bool ret = false;
if (!intel_dp_link_training_clock_recovery(intel_dp, crtc_state, dp_phy))
goto out;
if (!intel_dp_link_training_channel_equalization(intel_dp, crtc_state, dp_phy))
goto out;
ret = true;
out:
lt_dbg(intel_dp, dp_phy,
"Link Training %s at link rate = %d, lane count = %d\n",
ret ? "passed" : "failed",
crtc_state->port_clock, crtc_state->lane_count);
return ret;
}
static void intel_dp_schedule_fallback_link_training(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
if (!intel_digital_port_connected(&dp_to_dig_port(intel_dp)->base)) {
lt_dbg(intel_dp, DP_PHY_DPRX, "Link Training failed on disconnected sink.\n");
return;
}
if (intel_dp->hobl_active) {
lt_dbg(intel_dp, DP_PHY_DPRX,
"Link Training failed with HOBL active, not enabling it from now on\n");
intel_dp->hobl_failed = true;
} else if (intel_dp_get_link_train_fallback_values(intel_dp,
crtc_state->port_clock,
crtc_state->lane_count)) {
return;
}
queue_work(i915->unordered_wq, &intel_connector->modeset_retry_work);
}
static bool
intel_dp_link_train_all_phys(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
int lttpr_count)
{
bool ret = true;
int i;
for (i = lttpr_count - 1; i >= 0; i--) {
enum drm_dp_phy dp_phy = DP_PHY_LTTPR(i);
ret = intel_dp_link_train_phy(intel_dp, crtc_state, dp_phy);
intel_dp_disable_dpcd_training_pattern(intel_dp, dp_phy);
if (!ret)
break;
}
if (ret)
ret = intel_dp_link_train_phy(intel_dp, crtc_state, DP_PHY_DPRX);
if (intel_dp->set_idle_link_train)
intel_dp->set_idle_link_train(intel_dp, crtc_state);
return ret;
}
static bool
intel_dp_128b132b_lane_eq(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
u8 link_status[DP_LINK_STATUS_SIZE];
int delay_us;
int try, max_tries = 20;
unsigned long deadline;
bool timeout = false;
if (!intel_dp_reset_link_train(intel_dp, crtc_state, DP_PHY_DPRX,
DP_TRAINING_PATTERN_1)) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to start 128b/132b TPS1\n");
return false;
}
delay_us = drm_dp_128b132b_read_aux_rd_interval(&intel_dp->aux);
if (drm_dp_dpcd_read_link_status(&intel_dp->aux, link_status) < 0) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to read TX FFE presets\n");
return false;
}
intel_dp_get_adjust_train(intel_dp, crtc_state, DP_PHY_DPRX, link_status);
if (!intel_dp_update_link_train(intel_dp, crtc_state, DP_PHY_DPRX)) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to set initial TX FFE settings\n");
return false;
}
if (!intel_dp_set_link_train(intel_dp, crtc_state, DP_PHY_DPRX,
DP_TRAINING_PATTERN_2)) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to start 128b/132b TPS2\n");
return false;
}
deadline = jiffies + msecs_to_jiffies_timeout(400);
for (try = 0; try < max_tries; try++) {
usleep_range(delay_us, 2 * delay_us);
delay_us = drm_dp_128b132b_read_aux_rd_interval(&intel_dp->aux);
if (drm_dp_dpcd_read_link_status(&intel_dp->aux, link_status) < 0) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to read link status\n");
return false;
}
if (drm_dp_128b132b_link_training_failed(link_status)) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
lt_err(intel_dp, DP_PHY_DPRX,
"Downstream link training failure\n");
return false;
}
if (drm_dp_128b132b_lane_channel_eq_done(link_status, crtc_state->lane_count)) {
lt_dbg(intel_dp, DP_PHY_DPRX, "Lane channel eq done\n");
break;
}
if (timeout) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
lt_err(intel_dp, DP_PHY_DPRX, "Lane channel eq timeout\n");
return false;
}
if (time_after(jiffies, deadline))
timeout = true;
intel_dp_get_adjust_train(intel_dp, crtc_state, DP_PHY_DPRX, link_status);
if (!intel_dp_update_link_train(intel_dp, crtc_state, DP_PHY_DPRX)) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to update TX FFE settings\n");
return false;
}
}
if (try == max_tries) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
lt_err(intel_dp, DP_PHY_DPRX, "Max loop count reached\n");
return false;
}
for (;;) {
if (time_after(jiffies, deadline))
timeout = true;
if (drm_dp_dpcd_read_link_status(&intel_dp->aux, link_status) < 0) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to read link status\n");
return false;
}
if (drm_dp_128b132b_link_training_failed(link_status)) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
lt_err(intel_dp, DP_PHY_DPRX, "Downstream link training failure\n");
return false;
}
if (drm_dp_128b132b_eq_interlane_align_done(link_status)) {
lt_dbg(intel_dp, DP_PHY_DPRX, "Interlane align done\n");
break;
}
if (timeout) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
lt_err(intel_dp, DP_PHY_DPRX, "Interlane align timeout\n");
return false;
}
usleep_range(2000, 3000);
}
return true;
}
static bool
intel_dp_128b132b_lane_cds(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
int lttpr_count)
{
u8 link_status[DP_LINK_STATUS_SIZE];
unsigned long deadline;
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_2_CDS) != 1) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to start 128b/132b TPS2 CDS\n");
return false;
}
deadline = jiffies + msecs_to_jiffies_timeout((lttpr_count + 1) * 20);
for (;;) {
bool timeout = false;
if (time_after(jiffies, deadline))
timeout = true;
usleep_range(2000, 3000);
if (drm_dp_dpcd_read_link_status(&intel_dp->aux, link_status) < 0) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to read link status\n");
return false;
}
if (drm_dp_128b132b_eq_interlane_align_done(link_status) &&
drm_dp_128b132b_cds_interlane_align_done(link_status) &&
drm_dp_128b132b_lane_symbol_locked(link_status, crtc_state->lane_count)) {
lt_dbg(intel_dp, DP_PHY_DPRX, "CDS interlane align done\n");
break;
}
if (drm_dp_128b132b_link_training_failed(link_status)) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
lt_err(intel_dp, DP_PHY_DPRX, "Downstream link training failure\n");
return false;
}
if (timeout) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
lt_err(intel_dp, DP_PHY_DPRX, "CDS timeout\n");
return false;
}
}
return true;
}
static bool
intel_dp_128b132b_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
int lttpr_count)
{
bool passed = false;
if (wait_for(intel_dp_128b132b_intra_hop(intel_dp, crtc_state) == 0, 500)) {
lt_err(intel_dp, DP_PHY_DPRX, "128b/132b intra-hop not clear\n");
return false;
}
if (intel_dp_128b132b_lane_eq(intel_dp, crtc_state) &&
intel_dp_128b132b_lane_cds(intel_dp, crtc_state, lttpr_count))
passed = true;
lt_dbg(intel_dp, DP_PHY_DPRX,
"128b/132b Link Training %s at link rate = %d, lane count = %d\n",
passed ? "passed" : "failed",
crtc_state->port_clock, crtc_state->lane_count);
return passed;
}
void intel_dp_start_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
bool passed;
int lttpr_count = intel_dp_init_lttpr_and_dprx_caps(intel_dp);
if (lttpr_count < 0)
lttpr_count = 0;
intel_dp_prepare_link_train(intel_dp, crtc_state);
if (intel_dp_is_uhbr(crtc_state))
passed = intel_dp_128b132b_link_train(intel_dp, crtc_state, lttpr_count);
else
passed = intel_dp_link_train_all_phys(intel_dp, crtc_state, lttpr_count);
if (!passed && i915->display.hotplug.ignore_long_hpd) {
lt_dbg(intel_dp, DP_PHY_DPRX, "Ignore the link failure\n");
return;
}
if (!passed)
intel_dp_schedule_fallback_link_training(intel_dp, crtc_state);
}
void intel_dp_128b132b_sdp_crc16(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
if (intel_dp_is_uhbr(crtc_state))
drm_dp_dpcd_writeb(&intel_dp->aux,
DP_SDP_ERROR_DETECTION_CONFIGURATION,
DP_SDP_CRC16_128B132B_EN);
lt_dbg(intel_dp, DP_PHY_DPRX, "DP2.0 SDP CRC16 for 128b/132b enabled\n");
}